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MIKHAIL L'VOVICH GOLDMAN

Doctor of physical and mathematical sciences, Professor
Mikhail L'vovich Goldman passed away on July 5, 2025, at the
age of 80 years.

Mikhail L'vovich was an internationally known expert in sci-
enceand education. His fundamental scienti�c articles and text
books in various�elds of the theory of functions of several variable-
sand functional analysis, the theory of approximation of functions,
embedding theorems and harmonic analysis are a signi�cant con-
tribution to the development of mathematics.

Mikhail L'vovich was born on Aprill 13, 1945 in Moscow. In
1963, he graduated from School No. 128 in Moscow with a gold
medal and entered the Physics Faculty of the Lomonosov Moscow
State University. He graduated in 1969 and became a postgradu-
ate student in the Mathematics Department. In 1972, he defended
his PhD thesis "On integral representations and Fourier series of

di�erentiable functions of several variables" under the supervision of Professor Ilyin Vladimir Alek-
sandrovich, and in 1988, his doctoral thesis "Study of spaces of di�erentiable functions of several
variables with generalized smoothness" at the S.L. Sobolev Institute of Mathematics in Novosibirsk.
Scienti�c degree "Professor of Mathematics" was awarded to him in 1991.

From 1974 to 2000 M.L. Goldman was successively an Assistant Professor, Full Professor, Head
of the Mathematical Department at the Moscow Institute of Radio Engineering, Electronics and
Automation (technical university). Since 2000 he was a Professor of the Department of Theory
of Functions and Di�erential Equations, then of the S.M. Nikol'skii Mathematical Institute at the
Patrice Lumumba Peoples' Friendship University of Russia (RUDN University).

Research interests of M.L. Goldman were: the theory of function spaces, optimal embeddings,
integral inequalities, spectral theory of di�erential operators.Among the most important scienti�c
achievements of M.L. Goldman, we note his research related to the optimal embedding of spaces
with generalized smoothness, exact conditions for the convergence of spectral decompositions, de-
scriptions of the integral and di�erential properties of generalized potentials of the Bessel and Riesz
types, exact estimates for operators on cones, descriptions of optimal spaces for cones of functions
with monotonicity properties.

M.L. Goldman has published more than 150 scienti�c articles in central mathematical journals.
He is a laureate of the Moscow government competition, a laureate of the RUDN University Prize in
Science and Innovation, and a laureate of the RUDN University Prize for supervision of postgraduate
students. Under the supervision of Mikhail L'vovich 11 PhD theses were defended. His pupilss
are actively involved in professional work at leading universities and research institutes in Russia,
Kazakhstan, Ethiopia, Rwanda, Colombia, and Mongolia.

Mikhail L'vovich has repeatedly been a guest lecturer and guest professor at universities in
Russia, Germany, Sweden, Great Britain, etc., and an invited speaker at many international con-
ferences. Mikhail L'vovich was not only an excellent mathematician and teacher (he always spoke
about mathematics and its teaching with great passion), but also a man of the highest culture and
erudition, with a deep knowledge of history, literature and art, a very bright, kind and responsive
person. This is how he will remain in the hearts of his family, friends, colleagues and students.

The Editorial Board of the Eurasian Mathematical Journal expresses deep condolences to the
family, relatives and friends of Mikhail L'vovich Goldman.
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Abstract. The main objective of the work is to identify the relationship between evolution equa-
tions with potential operators and geometries of related con�guration spaces of the given systems.
Using the Hamilton principle, a wide class of such equations is derived. Their structural analysis is
carried out, containing operator analogues of the Christo�el symbols of both the 1st and 2nd kind.
It is shown that the study of the obtained evolution equations can be associated, in general, with an
extended con�guration space, the metric of which is determined by the kinetic energy of the given
system.

DOI: https://doi.org/10.32523/2077-9879-2025-16-3-09-19

1 Introduction

One of the main properties of the metric tensor is that it completely de�nes the geometry of the
space to which it belongs. The relationship of expressions for the metric tensor and the kinetic
energy allows determining the components of the metric tensor of the con�guration space of the
system by the type of kinetic energy for the system and constructing its geometric model. The
subject of the present paper lies between analytical mechanics, geometry and variational calculus.
Tensor methods have long been applied in the dynamics of �nite-dimensional systems [11]. They
were initially aimed at using the ideas of Riemannian geometry in dynamics. In turn, the problems
of mechanics contributed to the development of geometry. Signi�cant results have been obtained
over more than a hundred years (see, for example, [1, 4, 3, 7, 11, 12] and references therein). In
particular, it was shown that the curvature of a manifold � an invariant distinguishing Riemannian
metrics aij (u1, . . . , un), i, j = 1, n, � signi�cantly a�ects the form of geodesics on it, i.e. the motion
in the corresponding dynamical system [2].

Geodesics are lines ui = ui (t), t ∈ [t0, t1], i = 1, n, which are solutions to the equations

d2uj

dt2
+ Γjki

duk

dt

dui

dt
= 0, j = 1, n,

where Γjki are the Christo�el symbols of the second kind.
Here and below, summation is implied by repeating indices of factors located at di�erent levels.
If the metric aij (u1, . . . , un) is non-degenerate (i.e. det (aij) 6= 0), then

Γkij =
1

2
akl
(
∂alj
∂ui

+
∂ail
∂uj
− ∂aij
∂ul

)
, (1.1)

where
(
akl
)
is the inverse matrix of the matrix (alk).
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The Christo�el symbols of the �rst kind are found through the components of the metric tensor
by the formulas

Γk,ij =
1

2

(
∂akj
∂ui

+
∂aik
∂uj
− ∂aji
∂uk

)
. (1.2)

As noted in work [6], in problems of mechanics it is natural to choose as a Riemannian metric
the metric that is determined by the kinetic energy of the system.

2 Statement of the problem. Geodesic equations

Let U = C2 ([t0, t1] , U1), V = C ([t0, t1] , V1), where U1, V1 are normed linear spaces over the �eld of
real numbers R, U1 ⊆ V1.

Let the state of an in�nite-dimensional dynamical system be determined by a function u ∈ U ,
satisfying the conditions u|t=t0 = u0, u|t=t1 = u1, where u0, u1 are given elements from U1. A curve
u in U1 is a mapping u : [t0, t1]→ U1.

We will follow the notation and terminology of [4, 5].
Let be given a symmetric non-degenerate bilinear form 〈·, ·〉 : V1×V1 → R and the kinetic energy

of the system

T [t, u, ut] =
1

2
〈ut, Auut〉+ 〈ut, B (t, u)〉+ 〈u,C (t, u)〉 ,

where Au is a linear G�ateaux di�erential operator, in general, depending nonlinearly on t and u;
ut = du

dt
= lim

∆t→0

u(t+∆t)−u(t)
∆t

∈ U1. Operators B, C are di�erentiable with respect to t, and u in the

sense of G�ateaux.

A′u (h; g) =
(
d
dε
Au+εgh

) ∣∣
ε=0

; F [u] =
t1∫
t0

T [t, u, ut] dt, u ∈ D (F ) =

{u ∈ U : u|t=t0 = u0, u|t=t1 = u1}; the G�ateaux di�erential δF [u, h] = d
dε
F [u + εh]

∣∣
ε=0

. The
construction of adjoint operators in the work is based on the Lagrange identity [8].

De�nition 1. A function u ∈ D (F ) is called stationary for a functional F if δF [u, h] = 0 ∀h ∈
D (F ′u).

Theorem 2.1. The stationary function of the functional F [u] is a solution to the operator equation

N(u) ≡ 1

2
(Au + A∗u)utt +

1

2

[
A′u (ut;ut) + A∗

′

u (ut;ut)− A
′∗
u (ut;ut)

]
−

−
(
B
′∗
u −B

′

u

)
ut +

1

2

(
∂Au
∂t

+
∂A∗u
∂t

)
ut +

∂B

∂t
− C − C ′∗u u = 0,

(2.1)

where (. . . )∗ is the operator adjoint to the operator (. . . ) with respect to the given bilinear form,
utt = d2u

dt2
, A

′∗
u (ut;ut) = (A′u (ut; ·))∗ ut.

Proof. For further use, we note that if the G�ateaux derivative N ′u of N exists, then [9]

N(u+ εh) = N(u) + εN ′uh+ r(u, εh), u ∈ D(N), (2.2)

where

lim
ε→0

r(u, εh)

ε
= 0.
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Let us denote

F1[u] =
1

2

t1∫
t0

〈ut, Auut〉 dt,

F2[u] =

t1∫
t0

[〈ut, B (t, u)〉+ 〈u,C (t, u)〉] dt, u ∈ D (F ) = D (F1) = D (F2) .

Using equality (2.2), we obtain

F1[u+ εh] =
1

2

t1∫
t0

〈ut + εht, Au+εh (ut + εht)〉 dt

=
1

2

t1∫
t0

〈ut + εht, Au+εhut + Au+εhεht〉 dt

=
1

2

t1∫
t0

〈ut + εht, Auut + A′u (ut; εh) + Auεht + A′u (εht; εh) + r(u, εh)〉 dt.

From here we �nd

δF1[u, h] =
1

2

t1∫
t0

[〈ht, Auut〉+ 〈ut, A′u (ut;h) + Auht〉] dt

=
1

2

t1∫
t0

[Dt 〈h,Auut〉 − 〈h,Dt (Auut)〉+

+
〈
A
′∗
u (ut; ·)ut, h

〉
+ 〈A∗uut, ht〉

]
dt ∀u ∈ D (F ) ,∀h ∈ D (F ′u) ,

(2.3)

where Dt is a total derivative with respect to t.
Since

〈A∗uut, ht〉 = Dt 〈A∗uut, h〉 − 〈Dt (A∗uut) , h〉

= Dt 〈A∗uut, h〉 −
〈
∂A∗u
∂t

ut + A∗
′

u (ut;ut) + A∗uutt, h

〉
,

then from (2.3) we get

δF1[u, h] =
1

2
〈(Au + A∗u)ut, h〉

∣∣∣∣t=t1
t=t0

+
1

2

t1∫
t0

[〈
A
′∗
u (ut; ·)ut − A∗

′

u (ut;ut)−

−A′u (ut;ut)− (Au + A∗u)utt −
(
∂Au
∂t

+
∂A∗u
∂t

)
ut, h

〉]
dt.

(2.4)

Taking into account that
h
∣∣
t=t0

= h
∣∣
t=t1

= 0,



On some geometric aspects of evolution variational problems 12

from (2.4) we �nd

δF1[u, h] = −1

2

t1∫
t0

[〈
(Au + A∗u)utt + A′u (ut;ut) + A∗

′

u (ut;ut)− A
′∗
u (ut;ut) +

+

(
∂Au
∂t

+
∂A∗u
∂t

)
ut, h

〉]
dt ∀u ∈ D (F ) ,∀h ∈ D (F ′u) .

Using equality (2.2), in a similar way we get

F2 [u+ εh] =

t1∫
t0

[〈ut + εht, B (t, u+ εh)〉+ 〈u+ εh, C (t, u+ εh)〉] dt,

δF2 [u, h] =

t1∫
t0

[
〈ht, B (t, u)〉+ 〈ut, B′h〉+ 〈h,C (t, u)〉+

〈
u,C

′

uh
〉]
dt.

From here we obtain

δF2 [u, h] =

t1∫
t0

[
Dt 〈h,B (t, u)〉 − 〈h,DtB (t, u)〉+

〈
h,B

′∗
u ut

〉
+

+ 〈h,C (t, u)〉+
〈
h,C

′∗
u

〉]
dt =

= 〈h,B (t, u)〉
∣∣∣∣t1
t0

+

t1∫
t0

〈
h,
(
B
′∗
u −B′u

)
ut −

∂B

∂t
+ C (t, u) + C

′∗
u u

〉
dt.

(2.5)

Since h
∣∣
t=t0

= h
∣∣
t=t1

= 0, from (2.5) we �nd

δF2 [u, h] =

t1∫
t0

〈
h,
(
B
′∗
u −B′u

)
ut −

∂B

∂t
+ C (t, u) + C

′∗
u u

〉
dt.

From the condition

δF [u, h] ≡ δF1[u, h] + δF2[u, h] = 0, u ∈ D (F ) ,∀h ∈ D (F ′u)

we obtain operator equation (2.1).

Corollary 2.1. If A∗u = Au, then equation (2.1) takes the form

Auutt +
1

2

[
A′u (ut;ut) + A∗

′

u (ut;ut)− A
′∗
u (ut;ut)

]
−

−
(
B
′∗
u −B′u

)
ut +

∂Au
∂t

ut +
∂B

∂t
− C − C ′∗u = 0.

(2.6)

Corollary 2.2. If A∗u = Au, B
′∗
u = B′u, Au and B are independent of t, C = 0 and there is an

inverse operator A−1
u , then equation (2.1) takes the form

utt +
1

2
A−1
u

[
A′u (ut;ut) + A∗

′

u (ut;ut)− A
′∗
u (ut;ut)

]
= 0. (2.7)
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Consider a �nite-dimensional system with coordinates (u1, . . . , un), ui (t0) = ui0 , ui (t1) = ui1,
t ∈ [t0, t1], i = 1, n, and the kinetic energy T = 1

2
u̇iaij(u)u̇j, where (aij)

n
i,j=1 is a symmetric matrix,

det (aij)
n
i,j=1 6= 0, u̇i = dui

dt
.

Theorem 2.2. If T = 1
2
u̇iaij(u)u̇j, then equation (2.7) coincides with the geodesic equation

d2uj

dt2
+ Γjiku̇

iu̇k = 0, j = 1, n, (2.8)

where

Γjik =
1

2
ajl
(
∂alk
∂ui

+
∂ail
∂uk
− ∂aik

∂ul

)
are the Christo�el symbols.

Proof. In the case under consideration

〈ut, Auut〉 = u̇iaij(u)u̇j, F [u] =
1

2

t1∫
t0

u̇iaij(u)u̇jdt.

We have

F [u+ εh] =
1

2

t1∫
t0

(
u̇i + εḣi

)
(aij(u+ εh))

(
u̇j + εḣj

)
dt.

From here we �nd

δF [u, h] =
d

dε
F [u+ εh]

∣∣
ε=0

=
1

2

t1∫
t0

[
ḣiu̇jaij(u) + u̇iḣjaij(u) + u̇iu̇j

∂aij(u)

∂uk
hk
]
dt.

Integrating by parts, we obtain

δF [u, h] =
1

2

[
hiu̇jaij + hju̇iaij

] ∣∣∣∣t=t1
t=t0

+

+
1

2

t1∫
t0

[
u̇iu̇j

∂aij
∂uk

hk − hi
(
üjaij + u̇j

∂aij
∂uk

u̇k
)
− hj

(
üiaij + u̇i

∂aij
∂uk

ük
)]

dt.

Since hi (t0) = hi (t1) = 0, i = 1, n, then changing the summation indices in the terms under the
integral sign, we �nd

δF [u, h] =
1

2

t1∫
t0

[
−hküj (akj + ajk) + hku̇iu̇j

(
∂aij
∂uk
− ∂akj

∂ui
− ∂aik
∂uj

)]
dt.

Taking into account the symmetry of the matrix (aij)
n
i,j=1, we arrive at the equality

δF [u, h] = −
t1∫
t0

hk
[
akjü

j +
1

2

(
∂akj
∂ui

+
∂aik
∂uj
− ∂aij
∂uk

)
u̇iu̇j

]
dt.

From the condition δF [u, h] = 0, u ∈ D (F ), ∀h ∈ D (F ′u) we conclude that u is a solution to
the system of equations

akjü
j + Γk,iju̇

iu̇j = 0, (2.9)
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where Γk,ij are the Christo�el symbols of the �rst kind (1.2).
Since det (aij)

n
i,j=1 6= 0, system of equations (2.9) can be solved with respect to üj(j = 1, n). As

a result, we arrive at system of equations (2.8).
Thus, equations of geodesics (2.8) are obtained.

In the absence of forces, the motion of a system with kinetic energy 1
2
〈ut, Auut〉 can be interpreted

as motion in U by inertia with the metric

ds2 = 〈ut, Auut〉 dt2.

Borrowing terminology from mechanics, for such a motion the trajectories are called geodesic
lines with respect to indicated metric. Thus, the problem of inertial motion is reduced to �nding
geodesic lines. Operator equation (2.6) expresses a far-reaching generalization of this fact.

Corollary 2.3. [10] Equation (2.7) is an operator analogue of geodesic equations (2.8), while the
operator

K1u[·] =
1

2

[
A′u (·; ·) + A∗

′

u (·; ·)− A′∗u (·; ·)
]

(2.10)

de�nes an analogue of the Christo�el symbols of the �rst kind Γk,ij, and

K2u[·] = A−1
u K1u[·] (2.11)

is an analogue of the Christo�el symbols of the second kind Γkij.

The operator D
dt
, de�ned by the formula

Dut
dt

= utt + A−1
u K1u [ut] ,

is an analogue of the covariant derivative of ut with respect to t.
The above analogues are of particular interest in terms of their relationship with Riemannian

geometry, as well as the geometry de�ned by the pseudo-Riemannian metric.
Using now operators (2.10), (2.11), we get the following.

Corollary 2.4. If A∗u = Au and there exists the inverse operator A−1
u , then evolution equation (2.1)

can be represented in the form

N1(u) ≡ utt +K2u [ut] + A−1
u

[
∂Au
∂t

ut −
(
B
′∗ −B′u

)
ut +

∂B

∂t
− C − C ′∗u u

]
= 0,

u ∈ D (N) = D (F ) .

(2.12)

It is an interesting problem to interpret this operator evolution equation in terms of rheonomic
geometry with the metric

ds2 =
1

2
〈ut, Auut〉 dt2 + 〈ut, B(t, u)〉 dt2 + 〈u,C(t, u)〉 dt2,

associated with the given kinetic energy T [t, u, ut].



On some geometric aspects of evolution variational problems 15

3 Evolution equation and relative integral invariant

Let us establish the connection between evolution equation (2.1) and an relative integral invariant
of the �rst order.

Let
u = u (λ; t) , λ ∈ Λ = [0, 1] (3.1)

be an arbitrary one-parameter set of elements from U continuously di�erentiable with respect to λ.
It can be considered as a curve γ in U . We assume that u (0; t) = u (1; t), i.e. γ is a closed curve.

Let us introduce the notation

δu =
∂u (λ; t)

∂λ
dλ.

Let us consider the functional

F [u (λ; t)] =

τ1∫
τ0

T [t, u (λ; t) , ut (λ; t)] dt,

where [τ0, τ1] is an arbitrary segment from [t0, t1].
We have

δF =
∂F [u (λ; t)]

∂λ
dλ =

τ1∫
τ0

∂T

∂λ
dλdt =

τ1∫
τ0

δTdt =

=
1

2

τ1∫
τ0

[〈δut, Auut〉+ 〈ut, A′u (ut; δu) + Auδut〉+ 〈δut, B(t, u)〉+

+ 〈ut, B′uδu〉+ 〈δu, C (t, u)〉+ 〈u,C ′uδu〉] dt.

(3.2)

Since δut = d
dt
δu, from (3.2) we get

δF =

τ1∫
τ0

{
1

2

[
Dt 〈δu,Auut〉 − 〈δu,Dt (Auut)〉+

〈
A
′∗
u (ut; ·)ut, δu

〉
+

+ 〈A∗uut, δut〉] +Dt 〈δu,B(t, u)〉 − 〈δu,DtB(t, u)〉+

+
〈
B
′∗
u ut, δu

〉
+ 〈δu, C(t, u)〉+

〈
C
′∗
u u, δu

〉}
dt.

(3.3)

Bearing in mind that

Dt (Auut) =
∂Au
∂t

ut + A′u (ut;ut) + Auutt,

〈A∗uut, δut〉 = Dt 〈A∗uut, δu〉 − 〈Dt (A∗uut) , δu〉

= Dt 〈A∗uut, δu〉 −
〈
∂A∗u
∂t

+ A∗
′

u (ut;ut) + A∗uutt, δu

〉
,

DtB(t, u) =
∂B

∂t
+B′uut,
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from (3.3) we obtain

δF =

〈
1

2
(Au + A∗u)ut +B(t, u), δu

〉 ∣∣∣∣t=τ1
t=τ0

−

−
τ1∫
τ0

〈
1

2
(Au + A∗u)utt +

1

2

[
A′u (ut;ut) + A∗

′

u (ut;ut)− A
′∗
u (ut; ·)ut

]
+

+
(
B′u −B

′∗
u

)
ut +

1

2

(
∂Au
∂t

+
∂A∗u
∂t

)
ut +

∂B

∂t
− C − C ′∗u u, δu

〉
=

=

〈
1

2
(Au + A∗u)ut +B(t, u), δu

〉 ∣∣∣∣t=τ1
t=τ0

−
τ1∫
τ0

〈N(u), δu〉 dt.

(3.4)

Along the real trajectories, the solutions to evolution equation (2.1), we have

δF =

〈
1

2
(Au + A∗u)ut +B(t, u), δu

〉 ∣∣∣∣t=τ1
t=τ0

.

Integrating this equality termwise with respect to λ from λ = 0 to λ = 1, we obtain

0 = F [u(1; t)]− F [u(0; t)] =

1∫
0

〈
1

2
(Au + A∗u)ut +B(t, u), δu

〉 ∣∣∣∣t=τ1
t=τ0

=

=

1∫
0

〈
1

2
(Au + A∗u)ut +B, δu

〉 ∣∣∣∣
t=τ1

−
1∫

0

〈
1

2
(Au + A∗u)ut +B, δu

〉 ∣∣∣∣
t=τ0

=

=

∮
γ1

〈
1

2
(Au + A∗u)ut +B, δu

〉
−
∮
γ0

〈
1

2
(Au + A∗u)ut +B, δu

〉
,

i.e. ∮
γ1

〈
1

2
(Au + A∗u)ut +B, δu

〉
=

∮
γ0

〈
1

2
(Au + A∗u)ut +B, δu

〉
,

where γ0, γ1 are arbitrary closed curves, embracing the tube of trajectories.
Thus we proved the following.

Theorem 3.1. Equation (2.1) has the relative integral invariant

I =

∮ 〈
1

2
(Au + A∗u)ut +B, δu

〉
.

4 Example

Let us denote U = C2 ([t0, t1] , U1), V = C ([t0, t1] , V1). Let Ω be a bounded domain in R3 with
piecewise smooth boundary ∂Ω, U1 = C4

(
Ω
)
, V1 = C

(
Ω
)
, ∆ = ∂2

(∂x1)2
+ ∂2

(∂x2)2
+ ∂2

(∂x3)2
the Laplace

operator, x = (x1, x2, x3). Let Au = ∆2 + αu + βu2, ∆2 = ∆∆, where α, β ∈ C1 [t0, t1]. We will
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assume that the domain of de�nition D (Au) of the operator Au consists of all those functions u ∈ U
that satisfy the conditions

u|t=t0 = u0, u|t=t1 = u1,

u|Γ = ψ(t, x),

∂u

∂n

∣∣∣∣
Γ

= ϕ(t, x),

where Γ = [t0, t1]× ∂Ω, ui ∈ C4
(
Ω
)

(i = 0, 1), ψ, ϕ ∈ C(Γ).
Let us de�ne the bilinear form

〈v, g〉 =

∫
Ω

v(t, x)g(t, x)dx.

Let us de�ne

T =
1

2
〈ut, Auut〉 ,

which we will interpret as the kinetic energy of some system.
We will �nd the form of equation (2.1) for this case.
For this purpose we obtain

Auv = ∆2v + αuv + βu2v,

Au+εhv = ∆2v + αv (u+ εh) + βv (u+ εh)2 ,

A′u(v;h) =
d

dε
Au+εhv

∣∣
ε=0

= αvh+ 2βvuh = (αv + 2βvu)h.

Let us �nd A∗u.
We have

t1∫
t0

∫
Ω

h · Augdxdt =

t1∫
t0

∫
Ω

h
(
∆2g + αug + βu2g

)
dxdt =

=

t1∫
t0

∫
Ω

g
(
∆2h+ αuh+ βu2h

)
dxdt =

t1∫
t0

∫
Ω

g · Auhdxdt ∀u ∈ D(Au),∀g, h ∈ D(A′u).

Thus,
A∗u = Au ∀u ∈ D (Au) .

Next, we get

A
′∗
u (v; ·)h = (αv + 2βuv)h,

∂Au
∂t

= αtu+ βtu
2.

According to formula (2.10), we �nd

K1u [ut] =
1

2
[αut + 2βuut]ut +

1

2
[αut + 2βuut]ut −

1

2
[αut + 2βuut]ut =

=
1

2
[α + 2βu]u2

t .

Thus, in the case under consideration, equation (2.1) takes the form(
∆2 + αu+ βu2

)
utt +

1

2
(α + 2βu)u2

t + αtu+ βtu
2 = 0.

It has the following relative integral invariant∮ ∫
Ω

(
∆2 + αu+ βu2

)
ut dx δu.
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5 Conclusion

In the work there is identi�ed the relationship between evolution equations with potential operators
and geometries of related con�guration spaces of the given systems. Using the Hamilton principle, a
wide class of such equations is derived. Their structural analysis is carried out, containing operator
analogues of the Christo�el symbols of both the 1st and 2nd kind. It is shown that the study of
the obtained evolution system can be associated, in general, with an extended con�guration space,
the metric of which is determined by the kinetic energy of the given system. It is shown that the
obtained evolution operator equation has a relative integral invariant.
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1 Introduction

Let I = (0,∞), 1 < p, q < ∞, 1
p

+ 1
p′

= 1, λ > 0, and n > 1 be an integer. Let u be a positive
function continuous on the interval I. Suppose that v is a positive function in�nitely di�erentiable
on I.

Let W n
p,v ≡ W n

p,v(I) represent the space of functions f : I → R possessing weak derivatives up

to the nth order on the interval I, satisfying ‖f (n)‖p,v < ∞, where ‖f‖p,v =

(∞∫
0

v(t)|f(t)|pdt
) 1

p

denotes the norm of the weighted space Lp,v(I). Under certain conditions on the function v, we
observe that C∞0 (I) ⊂ W n

p,v(I), where C∞0 (I) denotes the set of all functions in�nitely di�erentiable

and compactly supported on I. Let W̊ n
p,v ≡ W̊ n

p,v(I) denote the closure of the set C∞0 (I) with respect

to the norm ‖f (n)‖p,v.
In the paper there are discussed oscillatory properties of the following 2nth order di�erential

equation
(−1)n(v(t)y(n)(t))(n) − λu(t)y(t) = 0, t ∈ I, (1.1)

and spectral properties of the self-adjoint di�erential operator L generated by the di�erential ex-
pression

ly(t) = (−1)n
1

u(t)
(v(t)y(n)(t))(n), (1.2)

in the space L2,u(I) equipped with the inner product (f, g)2,u =
∞∫
0

f(t)g(t)u(t)dt.
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In the qualitative analysis of di�erential equations, there exist e�ective techniques for determin-
ing the oscillatory behavior of second-order equations of the form:

(v(t)y′(t))′ − u(t)y(t) = 0, t ∈ I.

However, extending these methods to higher-order equations poses challenges. Recent studies have
explored approaches suited for higher-order equations, often by selecting one of the coe�cients to be
a power function (see, e.g., [2], [3], [20], and [21]). In this paper, we employ the variational method.
This method relies on establishing a connection between the oscillatory properties of equation (1.1)
and characterizations of the following inequality: ∞∫

0

u(t)|f(t)|qdt

 1
q

≤ C

 ∞∫
0

v(t)|f (n)(t)|pdt

 1
p

, f ∈ W̊ n
p,v(I). (1.3)

This approach allows us to relax the requirement that the weights in the equation must be power
functions exclusively. Furthermore, we derive explicit conditions for oscillation and spectral prop-
erties in terms of the coe�cients u and v of equation (1.1) and the operator L. Inequality (1.3) is a
generalization of the famous Hardy inequality, which has a long-standing history (see, e.g., [9]). Its
di�erent extensions and applications have evolved into an independent area known as the �theory of
Hardy-type inequalities� with numerous papers being published annually (see, e.g., the most recent
works [12], [17], and [22]).

The investigation of inequality (1.3) hinges on the behavior of the function v at the endpoints
of the interval I. According to [10] and [16], if v1−p′ /∈ L1(1,∞), then there exists f ∈ W n

p,v such

that the limits lim
t→∞

f (i)(t) do not exist for all i = 0, 1, ..., n − 1; if v1−p′ ∈ L1(0, 1), then for any

f ∈ W n
p,v the limits lim

t→0+
f (i)(t) ≡ f (i)(0) exist for all i = 0, 1, ..., n − 1. The oscillation of equation

(1.1) under the conditions v1−p′ /∈ L1(1,∞) and v1−p′ ∈ L1(0, 1) was investigated in [14] using the
variational method, as will be done here. This case can be termed the �standard case�, since for
the nth order inequality (1.3), there exist precisely n boundary conditions at the endpoints of the
interval I, namely no conditions at in�nity and n �nite limits at zero. The spectral properties of
the operator L in this �standard case� were examined in paper [18].

From [10] and [16] it also follows that if v1−p′ ∈ L1(1,∞) and tp
′
v1−p′ /∈ L1(1,∞), then for any

f ∈ W n
p,v there exists exactly one limit lim

t→∞
f (n−1)(t) ≡ f (n−1)(∞). Therefore, together with the

above condition for v at zero v1−p′ ∈ L1(0, 1), they entail n+ 1 conditions at the endpoints:

f (i)(0) = 0, i = 0, 1, ..., n− 1, and f (n−1)(∞) = 0.

This �overdetermined� case was studied in work [7].
In our study, we explore equation (1.1) and the operator L under the conditions:

tp
′(n−1)v1−p′ ∈ L1(1,∞), tp

′(n−2)v1−p′ /∈ L1(0, 1), and tp
′(n−1)v1−p′ ∈ L1(0, 1), (1.4)

which, according to [10] and [16], guaranty the existence of another n + 1 values lim
t→0+

f(t) ≡ f(0)

and lim
t→∞

f (i)(t) ≡ f (i)(∞), i = 0, 1, ..., n− 1, at the endpoints of the interval I, so that

W̊ n
p,v(I) = {f ∈ W n

p,v(I) : f(0) = 0 and f (i)(∞) = 0, i = 0, 1, ..., n− 1}. (1.5)

Note that the same problems as here, but speci�cally for n = 2, where the di�erential equation
and operator are of fourth-order, were considered in the paper [15]. Consequently, this paper
expands its scope to include the problems for any n ≥ 2.
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The paper is organized as follows. In Section 2, we present all the main results regarding the
oscillatory properties of equation (1.1) and the spectral properties of the operator L. Additionally,
Section 2 encompasses the characterizations of inequality (1.3). Section 3 o�ers a proof concerning
inequality (1.3). In Section 4, we compile the proofs of the main results concerning equation (1.1)
and the operator L. In Section 5, we improve some results obtained earlier.

Let us present notations used in the paper. Assume that v(t) = v(t)

tp(n−1) , t ∈ I. Since

tp
′(n−1)v1−p′ = tp

′(n−1)v1−p′tp(n−1)(1−p′) = v1−p′t(n−1)(p′+p−pp′) = v1−p′ ,

from (1.4) we have that v1−p′ ∈ L1(I). Therefore, for any τ ∈ I there exists kτ such that

τ∫
0

v1−p′(t)dt = kτ

∞∫
τ

v1−p′(t)dt, (1.6)

in addition, kτ increases in τ , lim
τ→0+

kτ = 0, and lim
τ→∞

kτ =∞.

The symbol A � B means A ≤ CB with some constant C. Additionally, we de�ne χM as the
characteristic function of a set M .

2 Oscillatory properties of equation (1.1) and spectral properties of the

operator L

Equation (1.1) is termed oscillatory at zero if, for any T > 0, there exists a (non-trivial) solution
of this equation possessing more than one zero with multiplicity n to the left of T ([4, p. 69]).
Otherwise, equation (1.1) is termed non-oscillatory at zero.

Equation (1.1) is termed strongly oscillatory or non-oscillatory at zero if it is oscillatory or
non-oscillatory at zero for all values λ > 0, respectively.

The oscillatory properties of di�erential equation (1.1) can be established using the variational
method, relying on the following well-known statement.

Lemma A. Equation (1.1) is non-oscillatory at zero if and only if there exists T > 0 such that

T∫
0

(
v(t)|f (n)(t)|2 − λu(t)|f(t)|2

)
dt ≥ 0, f ∈ W̊ n

2,v(0, T ).

It is obvious that Lemma A can be reformulated as follows.

Lemma 2.1. (i) Equation (1.1) is non-oscillatory at zero if and only if there exists T > 0 and
CT > 0, depending only on T, such that the inequality

T∫
0

λu(t)|f(t)|2dt ≤ λCT

T∫
0

v(t)|f (n)(t)|2dt, f ∈ W̊ n
2,v(0, T ), (2.1)

holds with the least constant λCT such that 0 < λCT ≤ 1;
(ii) Equation (1.1) is oscillatory at zero if and only if for any T > 0 the least constant in (2.1) is
such that λCT > 1.

Inequality (2.1) is a particular case of inequality (1.3), the characterizations of which are provided
in the following theorem.
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Theorem 2.1. Let 1 < p ≤ q <∞ and (1.4) hold. For τ ∈ I suppose that

B1(τ) = sup
z>τ

 z∫
τ

u(t)dt

 1
q
 ∞∫

z

(s− z)p
′(n−1)v1−p′(s)ds

 1
p′

,

B2(τ) = sup
z>τ

 z∫
τ

(z − t)q(n−1)u(t)dt

 1
q
 ∞∫

z

v1−p′(s)ds

 1
p′

,

B3(τ) =
1

τ

 τ∫
0

tqu(t)dt

 1
q
 ∞∫

τ

(s− τ)p
′(n−1)v1−p′(s)ds

 1
p′

,

B4(τ) =
1

τ

 τ∫
0

tq(τ − t)q(n−2)u(t)dt

 1
q
 ∞∫

τ

(s− τ)p
′
v1−p′(s)ds

 1
p′

,

F1(τ) = sup
0<z<τ

1

τn−1

 z∫
0

tq(τ − t)q(n−2)u(t)dt

 1
q
 τ∫

z

(τ − s)p′sp′(n−2)v1−p′(s)ds

 1
p′

,

F2(τ) = sup
0<z<τ

1

τn−1

 τ∫
z

(τ − t)q(n−1)u(t)dt

 1
q
 z∫

0

sp
′(n−1)v1−p′(s)ds

 1
p′

,

B(τ) = max{B1(τ), B2(τ), B3(τ), B4(τ)}, F (τ) = max{F1(τ), F2(τ)},

BF = inf
τ∈I

max{B(τ), F (τ)},

εl(n) =
4−

1
p

(n− 1)!
, εr(n) =

1

(n− 1)!

(
(n− 1)2n−2 + (n+ 8)p

1
q (p′)

1
p′
)
.

Then for the least constant C in (1.3) the estimates

εl(n)BF ≤ C ≤ εr(n)BF, (2.2)

1

(n− 1)!
sup
τ∈I

(1 + kp−1
τ )−

1
pF (τ) ≤ C ≤ εr(n)F (τ0) (2.3)

hold, where
τ0 = inf{τ > 0 : B(τ) ≤ F (τ)}. (2.4)

By following the same steps as in the proof of Lemma 4.3 in [7], using Lemma 2.1, we can deduce
the following statement.

Lemma 2.2. Let CT be the least constant in (2.1).
(i) Equation (1.1) is strongly non-oscillatory at zero if and only if lim

T→0+
CT = 0.

(ii) Equation (1.1) is strongly oscillatory at zero if and only if CT =∞ for any T > 0.

Based on Lemma 2.2 and Theorem 2.1, we establish the criteria for strong oscillation and non-
oscillation of equation (1.1) as follows:
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Theorem 2.2. Let t2(n−1)v−1 ∈ L1(I) and t2(n−2)v−1 /∈ L1(0, 1).
(i) Equation (1.1) is strongly non-oscillatory at zero if and only if

lim
τ→0+

sup
0<z<τ

z∫
0

t2u(t)dt

τ∫
z

s2(n−2)v−1(s)ds = 0, (2.5)

lim
τ→0+

sup
0<z<τ

τ∫
z

u(t)dt

z∫
0

s2(n−1)v−1(s)ds = 0. (2.6)

(ii) Equation (1.1) is strongly oscillatory at zero if and only if

lim
τ→0+

sup
0<z<τ

z∫
0

t2u(t)dt

τ∫
z

s2(n−2)v−1(s)ds =∞ (2.7)

or

lim
τ→0+

sup
0<z<τ

τ∫
z

u(t)dt

z∫
0

s2(n−1)v−1(s)ds =∞. (2.8)

Let the minimal di�erential operator Lmin be generated by di�erential expression (1.2), i.e.,
Lminy = ly is an operator with the domain D(Lmin) = C∞0 (I). It is known that all self-adjoint
extensions of the minimal di�erential operator Lmin have the same spectrum ([4]).

Now, we present conditions under which any self-adjoint extension L of the operator Lmin has a
spectrum which is discrete and bounded below. The signi�cance of studying these spectral properties
is fully elucidated in [5].

The relationship between the non-oscillation of equation (1.1) and the above spectral properties
of the operator L is expounded in the following statement ([4]).

Lemma B. The operator L is bounded below and has a discrete spectrum if and only if equation
(1.1) is strongly non-oscillatory.

On the basis of Lemma B and Theorem 2.2, we obtain the following statement.

Theorem 2.3. Let the assumptions of Theorem 2.2 hold. Then the operator L has a spectrum
discrete and bounded below if and only if both (2.5) and (2.6) hold.

If the operator Lmin is nonnegative, it possesses the Friedrichs extension LF . According to
Theorem 2.3, the operator LF exhibits a discrete spectrum if and only if both conditions (2.5) and
(2.6) are satis�ed.

For p = q = 2 inequality (1.3) can be rewritten as (f, f)2C
−2 ≤ (LFf, f)2,u. Then from Theorem

2.3 we have the following theorem, where the introduced above values BF , εl(n), and εr(n) are taken
for p = q = 2.

Theorem 2.4. Let the assumptions of Theorem 2.2 hold. Then the operator LF is positive de�nite

if and only if BF <∞. Moreover, εl(n)BF ≤ λ
− 1

2
1 ≤ εr(n)BF holds for the smallest eigenvalue λ1

of the operator LF .

By Rellih's lemma ([11, p. 183]), the operator L−1
F possesses a spectrum that is discrete and

bounded below in L2,u if and only if the space equipped with the norm (LFf, f)
1
2
2,u is compactly

embedded into the space L2,u. Consequently, we derive another statement from Theorem 2.3.
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Theorem 2.5. Under the assumptions of Theorem 2.2, the embedding W̊ n
2,v(I) ↪→ L2,u is compact,

and the operator L−1
F is uniformly continuous on L2,u if and only if both conditions (2.5) and (2.6)

are satis�ed.

Let the operator L−1
F be completely continuous on L2,u. Suppose that {λk}∞k=1 are the eigenvalues

and {ϕk}∞k=1 is the corresponding complete orthonormal system of eigenfunctions of the operator
L−1
F . Assume that

D(t) =

∞∫
t

 t∫
0

(s− x)n−2dx

2

v−1(s)ds+

t∫
0

 s∫
0

(s− x)n−2dx

2

v−1(s)ds.

Theorem 2.6. Let the assumptions of Theorem 2.2 hold. Let (2.5) and (2.6) hold.
(i)

1

((n− 2)!)2
D(t) ≤

∞∑
k=1

|ϕk(t)|2

λk
≤ 2

((n− 2)!)2
D(t). (2.9)

(ii) The operator L−1
F is nuclear if and only if

∞∫
0

u(t)D(t)dt <∞, and for the nuclear norm ‖L−1
F ‖σ1

of the operator L−1
F the relation

1

((n− 2)!)2

∞∫
0

u(t)D(t)dt ≤ ‖L−1
F ‖σ1 =

∞∑
k=1

1

λk
≤ 2

((n− 2)!)2

∞∫
0

u(t)D(t)dt (2.10)

holds.

3 Proof of Theorem 2.1

Let −∞ ≤ a < b ≤ ∞. To prove Theorem 2.1 we use characterizations of the standard weighted
Hardy inequality provided in the following statement (see, e.g., [9]).

Theorem A. Let 1 < p ≤ q <∞.
(i) The inequality  b∫

a

u(t)

∣∣∣∣∣∣
t∫

a

f(s)ds

∣∣∣∣∣∣
q

dt


1
q

≤ C

 b∫
a

v(t) |f(t)|p dt


1
p

(3.1)

holds if and only if

A+ = sup
a<z<b

 b∫
z

u(t)dt


1
q
 z∫

a

v1−p′(s)ds

 1
p′

<∞,

moreover,

A+ ≤ C ≤ p
1
q (p′)

1
p′A+,

where C is the least constant in (3.1).
(ii) The inequality  b∫

a

u(t)

∣∣∣∣∣∣
b∫
t

f(s)ds

∣∣∣∣∣∣
q

dt


1
q

≤ C

 b∫
c

v(t) |f(t)|p dt


1
p

(3.2)
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holds if and only if

A− = sup
a<z<b

 z∫
a

u(t)dt

 1
q
 b∫

z

v1−p′(s)ds


1
p′

<∞,

moreover,

A− ≤ C ≤ p
1
q (p′)

1
pA−,

where C is the least constant in (3.2).

We also need the statement, which follows from the results of the works [19] and [6]. Let

B1 = sup
a<z<b

 z∫
a

(z − t)q(n−1)u(t)dt

 1
q
 b∫

z

v1−p′(s)ds


1
p′

,

B2 = sup
a<z<b

 z∫
a

u(t)dt

 1
q
 b∫

z

(s− z)p
′(n−1)v1−p′(s)ds


1
p′

.

Theorem B. Let 1 < p ≤ q <∞. The inequality b∫
a

u(t)

∣∣∣∣∣∣
b∫
t

(s− t)n−1f(s)ds

∣∣∣∣∣∣
q

dt


1
q

≤ C

 b∫
a

v(t) |f(t)|p dt


1
p

(3.3)

holds if and only if max{B1, B2} <∞. Moreover,

max{B1, B2} ≤ C ≤ 8p
1
q (p)

1
p′ max{B1, B2},

where C is the least constant in (3.3).
To establish Theorem 2.1, we adopt the approach outlined in the proof of Theorem 2.2 in [13].

Proof of Theorem 2.1. Su�ciency. By the conditions, we have (1.5). Let τ ∈ I. We assume that

f(t) =
t∫

0

f ′(x)dx for 0 < t < τ , f(t) = −
∞∫
t

f ′(x)dx for t > τ and f ′(x) = (−1)n−1

(n−2)!

∞∫
x

(s−x)n−2f (n)(s)ds

for x ∈ I. Then for f ∈ W̊ n
p,v(I) we have

f(t) =
(−1)n

(n− 1)!

∞∫
t

(s− t)n−1f (n)(s)ds (3.4)

for t > τ . Moreover, we have

f(t) =
(−1)n−1

(n− 2)!

t∫
0

∞∫
x

(s− x)n−2f (n)(s)dsdx =
(−1)n−1

(n− 2)!

 t∫
0

t∫
x

(s− t)n−2f (n)(s)dsdx

+

t∫
0

τ∫
t

(s− x)n−2f (n)(s)dsdx+

t∫
0

∞∫
τ

(s− x)n−2f (n)(s)dsdx


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=
(−1)n−1

(n− 2)!

 t∫
0

f (n)(s)

s∫
0

(s− x)n−2dxds+

τ∫
t

f (n)(s)

t∫
0

(s− x)n−2dxds

+

∞∫
τ

f (n)(s)

t∫
0

(s− x)n−2dxds

 (3.5)

=
(−1)n−1

(n− 2)!

 t∫
0

f (n)(s)
sn−1

n− 1
ds+

τ∫
t

f (n)(s)sn−1

(
1−

(
1− t

s

)n−1
)

n− 1
ds

+

∞∫
τ

f (n)(s)sn−1

(
1−

(
1− t

s

)n−1
)

n− 1
ds

 .
Assuming g(s) = f (n)(s)sn−1, the last equality gives that

f(t) =
(−1)n

(n− 1)!

− ∞∫
τ

g(s)

(
1−

(
1− t

s

)n−1
)
ds

−
τ∫
t

g(s)

(
1−

(
1− t

s

)n−1
)
ds−

t∫
0

g(s)ds

 . (3.6)

Since
∞∫
0

f ′(x)dx = 0, we get

f(t) = c1

∞∫
0

∞∫
x

(s− x)n−2f (n)(s)dsdx = c2

∞∫
0

f (n)(s)sn−1ds = 0,

which gives that
∞∫
0

g(s)ds = 0. Therefore, for f ∈ W̊ n
p,v(I) from (3.6) we get

f(t) =
(−1)n

(n− 1)!

− ∞∫
τ

g(s)

(
1−

(
1− t

s

)n−1
)
ds

−
τ∫
t

g(s)

(
1−

(
1− t

s

)n−1
)
ds−

t∫
0

g(s)ds+

(
1−

(
1− t

τ

)n−1
) ∞∫

0

g(s)ds


=

(−1)n

(n− 1)!

 ∞∫
τ

g(s)

((
1− t

s

)n−1

−
(

1− t

τ

)n−1
)
ds

−
τ∫
t

g(s)

((
1− t

τ

)n−1

−
(

1− t

s

)n−1
)
ds−

(
1− t

τ

)n−1
t∫

0

g(s)ds

 (3.7)
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for 0 < t < τ . Then, for f ∈ W̊ n
p,v(I) from (3.4) and (3.7) we obtain

(n− 1)!

(−1)n
f(t) = χ(0,τ)(t)

 ∞∫
τ

g(s)

((
1− t

s

)n−1

−
(

1− t

τ

)n−1
)
ds

−
τ∫
t

g(s)

((
1− t

τ

)n−1

−
(

1− t

s

)n−1
)
ds−

(
1− t

τ

)n−1
t∫

0

g(s)ds


+ χ(τ,∞)(t)

∞∫
t

(s− t)n−1 g(s)

sn−1
ds. (3.8)

Since
∞∫

0

v(s)|f (n)(s)|pds =

∞∫
0

v(s)

sp(n−1)
|f (n)(s)sn−1|pds =

∞∫
0

v(s)|g(s)|p,

the condition f ∈ W̊ n
p,v(I) is equivalent to the condition g ∈ L̃p,v(I), where L̃p,v(I) =

{
g ∈ Lp,v(I) :

∞∫
0

g(s)ds = 0
}
. Taking into account that for s > τ

(
1− t

s

)n−1

−
(

1− t

τ

)n−1

≤ (n− 1)
(s− t)n−2

sn−2

(
t

τ
− t

s

)

≤ (n− 1)2n−3 [(s− τ)n−2 + (τ − t)n−2] t(s− τ)

sn−1τ

= (n− 1)2n−3

[
(s− τ)n−1t

sn−1τ
+

(s− τ)(τ − t)n−2t

sn−1τ

]
and for τ > s (

1− t

τ

)n−1

−
(

1− t

s

)n−1

≤ (n− 1)
(τ − t)n−2(τ − s)t

τn−1s
,

by (3.8) inequality (1.3) can be written in the form

1

(n− 1)!

 τ∫
0

u(t)

∣∣∣∣∣∣(n− 1)2n−3 t

τ

∞∫
τ

(s− τ)n−1 g(s)

sn−1
ds

+ (n− 1)2n−3 t

τ
(τ − t)n−2

∞∫
τ

(s− τ)
g(s)

sn−1
ds

− (τ − t)n−1

τn−1

t∫
0

g(s)ds −(n− 1)
t

τn−1
(τ − t)n−2

τ∫
t

(τ − s)g(s)

s
ds

∣∣∣∣∣∣
q

dt

+

∞∫
τ

u(t)

∣∣∣∣∣∣
∞∫
t

(s− t)n−1 g(s)

sn−1
ds

∣∣∣∣∣∣
q

dt


1
q

 ≤ C

 ∞∫
0

v(s)|g(s)|pds

 1
p

. (3.9)
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In the left-hand side of (3.9) applying the Minkowski inequality for sums, then the H�older inequality,
Theorem A, and Theorem B, we get

 ∞∫
0

u(t)|f(t)|qdt

 1
q

≤ 1

(n− 1)!

(
p

1
q (p′)

1
p′F1(τ) + (n− 1)p

1
q (p′)

1
p′F2(τ)

) τ∫
0

v(s)|f (n)(s)|pds

 1
p

+
1

(n− 1)!

(
(n− 1)2n−3B3(τ) + (n− 1)2n−3B4(τ)

+ 8 p
1
q (p′)

1
p′ max{B1(τ), B2(τ)}

) ∞∫
τ

v(s)|f (n)(s)|pds

 1
p

≤ 1

(n− 1)!

(
n p

1
q (p′)

1
p′F (τ) +

(
(n− 1)2n−2 + 8p

1
q (p′)

1
p′
)
B(τ)

) ∞∫
0

v(s)|f (n)(s)|pds

 1
p

≤ εr(n) max{B(τ), F (τ)}

 ∞∫
0

v(s)|f (n)(s)|pds

 1
p

. (3.10)

Since the left-hand side of (3.10) is independent of τ ∈ I, (3.10) implies the right estimate in (2.2).
Now, let us prove the right estimate in (2.3). Since

lim
τ→∞

F1(τ) = lim
τ→∞

sup
0<z<τ

 z∫
0

tq
(

1− t

τ

)q(n−2)

u(t)dt

 1
q

×

 τ∫
z

(
1− s

τ

)p′
sp
′(n−2)v1−p′(s)ds

 1
p′

= sup
z>0

 z∫
0

tqu(t)dt

 1
q
 ∞∫

z

sp
′(n−2)v1−p′(s)ds

 1
p′

,

we have that

B4(τ) =

 τ∫
0

tq
(

1− t

τ

)q(n−2)

u(t)dt

 1
q

τn−3

 ∞∫
τ

(s− τ)p
′
v1−p′(s)ds

 1
p′

<

 τ∫
0

tqu(t)dt

 1
q
 ∞∫

τ

sp
′(n−2)v1−p′(s)ds

 1
p′

≤ lim
τ→∞

F1(τ). (3.11)
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For 0 < N < τ we obtain

B3(τ) <

 N∫
0

(
t

τ

)q
u(t)dt


1
q
 ∞∫

τ

sp
′(n−1)v1−p′(s)ds

 1
p′

+

 τ∫
N

(
t

τ

)q
u(t)dt

 1
q
 ∞∫

τ

sp
′(n−1)v1−p′(s)ds

 1
p′

≤

 N∫
0

(
t

τ

)q
u(t)dt


1
q
 ∞∫

τ

sp
′(n−1)v1−p′(s)ds

 1
p′

+

 τ∫
N

u(t)dt

 1
q
 ∞∫

τ

sp
′(n−1)v1−p′(s)ds

 1
p′

.

Since

lim
τ→∞

 N∫
0

(
t

τ

)q
u(t)dt


1
q
 ∞∫

τ

sp
′(n−1)v1−p′(s)ds

 1
p′

= 0,

then

B3(τ)�

 τ∫
N

u(t)dt

 1
q
 ∞∫

τ

sp
′(n−1)v1−p′(s)ds

 1
p′

for a su�ciently large τ > N . If lim
τ→∞

F2(τ) =∞, where

lim
τ→∞

F2(τ) = lim
τ→∞

sup
0<z<τ

 τ∫
z

(
1− t

τ

)q(n−1)

u(t)dt

 1
q
 z∫

0

sp
′(n−1)v1−p′(s)ds

 1
p′

= sup
z>0

 ∞∫
z

u(t)dt

 1
q
 z∫

0

sp
′(n−1)v1−p′(s)ds

 1
p′

,

then
∞∫
z

u(t)dt = ∞ for any z > 0. Therefore, B3(τ) < lim
τ→∞

F2(τ) = ∞ for a su�ciently large

τ > N . If lim
τ→∞

F2(τ) < ∞, then
∞∫
z

u(t)dt < ∞, which implies that lim
τ→∞

B3(τ) = 0, and we �nd

that B3(τ) < F (τ) for a su�ciently large τ . It is also obvious that Bi(τ) < F (τ), i = 1, 2.
Combining these estimates with the obtained estimates B3(τ) < F (τ) and (3.11), we have that
B(τ) ≤ F (τ) in some neighborhood of in�nity. Therefore, in relation (2.4) there exists τ0 > 0 such
that B(τ0) ≤ F (τ0). Consequently,

BF = inf
τ∈I

max{B(τ), F (τ)} ≤ F (τ0)

and the right estimate in (2.3) holds.
Necessity. Since v1−p′ ∈ L1(I), then (1.6) holds. For τ ∈ I we consider two sets L1 = {g ∈

Lp,v(0, τ) : g ≤ 0} and L2 = {g ∈ Lp,v(τ,∞) : g ≥ 0}. Repeating the proof of the necessary part
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of Theorem 1 in [8], for each g1 ∈ L1 we construct a function g2 ∈ L2 and for each g2 ∈ L2 we
construct a function g1 ∈ L1 such that g(t) = g1(t) for 0 < t ≤ τ and g(t) = g2(t) for t > τ belongs

to the set L̃p,v(I). For the constructed function g we have (see [8, (26)])
∞∫

0

v(t)|g(t)|pdt = (1 + kp−1
τ )

τ∫
0

v(t)|g1(t)|pdt = (1 + k1−p
τ )

∞∫
τ

v(t)|g2(t)|pdt <∞. (3.12)

Taking into account (3.8) for the function g ∈ L̃p,v(I), we have

1

(n− 1)!

 τ∫
0

u(t)

∣∣∣∣∣∣
∞∫
τ

g2(s)

((
1− t

s

)n−1

−
(

1− t

τ

)n−1
)
ds

+

τ∫
t

|g1(s)|

((
1− t

τ

)n−1

−
(

1− t

s

)n−1
)
ds+

(
1− t

τ

)n−1
t∫

0

|g1(s)|ds

∣∣∣∣∣∣
q

dt

+

∞∫
τ

u(t)

∣∣∣∣∣∣
∞∫
t

(s− t)n−1 g2(s)

sn−1
ds

∣∣∣∣∣∣
q

dt


1
q

 ≤ C

 ∞∫
0

v(s)|g(s)|pds

 1
p

. (3.13)

In the left-hand side of (3.13), all terms are nonnegative. Using the estimate for s > τ(
1− t

s

)n−1

−
(

1− t

τ

)n−1

≥
(

1− t

s

)n−1

−
(

1− t

s

)n−2(
1− t

τ

)
=

(s− t)n−2(s− τ)t

sn−1τ
≥ max

[
(s− τ)n−1t

sn−1τ
,
(s− τ)(τ − t)n−2t

sn−1τ

]
,

assuming that the function g ∈ L̃p,v(I) is constructed by the function g2 ∈ L2, from (3.12) and
(3.13), we have

1

(n− 1)!

 τ∫
0

u(t)

 t

τ

∞∫
τ

(s− τ)n−1 g2(s)

sn−1
ds

q

dt


1
q

=
1

(n− 1)!

 τ∫
0

tqu(t)dt

 1
q
1

τ

∞∫
τ

(s− τ)n−1 g2(s)

sn−1
ds


≤ C(1 + k1−p

τ )
1
p

 ∞∫
τ

v(t)|g2(t)|pdt

 1
p

,

1

(n− 1)!

 τ∫
0

u(t)

 t

τ
(τ − t)n−2

∞∫
τ

(s− τ)
g2(s)

sn−1
ds

q

dt


1
q

=
1

(n− 1)!

 τ∫
0

tq(τ − t)q(n−2)u(t)dt

 1
q
1

τ

∞∫
τ

(s− τ)
g2(s)

sn−1
ds


≤ C(1 + k1−p

τ )
1
p

 ∞∫
τ

v(t)|g2(t)|pdt

 1
p

,
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1

(n− 1)!

 ∞∫
τ

u(t)

 ∞∫
t

(s− t)n−1 g2(s)

sn−1
ds

q

dt


1
q

≤ C(1 + k1−p
τ )

1
p

 ∞∫
τ

v(t)|g2(t)|pdt

 1
p

.

Due to the arbitrariness of g2 ∈ L2, applying the reverse H�older inequality to the �rst two inequalities
and Theorem B to the last inequality, we obtain

1

(n− 1)!
max{B1(τ), B2(τ), B3(τ)B4(τ)} =

1

(n− 1)!
B(τ) ≤ C(1 + k1−p

τ )
1
p . (3.14)

Similarly, using the estimate for τ > s(
1− t

τ

)n−1

−
(

1− t

s

)n−1

≥ (τ − t)n−2(τ − s)t
τn−1s

,

for the function g ∈ L̃p,v(I) constructed by the function g1 ∈ L1, from (3.12) and (3.13) we have

1

(n− 1)!

 τ∫
0

u(t)

(τ − t)n−1

τn−1

t∫
0

|g1(s)|ds

q

dt


1
q

≤ C(1 + kp−1
τ )

1
p

 τ∫
0

v(t)|g1(t)|pdt

 1
p

,

1

(n− 1)!

 τ∫
0

u(t)

 t

τn−1
(τ − t)n−2

τ∫
t

(τ − s) |g1(s)|
s

ds

q

dt


1
q

≤ C(1 + kp−1
τ )

1
p

 τ∫
0

v(t)|g1(t)|pdt

 1
p

.

The latter, due to the arbitrariness of g1 ∈ L1, by Theorem A, gives that

1

(n− 1)!
F (τ) ≤ C(1 + kp−1

τ )
1
p . (3.15)

From (3.14) and (3.15) we �nd that

1

(n− 1)!
BF ≤ C inf

τ∈I

[
max{(1 + kp−1

τ )(1 + k1−p
τ )}

] 1
p ≤ 4

1
pC,

which yields the left estimate in (2.2). From (3.15) we get the left estimate in (2.3).

4 Proofs of Theorems 2.2 and 2.6

Theorems 2.3, 2.4, and 2.5 directly follow as corollaries from the combination of results presented
in Section 2 and Theorem 2.1 proved above. Here we present the proofs of Theorems 2.2 and 2.6.

For clarity, let us write the squared values F1(τ) and F2(τ) for p = q = 2 in the form:

F 2
1 (τ) = sup

0<z<τ

z∫
0

t2
(

1− t

τ

)2(n−2)

u(t)dt

τ∫
z

(
1− s

τ

)2

s2(n−2)v−1(s)ds,

F 2
2 (τ) = sup

0<z<τ

τ∫
z

(
1− t

τ

)2(n−1)

u(t)dt

z∫
0

s2(n−1)v−1(s)ds,

F 2(τ) = max{F 2
1 (τ), F 2

2 (τ)}.
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Proof of Theorem 2.2. (i) Suppose that equation (1.1) is strongly non-oscillatory at zero. Then by
Lemma 2.2, we have that lim

T→0+
CT = 0. From the left estimate in (2.3) we have

1

(n− 1)!
sup

0<τ<T
(1 + kτ )

−1F 2(τ) ≤ CT ,

which gives that
lim
T→0+

sup
0<τ<T

(1 + kτ )
−1F 2(τ) = 0.

Hence,
lim
τ→0+

(1 + kτ )
−1F 2(τ) = lim

τ→0+
F 2(τ) = 0,

i.e., lim
τ→0+

F 2
1 (τ) = lim

τ→0+
F 2

2 (τ) = 0. Thus,

0 = lim
τ→0+

F 2
1 (τ) ≥ lim

τ→0+
sup

0<z< τ
2

z∫
0

t2
(

1− t

τ

)2(n−2)

u(t)dt

τ
2∫

z

(
1− s

τ

)2

s2(n−2)v−1(s)ds

≥ 4−(n−1) lim
τ→0+

sup
0<z< τ

2

z∫
0

t2u(t)dt

τ
2∫

z

s2(n−2)v−1(s)ds,

i.e., (2.5) holds. Similarly, we prove that (2.6) also holds.
Inversely, let (2.5) and (2.6) hold. Since 1− t

τ
≤ 1 for 0 < t < τ , we obtain

0 = lim
τ→0+

sup
0<z<τ

z∫
0

t2u(t)dt

τ∫
z

s2(n−2)v−1(s)ds

≥ lim
τ→0+

sup
0<z<τ

z∫
0

t2
(

1− t

τ

)2(n−2)

u(t)dt

τ∫
z

(
1− s

τ

)2

s2(n−2)v−1(s)ds = lim
τ→0+

F 2
1 (τ).

Similarly, we �nd that lim
τ→0+

F 2
2 (τ) = 0, i.e., lim

τ→0+
F 2(τ) = 0. From the right estimate in (2.3) we

have
CT ≤ εr(n)F 2(τ0), 0 < τ0 < T. (4.1)

Therefore, we get
0 = εr(n) lim

T→0+
F 2(τ0) = εr(n) lim

τ→0+
F 2(τ) ≥ lim

T→0+
CT .

Thus, lim
T→0+

CT = 0 and, by Lemma 2.2, equation (1.1) is strongly non-oscillatory at zero.

(ii) Let equation (1.1) be strongly oscillatory at zero, then by Lemma 2.2, we have CT =∞ for
any T > 0. Consequently, from (4.1), we deduce lim

T→0+
F (τ0) = lim

τ→0+
F (τ) =∞. This indicates that

at least one of conditions (2.7) or (2.8) holds.
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Inversely, let (2.7) hold. Then

∞ = lim
τ
2
→0+

sup
0<z< τ

2

z∫
0

t2u(t)dt

τ
2∫

z

s2(n−2)v−1(s)ds

= lim
τ
2
→0+

sup
0<z< τ

2

z∫
0

t2u(t)4−(n−2)dt

τ
2∫

z

4−1s2(n−2)v−1(s)ds

≤ lim
τ
2
→0+

sup
0<z< τ

2

z∫
0

t2
(

1− t

τ

)2(n−2)

u(t)dt

τ
2∫

z

(
1− s

τ

)2

s2(n−2)v−1(s)ds

= lim
τ
2
→0+

F 2
1

(τ
2

)
= lim

τ→0+
F 2

1 (τ).

Thus, lim
τ→0+

F 2
1 (τ) =∞. Since 1

(n−1)!
sup

0<τ<T
(1 + kτ )

−1F 2
1 (τ) ≤ CT and

1

(n− 1)!
lim
T→0+

sup
0<τ<T

(1 + kτ )
−1F 2

1 (τ) ≥ 1

(n− 1)!
lim
τ→0+

(1 + kτ )
−1F 2

1 (τ) = lim
τ→0+

F 2
1 (τ),

from lim
τ→0+

F 2
1 (τ) = ∞ we get that CT = ∞ for any T > 0. Therefore, by Lemma 2.2, we conclude

that equation (1.1) is strongly oscillatory at zero. Arguing similarly, we prove that if (2.8) holds,
then equation (1.1) is strongly oscillatory at zero.

To prove Theorem 2.6 we need the following lemma.

Lemma 4.1. Let the assumptions of Theorem 2.2 hold. Then for t ∈ I

1

(n− 1)!
sup
τ∈I

D(t, τ) ≤ sup
f∈W̊n

2,v

|f(t)|
‖f (n)‖2,v

≤
√

2

(n− 1)!
inf
τ∈I

D(t, τ), (4.2)

where

D(t, τ) =

χ(0,τ)(t)(n− 1)2

∞∫
τ

 t∫
0

(s− x)n−2dx

2

v−1(s)ds

+ χ(τ,∞)(t)

∞∫
t

(s− t)2(n−1)v−1(s)ds+ χ(0,τ)(t)(n− 1)2

τ∫
t

 t∫
0

(s− x)n−2dx

2

v−1(s)ds

+χ(0,τ)(t)(n− 1)2

t∫
0

 s∫
0

(s− x)n−2dx

2

v−1(s)ds


1
2

.
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Proof of Lemma 4.1. From (3.4) and (3.5) for the function f ∈ W̊ n
2,v we have

f(t) =
(−1)n−1

(n− 1)!

(n− 1)χ(0,τ)

 t∫
0

f (n)(s)

s∫
0

(s− x)n−2dxds

+

τ∫
t

f (n)(s)

t∫
0

(s− x)n−2dxds +

∞∫
τ

f (n)(s)

t∫
0

(s− x)n−2dxds


−χ(τ,∞)(t)

∞∫
t

(s− t)n−1f (n)(s)ds

 . (4.3)

Applying the H�older inequality, we obtain

|f(t)| ≤ 1

(n− 1)!


(n− 1)χ(0,τ)(t)

 ∞∫
τ

 t∫
0

(s− x)n−2dx

2

v−1(s)ds


1
2

+ χ(τ,∞)(t)

 ∞∫
t

(s− t)2(n−1)v−1(s)ds

 1
2

×
 ∞∫

τ

v(s)|f (n)(s)|2ds

 1
2

+ (n− 1)χ(0,τ)(t)


 τ∫

t

 t∫
0

(s− x)n−2dx

2

v−1(s)ds


1
2

+

 t∫
0

 s∫
0

(s− x)n−2dx

2

v−1(s)ds


1
2
×

 τ∫
0

v(s)|f (n)(s)|2ds

 1
2



≤ 1

(n− 1)!


(n− 1)χ(0,τ)(t)

 ∞∫
τ

 t∫
0

(s− x)n−2dx

2

v−1(s)ds


1
2

+ χ(τ,∞)(t)

 ∞∫
t

(s− t)2(n−1)v−1(s)ds

 1
2


2
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+ χ(0,τ)(t)(n− 1)2


 τ∫

t

 t∫
0

(s− x)n−2dx

2

v−1(s)ds


1
2

+

 t∫
0

 s∫
0

(s− x)n−2dx

2

v−1(s)ds


1
2


2


1
2

‖f (n)‖2,v

≤ 1

(n− 1)!

χ(0,τ)(t)(n− 1)2

∞∫
τ

 t∫
0

(s− x)n−2dx

2

v−1(s)ds

+ χ(τ,∞)(t)

∞∫
t

(s− t)2(n−1)v−1(s)ds+ 2χ(0,τ)(t)(n− 1)2

τ∫
t

 t∫
0

(s− x)n−2dx

2

v−1(s)ds

+2χ(0,τ)(t)(n− 1)2

t∫
0

 s∫
0

(s− x)n−2dx

2

v−1(s)ds


1
2

‖f (n)‖2,v

≤
√

2

(n− 1)!
D(t, τ)‖f (n)‖2,v.

Therefore, |f(t)| ≤
√

2
(n−1)!

inf
τ∈I

D(t, τ)‖f (n)‖2,v and the right estimate in (4.2) holds.

Let us prove the left estimate in (4.2). We �x t ∈ I in (4.3) and select a function f (n) depending
on t as follows:

f
(n)
t (s) =



χ(0,t)(s)(n− 1)
s∫

0

(s− x)n−2dx v−1(s) if 0 < t < τ,

χ(t,τ)(s)(n− 1)
t∫

0

(s− x)n−2dx v−1(s) if 0 < t < τ,

χ(τ,∞)(s)(n− 1)
t∫

0

(s− x)n−2dx v−1(s) if 0 < t < τ,

−χ(t,∞)(s)(s− t)n−1v−1(s) if t > τ.

Placing this function in (4.3), we get

ft(t) =
(−1)n−1

(n− 1)!

χ(0,τ)(t)(n− 1)2

∞∫
τ

 t∫
0

(s− x)n−2dx

2

v−1(s)ds

+ (n− 1)2

τ∫
t

 t∫
0

(s− x)n−2dx

2

v−1(s)ds+ (n− 1)2

t∫
0

 s∫
0

(s− x)n−2dx

2

v−1(s)ds

+χ(τ,∞)(t)

∞∫
t

(s− t)2(n−1)v−1(s)ds

 =
(−1)n−1

(n− 1)!
D2(t, τ). (4.4)
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Let us calculate ‖f (n)
t ‖2,v: ∞∫

0

v(s)|f (n)
t (s)|2ds

 1
2

=

 τ∫
0

v(s)|f (n)
t (s)|2ds+

∞∫
τ

v(s)|f (n)
t (s)|2ds

 1
2

=

χ(0,τ)(t)(n− 1)2

∞∫
τ

 t∫
0

(s− x)n−2dx

2

v−1(s)ds

+ χ(0,τ)(t)(n− 1)2

τ∫
t

 t∫
0

(s− x)n−2dx

2

v−1(s)ds

+ χ(0,τ)(t)(n− 1)2

t∫
0

 s∫
0

(s− x)n−2dx

2

v−1(s)ds

+χ(τ,∞)(t)

∞∫
t

(s− t)2(n−1)v−1(s)ds


1
2

= D(t, τ). (4.5)

From (4.4) and (4.5) we get

sup
f∈W̊n

2,v

|f(t)|
‖f (n)‖2,v

≥ |ft(t)|
‖f (n)

t ‖2,v

=
1

(n− 1)!
D(t, τ)

for any τ ∈ I. This relation proves the validity of the left estimate in (4.2).

Together with Lemma 4.1 we need the following statement from work [1].

Lemma C. Let H = H(I) be a Hilbert function space, and C[0,∞)
⋂
H be dense in it. For any

point t ∈ I, we de�ne the operator Etf = f(t) on C[0,∞)
⋂
H, which acts to the space of complex

numbers. We assume that Et is a closed operator. Then, the norm of this operator is equal to the

value
( ∞∑
k=1

|ϕk(t)|2
) 1

2
(�nite or in�nite), where {ϕk(·)}∞k=1 is any complete orthonormal system of

continuous functions in H.

Proof of Theorem 2.6. By the condition, the operator L−1
F is completely continuous on L2,u. We

assume that the space W̊ n
2,v(I) with the norm ‖f (n)‖2,v is the space H(I) of Lemma C. Since the

system of functions {λ−
1
2

k ϕk}∞k=1 is a complete orthonormal system in the space W̊ n
2,v(I), then by

Lemma C we have

‖Et‖2 =

(
sup

f∈W̊n
2,v(I)

|f(t)|
‖f (n)‖2,v

)2

=
∞∑
k=1

|ϕk(t)|2

λk
,

where Etf = f(t). The latter and (4.2) give

1

((n− 1)!)2
sup
τ∈I

D2(t, τ) ≤
∞∑
k=1

|ϕk(t)|2

λk
≤ 2

((n− 1)!)2
inf
τ∈I

D2(t, τ). (4.6)

Since
inf
τ∈I

D2(t, τ) ≤ lim
τ→∞

D2(t, τ) = (n− 1)2D(t) ≤ sup
τ∈I

D2(t, τ),

from (4.6) we have (2.9). Multiplying both sides of (2.9) by u and integrating them from zero to
in�nity, we get (2.10).
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5 Remarks

As pointed out in Introduction, from [10] and [16] it follows that if

v−1 ∈ L1(0, 1), v−1 ∈ L1(1,∞), and t2v−1 /∈ L1(1,∞), (5.1)

then for any f ∈ W n
2,v there exist the limits lim

t→0+
f (i)(t) ≡ f (i)(0) for all i = 0, 1, ..., n − 1, and

lim
t→∞

f (n−1)(t) ≡ f (n−1)(∞). In paper [7] there are investigated oscillatory properties of equation

(1.1) and spectral properties of the operator L under conditions (5.1), which give that

W̊ n
2,v(I) = {f ∈ W n

2,v(I) : f (i)(0) = 0, i = 0, 1, ..., n− 1, f (n−1)(∞) = 0}.

Item (i) of Theorem 4.2 in [7] can be equivalently rewritten in the form.

Theorem 5.1. Let assumption (5.1) hold. Then the operator L has a spectrum discrete and bounded
below if and only if

lim
z→∞

∞∫
z

t2(n−2)u(t)dt

z∫
0

s2v−1(s)ds = 0, (5.2)

lim
z→∞

z∫
0

t2(n−1)u(t)dt

∞∫
z

v−1(s)ds = 0. (5.3)

Theorem 4.6 in [7] can be also rewritten in the following simpler form.

Theorem 5.2. Let assumption (5.1) hold. Let (5.2) and (5.3) hold.
(i)

1

((n− 2)!)2
D(t) ≤

∞∑
k=1

|ϕk(t)|2

λk
≤ 2

((n− 2)!)2
D(t), (5.4)

where

D(t) =

t∫
0

 s∫
0

(t− x)n−2dx

2

v−1(s)ds+
1

(n− 1)2
t2(n−1)

∞∫
t

v−1(s)ds.

(ii) The operator L−1
F is nuclear if and only if

∞∫
0

u(t)D(t)dt <∞ and for the nuclear norm ‖L−1
F ‖σ1

of the operator L−1
F the relation

1

((n− 2)!)2

∞∫
0

u(t)D(t)dt ≤ ‖L−1
F ‖σ1 =

∞∑
k=1

1

λk
≤ 2

((n− 2)!)2

∞∫
0

u(t)D(t)dt (5.5)

holds.

This statement follows from the relation

1

(n− 1)!
sup
τ∈I
D(t, τ) ≤ sup

f∈W̊n
2,v

|f(t)|
‖f (n)‖2,v

≤
√

2

(n− 1)!
inf
τ∈I
D(t, τ), (5.6)
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where

D(t, τ) =

χ(0,τ)(t)

t∫
0

(t− s)2(n−1)v−1(s)ds

+χ(τ,∞)(t)(n− 1)2

τ∫
0

 τ∫
s

(t− x)n−2dx

2

v−1(s)ds

+χ(τ,∞)(t)(n− 1)2

t∫
τ

 s∫
τ

(t− x)n−2dx

2

v−1(s)ds

+χ(τ,∞)(t)(t− τ)2(n−1)

∞∫
t

v−1(s)ds


1
2

,

found in [7, Lemma 4.5]. Arguing similarly as in the proof of Lemma 4.1 and taking into account
that

inf
τ∈I
D2(t, τ) ≤ lim

τ→0+
D2(t, τ) = (n− 1)2D(t) ≤ sup

τ∈I
D2(t, τ),

from (5.6) we get (5.4). Multiplying both sides of (5.4) by u and integrating them from zero to
in�nity, we obtain (5.5).
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1 Preliminaries

Algebras of binary formulas are a tool for describing relationships between elements of the sets of
realizations of a one-type at the binary level with respect to the superposition of binary de�nable
sets. A binary isolating formula is a formula of the form ϕ(x, y) such that for some parameter a
the formula ϕ(a, y) isolates a complete type in S({a}). The concepts and notations related to these
algebras can be found in papers [27, 28]. In recent years, algebras of binary formulas have been
studied intensively and have been continued in works [1], [3], [7]�[14], [26], [29].

Let L be a countable �rst-order language. Throughout we consider L-structures and assume
that L contains a ternary relational symbol K, interpreted as a circular order in these structures
(unless otherwise stated).

Let M = 〈M,≤〉 be a linearly ordered set. If we connect two endpoints ofM (possibly, −∞ and
+∞), then we obtain a circular order. More formally, the circular order is described by a ternary
relation K satisfying the following conditions:

(co1) ∀x∀y∀z(K(x, y, z)→ K(y, z, x));
(co2) ∀x∀y∀z(K(x, y, z) ∧K(y, x, z)⇔ x = y ∨ y = z ∨ z = x);
(co3) ∀x∀y∀z(K(x, y, z)→ ∀t[K(x, y, t) ∨K(t, y, z)]);
(co4) ∀x∀y∀z(K(x, y, z) ∨K(y, x, z)).
The following observation relates linear and circular orders.

Fact 1.1. [4] (i) If 〈M,≤〉 is a linear ordering and K is the ternary relation derived from ≤ by the
rule

K(x, y, z) :⇔ (x ≤ y ≤ z) ∨ (z ≤ x ≤ y) ∨ (y ≤ z ≤ x),

then K is a circular order relation on M .
(ii) If 〈N,K〉 is a circular ordering and a ∈ N , then the relation ≤a de�ned on M := N \ {a}

by the rule y ≤a z :⇔ K(a, y, z) is a linear order.

Thus, any linearly ordered structure is circularly ordered, since the relation of circular order is ∅-
de�nable in an arbitrary linearly ordered structure. However, the opposite is not true. The following
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example shows that there are circularly ordered structures not being linearly ordered (in the sense
that a linear ordering relation is not ∅-de�nable in an arbitrary circularly ordered structure).

Example 1. [5, 6] Let Q∗2 := 〈Q2, K, L〉 be a circularly ordered structure, where L = {σ2
0, σ

2
1}, for

which the following conditions hold:
(i) its domain Q2 is a countable dense subset of the unit circle, no two points making the central

angle π;
(ii) for distinct a, b ∈ Q2

(a, b) ∈ σ0 ⇔ 0 < arg(a/b) < π,

(a, b) ∈ σ1 ⇔ π < arg(a/b) < 2π,

where arg(a/b) means the value of the central angle between a and b clockwise.
Indeed, one can check that the linear order relation is not ∅-de�nable in this structure.

The notion of weak circular minimality was studied initially in [15]. Let A ⊆ M , where M is a
circularly ordered structure. The set A is called convex if for any a, b ∈ A the following property is
satis�ed: for any c ∈M with K(a, c, b), c ∈ A holds, or for any c ∈M with K(b, c, a), c ∈ A holds.
A weakly circularly minimal structure is a circularly ordered structure M = 〈M,K, . . .〉 such that
any de�nable (with parameters) subset of M is a union of �nitely many convex sets in M . The
study of weakly circularly minimal structures was continued in papers [16]�[22].

Let M be an ℵ0-categorical weakly circularly minimal structure, G := Aut(M). Following the
standard group theory terminology, the group G is called k-transitive if for any pairwise distinct
a1, a2, . . . , ak ∈ M and pairwise distinct b1, b2, . . . , bk ∈ M there exists g ∈ G such that g(a1) =
b1, g(a2) = b2, . . . , g(ak) = bk. A congruence on M is an arbitrary G-invariant equivalence relation
on M . The group G is called primitive if G is 1-transitive and there are no non-trivial proper
congruences on M .

Notation 1. (1) K0(x, y, z) := K(x, y, z) ∧ y 6= x ∧ y 6= z ∧ x 6= z.
(2) K(u1, . . . , un) denotes a formula saying that all subtuples of the tuple 〈u1, . . . , un〉 having

the length 3 (in ascending order) satisfy K; similar notations are used for K0.
(3) Let A,B,C be disjoint convex subsets of a circularly ordered structure M . We write

K(A,B,C) if for any a, b, c ∈ M with a ∈ A, b ∈ B, c ∈ C we have K(a, b, c). We extend
naturally that notation, using, for instance, the notation K0(A, d,B,C) if d 6∈ A ∪ B ∪ C and
K0(A, d,B) ∧K0(d,B,C) holds.

Further, we need the notion of the de�nable completion of a circularly ordered structure, in-
troduced in [15]. Its linear analogue was introduced in [25]. A cut C(x) in a circularly ordered
structure M is the maximal consistent set of formulas of the form K(a, x, b), where a, b ∈ M . A
cut is said to be algebraic if there exists c ∈ M that realizes it. Otherwise, such a cut is said to
be non-algebraic. Let C(x) be a non-algebraic cut. If there is some a ∈ M such that either for all
b ∈ M the formula K(a, x, b) ∈ C(x), or for all b ∈ M the formula K(b, x, a) ∈ C(x), then C(x)
is said to be rational. Otherwise, such a cut is said to be irrational. A de�nable cut in M is a cut
C(x) with the following property: there exist a, b ∈ M such that K(a, x, b) ∈ C(x) and the set
{c ∈ M | K(a, c, b) and K(a, x, c) ∈ C(x)} is de�nable. The de�nable completion M of a structure
M consists of M together with all de�nable cuts in M that are irrational (essentially M consists of
endpoints of de�nable subsets of the structure M).

Notation 2. [15] Let F (x, y) be an L-formula such that F (M, b) is convex in�nite co-in�nite for
each b ∈M . Let F `(y) be the formula saying y is a left endpoint of F (M, y):

∃z1∃z2[K0(z1, y, z2) ∧ ∀t1(K(z1, t1, y) ∧ t1 6= y → ¬F (t1, y))∧

∀t2(K(y, t2, z2) ∧ t2 6= y → F (t2, y))].
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We say that F (x, y) is convex-to-right if

M |= ∀y∀x[F (x, y)→ F l(y) ∧ ∀z(K(y, z, x)→ F (z, y))].

If F1(x, y), F2(x, y) are arbitrary convex-to-right formulas we say F2 is bigger than F1 if there is
a ∈ M with F1(M,a) ⊂ F2(M,a). If M is 1-transitive and this holds for some a, it holds for all a.
This gives a total ordering on the (�nite) set of all convex-to-right formulas F (x, y) (viewed up to
equivalence modulo Th(M)).

Consider F (M,a) for arbitrary a ∈M . In general, F (M,a) has no the right endpoint in M . For
example, if dcl(a) = {a} holds for some a ∈ M , then for any convex-to-right formula F (x, y) and
any a ∈ M the formula F (M,a) has no the right endpoint in M . We write f(y) := rend F (M, y),
assuming that f(y) is the right endpoint of the set F (M, y) that lies, in general, in the de�nable
completion M of M . Then, f is a function mapping M in M .

Let F (x, y) be a convex-to-right formula. We say that F (x, y) is equivalence-generating if for
any a, b ∈M such that M |= F (b, a) the following holds:

M |= ∀x(K(b, x, a) ∧ x 6= a→ [F (x, a)↔ F (x, b)]).

Lemma 1.1. [22] Let M be an ℵ0-categorical 1-transitive weakly circularly minimal structure,
F (x, y) be a convex-to-right formula that is equivalence-generating. Then E(x, y) := F (x, y)∨F (y, x)
is an equivalence relation partitioning M into in�nite convex classes.

Let M , N be circularly ordered structures. The 2-reduct of M is a circularly ordered structure
with the same universe ofM and consisting of predicates for each ∅-de�nable relation onM of arity
≤ 2 as well as of the ternary predicate K for the circular order, but does not have other predicates
of arities more than two. We say that the structure M is isomorphic to N up to binarity or binarily
isomorphic to N if the 2-reduct of M is isomorphic to the 2-reduct of N .

The following de�nition can be used in a circular ordered structure as well.

De�nition 1. [23], [24] Let T be a weakly o-minimal theory, M be a su�ciently saturated model
of T , A ⊆M . The rank of convexity of the set A (RC(A)) is de�ned as follows:

1) RC(A) = −1 if A = ∅.
2) RC(A) = 0 if A is �nite and non-empty.
3) RC(A) ≥ 1 if A is in�nite.
4) RC(A) ≥ α + 1 if there exist a parametrically de�nable equivalence relation E(x, y) and an

in�nite sequence of elements bi ∈ A, i ∈ ω, such that:

• for every i, j ∈ ω whenever i 6= j we have M |= ¬E(bi, bj);

• for every i ∈ ω, RC(E(x, bi)) ≥ α and E(M, bi) is a convex subset of A.

5) RC(A) ≥ δ if RC(A) ≥ α for all α < δ, where δ is a limit ordinal.
If RC(A) = α for some α, we say that RC(A) is de�ned. Otherwise (i.e. if RC(A) ≥ α for all

α), we put RC(A) =∞.
The rank of convexity of a formula φ(x, ā), where ā ∈ M , is de�ned as the rank of convexity of

the set φ(M, ā), i.e. RC(φ(x, ā)) := RC(φ(M, ā)).
The rank of convexity of an 1-type p is de�ned as the rank of convexity of the set p(M), i.e.

RC(p) := RC(p(M)).

The following theorem characterizes up to binarity ℵ0�categorical 1-transitive non-primitive
weakly circularly minimal structures of convexity rank greater than 1 having both a trivial de�nable
closure and the condition that any convex-to-right formula is equivalence-generating:
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Theorem 1.1. [16] Let M be an ℵ0-categorical 1-transitive non-primitive weakly circularly minimal
structure of convexity rank greater than 1 with dcl(a) = {a} for some a ∈M such that any convex-
to-right formula is equivalence-generating.

Then, M is isomorphic up to binarity to Ms,m := 〈M,K3, E2
1 , E

2
2 , . . . , E

2
s , E

2
s+1〉, where M is

a circularly ordered structure, M is densely ordered, s,m ≥ 1; Es+1 is an equivalence relation,
partitioning M into m in�nite convex classes without endpoints; Ei for every 1 ≤ i ≤ s is an
equivalence relation, partitioning each Ei+1-class into in�nitely many in�nite convex Ei-subclasses
without endpoints so that the induced ordering on Ei-subclasses is dense without endpoints.

In [9] algebras of binary isolating formulas are described for ℵ0-categorical weakly circular-
ly minimal theories with a primitive automorphism group. In [11] algebras of binary isolating
formulas are described for ℵ0-categorical weakly circularly minimal theories of convexity rank 1
with a 1-transitive non-primitive automorphism group and a non-trivial de�nable closure. In [12]�
[13] algebras of binary isolating formulas are described for ℵ0-categorical weakly circularly minimal
theories of convexity rank greater than 1 with a 1-transitive non-primitive automorphism group and
a non-trivial de�nable closure. In [14] algebras of binary isolating formulas are described for ℵ0-
categorical weakly circularly minimal theories of convexity rank 1 with a 1-transitive non-primitive
automorphism group and a trivial de�nable closure.

Here, we describe algebras of binary isolating formulas for ℵ0-categorical weakly circularly mini-
mal theories of convexity rank greater than 1 with a 1-transitive non-primitive automorphism group
and a trivial de�nable closure.

2 Results

De�nition 2. [28] Let p ∈ S1(∅) be non-algebraic. The algebra Pν(p) is said to be deterministic if
u1 · u2 is a singleton for any labels u1, u2 ∈ ρν(p).

Generalizing the last de�nition, we say that the algebra Pν(p) is m-deterministic if the product
u1·u2 consists of at mostm elements for any labels u1, u2 ∈ ρν(p). We also say that anm-deterministic
algebra Pν(p) is strictly m-deterministic if it is not (m− 1)-deterministic.

We say that the algebra Pν(p) is ∃-maximally absorbing if there exist u1, u2 ∈ ρν(p) such that
u1 · u2 consists of all the labels of Pν(p).

Example 2. Consider the structure M1,1 := 〈M,K3, E2
1〉 from Theorem 1.1. We assert that

Th(M1,1) has four binary isolating formulas:

θ0(x, y) := x = y,

θ1(x, y) := E1(x, y) ∧ x 6= y ∧ ∀t[K(x, t, y)→ E1(x, t)],

θ2(x, y) := ¬E1(x, y),

θ3(x, y) := E1(x, y) ∧ x 6= y ∧ ∀t[K(y, t, x)→ E1(x, t)].

Clearly,
K0(θ0(a,M), θ1(a,M), θ2(a,M), θ3(a,M))

holds for every a ∈M .
De�ne the labels for these formulas as follows:

label k for θk(x, y), where 0 ≤ k ≤ 3.

It easy to check that for the algebra PM1,1 the Cayley table has the following form:



Algebras of binary formulas for weakly circularly minimal theories with equivalence relations 46

· 0 1 2 3
0 {0} {1} {2} {3}
1 {1} {1} {2} {0, 1, 3}
2 {2} {2} {0, 1, 2, 3} {2}
3 {3} {0, 1, 3} {2} {3}

By the Cayley table the algebra PM1,1 is commutative and strictly 4-deterministic.

Example 3. Consider now the structure M1,2 := 〈M,K3, E2
1 , E

2
2〉 from Theorem 1.1. We assert

that Th(M1,2) has six binary isolating formulas:

θ0(x, y) := x = y,

θ1(x, y) := E1(x, y) ∧ x 6= y ∧ ∀t[K(x, t, y)→ E1(x, t)],

θ2(x, y) := E2(x, y) ∧ ¬E1(x, y) ∧ ∀t[K(x, t, y)→ E2(x, t)],

θ3(x, y) := ¬E2(x, y),

θ4(x, y) := E2(x, y) ∧ ¬E1(x, y) ∧ ∀t[K(y, t, x)→ E2(x, t)],

θ5(x, y) := E1(x, y) ∧ x 6= y ∧ ∀t[K(y, t, x)→ E1(x, t)].

Clearly,
K0(θ0(a,M), θ1(a,M), θ2(a,M), θ3(a,M), θ4(a,M), θ5(a,M))

holds for every a ∈M .
De�ne the labels for these formulas as follows:

label k for θk(x, y), where 0 ≤ k ≤ 5.

It easy to check that for the algebra PM1,2 the Cayley table has the following form:

· 0 1 2 3 4 5
0 {0} {1} {2} {3} {4} {5}
1 {1} {1} {2} {3} {4} {0, 1, 5}
2 {2} {2} {2} {3} {0, 1, 2, 4, 5} {2}
3 {3} {3} {3} {0, 1, 2, 4, 5} {3} {3}
4 {4} {4} {0, 1, 2, 4, 5} {3} {4} {4}
5 {5} {0, 1, 5} {2} {3} {4} {5}

By the Cayley table the algebra PM1,2 is commutative and strictly 5-deterministic.

Proposition 2.1. The algebra PM1,m of binary isolating formulas has m+ 4 labels, is commutative
and strictly 5-deterministic for every natural number m ≥ 2.

Proof. The universe M of the structure M1,m is partitioned by the equivalence relation E2 into m
in�nite convex classes. Take an arbitrary element a ∈M . It belongs to one of these convex classes.
In this convex class �ve binary isolating formulas appear:

θ0(x, y) := x = y,

θ1(x, y) := E1(x, y) ∧ x 6= y ∧ ∀t[K(x, t, y)→ E1(x, t)],

θ2(x, y) := E2(x, y) ∧ ¬E1(x, y) ∧ ∀t[K(x, t, y)→ E2(x, t)],

θm+2(x, y) := E2(x, y) ∧ ¬E1(x, y) ∧ ∀t[K(y, t, x)→ E2(x, t)],
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θm+3(x, y) := E1(x, y) ∧ x 6= y ∧ ∀t[K(y, t, x)→ E1(x, t)].

There remain m − 1 convex classes, where there are no elements lying in the algebraic closure
of the element a, de�ning additionally m− 1 binary isolating formulas. These formulas are de�ned
as follows:

θi(x, y) := ¬E2(x, y) ∧ ∀t[K(x, t, y) ∧ ¬E1(x, t) ∧ ¬E2(t, y)→ ∨i−1
s=2θs(x, t)], 3 ≤ i ≤ m+ 1.

Thus, there are 5 + (m−1) = m+ 4 binary isolating formulas, and we have de�ned the formulas
so that for any a ∈M the following holds:

K0(θ0(a,M), θ1(a,M), θ2(a,M), . . . , θm(a,M), θm+1(a,M), θm+2(a,M), θm+3(a,M)).

Prove now the commutativity. First, it is obvious, 0 · k = k · 0 = {k} for every 0 ≤ k ≤ m + 3.
Suppose further that both k1 6= 0 and k2 6= 0.

Case 1. k1 + k2 = m+ 4.
If k1 = 1, then k2 = m+ 3. In this case each of the formulas θk1(x, y) and θk2(x, y) contains, as

a conjunctive member, the formula E1(x, y), i.e. the formula E1(x, y) is compatible with

∃t[θk1(x, t) ∧ θk2(t, y)].

We have: for any t, satisfying the formula θk1(x, t), it follows that t ∈ E1(x,M) and t is in
this class to the right of the element x. Considering an arbitrary element y, satisfying the formula
θk2(t, y), we obtain that y ∈ E1(t,M) and y is in this class to the left of the element t, i.e. the
formula

∃t[θk1(x, t) ∧ θk2(t, y)]

is compatible with every formula from the list of formulas with labels {0, 1,m+ 3}. Consequently,
k1 · k2 = {0, 1,m+ 3}. We can show similarly that k2 · k1 = {0, 1,m+ 3}.

If k1 = 2, then k2 = m + 2. In this case each of the formulas θk1(x, y) and θk2(x, y) contains
as a conjunctive member the formula E2(x, y) ∧ ¬E1(x, y), i.e. the formula E2(x, y) ∧ ¬E1(x, y) is
compatible with

∃t[θk1(x, t) ∧ θk2(t, y)].

We have: for any t, satisfying the formula θk1(x, t), it follows that t ∈ E2(x,M), t 6∈ E1(x,M),
and t is in this class to the right of the element x. Considering an arbitrary element y, satisfying
the formula θk2(t, y), we obtain that y ∈ E2(t,M), y 6∈ E1(t,M), and y is in this class to the left of
the element t, i.e. the formula

∃t[θk1(x, t) ∧ θk2(t, y)]

is compatible with every formula from the list of formulas with labels {0, 1, 2,m+ 2,m+ 3}. Con-
sequently, k1 · k2 = {0, 1, 2,m+ 2,m+ 3}. We can show similarly that

k2 · k1 = {0, 1, 2,m+ 2,m+ 3}.

Let now 2 < k1 < m + 2. Then, we also have that 2 < k2 < m + 2. Consequently, each of the
formulas θk1(x, y) and θk2(x, y) contains as a conjunctive member the formula ¬E2(x, y). We have:
t lies in the (k1 − 1)-th E2-class from E2(x,M) (i.e. the E2-class, containing x is the �rst E2-class;
the next clockwise E2-class is the second, etc.); y lies in the (k2 − 1)-th E2-class from E2(t,M).
Then, we obtain that y lies in the (k1 +k2− 2)-th E2-class from E2(x,M). But k1 +k2− 2 = m+ 2,
i.e. y falls into E2(x,M). Therefore, we get that

k1 · k2 = k2 · k1 = {0, 1, 2,m+ 2,m+ 3}.

Case 2. k1 + k2 < m+ 4.
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Let us �rst assume that k1 = 1. If k2 = 1, then

∃t[θk1(x, t) ∧ θk2(t, y)]

is compatible with the formula E1(x, y). We have: t lies in the same E1-class with x and in this
class to the right of it; y lies in the same E1-class with t and also to the right of it in this class.
Consequently, y lies in the same E1-class with x and in this class to the right of it, i.e. 1 · 1 = {1}.

Suppose now that k1 = 2. If k2 = 2 then

∃t[θk1(x, t) ∧ θk2(t, y)]

is compatible with the formula E2(x, y). We have: t lies in the same E2-class with x and in this
class to the right of it; y lies in the same E2-class with t and also in this class to the right of it.
Consequently, y lies in the same E2-class with x and in this class to the right of it, i.e. 2 · 2 = {2}.

Let now k2 > 2. Clearly, k2 < m + 2 (since k1 + k2 < m + 4). We have: t lies in the same
E2-class with x and in this class to the right of it; y lies in the (k2 − 1)-th E2-class from E2(t,M).
Consequently, y lies in the (k2 − 1)-th E2-class from E2(x,M), i.e. 2 · k2 = {k2}. We can show
similarly that k2 · 2 = {k2}.

Suppose now that k1 > 2 and k2 > 2. Clearly, k1 < m + 2 and k2 < m + 2. Then each of the
formulas θk1(x, y) and θk2(x, y) contains as a conjunctive member the formula ¬E2(x, y). We have:
t lies in the (k1 − 1)-th E2-class from E2(x,M); y lies in the (k2 − 1)-th E2-class from E2(t,M).
Then, we obtain that y lies in the (k1 +k2−2)-th E2-class from E2(x,M), i.e. k1 ·k2 = {k1 +k2−2}.
We can show similarly that k2 · k1 = {k1 + k2 − 2}.

Case 3. k1 + k2 > m+ 4.
In this case k1 > 1 and k2 > 1 (since otherwise we would obtain that k1 + k2 ≤ m+ 4).
Suppose �rst that k1 = 2. Then, we unambiguously obtain that k2 = m + 3. We have: t lies

in E2(x,M) and t is in this class to the right of the element x; y lies in E1(t,M) and t is in this
class to the left of the element t, whence we obtain that k1 · k2 = {k1}. We can show similarly that
k2 · k1 = {k1}.

Let now k1 > 2. We have: t lies in the (k1 − 1)-th E2-class from E2(x,M). In this case
k2 ≥ m + 2, i.e. k2 can take only the following values: m + 2 and m + 3. Then, we obtain: y lies
in E2(t,M) \ E1(t,M) or E1(t,M) and t is in the corresponding class to the left of the element t,
whence we obtain that k1 · k2 = {k1}. We can show similarly that k2 · k1 = {k1}.

Suppose now that k1 = m + 2. We have: t lies in E2(x,M) and t is in this class to left of the
element x. In this case k2 > 2. If k2 ≥ m + 2, then again we get that k1 · k2 = {k1}. We can show
similarly that k2 · k1 = {k1}.

Further, suppose that 2 < k1 < m + 2 and 2 < k2 < m + 2. We have: t lies in the (k1 − 1)-th
E2-class from E2(x,M); y lies in the (k2 − 1)-th E2-class from E2(t,M), but at the same time y
jumps over E2(x,M) that is consistent with �ve binary isolating formulas. Therefore, y lies in the
(k1 + k2 + 2)[mod m+ 4]-th E2-class from E2(x,M). Consequently, the formula

∃t[θk1(x, t) ∧ θk2(t, y)]

uniquely determines the formula θ
(k1+k2+2)[mod m+4]

(x, y). We can show similarly that

k2 · k1 = (k1 + k2 + 2)[mod m+ 4].

Example 4. Consider now the structure M2,1 := 〈M,K3, E2
1 , E

2
2〉 from Theorem 1.1. We assert

that Th(M2,1) has six binary isolating formulas:

θ0(x, y) := x = y,
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θ1(x, y) := E1(x, y) ∧ x 6= y ∧ ∀t[K(x, t, y)→ E1(x, t)],

θ2(x, y) := E2(x, y) ∧ ¬E1(x, y) ∧ ∀t[K(x, t, y)→ E2(x, t)],

θ3(x, y) := ¬E2(x, y),

θ4(x, y) := E2(x, y) ∧ ¬E1(x, y) ∧ ∀t[K(y, t, x)→ E2(x, t)],

θ5(x, y) := E1(x, y) ∧ x 6= y ∧ ∀t[K(y, t, x)→ E1(x, t)].

Clearly, K0(θ0(a,M), θ1(a,M), θ2(a,M), θ3(a,M), θ4(a,M), θ5(a,M)) holds for every a ∈M .
De�ne the labels for these formulas as follows:

label k for θk(x, y), where 0 ≤ k ≤ 5.

It easy to check that for the algebra PM2,1 the Cayley table has the following form:

· 0 1 2 3 4 5
0 {0} {1} {2} {3} {4} {5}
1 {1} {1} {2} {3} {4} {0, 1, 5}
2 {2} {2} {2} {3} {0, 1, 2, 4, 5} {2}
3 {3} {3} {3} {0, 1, 2, 3, 4, 5} {3} {3}
4 {4} {4} {0, 1, 2, 4, 5} {3} {4} {4}
5 {5} {0, 1, 5} {2} {3} {4} {5}

By the Cayley table the algebra PM2,1 is commutative and strictly 6-deterministic.

Proposition 2.2. The algebra PMs,1 of binary isolating formulas has 2s+ 2 labels, is commutative
and strictly (2s+ 2)-deterministic for every natural number s ≥ 1.

Proof. The universe M of the structure Ms,1 is partitioned by the equivalence relation Es into
in�nitely many in�nite convex classes, so that the induced ordering on Es-classes is dense without
endpoints; in addition, for any 2 ≤ i ≤ s, each Ei-class is partitioned into in�nitely many convex
Ei−1-subclasses, so that the induced order on Ei−1-subclasses is dense without endpoints.

We have the following binary isolating formulas:

θ0(x, y) := x = y,

θ1(x, y) := E1(x, y) ∧ x 6= y ∧ ∀t[K(x, t, y)→ E1(x, t)],

θi(x, y) := Ei(x, y) ∧ ¬Ei−1(x, y) ∧ ∀t[K(y, t, x)→ Ei(x, t)], 2 ≤ i ≤ s,

θs+1(x, y) := ¬Es(x, y),

θj(x, y) := E2s+2−j(x, y) ∧ ¬E2s+1−j(x, y) ∧ ∀t[K(y, t, x)→ E2s+2−j(x, t)], s+ 2 ≤ j ≤ 2s,

θ2s+1(x, y) := E1(x, y) ∧ x 6= y ∧ ∀t[K(y, t, x)→ E1(x, t)].

Thus, there exist 2s+ 2 binary isolating formulas, and we have de�ned the formulas so that

K0(θ0(a,M), θ1(a,M), θ2(a,M), . . . , θ2s(a,M), θ2s+1(a,M))

holds for any a ∈M .
Prove now the commutativity. First, it is obvious that 0 ·k = k ·0 = {k} for any 0 ≤ k ≤ 2s+ 1.

Suppose further that k1 6= 0 and k2 6= 0.
Case 1. k1 + k2 = 2s+ 2.
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If k1 = l for some 1 ≤ l ≤ s, then k2 = 2s + 2 − l. Then, each of the formulas θk1(x, y)
and θk2(x, y) contains, as a conjunctive member, the formula El(x, y), i.e. the formula El(x, y) is
compatible with

∃t[θk1(x, t) ∧ θk2(t, y)].

We have: for any t, satisfying the formula θk1(x, t), it follows that t ∈ El(x,M) \ El−1(x,M)
(if l = 1 , then t ∈ E1(x,M)) and t is in this class to the right of the element x. Considering an
arbitrary element y, satisfying the formula θk2(t, y), we obtain that y ∈ El(t,M) \ El−1(t,M) (if
l = 1 , then y ∈ E1(t,M)) and y is in this class to the left of the element t, i.e. the formula

∃t[θk1(x, t) ∧ θk2(t, y)]

is compatible with every formula from the list of formulas with labels {0, 1, . . . , l, 2s+2−l, . . . , 2s+1}.
Consequently, k1 · k2 = {0, 1, . . . , l, 2s+ 2− l, . . . , 2s+ 1}. We can show similarly that

k2 · k1 = {0, 1, . . . , l, 2s+ 2− l, . . . , 2s+ 1}.

Let now k1 = s + 1. Then, we also have that k2 = s + 1 and each of the formulas θk1(x, y) and
θk2(x, y) contains as a conjunctive member the formula ¬Es(x, y).

We have: for any t satisfying the formula θk1(x, t), ¬Es(x, t) holds. Considering an arbitrary
element y, satisfying the formula θk2(t, y), we obtain that ¬Es(t, y). Thus, both ¬Es(x, y) and
Es(x, y) are possible. Consequently, k1 · k2 = {0, 1, 2, . . . , 2s, 2s+ 1}. We can show similarly that

k2 · k1 = {0, 1, 2, . . . , 2s, 2s+ 1}.

If k1 = l for some s+ 2 ≤ l ≤ 2s+ 1, then k2 = 2s+ 2− l, i.e. 1 ≤ k2 ≤ l. We can show similarly
that

k1 · k2 = {0, 1, . . . , l, 2s+ 2− l, . . . , 2s+ 1}

and
k2 · k1 = {0, 1, . . . , l, 2s+ 2− l, . . . , 2s+ 1}.

Thus, in the case k1 = k2 = s+ 1 we obtain that the product of labels k1 and k2 contains all the
labels of the algebra, whence we conclude that the algebra PMs,1 is strictly (2s+ 2)-deterministic.

Case 2. k1 + k2 < 2s+ 2.
Suppose �rst that 1 ≤ k1, k2 ≤ s. If k1 = k2, then since each of the formulas θk1(x, y) and

θk2(x, y) contains as a conjunctive member the formula El(x, y) for some 1 ≤ l ≤ s, we obtain
that k1 · k2 = k2 · k1 = {l}. If k1 < k2, then since θk1(x, y) contains as a conjunctive member the
formula El1(x, y), and θk2(x, y) contains as a conjunctive member the formula El2(x, y) for some
1 ≤ l1 < l2 ≤ s, we obtain that k1 · k2 = k2 · k1 = {l2}. Similar reasoning is for the case k1 > k2.

Suppose now that 1 ≤ k1 ≤ s and k2 > s. If k2 = s + 1, then for any t satisfying the formula
θk1(x, t), it follows that t ∈ El(x,M) for some 1 ≤ l ≤ s; while for any y, satisfying the formula
θk2(t, y), ¬Es(t, y) holds. Whence we conclude that k1 · k2 = k2 · k1 = {s + 1}. If k2 6= s + 1, then
s + 2 ≤ k2 < 2s + 1 and for any y satisfying the formula θk2(t, y), it follows that y ∈ El2(t,M) for
some 1 ≤ l2 ≤ s (here l2 = 2s+ 2− k2).

If l > l2, then k1 · k2 = k2 · k1 = {l}. If l < l2, then k1 · k2 = k2 · k1 = {l2}. The case l = l2 is
impossible, since otherwise we obtain l + l2 = 2s+ 2.

The case in which k1 > s is considered similarly (in this case 1 ≤ k2 < s).
Case 3. k1 + k2 > 2s+ 2.
In this case k1 > 1 and k2 > 1 (indeed, if we suppose that k1 = 1, then k2 must be greater than

2s+ 1 that is impossible). If 2 ≤ k1 ≤ s, then k2 > s+ 2, i.e. s+ 3 ≤ k2 ≤ 2s+ 1.
We have: t ∈ El1(x,M) for some 2 ≤ l1 ≤ s, y ∈ El2(t,M) for some 1 ≤ l2 ≤ s− 1.
If l1 > l2, then k1 · k2 = k2 · k1 = {l1}. If l1 < l2, then k1 · k2 = k2 · k1 = {l2}.
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The case l1 = l2 is also impossible, since otherwise we obtain l1 + l2 = 2s+ 2.
Let now k1 > s. In this case s + 2 ≤ k2 ≤ 2s + 1. If k1 = s + 1, then we obtain ¬Es(x, t).

Consequently, k1 · k2 = k2 · k1 = {s+ 1}.
If k1 ≥ s+ 2, then s+ 1 ≤ k2 ≤ 2s+ 1. If k2 = s+ 1, then we obtain k1 · k2 = k2 · k1 = {s+ 1}.

If k2 ≥ s + 2, then we have: t ∈ El1(x,M) for some 1 ≤ l1 ≤ s, y ∈ El2(t,M) for some 1 ≤ l2 ≤ s.
If l1 ≥ l2, then k1 · k2 = k2 · k1 = {l1}. If l1 < l2, then k1 · k2 = k2 · k1 = {l2}.

Corollary 2.1. The algebra PMs,1 of binary isolating formulas is ∃-maximally absorbing for every
natural number s ≥ 1.

Example 5. Consider now the structure M2,2 := 〈M,K3, E2
1 , E

2
2 , E

2
3〉 from Theorem 1.1. Here

E3(x, y) is an equivalence relation partitioning the universe of the structure into two in�nite convex
classes. We assert that Th(M2,2) has eight binary isolating formulas:

θ0(x, y) := x = y,

θ1(x, y) := E1(x, y) ∧ x 6= y ∧ ∀t[K(x, t, y)→ E1(x, t)],

θ2(x, y) := E2(x, y) ∧ ¬E1(x, y) ∧ ∀t[K(x, t, y)→ E2(x, t)],

θ3(x, y) := E3(x, y) ∧ ¬E2(x, y) ∧ ∀t[K(x, t, y)→ E3(x, t)],

θ4(x, y) := ¬E3(x, y),

θ5(x, y) := E3(x, y) ∧ ¬E2(x, y) ∧ ∀t[K(y, t, x)→ E3(x, t)],

θ6(x, y) := E2(x, y) ∧ ¬E1(x, y) ∧ ∀t[K(y, t, x)→ E2(x, t)],

θ7(x, y) := E1(x, y) ∧ x 6= y ∧ ∀t[K(y, t, x)→ E1(x, t)].

Clearly,

K0(θ0(a,M), θ1(a,M), θ2(a,M), θ3(a,M), θ4(a,M), θ5(a,M), θ6(a,M), θ7(a,M))

holds for every a ∈M .
De�ne the labels for these formulas as follows:

label k for θk(x, y), where 0 ≤ k ≤ 7.

It easy to check that for the algebra PM2,2 the following equalities hold:
0 · k = k · 0 = {k} for every 0 ≤ k ≤ 7,
1 · k = k · 1 = {k} for every 1 ≤ k ≤ 6, and 1 · 7 = {0, 1, 7},
2 · k = k · 2 = {k} for every 2 ≤ k ≤ 5, 2 · 6 = {0, 1, 2, 6, 7}, and 2 · 7 = {2},
3 · k = k · 3 = {k} for every 3 ≤ k ≤ 4, 3 · 5 = {0, 1, 2, 3, 5, 6, 7}, and
3 · 6 = 6 · 3 = {3}, 3 · 7 = 7 · 3 = {3},
4 · k = k · 4 = {4} for every 1 ≤ k ≤ 3, 4 · 4 = {0, 1, 2, 3, 5, 6, 7}, and
4 · 5 = 5 · 4 = {4}, 4 · 6 = 6 · 4 = {4}, 4 · 7 = 7 · 4 = {4},
5 · k = k · 5 = {5} for every 5 ≤ k ≤ 7, and 5 · 3 = {0, 1, 2, 3, 5, 6, 7},
6 · 6 = {6}, 6 · 7 = 7 · 6 = {6}, and 6 · 2 = {0, 1, 2, 6, 7},
7 · 7 = {7}, and 7 · 1 = {0, 1, 7}.
According to these equalities, the algebra PM2,2 is commutative and strictly 7-deterministic.

Theorem 2.1. The algebra PMs,m of binary isolating formulas has 2s+m+2 labels, is commutative
and strictly (2s+ 3)-deterministic for any natural numbers s,m ≥ 1.
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Proof. The universe M of the structure Ms,m is partitioned by the equivalence relation Es+1 into m
in�nite convex classes. Take an arbitrary element a ∈ M . It falls into one of these convex classes.
In this convex class, 2s+ 3 binary isolating formulas arise:

θ0(x, y) := x = y,

θ1(x, y) := E1(x, y) ∧ x 6= y ∧ ∀t[K(x, t, y)→ E1(x, t)],

θi(x, y) := Ei(x, y) ∧ ¬Ei−1(x, y) ∧ ∀t[K(x, t, y)→ Ei(x, t)], 2 ≤ i ≤ s+ 1,

θj(x, y) := E2s+m+2−j(x, y) ∧ ¬E2s+m+1−j(x, y) ∧ ∀t[K(x, t, y)→ E2s+m+2−j(x, t)],

where s+m+ 1 ≤ j ≤ 2s+m,

θ2s+m+1(x, y) := E1(x, y) ∧ x 6= y ∧ ∀t[K(y, t, x)→ E1(x, t)].

There remain m − 1 convex classes, where there are no elements lying in the algebraic closure
of the element a, de�ning additionally m− 1 binary isolating formulas. These formulas are de�ned
as follows:

θl(x, y) := ¬Es+1(x, y) ∧ ∀t[K(x, t, y) ∧ ¬Es(x, t) ∧ ¬Es+1(t, y)→ ∨l−1
k=s+1θk(x, t)],

where s+ 2 ≤ l ≤ s+m.

Thus, we get 2s+ 3 + (m− 1) = 2s+m+ 2 binary isolating formulas, and we have de�ned the
formulas, so that

K0(θ0(a,M), θ1(a,M), θ2(a,M), . . . , θ2s+m(a,M), θ2s+m+1(a,M)).

holds for any a ∈M .
Prove now the commutativity. First, it is obvious that 0·k = k·0 = {k} for any 0 ≤ k ≤ 2s+m+1.

Suppose further that k1 6= 0 and k2 6= 0.
Case 1. k1 + k2 = 2s+m+ 2.
If k1 = 1, then clearly k2 = 2s+m+ 1 and each of the formulas θk1(x, y) and θk2(x, y) contains,

as a conjunctive member, the formula E1(x, y), i.e. the formula E1(x, y) is compatible with

∃t[θk1(x, t) ∧ θk2(t, y)].

We have: for any t, satisfying the formula θk1(x, t), it follows that t ∈ E1(x,M) and t is to the
right of the element x. Considering an arbitrary element y satisfying the formula θk2(t, y), we obtain
that y ∈ E1(t,M) and y is to the left of the element t, i.e. we obtain that the formula

∃t[θk1(x, t) ∧ θk2(t, y)]

is compatible with every formula of the list of formulas with labels {0, 1, 2s+m+1}. Consequently,
k1 · k2 = {0, 1, 2s+m+ 1}. We can show similarly that k2 · k1 = {0, 1, 2s+m+ 1}.

If k1 = l for some 2 ≤ l ≤ s + 1, we have k2 = 2s + m + 2 − l. Then, each of the formulas
θk1(x, y) and θk2(x, y) contains as a conjunctive member the formula

El(x, y) ∧ ¬El−1(x, y).

We have the following: t ∈ El(x,M)\El−1(x,M) and t is in this class to the right of the element
x; y ∈ El(t,M) \ El−1(t,M) and y is in this class to the left of the element t. Whence we obtain
that

k1 · k2 = k2 · k1 = {0, 1, . . . , l, 2s+m+ 2− l, . . . , 2s+m+ 1}.
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We can show similarly that

k2 · k1 = {0, 1, . . . , l, 2s+m+ 2− l, . . . , 2s+m+ 1}.

Suppose now that s + 2 ≤ k1 ≤ s + m. Then, k2 = 2s + m + 2 − k1, i.e. we also have
s + 2 ≤ k2 ≤ s + m and each of the formulas θk1(x, y) and θk2(x, y) contains as a conjunctive
member the formula ¬Es+1(x, y).

We have the following: t lies in the (k1−s)-th Es+1-class from Es+1(x,M); y lies in the (k2−s)-th
Es+1-class from Es+1(t,M). Then, we obtain that y lies in the (k1 + k2− 2s− 1)-th Es+1-class from
Es+1(x,M). But k1 + k2 − 2s− 1 = m+ 1, i.e. y falls into Es+1(x,M), whence

k1 · k2 = {0, 1, . . . , s+ 1, s+m+ 1, . . . , 2s+m+ 1}.

We can show similarly that

k2 · k1 = {0, 1, . . . , s+ 1, s+m+ 1, . . . , 2s+m+ 1}.

Let now s + m + 1 ≤ k1 ≤ 2s + m + 1. Then, obviously 1 ≤ k2 ≤ s + 1. If k1 = l for some
s+m+ 1 ≤ l ≤ 2s+m+ 1, we can show similarly that

k1 · k2 = k2 · k1 = {0, 1, . . . , 2s+m+ 2− l, s+m+ 1, . . . , l}.

Case 2. k1 + k2 < 2s+m+ 2.
First, suppose that 1 ≤ k1 ≤ s + 1. If 1 ≤ k2 ≤ s + 1, then we have: t ∈ El1(x,M) for

some 1 ≤ l1 ≤ s + 1 and t is in this class to the right of the element x; y ∈ El2(t,M) for some
1 ≤ l2 ≤ s + 1 and y is in this class to the right of the element t. Then, we obtain that if l1 ≥ l2,
y ∈ El1(x,M) and consequently k1 · k2 = k2 · k1 = {l1}. If l1 < l2, then y ∈ El2(x,M), and
consequently k1 · k2 = k2 · k1 = {l2}.

If s+ 2 ≤ k2 ≤ s+m, then we have: t ∈ El(x,M) for some 1 ≤ l ≤ s+ 1, and y ∈ ¬Es+1(t,M),
whence we obtain ¬Es+1(x, y), i.e. k1 · k2 = k2 · k1 = {k2}.

Suppose now that k2 > s + m. We have the following: t ∈ El1(x,M) for some 1 ≤ l1 ≤ s + 1
and t is in this class to the right of the element x; y ∈ El2(t,M) for some 1 ≤ l2 ≤ s+ 1 and y is in
this class to the left of the element t. And the case l1 = l2 is impossible, since k1 + k2 < 2s+m+ 2.
If l1 > l2, then k1 · k2 = k2 · k1 = {l1}. If l1 < l2, then k1 · k2 = k2 · k1 = {l2}.

Other cases are considered similarly.
Case 3. k1 + k2 > 2s+m+ 2.
In this case k1 > 1 and k2 > 1 (since otherwise we would obtain that k1 + k2 ≤ 2s+m+ 2).
If 2 ≤ k2 ≤ s+1 then k2 > s+m+1. We have the following: t ∈ El1(x,M) for some 2 ≤ l1 ≤ s+1

and t is in this class to the right of the element x; y ∈ El2(t,M) for some 2 ≤ l2 ≤ s and y is in this
class to the left of the element t. And the case l1 = l2 is impossible, since k1 + k2 > 2s+m+ 2. If
l1 > l2 then k1 · k2 = k2 · k1 = {l1}. If l1 < l2 then k1 · k2 = k2 · k1 = {l2}.

Suppose now that s+2 ≤ k1 ≤ s+m. Then, k2 > s+m. We have the following: t ∈ ¬Es+1(x,M)
and y ∈ El(t,M) for some 2 ≤ l ≤ s+ 1, whence we obtain k1 · k2 = k2 · k1 = {k1}.

Let now s + m + 1 ≤ k1 ≤ 2s + m + 1. If 2 ≤ k2 ≤ s + 1, we have that t ∈ El1(x,M) for
some 2 ≤ l1 ≤ s + 1 and t is in the this class to the left of the element x; y ∈ El2(t,M) for some
2 ≤ l2 ≤ s and y is in this class to the right of the element t. And the case l1 = l2 is impossible, since
k1 + k2 > 2s+m+ 2. If l1 > l2, then k1 · k2 = k2 · k1 = {l1}. If l1 < l2, then k1 · k2 = k2 · k1 = {l2}.

If s+ 2 ≤ k2 ≤ s+m, then we have: t ∈ El(x,M) for some 1 ≤ l ≤ s+ 1, and y ∈ ¬Es+1(t,M),
whence we obtain ¬Es+1(x, y), i.e. k1 · k2 = k2 · k1 = {k2}.

Suppose now that k2 > s + m. We have the following: t ∈ El1(x,M) for some 1 ≤ l1 ≤ s + 1
and t is in this class to the left of the element x; y ∈ El2(t,M) for some 1 ≤ l2 ≤ s + 1 and y is
in this class to the left of the element t. If l1 ≥ l2, then k1 · k2 = k2 · k1 = {l1}. If l1 < l2, then
k1 · k2 = k2 · k1 = {l2}.
Corollary 2.2. The algebra PMs,m is ∃-maximally absorbing if and only if m = 1.
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1 Introduction

In this work, we study inverse problems for the boundary value problems generated by the di�erential
equation

ly := −y′′ + q (x) y = λy, x ∈ (0, a) ∪ (a, T ) (1.1)

with the Robin boundary conditions

U (y) := y′ (0)− hy (0) = 0, V (y) := y′ (T ) +Hy (T ) = 0, (1.2)

and the transmission conditions at the point x = a

I (y) :=

{
y (a+ 0) = y (a− 0) ≡ y (a)

y′ (a+ 0)− y′ (a− 0) = −αλy (a) ,
(1.3)

where q (x) is a real function belonging to the space L2 [0, T ] , λ is a spectral parameter and h,H,
and α are real numbers with α > 0. Denote the boundary value problems, de�ned above, by
L (q (x) , h,H).

It is important to note that, we can interpret problem (1.1) and (1.3) as analyzing the equation

− y′′ + q (x) y = λρ (x) y, x ∈ (0, T ) , (1.4)

when ρ (x) = 1 + αδ (x) where δ (x) is the Dirac Delta-function (see [1]).
One type of problems, the direct problem, consists of examining the spectral properties of an

operator. But some problems in mathematical physics require the investigation of inverse prob-
lems of spectral analysis for various di�erential operators, which require the recovery of operators
from some of their given spectral data. Such problems are often considered in mathematics and
various branches of natural science and technical science. Direct and inverse problems for the clas-
sical Sturm-Liouville operators have been comprehensively investigated in [6, 10, 15] and references
therein. Some classes of direct and inverse problems for discontinuous boundary value problems in
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various statements have been considered in [2, 7, 8, 12, 13, 16, 17, 18]. Notice that, spectral char-
acteristics for weighted Sturm-Liouville operator with point δ−interactions have been investigated
in [9, 14]. Here, we provide procedures for �nding the potential of a problem and its boundary
conditions basing either on the Weyl function, on spectral data, or on two spectra in terms of the
method of spectral mappings.

2 Constructing the Hilbert space relevant to the problem and some of

its spectral properties

We will start this section by de�ning the Hilbert space H := L2 [0, T ] ⊕ C of the two component
vectors, equipped with the inner product

〈f, g〉H :=

∫ T

0

f1(x)g1(x)dx+
1

α
f2g2

for

f =

(
f1(x)
f2

)
, g =

(
g1(x)
g2

)
,

where f1(x), g1(x) ∈ L2(0, T ) and f2, g2 ∈ C. In the space H, we de�ne the operator L

L : H→ H

with the domain

D(L) = {f ∈ H|f1, f
′
1 ∈ AC((0, a) ∪ (a, T )), lf1 ∈ L2[(0, T ) \ {a}], f2 = αf1(a), U(f1) = V (f1) = 0}

and the operator rule

L(f) =

(
lf1

f ′1(a− 0)− f ′(a+ 0)

)
.

Here, AC(·) stands for the set of all functions that are absolutely continuous on a related interval.

Theorem 2.1. The operator L is symmetric.

Proof. We obtain the equality 〈Lf, g〉H =〈f, Lg〉H for f, g ∈ D(L) immediately from the conditions
at the point x = a and the fact that f and g satisfy the same boundary conditions (1.2). So, L is
symmetric.

Corollary 2.1. The function W de�ned by W{f, g;x} = f(x)g′(x) − f ′(x)g(x) is continuous on
(0, T ).

Lemma 2.1. If y(x, λ) and z(x, µ) are solutions to the equations ly = λy and lz = µz, respectively,
then

d

dx
W{y, z;x} = (λ− µ)yz.

Let C(x, λ), S(x, λ), ϕ(x, λ) and ψ(x, λ) be solutions to equation (1.1) under the following initial
conditions:

C(0, λ) = 1, C ′(0, λ) = 0, S(0, λ) = 0, S ′(0, λ) = 1,

ϕ(0, λ) = 1, ϕ′(0, λ) = h, ψ(T, λ) = 1, ψ′(T, λ) = −H
and under transmission conditions (1.3). Then,

U(ϕ) = V (ψ) = 0.
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Let us denote
∆(λ) = W{ϕ, ψ;x}. (2.1)

Due to Corollary 1 and the Ostrogradskii-Liouville theorem (see [4, p. 83]) W{ϕ, ψ;x} does not
depend on x. Here, the function ∆(λ) is called the characteristic function of L. It is easly seen that

∆(λ) = −V (ϕ) = U(ψ), (2.2)

and ∆(λ) is an entire function of λ, so it has at most countable set of zeros {λn}n≥0.

Lemma 2.2. The zeros {λn}n≥0 of the characteristic function are the eigenvalues of the boundary
value problem L. Also the functions ϕ(x, λn) and ψ(x, λn) are the eigenfunctions, and there exists
a sequence {βn} such that

ψ(x, λn) = βn.ϕ(x, λn), βn 6= 0.

Denote

αn :=

∫ T

0

ϕ2(x, λn)dx+ αϕ2(a, λn). (2.3)

The set Ω = {λn, αn}n≥0 is called the spectral data associated with problem (1.1)�(1.3).

Lemma 2.3. The following relation holds

∆̇(λn) = αnβn,

where ∆̇(λ) = d∆(λ)/dλ.

We omit the proofs of Lemma 2.2 and Lemma 2.3 since they are similiar to those for the classical
Sturm-Liouville operators (see [11]).

Corollary 2.2. The eigenvalues {λn} and the eigenfunctions ϕ(x, λn), ψ(x, λn) are real. Also all
zeros of ∆(λ) are simple, i.e. ∆̇(λn) 6= 0.

Now, consider the solution ϕ(x, λ). Let C0(x, λ) and S0(x, λ) be smooth solutions to equation
(1.1) on the interval [0, T ] under the initial condition

C0(x, λ) = S ′(0, λ) = 1, S0(x, λ) = C ′0(0, λ) = 0. (2.4)

Then,
C(x, λ) = C0(x, λ), S(x, λ) = S0(x, λ), 0 < x < a (2.5)

C(x, λ) = A1C0(x, λ) +B1S0(x, λ),

S(x, λ) = A2C0(x, λ) +B2S0(x, λ), a < x < T,
(2.6)

where

A1 = 1 + αλC0(a, λ)S0(a, λ), B1 = −αλC2
0(a, λ),

A2 = αλS2
0(a, λ), B2 = 1− αλC0(a, λ)S0(a, λ).

(2.7)

Let λ = ρ2, ρ = σ + iτ . It is easy to show that, the function C0(x, λ) satis�es the following
integral equation:

C0(x, λ) = cos ρx+
1

ρ

∫ x

0

sin ρ(x− t)q(t)C0(t, λ)dt. (2.8)
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Using the method of successive approximations to solve problem (2.8), we obtain

C0(x, λ) = cos ρx+
sin ρx

2ρ

∫ x

0

q(t)dt+
1

2ρ

∫ x

0

q(t) sin ρ(x− 2t)dt

+O

(
1

ρ2
exp(|τ |)x

)
.

(2.9)

Analogously,

S0(x, λ) =
sin ρx

ρ
− cos ρx

2ρ2

∫ x

0

q(t)dt+
1

2ρ2

∫ x

0

q(t) cos ρ(x− 2t)dt

+O

(
1

ρ3
exp(|τ |)x

)
.

(2.10)

By virtue of (2.7) and (2.9)-(2.10),

A1 =
α

2
ρ sin 2ρa− 1− α

2
cos 2ρa

∫ a

0

q(t)dt+O

(
1

ρ

)
,

B1 = −α
2
ρ2 (1 + cos 2ρa)− α

2
ρ sin ρa

∫ a

0

q(t)dt+O (1) ,

A2 =
α

2
(1− cos 2ρa) +O

(
1

ρ

)
, B2 = −α

2
ρ sin 2ρa+O (1)

Since ϕ(x, λ) = C(x, λ) + hS(x, λ), by using (2.5)-(2.10), we �nd

ϕ(x, λ) = cos ρx+

(
h+

1

2

∫ x

0

q(t)dt

)
sin ρx

ρ
+O

(
1

ρ
exp (|τ |x)

)
, 0 < x < a, (2.11)

ϕ′(x, λ) = −ρ sin ρx+

(
h+

1

2

∫ x

0

q(t)dt

)
cos ρx+O (exp (|τ |x)) , 0 < x < a, (2.12)

ϕ(x, λ) =
α

2
ρ (sin ρ (2a− x)− sin ρx) + f1(x) cos ρx+ f2(x) cos ρ (2a− x)

+O (exp (|τ |x)) , a < x < T,
(2.13)

ϕ′(x, λ) = −α
2
ρ2 (cos ρx+ cos ρ (2a− x))− ρf1(x) sin ρx+ ρf2(x) sin ρ (2a− x)

+O (ρ exp (|τ |x)) , a < x < T,
(2.14)

where

f1(x) = 1 +
α

2
h+

α

4

∫ x

0

q(t)dt, f2(x) =
α

4

(
−2h+

∫ x

a

q(t)dt−
∫ a

0

q(t)dt

)
.

It follows from (2.2),(2.13), and (2.14) that

∆(λ) =
α

2
ρ2 (cos ρT + cos ρ (2a− T )) + ω1ρ sin ρT + ω2ρ sin ρ (2a− T )

+O (ρ exp (|τ |T )) ,
(2.15)

where

ω1 = −
(

1 +
α

2
h+

α

2
H +

α

4

∫ T

0

q(t)dt

)

ω2 =
α

2

(
h−H − 1

2

∫ T

a

q(t)dt+
1

2

∫ a

0

q(t)dt

)
.
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Let λ0
n = (ρ0

n)
2
and λn = (ρn)2 be the zeros of the functions ∆0(λ) = α

2
ρ2(cos ρT + cos ρ (2a− T ))

and ∆(λ), respectively.
The following properties of the characteristic function ∆(λ) and the eigenvalues λn = ρ2

n of the
boundary value problem of L can be discovered using (2.15) and the well-known methods (see, for
example [3]).

(i) Denote Gδ ={ρ : |ρ− ρ0
n|≥ δ, n ≥ 0}. There is a constant Cδ > 0 such that

|∆0(λ)| ≥ Cδ|λ| exp (|τ |T |) , ρ ∈ Gδ.

(ii) For su�ciently large value of n, the following inequality is valid

|∆(λ)−∆0(λ)| ≤ 1

2
Cδ exp (|τ |T ) , ρ ∈ Γn = {ρ : |ρ| = |ρ0

n|+
1

2
inf
n6=m
|ρ0
n − ρ0

m|}.

Thus, for su�ciently large natural number n and ρ ∈ Γn,

|∆0(λ)| ≥ Cδ|λ| exp (|τ |T ) >
1

2
Cδ|λ| exp (|τ |T ) > |∆(λ)−∆0(λ)|.

Then by Rouche's theorem, the number of zeros of ∆0(λ), counting multiplicities, inside circuit
Gn coincides with the number of zeros of ∆(λ). Analogously, applying Rouche's theorem, we say
that for su�ciently large values of n, the function ∆(λ) has exactly one zero ρn inside each circle
Gδ = {ρ : |ρ− ρ0

n|≤ δ}. Since δ is arbitrary su�ciently small number, we have

ρn = ρ0
n + εn, εn = o (1) , n→∞ (2.16)

Since the function ∆0(λ) is type of sinus (see [5, p. 119]), there exist the number dδ > 0 such that,
for all n, | d

dλ
∆0(λ)|λ=λn ≥ dδ > 0. Since ρn are zeros of ∆(λ), from (2.15) we get

εn = − 2

αρ0
n

[
ω1 sin ρ0

nT + ω2 sin ρ0
n (2a− T )

] [ d
dλ

∆0(λ)|λ=λ0n

]
. (2.17)

Substituting (2.17) into (2.16) we get

ρn = ρ0
n +

dn
ρ0
n

+
γn
ρ0
n

, (2.18)

where

dn = − 2

α

[
ω1 sin ρ0

nT + ω2 sin ρ0
n (2a− T )

] [ d
dλ

∆0(λ)|λ=λ0n

]
and γn = o (1).

Finally, using (2.11),(2.12) and (2.18) into (2.3) we obtain

αn = α0
n + o (1) , n→∞, (2.19)

where

α0
n =

∫ T

0

ϕ2(x, λ0
n)dx+ αϕ2(a, λ0

n).
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3 Algorithm of solving the inverse problem

In this section, we �rst give the spectral characteristics of the boundary value problem L and then
demonstrate relationships between their spectral characteristics. Moreover, we provide the formula
to solve the inverse problem of the reconstruction of the problem L basing on the Weyl function,
on the spectral data, and on two spectra.

We de�ne the Weyl function by

M(λ) =
ψ(0, λ)

∆(λ)
. (3.1)

Here the function ψ(0, λ) is the characteristic function of the boundary value problem which consists
of equation (1.1) along with the boundary conditions y(0) = V (y) = 0 and transmission conditions
(1.3). Let {µn}n≥0 be the zeros of the entire function ψ(0, λ). It is clear that, ψ(0, λ) and ∆(λ) have
no common zeros. Thus, the Weyl function M(λ) is meromorphic which has poles at the points
{λn}n≥0 and zeros at the points {µn}n≥0.

The following lemma gives the relationships between the spectral characteristic of L : the spectral
data Ω, the Weyl function M(λ) and the two spectra {λn, µn}n≥0.

Lemma 3.1. Let M(λ), Ω and ∆(λ) be de�ned as above. Then the following representation holds:

M(λ) =
∞∑
h=0

1

αn(λ− λn)
. (3.2)

Moreover, ∆(λ) is uniquely determined up to a multiplicative constant by its zeros:

∆(λ) = T (λ0 − λ)
∞∏
n=1

λn − λ
λ0
n

. (3.3)

Since the arguments for proving this lemma are similar to those in [2], we skip the proof. Now,
we will consider the following inverse problems of recovering L :

• Inverse problem 1: constructing q(x), h, and H when the spectral data {λn, αn}n≥0 is given.

• Inverse problem 2: constructing q(x), h and H when the Weyl function M(λ) is given.

• Inverse problem 3: constructing q(x), h and H when the two spectra Ω = {λn, µn}n≥0 are
given.

Let us note that, according to (3.1), (3.2) and (3.3), the inverse problems of recovering L basing
on the spectral data and on the two spectra are speci�cations of the inverse problem of recovering
L from the Weyl function. Consequently, the inverse problems 1�3 are equivalent.

The inverse problems studied here can be seen as generalizations of the inverse problems for
the classical Sturm-Liouville operators, see [6, Chapter 1]. In the next section, using results stated
above, we provide a constructive procedure for solving these inverse problems.

4 Finding solutions to inverse problems

In this section, with the help of Cauchy's integral formula and the Residue theorem, we will solve
the inverse problems of recovering the Sturm-Liouville problem L(q(x), h,H) using the spectrum
mappings approach. We �rst reduce an inverse problem to the so-called main equation which is a
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linear equation in a corresponding Banach space of sequences. Finally, we provide the algorithms
for solving the inverse problems by using the solution of the main equation.

For this purpose we introduce a new problem with new notations: together with L we consider a
boundary value problem L̃ of the same form but with di�erent coe�cients q̃(x), h̃, H̃. Throughout
next sections, if a certain symbol e denotes an object related to L, then the symbol ẽ with tilde
denotes the analogous object related to L̃. Now we introduce the following notations for convenience
of further discussions.

λn0 = λn, λn1 = λ̃n, αn0 = αn, αn1 = α̃n,

ϕni(x) = ϕ(x, λni), ϕ̃ni(x) = ϕ̃(x, λni),

Qkj(x, λ) =
< ϕ(x, λ), ϕkj(x) >

αkj(λ− λkj)
=

1

αkj

∫ x

0

ϕ(t, λ)ϕkj(t)dt,

Qni,kj(x) = Qkj(x, λni),

for i, j = 0, 1 and n, k ≥ 0. Here ϕ̃(x, λ) is the solution of (1.4) with the potential q̃ under the initial
conditions ϕ̃(0, λ) = 1, ϕ̃′(0, λ) = h̃. Similarly, we can de�ne Q̃kj(x, λ) by replacing ϕ by ϕ̃ in the
above de�nition.

Using the Schwartz lemma, see [5, p. 130] and (2.11)-(2.14), (2.17) we obtain the following
asymptotic estimates:

|ϕni(x)| ≤ C(|ρ0
n|+ 1), |ϕn0(x)− ϕn1(x)| ≤ C(|ρ0

n|+ 1)
1
2 , (4.1)

|Qni,kj(x)| ≤ C(|ρ0
n|+ 1)

(|ρ0
n − ρ0

k|+ 1)(|ρ0
k|+ 1)

,

|Qni,k0(x)−Qni,k1(x)| ≤ C(|ρn|+ 1)

(|ρ0
n − ρ0

k|+ 1)(|ρ0
k|+ 1)

3
2

,

|Qn0,kj(x)−Qn1,j1(x)| ≤ C(|ρn|+ 1)
1
2

(|ρ0
n − ρ0

k|+ 1)(|ρ0
k|+ 1)

(4.2)

where n, k ≥ 0, 1 and C > 0 is independent of n, k, i, j. Similar estimates are also valid for ϕ̃ni(x),
Q̃ni,kj(x).

Lemma 4.1. Let ϕni(x) and Qni,kj(x) be de�ned as above. Then the following representations hold
for i, j = 0, 1 and n, k ≥ 0:

ϕ̃ni(x) = ϕni(x) +
∞∑
l=1

(Q̃ni,l0(x)ϕk0(x)− Q̃ni,l1(x)ϕk1(x)), (4.3)

Qni,kj(x)− Q̃ni,kj(x) +
∞∑
l=0

(Q̃ni,l0(x)Ql0,kj(x)− Q̃ni,l1(x)Ql1,kj(x)) = 0, (4.4)

Both series converge absolutely and uniformly with respect to x ∈ [0, T ] \ {a}.
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The proof of this lemma is similar to that of the lemma given in [13] and, hence, is omitted.
From all arguments mentioned above, it is seen that, for each �xed x ∈ (0, T ) \ {a}, relation

(4.3) can be thought as a system of linear equations with respect to ϕni(x) for n ≥ 0 and i = 0, 1.
But the series in (4.3) converges only with brackets. So, it is not convenient to use (4.3) as a main
equation of the inverse problem. Below, we will transfer (4.3) to a linear equation in a corresponding
Banach space of sequences.

Let V be a set of all indices u = (n, i), n ≥ 0, i = 0, 1. For each �xed x ∈ (0, T ) \ {a}, we de�ne
the vector

φ(x) = [φu(x)] =

[
φn0(x)
φn1(x)

]
n≥0

by the formulas [
φn0(x)
φn1(x)

]
=

[
ρ0n+1
ρn

−ρ0n+1
ρn

0 1
ρ0n

][
ϕn0(x)
ϕn1(x)

]
=

[
(ρ0n+1)(ϕn0(x)−ϕn1(x))

ρn
ϕn1(x)
ρn

]
(4.5)

Further, we de�ne the block matrix

H(x) = [Hu,v(x)]u,v∈V =

[
Hn0,k0(x) Hn0,k1(x)
Hn1,k0(x) Hn1,k1(x)

]
n,k≥0

,

where u = (n, i), v = (k, j) and[
Hn0,k0(x) Hn0,k1(x)
Hn1,k0(x) Hn1,k1(x)

]
=

[
ρ0n+1
ρn

−ρ0n+1
ρn

0 1
ρ0n

][
Qn0,k0(x) Qn0,k1(x)
Qn1,k0(x) Qn1,k1(x)

] [ ρk
ρ0k+1

ρk

0 −ρk

]
.

Analogously, we de�ne ϕ̃(x), H̃(x) by replacing in the previous de�nitions ϕni(x), Qni,kj(x) by
ϕ̃ni(x), Q̃ni,kj(x), respectively. It follows from (2.11) - (2.14), (2.17), (2.18), (4.1), (4.2) and the
Schwarz lemma that

|φnj(x)|, |φ̃nj(x)| ≤ C, (4.6)

and

|Hni,kj(x)|, |H̃ni,kj(x)| ≤ C

(|ρ0
n − ρ0

k|+ 1)(|ρ0
k|+ 1)

, (4.7)

where C > 0 is independent of n, k, i, j.
Let us consider the Banach space B of bounded sequences α = [αu]u∈V with the norm ‖α‖B =

supu∈V |αu| and consider the operator E+H̃(x) acting from B to B. Here E is the identity operator.
It follows from (4.6), (4.7) that for each �xed x, this operator is a linear bounded operator, and

‖H(x)‖, ‖H̃(x)‖ ≤ C sup
n

∞∑
k=0

1

(|ρ0
n − ρ0

k|+ 1)(|ρ0
k|+ 1)

<∞.

Now we are ready to give the main result of this section.

Theorem 4.1. For each �xed x ∈ (0, T ) \ {a}, the vector ϕ(x) ∈ B satis�es the equation

ϕ̃(x) = (E + H̃(x))ϕ(x), (4.8)

in the Banach space B. Moreover, the operator E + H̃(x) has a bounded inverse operator, hence,
equation (4.8) is uniquely solvable.
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Proof. Using the notation φ̃(x), rewrite (4.3) as

φ̃ni(x) = φni +
∑
n,j

H̃ni,kj(x)φkj(x), (n, i) ∈ V, (k, j) ∈ V,

which is equivalent to (4.3). Interchanging places for L and L̃, we obtain analogously the equalities

φ(x) = (E −H(x))ϕ̃(x), (E −H(x))(E + H̃(x)) = E.

Hence, the operator (E + H̃(x))−1 exist, and it is a linear bounded operator.

Equation (4.8) is named a basic equation of the inverse problem. Solving (4.8) we �nd the vector
φ(x), and hence, the functions ϕni(x). Thus, we get the following algorithms to �nd the solution of
an inverse problem.

Algorithm 1. When the spectral data {λn, αn}n≥0 is given, to construct q(x), h and H, we follow
the steps:

(i) �rst contruct L̃ and then calculate φ̃(x) and H̃(x),

(ii) by solving equation (4.8) �nd φ(x) and calculate ϕn0(x) by using (4.5),

(iii) choose some n (for example, n = 0) and construct q(x), h and H by using the following
formulas:

q(x) =
ϕ′′n0(x)

ϕn0(x)
+ λn, h = ϕ′n0(0), H = −ϕn0(T )

ϕn0(T )
.

Algorithm 2. When the function M(λ) is given, to construct q(x), h and H, we follow the steps:

(i) construct the spectral data Ω by using (3.2),

(ii) construct q(x), h and H by using Algorithm 1.

Algorithm 3. When two spectra {λn, µn}n≥0 are given, to construct q(x), h and H, we follow the
steps:

(i) calculate M(λ) by using (3.1),

(ii) construct q(x), h and H by using Algorithm 2.
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Abstract. We study a one-dimensional Stefan type problem which models the behavior of elec-
tromagnetic �elds and heat transfer in closed electrical contacts that arises, when an instantaneous
explosion of the micro-asperity occurs. This model involves vaporization, liquid and solid zones, in
which the temperature satis�es a generalized heat equation with the Thomson e�ect. Accounting
for the nonlinear thermal coe�cient, the model also incorporates temperature-dependent electrical
conductivity. By employing a similarity transformation, the Stefan-type problem is reduced to a
system of coupled nonlinear integral equations. The existence of a solution is established using the
�xed point theory in Banach spaces.
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1 Introduction

Stefan problems are fundamental in understanding the phase transition phenomena, particularly
in situations involving heat transfer and solidi�cation processes. They were �rst introduced by
J. Stefan in his seminal work in [24]. These problems concern the determination of the moving
boundary between phases during the process of solidi�cation or melting.

The classical Stefan problem arises in scenarios, in which a material undergoes a phase change,
such as freezing or melting, subject to certain boundary conditions and physical constraints. One
of the key aspects of Stefan problems is the existence of a sharp interface, known as the Stefan
interface, which separates the regions of di�erent phases.

Signi�cant theoretical contributions to Stefan problems have been done in [21], [1]. Further, the
study of free and moving boundary problems, including Stefan problems, has garnered considerable
attention. In [6] J. Crank provides a comprehensive treatment of such problems, o�ering valuable
insights into their mathematical formulation and solution techniques.

Stefan problems, which traditionally deal with phase-change phenomena under classical heat con-
duction assumptions, have seen extensions to encompass more complex physical scenarios. These
extensions, often referred to as non-classical Stefan problems, involve variations in thermal coe�-
cients, boundary conditions, or latent heat dependencies, among other factors. The investigation
of non-classical Stefan problems has signi�cant implications in various �elds, including materials
science, engineering, and mathematical physics.

One avenue of research in non-classical Stefan problems involves the consideration of thermal
coe�cients that vary with temperature or position. In [4], [2] were explored Stefan problems for
di�usion-convection equations with temperature-dependent thermal coe�cients, providing insights
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into the behavior of phase-change processes under such conditions. Similarly, in [18], [17] A. Kumar
et al. investigated Stefan problems with variable thermal coe�cients, highlighting the impact of
these variations on the phase-change dynamics. Furthermore, exact and approximate solutions to
the Stefan problem in ellipsoidal coordinates were obtained in [8]

Another aspect of non-classical Stefan problems involves incorporating convective boundary
conditions or heat �ux conditions on �xed faces. In paper [4] there is examined the existence of exact
solutions for one-phase Stefan problems with nonlinear thermal coe�cients, incorporating Tirskii's
method to handle such complexities. Additionally, paper [5] is devoted to the one-phase Stefan
problem for a non-classical heat equation with a heat �ux condition on the �xed face, contributing
to the understanding of phase-change phenomena under non-standard boundary conditions.

Non-linear Stefan problems o�er a valuable mathematical framework to model and analyze
complex phenomena, providing insights, for example, into heat transfer processes during phase
transitions within electrical contacts [3], [12]-[20].

Thermal phenomena in electrical apparatus, such as welding, arcing, and bridging, contribute
to their failure and are highly complex. These phenomena depend on various factors including
current, voltage, contact force, contact material properties, and arc duration [23], [7]. Experimental
investigations usually focus on cumulative probability representations of resulting values as direct
experimental observation of these processes is often challenging or even impossible due to their
extremely short duration.

Hence, mathematical modelling plays a crucial role in understanding the dynamics of such
processes, improving the endurance and reliability of contact systems, and predicting and preventing
failures in electrical apparatus.

E�orts have been made in [22], [9]-[11] to address these aspects and the study of electrical
contacts involves intricate thermal dynamics in�uenced by non-linearities in material properties
and heat generation mechanisms.

This paper aims to further develop the existing models to models, also incorporating the Thom-
son e�ect.

The Thomson e�ect refers to the phenomenon, in which a temperature di�erence is created
across an electrical conductor when an electric current �ows through it. This e�ect occurs due to
the interaction between the current-carrying electrons and the lattice structure of the conductor.

In the context of a closure of electrical contact after the instantaneous explosion of a micro-
asperity, it is important to take into account that micro-asperities are tiny protrusions or irreg-
ularities on the surface of a material. An explosion or sudden release of energy can cause these
micro-asperities to rupture or deform.

After such an explosion, the closure of electrical contact can manifest itself in several ways. The
intense energy release can lead to the melting or vaporization of micro-asperities, altering the surface
characteristics of the contact. This can potentially disrupt the normal �ow of electric current and
create temperature variations due to the Thomson e�ect.

The Thomson e�ect in this scenario could result in localized heating or cooling at the contact
points, depending on the direction of the current �ow. This temperature di�erence might a�ect the
electrical conductivity and overall performance of the closure of electrical contact.

In the initial phase of a closed electrical contact, when a micro-asperity undergoes sudden igni-
tion, the contact region comprises both a metallic vaporization zone and a liquid domain, see Figure
1. Modelling the metallic vapour zone, denoted as Z0 with a height range of 0 < z < s(t), is a
complex undertaking. We propose that the temperature within this region decreases linearly from
the ionization temperature of the metallic vapour, denoted as Tion, which occurs after the explosion
at the �xed face z = 0, to the boiling temperature Tb at the free boundary that separates the vapour
and liquid phases. The temperature �eld within the vapour zone Z0 exhibits a gradual and linear
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Figure 1: Contact zones: Z0 : (0 < z < s(t))-vaporization zone, Z1 : (s(t) < z < r(t))-liquid zone,
Z2 : (r(t) < z)-solid zone.

decrease
TV (z, t) =

z

s(t)
(Tb − Tion) + Tion, 0 ≤ z ≤ s(t), (1.1)

where the following boundary conditions hold

TV (0, t) = Tion, (1.2)

TV (s(t), t) = Tb. (1.3)

Temperature distribution and electrical potential �eld of the zones Z1 and Z2 are de�ned by the
following relations:

c(T1)γ(T1)
∂T1

∂t
=

1

zν
∂

∂z

[
λ(T1)zν

∂T1

∂z

]
+ σT1

∂T1

∂z

∂ϕ1

∂z
+

1

ρ(T1)

(
∂ϕ1

∂z

)2

, (1.4)

1

zν
∂

∂z

[
1

ρ(T1)
zν
∂ϕ1

∂z

]
= 0, s(t) < z < r(t), t > 0, 0 < ν < 1, (1.5)

c(T2)γ(T2)
∂T2

∂t
=

1

zν
∂

∂z

[
λ(T2)zν

∂T2

∂z

]
+ σT2

∂T2

∂z

∂ϕ2

∂z
+

1

ρ(T2)

(
∂ϕ2

∂z

)2

, (1.6)

1

zν
∂

∂z

[
1

ρ(T2)
zν
∂ϕ2

∂z

]
= 0, r(t) < z, t > 0, 0 < ν < 1, (1.7)

T1(s(t), t) = Tb, t > 0, (1.8)

− λ (T1(s(t), t))
∂T1

∂z

∣∣∣∣∣
z=s(t)

=
Q0e

−s20

2a
√
πt
, t > 0, (1.9)

ϕ1(s(t), t) = 0, t > 0, (1.10)

T1(r(t), t) = T2(r(t), t) = Tm > 0, t > 0, (1.11)

ϕ1(r(t), t) = ϕ2(r(t), t), t > 0, (1.12)

− λ (T1(r(t), t))
∂T1

∂z

∣∣∣∣∣
z=r(t)

+ λ (T2(r(t), t))
∂T2

∂z

∣∣∣∣∣
z=r(t)

= lmγm
dr

dt
, t > 0, (1.13)

1

ρ(T1(r(t), t))

∂ϕ1

∂z

∣∣∣∣∣
z=r(t)

=
1

ρ(T2(r(t), t))

∂ϕ2

∂z

∣∣∣∣∣
z=r(t)

, t > 0, (1.14)

T2(+∞, t) = 0, t > 0, (1.15)
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ϕ2(+∞, t) =
Uc
2
, t > 0, (1.16)

T2(z, 0) = ϕ2(z, 0) = 0, z > 0, s(0) = r(0) = 0, (1.17)

where T1, T2 and ϕ1, ϕ2 are temperatures and electrical potential �elds for liquid and solid zones,
c(Ti),γ(Ti) and λ(Ti) are speci�c heat, density and thermal conductivity which depend on the
temperature, σTi is the Thomson coe�cient, ρ(Ti) is the electrical resistivity, Q0 > 0 is the power of
the heat �ux, Tm is the melting temperature, Uc is the contact voltage, s(t) and r(t) are locations
of the boiling and melting interfaces.

This paper is structured as follows. In Section 2, we use the similarity transformation to obtain
an equivalent system of coupled integral equations for problem (1.4)-(1.17). In Section 3, we de�ne
proper spaces in order to apply the �xed point Banach theorem to prove the existence of a solution
to the system of coupled integral equations.

The contribution of the problem addressed in our paper has signi�cant implications for electrical
engineering. By developing a mathematical model that captures the behavior of electromagnetic
�elds and heat transfer in closed electrical contacts, particularly during instantaneous micro-asperity
explosions, we o�er valuable insights into the complex dynamics of these systems.

Our model accounts for the non-linear nature of thermal coe�cients and temperature-dependent
electrical conductivity, factors that are crucial in accurately representing real-world scenarios. By
considering vaporization, liquid, and solid zones within the contact, we provide a comprehensive
framework for analyzing the thermal and electromagnetic e�ects associated with such phenomena.

Furthermore, our approach, which utilizes similarity transformations to reduce the Stefan-type
problem to a system of nonlinear integral equations, o�ers practical methodologies for analysing and
predicting the closure of electrical contacts under extreme conditions. The rigorous establishment
of the validity of this approach through discussions and proofs supported by the �xed point theory
in Banach spaces enhances the reliability and applicability of our proposed solutions.

2 Integral formulation

In this section, taking into account that problem (1.4)-(1.17) can be thought as a Stefan-type
problem, we look for similarity type solutions that depend on the similarity variable

η =
z

2a
√
t
,

with a =
√

λ0
ρ0c0

where λ0, ρ0 and c0 are reference thermal coe�cients.

We propose the following transformation

fi(η) =
Ti(z, t)− Tm

Tm
, φi(η) = ϕi(z, t), , i = 1, 2. (2.1)

According to this transformation, the location of the boiling and melting fronts are given by

s(t) = 2as0

√
t, r(t) = 2ar0

√
t, (2.2)

where s0 and r0 must be determined as a part of the solution.
Therefore, problem (1.4)-(1.17) can be rewritten in the following form:

[L(fi)η
νf ′i ]

′
+ 2aην+1N(fi)f

′
i +

σfi
c0γ0a

ηνf ′iφ
′
i +

ην

c0γ0TmaK(fi)
(φ′i)

2
= 0, (2.3)

[
1

K(fi)
ηνφ′i

]′
= 0, (2.4)
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i = 1 : s0 < η < r0, i = 2 : η > r0,

f1(s0) = B, (2.5)

L(f1(s0))f ′1(s0) = −Qe−s20 , (2.6)

φ1(s0) = 0, (2.7)

f1(r0) = f2(r0) = 0, (2.8)

φ1(r0) = φ2(r0), (2.9)

− L(f1(r0))f ′1(r0) = −L(f2(r0))f ′2(r0) +Mr0, (2.10)

1

K(f1(r0))
φ′1(r0) =

1

K(f2(r0))
φ′2(r0), (2.11)

f2(+∞) = −1, (2.12)

φ2(+∞) =
Uc
2
, (2.13)

where

B =
Tb − Tm
Tm

, Q =
Q0

λ0Tm
√
π
> 0, M =

2lmγma
2

λ0Tm
> 0 (2.14)

and for i = 1, 2:

N(fi) =
c(fiTm + Tm)γ(fiTm + Tm)

c0γ0

, (2.15)

L(fi) =
λ(fiTm + Tm)

λ0

, (2.16)

K(fi) = ρ(fiTm + Tm), (2.17)

σfi = σTi , (2.18)

From (2.4), (2.7), (2.9), (2.11) and (2.13), we obtain the solution for electrical potential �eld for
liquid and solid zones explicitly depending on f1, f2, s0 and r0 as

φ1(η, s0, r0, f1, f2) =
UcF1(η, s0, f1)

2H(r0, s0, f1, f2)
, s0 ≤ η ≤ r0, (2.19)

φ2(η, s0, r0, f1, f2) =
Uc (F1(r0, s0, f1) + F2(η, r0, f2))

2H(r0, s0, f1, f2)
, η ≥ r0, (2.20)

where

F1(η, s0, f1) =

η∫
s0

K(f1(v))

vν
dv, s0 ≤ η ≤ r0, (2.21)

F2(η, r0, f2) =

η∫
r0

K(f2(v))

vν
dv, η ≥ r0, (2.22)

and
H(r0, s0, f1, f2) = F1(r0, s0, f1) + F2(+∞, r0, f2). (2.23)

In addition, from (2.3), (2.6) and (2.8), we get

f1(η) = sν0Q exp(−s2
0) [Φ1(r0, s0, f1, f2)− Φ1(η, s0, f1, f2)]
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+
D∗1

H2(r0, s0, f1, f2)
[G1(r0, s0, f1, f2)−G1(η, s0, f1, f2)] , s0 ≤ η ≤ r0, (2.24)

and from (2.3), (2.8) and (2.12) we get

f2(η) =

[
D∗2

H2(r0, s0, f1, f2)
G2(+∞, r0, f1, f2)− 1

]
Φ2(η, r0, f1, f2)

Φ2(+∞, r0, f1, f2)

− D∗2
H2(r0, s0, f1, f2)

G2(η, r0, f1, f2), η ≥ r0. (2.25)

Moreover, from conditions (2.5) and (2.10) we obtain the following equalities:

sν0Q exp(−s2
0)Φ1(r0, s0, f1, f2) +

D∗1
H2(r0, s0, f1, f2)

G1(r0, s0, f1, f2) = B, (2.26)

and

E1(r0, s0, f1, f2)

[
Q exp(−s2

0)sν0 +
D∗1

H2(r0, s0, f1, f2)
H1(r0, s0, f1, f2)

]
− 1

Φ2(+∞, r0, f1, f2)

[
1− D∗2

H2(r0, s0, f1, f2)
G2(+∞, r0, f1, f2)

]
= Mrν+1

0 , (2.27)

where

Φ1(η, s0, f1, f2) =

η∫
s0

E1(v, s0, f1, f2)

L(f1(v))vν
dv, s0 ≤ η ≤ r0, (2.28)

Φ2(η, r0, f1, f2) =

η∫
r0

E2(v, r0, f1, f2)

L(f2(v))vν
dv, η ≥ r0, (2.29)

G1(η, s0, f1, f2) =

η∫
s0

E1(v, s0, f1, f2)

L(f1(v))vν
H1(v, r0, f1, f2)dv, s0 ≤ η ≤ r0, (2.30)

G2(η, r0, f1, f2) =

η∫
r0

E2(v, s0, f1, f2)

L(f2(v))vν
H2(v, r0, f1, f2)dv η ≥ r0 (2.31)

H1(η, s0, f1, f2) =

η∫
s0

K(f1(v))

vνE1(v, s0, f1, f2)
dv, s0 ≤ η ≤ r0, (2.32)

H2(η, r0, f1, f2) =

η∫
r0

K(f2(v))

vνE2(v, r0, f1, f2)
dv η ≥ r0 (2.33)

E1(η, s0, f1, f2) = exp

− η∫
s0

[
2avN(f1(v))

L(f1(v))
+ D1

H(r0,s0,f1,f2)
K(f1(v))
L(f1(v))vν

]
dv

 , s0 ≤ η ≤ r0, (2.34)

E2(η, r0, f1, f2) = exp

− η∫
r0

[
2avN(f2(v))

L(f2(v))
+ D2

H(r0,s0,f1,f2)
K(f2(v))
L(f2(v))vν

]
dv

 , η ≥ r0, (2.35)
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and the coe�cients Di and D
∗
i for i = 1, 2 are given by

Di =
σfiUc
2c0γ0a

, D∗i =
UcDi

2
. (2.36)

In conclusion, to �nd a similarity solution to problem (1.4)-(1.17) is equivalent to obtain f1, f2,
s0 and r0 such that (2.24), (2.25), (2.26) and (2.27) hold. Notice that the electric potential �elds
φ1 and φ2 are explicitly given by (2.19) and (2.20) as functions of f1, f2, s0 and r0.

In the next section, to address the existence and uniqueness of solutions, we employ a rigorous
analytical approach. We leverage similarity transformations to reduce the problem to a set of
ordinary di�erential equations, facilitating a more tractable analysis. Additionally, we draw upon
the �xed point theory in Banach spaces to establish the validity of our proposed solutions.

3 Existence of solution

In order to prove the existence and uniqueness of solution f1, f2 to equations (2.24) and (2.25), we
�x positive constants 0 < s0 < r0 and consider the Banach space

C = C[s0, r0]× Cb[r0,+∞) (3.1)

endowed with the norm

||~f || = ‖(f1, f2)‖ = max
{
||f1||C[s0,r0], ||f2||Cb[r0,+∞)

}
,

where C[s0, r0] denotes the space of all continuous functions de�ned on the interval [s0, r0] and
Cb[r0,+∞) represents the space of all continuous and bounded functions on the interval [r0,+∞).
We de�ne the closed subsetM of Cb[r0,+∞) by

M = {f2 ∈ Cb[r0,+∞) : f2(r0) = 0, f2(+∞) = −1}.

We consider the operator Ψ on K = C[s0, r0]×M given by

Ψ(~f) = (V1(~f), V2(~f)), (3.2)

where V1(~f), V2(~f) are de�ned by

V1(~f)(η) = sν0Q exp(−s2
0) [Φ1(r0, s0, f1, f2)− Φ1(η, s0, f1, f2)]

+
D∗1

H2(r0,s0,f1,f2)

[
G1(r0, s0, f1, f2)−G1(η, s0, f1, f2)

]
, s0 ≤ η ≤ r0,

(3.3)

V2(~f)(η) =
[

D∗2
H2(r0,s0,f1,f2)

G2(+∞, r0, f1, f2)− 1
]

Φ2(η,r0,f1,f2)
Φ2(+∞,r0,f1,f2)

− D∗2
H2(r0,s0,f1,f2)

G2(η, r0, f1, f2), η ≥ r0.

(3.4)

Notice that solving the system of equations (2.24) and (2.25) is equivalent to obtaining a �xed point
to the operator Ψ.

Taking into account that K is a closed subset of C we will prove that Ψ(K) ⊂ K and Ψ is a
contraction mapping in order to apply the �xed point Banach theorem.

For this purpose we will assume that there exists positive coe�cients µ, Lim, LiM , Nim and
NiM , L̃i , Ñi and K̃i for i = 1, 2 such that
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(A1) for each f1 ∈ C[s0, r0] : s0 ≤ v ≤ r0

L1mη
µ ≤ L(f1)(η) ≤ L1Mη

µ, (3.5)

N1mη
−µ ≤ N(f1)(η) ≤ N1Mη

−µ, (3.6)

K1mη
−µ ≤ K(f1)(η) ≤ K1Mη

−µ, (3.7)

(A2) for each f2 ∈M, η ≥ r0 :
L2mη

µ ≤ L(f2)(η) ≤ L2Mη
µ, (3.8)

N2mη
−µ ≤ N(f2)(η) ≤ N2Mη

−µ, (3.9)

K2mη
−µ ≤ K(f2)(η) ≤ K2Mη

−µ, (3.10)

(A3) for each f1, g1 ∈ C[s0, r0], s0 ≤ η ≤ r0:

|L(f1(η))− L(g1(η))| ≤ L̃1||f1 − g1||, (3.11)

|N(f1(η))−N(g1(η))| ≤ Ñ1||f1 − g1||, (3.12)

|K(f1(η))−K(g1(η))| ≤ K̃1η
−µ||f1 − g1||, (3.13)

(A4) for each f2, g2 ∈M, η ≥ r0 :

|L(f2(η))− L(g2(η))| ≤ L̃2||f2 − g2||, (3.14)

|N(f2(η))−N(g2(η))| ≤ Ñ2||f2 − g2||, (3.15)

|K(f2(η))−K(g2(η))| ≤ K̃2η
−µ||f2 − g2||, (3.16)

(A5) µ > 2.

From now on, hypothesis (A1)-(A5) will be assumed to hold throughout the paper.
We will present preliminary results that will be useful to prove the existence and uniqueness of

a �xed point of the operator Ψ.

Lemma 3.1. For every ~f = (f1, f2), ~g = (g1, g2) ∈ K, the following inequalities hold:

H(r0, s0, f1, f2) ≥ Hinf (r0, s0), (3.17)

H(r0, s0, f1, f2) ≤ Hsup(r0, s0), (3.18)

|H(r0, s0, f1, f2)−H(r0, s0, g1, g2)| ≤ H̃(r0, s0)||~f − ~g||, (3.19)

where
Hinf (r0, s0) := K1m

µ+ν−1

(
1

sµ+ν−1
0

− 1

rµ+ν−1
0

)
, (3.20)

Hsup(r0, s0) := 1
µ+ν−1

(
K1M

sµ+ν−1
0

+ K2M

rµ+ν−1
0

)
, (3.21)

H̃(r0, s0) := 1
µ+ν−1

(
K̃1

sµ+ν−1
0

+ K̃2

rµ+ν−1
0

)
. (3.22)
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Proof. Taking into account the de�nition of H given by (2.23) and assumptions (3.7) and (3.10),
we have

H(r0, s0, f1, f2) ≥ K1m

µ+ν−1

(
1

sµ+ν−1
0

− 1

rµ+ν−1
0

)
+ K2m

µ+ν−1
1

rµ+ν−1
0

≥ K1m

µ+ν−1

(
1

sµ+ν−1
0

− 1

rµ+ν−1
0

)
,

and then we get (3.17). Inequality (3.18) follows analogously. In addition, taking into account
assumptions (3.13) and (3.16), we get

|H(r0, s0, f1, f2)−H(r0, s0, g1, g2)|

≤
(
K̃1

∫ r0
s0

1
vµ+ν

dv + K̃2

∫ +∞
r0

1
vµ+ν

dv
)
||~f − ~g||

≤ 1
µ+ν−1

(
K̃1

(
1

sµ+ν−1
0

− 1

rµ+ν−1
0

)
+ K̃2

rµ+ν−1
0

)
||~f − ~g||

≤ 1
µ+ν−1

(
K̃1

sµ+ν−1
0

+ K̃2

rµ+ν−1
0

)
||~f − ~g||,

and, as a corollary, inequality (3.19) holds.

Lemma 3.2. For every ~f = (f1, f2), ~g = (g1, g2) ∈ K, the following inequalities hold:

1)
E1(η, s0, f1, f2) ≥ E1inf (r0, s0), (3.23)

E1(η, s0, f1, f2) ≤ 1, (3.24)

|E1(η, s0, f1, f2)− E1(η, s0, g1, g2)| ≤ Ẽ1(r0, s0)||~f − ~g||, (3.25)

where

E1inf (r0, s0) := exp
(
−
[
a N1M

L1m(µ−1)
1

s2µ−2
0

+ D1K1M

Hinf (r0,s0)L1m(2µ+ν−1)
1

s2µ+ν−1
0

])
, (3.26)

Ẽ1(r0, s0) := 2a
[

Ñ1

L1m(µ−2)
1

sµ−2
0

+ N1M L̃1

L2
1m(3µ−2)

1

s3µ−2
0

]
+D1

(
K̃1

Hinf (r0,s0)L1m(2µ+ν−1)
1

s2µ+ν−1
0

+ K1M

Hinf (r0,s0)L1m

(
H̃(r0,s0)

Hinf (r0,s0)(2µ+ν−1)
1

s2µ+ν−1
0

+ L̃1

L1m(3µ+ν−1)
1

s3µ+ν−1
0

))
;

(3.27)

2)

|Φ1(η, s0, f1, f2)− Φ1(η, s0, g1, g2)| ≤ Φ̃1(r0, s0)||~f − ~g||, (3.28)

where

Φ̃1(r0, s0) := Ẽ1(r0,s0)
L1m(µ+ν−1)

1

sν+µ−1
0

+ L̃1

L2
1m(2µ+ν−1)

1

sν+2µ−1
0

; (3.29)

3)
H1(η, s0, f1, f2) ≥ H1inf (η, s0), (3.30)

H1(η, s0, f1, f2) ≤ H1sup(r0, s0), (3.31)

|H1(η, s0, f1, f2)−H1(η, s0, g1, g2)| ≤ H̃1(r0, s0)||~f − ~g||, (3.32)
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where
H1inf (η, s0) := K1m

(µ+ν−1)

(
1

sµ+ν−1
0

− 1
ηµ+ν−1

)
, (3.33)

H1sup(r0, s0) := K1M

E1inf (r0,s0)
1

(µ+ν−1)
1

sµ+ν−1
0

, (3.34)

H̃1(r0, s0) :=
(
K̃1 + K1M Ẽ1(r0,s0)

E1inf (r0,s0)

)
1

E1inf (r0,s0)(µ+ν−1)
1

sµ+ν−1
0

; (3.35)

4)
G1(η, s0, f1, f2) ≥ G1inf (η, r0, s0) (3.36)

G1(η, s0, f1, f2) ≤ G1sup(r0, s0) (3.37)

|G1(η, s0, f1, f2)−G1(η, s0, g1, g2)| ≤ G̃1(r0, s0)||~f − ~g|| (3.38)

where

G1inf (η, r0, s0) :=
K1mE1inf (r0,s0)

2L1M (µ+ν−1)2

(
1

sµ+ν−1
0

− 1
ηµ+ν−1

)2

, (3.39)

G1sup(r0, s0) := H1sup(r0,s0)

L1m

1
(µ+ν−1)

1

sµ+ν−1
0

, (3.40)

G̃1(r0, s0) := H1sup(r0, s0)Φ̃1(r0, s0) + H̃1(r0,s0)
L1m

1
(µ+ν−1)

1

sµ+ν−1
0

. (3.41)

Proof. From the de�nition of E1 given by (2.34), assumptions (3.5)-(3.7) and inequality (3.17) we
obtain that ∫ η

s0
2avN(f1(v))

L(f1(v)
+ D1

H(r0,s0,f1,f2)
K(f1(v))
L(f1(v))vν

dv

≤
∫ η
s0

2aN1M

L1m

1
v2µ−1 + D1K1M

Hinf (r0,s0)L1m

1
v2µ+ν

dv

≤ 2a N1M

L1m(2µ−2)
1

s2µ−2
0

+ D1K1M

Hinf (r0,s0)L1m(2µ+ν−1)
1

s2µ+ν−1
0

.

As a corollary it follows that E1(η, s0, f1, f2) ≥ E1inf (r0, s0) with E1inf (r0, s0) given by (3.26). In
addition, as E1 is a negative exponential function, it follows that E1(η, s0, f1, f2) ≤ 1.

Let us analyse the di�erence of E1. From the inequality | exp(−x)− exp(−y)| ≤ |x− y| we have

|E1(η, s0, f1, f2)− E1(η, s0, g1, g2)| ≤
∫ η
s0

2av
∣∣∣N(f1(v))
L(f1(v))

− N(g1(v))
L(g1(v))

∣∣∣ dv
+D1

∫ η
s0

∣∣∣ K(f1(v))
H(r0,s0,f1,f2)L(f1(v))vν

− K(g1(v))
H(r0,s0,g1,g2)L(g1(v))vν

∣∣∣ dv. (3.42)

On one hand, ∫ η
s0

2av
∣∣∣N(f1(v))
L(f1(v))

− N(g1(v))
L(g1(v))

∣∣∣ dv
≤ 2a

∫ η
s0

∣∣∣vN(f1(v))L(g1(v))−N(g1(v))L(g1(v))+N(f1(v))L(g1(v))−N(g1(v))L(f1(v))
L(f1(v))L(g1(v))

∣∣∣ dv
≤ 2a

[∫ η
s0

vÑ1||~f−~g||
L1mvµ

dv +
∫ η
s0

N1M L̃1v1−µ||~f−~g||
L2
1mv

2µ dv
]

≤ 2a
[

Ñ1

L1m(µ−2)
1

sµ−2
0

+ N1M L̃1

L2
1m(3µ−2)

1

s3µ−2
0

]
||~f − ~g||.

(3.43)
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On the other hand,

D1

∫ η
s0

∣∣∣ K(f1(v))
H(r0,s0,f1,f2)L(f1(v))vν

− K(g1(v))
H(r0,s0,g1,g2)L(g1(v))vν

∣∣∣ dv
≤ D1

(∫ η
s0

∣∣∣ K(f1(v))
H(r0,s0,f1,f2)L(f1(v))vν

− K(g1(v))
H(r0,s0,f1,f2)L(f1(v))vν

∣∣∣ dv
+
∫ η
s0

∣∣∣ K(g1(v))
H(r0,s0,f1,f2)L(f1(v))vν

− K(g1(v))
H(r0,s0,g1,g2)L(g1(v))vν

∣∣∣ dv)

≤ D1

(∫ η
s0

|K(f1(v))−K(g1(v))|
H(r0,s0,f1,f2)L(f1(v))vν

dv

+
∫ η
s0
|K(g1(v))|

∣∣∣ 1
H(r0,s0,f1,f2)L(f1(v))vν

− 1
H(r0,s0,g1,g2)L(g1(v))vν

∣∣∣ dv).

(3.44)

From assumptions (3.5), (3.7), (3.13) and inequalities (3.17), (3.19) we get that∫ η

s0

|K(f1(v))−K(g1(v))|
H(r0,s0,f1,f2)L(f1(v))vν

dv ≤ K̃1

Hinf (r0,s0)L1m(2µ+ν−1)
1

s2µ+ν−1
0

||~f − ~g|| (3.45)

and ∫ η
s0
|K(g1(v))|

∣∣∣ 1
H(r0,s0,f1,f2)L(f1(v))vν

− 1
H(r0,s0,g1,g2)L(g1(v))vν

∣∣∣ dv
≤ K1M

(∫ η
s0

|H(r0,s0,g1,g2)−H(r0,s0,f1,f2)|
H(r0,s0,f1,f2)L(f1(v))H(r0,s0,g1,g2)

dv
vµ+ν

+
∫ η
s0

|L(g1(v))−L(f1(v))|
L(f1(v))H(r0,s0,g1,g2)L(g1(v))

dv
vµ+ν

)

≤ K1M

Hinf (r0,s0)L1m

(
H̃(r0,s0)

Hinf (r0,s0)(2µ+ν−1)
1

s2µ+ν−1
0

+ L̃1

L1m(3µ+ν−1)
1

s3µ+ν−1
0

)
||~f − ~g||.

(3.46)

Then inequalities (3.42)-(3.46) imply that

|E1(η, s0, f1, f2)− E1(η, s0, g1, g2)| ≤ Ẽ1(r0, s0)||~f − ~g||

with Ẽ1 given by (3.27).
From the de�nition of Φ1 given by (2.19) we have that

|Φ1(η, s0, f1, f2)− Φ1(η, s0, g1, g2)| ≤
∫ η
s0

∣∣∣E1(v,s0,f1,f2)
L(f1(v))

− E1(v,s0,g1,g2)
L(g1(v))

∣∣∣ dvvν
≤
∫ η
s0

|E1(v,s0,f1,f2)−E1(v,s0,g1,g2)|
L(f1(v))

dv
vν

+
∫ η
s0

E1(v,s0,g1,g2)|L(f1(v))−L(g1(v))|
L(f1(v))L(g1(v))

dv
vν

≤
(
Ẽ1(r0,s0)
L1m

∫ η
s0

1
vµ+ν

dv + L̃1

L2
1m

∫ η
s0

1
v2µ+ν

dv
)
||~f − ~g|| ≤ Φ̃1(r0, s0)||~f − ~g||,
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where Φ̃1(r0, s0) is given by (3.29).
Taking into account the de�nition of H1 given by (2.32), we easily obtain that

H1(η, s0, f1, f2) ≥ K1m

∫ η

s0

1
vµ+ν

dv ≥ K1m

(µ+ν−1)

(
1

sµ+ν−1
0

− 1
ηµ+ν−1

)
,

|H1(η, s0, f1, f2)| ≤ K1M

E1inf (r0,s0)

∫ η

s0

1
vµ+ν

dv ≤ K1M

E1inf (r0,s0)
1

(µ+ν−1)
1

sµ+ν−1
0

,

then (3.30) and (3.31) hold. In addition,

|H1(η, s0, f1, f2)−H1(η, s0, g1, g2)| ≤
∫ η
s0

∣∣∣ K(f1(v))
E1(v,s0,f1,f2)

− K(g1(v))
E1(v,s0,g1,g2)

∣∣∣ dvvν
≤
∫ η
s0

|K(f1(v))−K(g1(v))|
E1(v,s0,f1,f2)

dv
vν

+
∫ η
s0

K(g1(v))|E1(v,s0,f1,f2)−E1(v,s0,g1,g2)|
E1(v,s0,f1,f2)E1(v,s0,g1,g2)

dv
vν

≤ 1
E1inf (r0,s0)

(
K̃1 + K1M Ẽ1(r0,s0)

E1inf (r0,s0)

) ∫ η
s0

1
vµ+ν

dv ||~f − ~g|| ≤ H̃1(r0, s0)||~f − ~g||,

where H̃1 is given by (3.35).
From the de�nition of G1 it follows that

G1(η, s0, f1, f2)| ≥ E1inf (r0,s0)

L1M

∫ η
s0

H1inf (v,s0)

vµ+ν
dv

≥ K1mE1inf (r0,s0)

L1M (µ+ν−1)

∫ η
s0

1
vµ+ν

(
1

sµ+ν−1
0

− 1
vµ+ν−1

)
dv ≥ G1inf (η, r0, s0),

where G1inf is given by (3.39) and

|G1(η, s0, f1, f2)| ≤
η∫
s0

∣∣∣E1(v,s0,f1,f2)H1(v,s0,f1,f2)
L(f1(v))

∣∣∣ dvvν
≤ H1sup(r0,s0)

L1m

∫ η
s0

dv
vµ+ν
≤ G1sup(r0, s0),

where G1sup is given by (3.40). Moreover,

|G1(η, s0, f1, f2)−G1(η, s0, g1, g2)|

≤
∫ η
s0
|H1(v, s0, f1, f2)|

∣∣∣E1(v,s0,g1,g2)
L(g1(v))

− E1(v,s0,f1,f2)
L(f1(v))

∣∣∣ dvvν
+
∫ η
s0

E1(v,s0,g1,g2)|H1(v,s0,f1,f2)−H1(v,s0,g1,g2)|
L(g1(v))

dv
vν

≤ G̃1(r0, s0)||~f − ~g||,

with G̃1 de�ned by (3.41).

Lemma 3.3. For every ~f = (f1, f2), ~g = (g1, g2) ∈ K, the following inequalities hold:

1)
E2(η, r0, f1, f2) ≥ E2inf (r0, s0), (3.47)

E2(η, r0, f1, f2) ≤ 1, (3.48)

|E2(η, r0, f1, f2)− E2(η, r0, g1, g2)| ≤ Ẽ2(r0, s0)||~f − ~g||, (3.49)
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where

E2inf (r0, s0) := exp
(
−
[
a N2M

L2m(µ−1)
1

r2µ−2
0

+ D2K2M

Hinf (r0,s0)L2m(2µ+ν−1)
1

r2µ+ν−1
0

])
, (3.50)

Ẽ2(r0, s0) := 2a
[

Ñ2

L2m(µ−2)
1

rµ−2
0

+ N2M L̃2

L2
2m(3µ−2)

1

r3µ−2
0

]
+D2

(
K̃2

Hinf (r0,s0)L2m(2µ+ν−1)
1

r2µ+ν−1
0

+ K2M

Hinf (r0,s0)L2m

(
H̃(r0)

Hinf (r0,s0)(2µ+ν−1)
1

r2µ+ν−1
0

+ L̃2

L2m(3µ+ν−1)
1

r3µ+ν−1
0

))
;

(3.51)

2)
Φ2(η, r0, f1, f2) ≥ Φ2inf (η, r0, s0), (3.52)

Φ2(η, r0, f1, f2) ≤ Φ2sup(r0), (3.53)

|Φ2(η, r0, f1, f2)− Φ2(η, r0, g1, g2)| ≤ Φ̃2(r0, s0)||~f − ~g||, (3.54)

where
Φ2inf (η, r0, s0) :=

E2inf (r0,s0)

L2M

1
(µ+ν−1)

(
1

rµ+ν−1
0

− 1
ηµ+ν−1

)
, (3.55)

Φ2sup(r0) := 1
L2m

1
(µ+ν−1)

1

rµ+ν−1
0

, (3.56)

Φ̃2(r0, s0) := Ẽ2(r0,s0)
L2m

1
(µ+ν−1)

1

rµ+ν−1
0

+ L̃2

L2
2m

1
(2µ+ν−1)

1

r2µ+ν−1
0

; (3.57)

3)
H2(η, r0, f1, f2) ≤ H2inf (η, r0, s0), (3.58)

H2(η, r0, f1, f2) ≤ H2sup(r0, s0), (3.59)

|H2(η, r0, f1, f2)−H2(η, r0, g1, g2)| ≤ H̃2(r0, s0)||~f − ~g||, (3.60)

where
H2inf (η, r0) := K2m

(µ+ν−1)

(
1

rµ+ν−1
0

− 1
ηµ+ν−1

)
, (3.61)

H2sup(r0, s0) := K2M

E2inf (r0,s0)
1

(µ+ν−1)
1

rµ+ν−1
0

, (3.62)

H̃2(r0, s0) :=
(
K̃2 + K2M Ẽ2(r0,s0)

E2inf (r0,s0)

)
1

E2inf (r0,s0)(µ+ν−1)
1

rµ+ν−1
0

; (3.63)

4)
G2(η, r0, f1, f2) ≤ G2inf (η, r0, s0), (3.64)

G2(η, r0, f1, f2) ≤ G2sup(r0, s0), (3.65)

|G2(η, r0, f1, f2)−G2(η, r0, g1, g2)| ≤ G̃2(r0, s0)||~f − ~g||, (3.66)

where

G2inf (η, r0, s0) :=
K2mE2inf (r0,s0)

2L2M (µ+ν−1)2

(
1

rµ+ν−1
0

− 1
ηµ+ν−1

)2

, (3.67)

G2sup(r0, s0) := H2sup(r0,s0)

L2m

1
(µ+ν−1)

1

rµ+ν−1
0

, (3.68)

G̃2(r0, s0) := H2sup(r0, s0)Φ̃2(r0, s0) + H̃2(r0,s0)
L2m

1
(µ+ν−1)

1

rµ+ν−1
0

. (3.69)

Proof. The proof follows analogously to the previous lemma.
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Lemma 3.4. For every ~f = (f1, f2), ~g = (g1, g2) ∈ K it follows that

||V1(~f)− V1(~g)||C[so,r0] ≤ ε1(r0, s0)||~f − ~g||,

where

ε1(r0, s0) = 2sν0Q exp(−s2
0)Φ̃1(r0, s0)

+ 2D∗1

(
G1sup(r0,s0)2Hsup(r0,s0)H̃(r0,s0)

H4
inf (r0,s0)

+ G̃1(r0,s0)

H2
inf (r0,s0)

)
.

(3.70)

Proof. Taking into account that∣∣∣∣ G1(η,s0,f1,f2)
H2(r0,s0,f1,f2)

− G1(η,s0,g1,g2)
H2(r0,s0,g1,g2)

∣∣∣∣ ≤ |G1(η,s0,f1,f2)||H2(r0,s0,f1,f2)−H2(r0,s0,g1,g2)|
H2(r0,s0,f1,f2)H2(g1,g2)

+ |G1(η,s0,f1,f2)−G1(η,s0,g1,g2)|
H2(r0,s0,g1,g2)

≤
[
G1sup(r0,s0)2Hsup(r0,s0)H̃(r0,s0)

H4
inf (r0,s0)

+ G̃1(r0,s0)

H2
inf (r0,s0

]
||~f − ~g||,

(3.71)

for each η ∈ [s0, r0] it follows that

|V1(~f)(η)− V1(~g)(η)| ≤

≤ sν0Q exp(−s2
0)
[
|Φ1(r0, s0, f1, f2)− Φ1(r0, s0, g1, g2)|

+|Φ1(η, s0, f1, f2)− Φ1(η, s0, g1, g2)|
]

+
∣∣D∗1G1(r0,s0,f1,f2)

H2(r0,s0,f1,f2)
− D∗1G1(r0,s0,g1,g2)

H2(r0,s0,g1,g2)

∣∣∣∣+

∣∣∣∣D∗1G1(η,s0,f1,f2)

H2(r0,s0,f1,f2)
− D∗1G1(η,s0,g1,g2)

H2(r0,s0,g1,g2)

∣∣
≤
[
2sν0Q exp(−s2

0)Φ̃1(r0, s0)

+2D∗1
(G1sup(r0,s0)2Hsup(r0,s0)H̃(r0,s0)

H4
inf (r0,s0)

+ G̃1(r0,s0)

H2
inf (r0,s0)

)]
||~f − ~g|| = ε1(r0, s0)||~f − ~g||.

(3.72)

Lemma 3.5. For every ~f = (f1, f2), ~g = (g1, g2) ∈ K it follows that

||V2(~f)− V2(~g)||Cb[r0,+∞) ≤ ε2(r0, s0)||~f − ~g||,

where
ε2(r0, s0) = ε21(r0, s0) + ε22(r0, s0) + ε23(r0, s0) (3.73)

with
ε21(r0, s0) = 2Φ̃2(r0,s0)

Φ2inf (+∞,r0,s0)
,

ε22(r0, s0) = G̃2(r0,s0)

H2
inf (r0,s0)

+ 2G2sup(r0,s0)Hsup(r0,s0)H̃(r0,s0)

H4
inf (r0,s0)

,

ε23(r0, s0) = Φ2sup(r0,s0)

Φ2inf (+∞,r0,s0)
ε22(r0, s0) + G2sup(r0,s0)

H2
inf (r0,s0)

ε21(r0, s0).

Proof. On one hand, we have that∣∣∣∣ Φ2(η,r0,f1,f2)
Φ2(+∞,r0,f1,f2)

− Φ2(η,r0,g1,g2)
Φ2(+∞,r0,g1,g2)

∣∣∣∣ ≤ |Φ2(η,r0,f1,f2)−Φ2(η,r0,g1,g2)|
Φ2(+∞,r0,f1,f2)

+ Φ2(η,r0,g1,g2)
Φ2(+∞,r0,g1,g2)

|Φ2(+∞,r0,f1,f2)−Φ2(+∞,r0,g1,g2)|
Φ2(+∞,r0,f1,f2)

≤ |Φ2(η,r0,f1,f2)−Φ2(η,r0,g1,g2)|
Φ2(+∞,r0,f1,f2)

+ |Φ2(+∞,r0,f1,f2)−Φ2(+∞,r0,g1,g2)|
Φ2(+∞,r0,f1,f2)

≤ 2Φ̃2(r0,s0)
Φ2inf (+∞,r0,s0)

||~f − ~g|| = ε21(r0, s0)||~f − ~g||.

(3.74)



Exact solution to a Stefan-type problem for a generalized heat equation with the Thomson e�ect 82

On the other hand, we obtain that∣∣∣∣ G2(η,r0,f1,f2)
H2(s0,r0,f1,f2)

− G2(η,r0,g1,g2)
H2(s0,r0,g1,g2)

∣∣∣∣
≤ |G2(η,r0,f1,f2)−G2(η,r0,g1,g2)|

H2(s0,r0,f1,f2)
+ |G2(η,r0,g1,g2)||H2(s0,r0,g1,g2)−H2(s0,r0,f1,f2)|

H2(s0,r0,f1,f2)H2(s0,r0,g1,g2)

≤
(

G̃2(r0,s0)

H2
inf (r0,s0)

+ 2G2sup(r0,s0)Hsup(r0,s0)H̃(r0,s0)

H4
inf (r0,s0)

)
||~f − ~g||

= ε22(r0, s0)||~f − ~g||.

(3.75)

In addition, ∣∣∣∣G2(+∞,r0,f1,f2)
H2(s0,r0,f1,f2)

Φ2(η,r0,f1,f2)
Φ2(+∞,r0,f1,f2)

− G2(+∞,r0,g1,g2)
H2(s0,r0,g1,g2)

Φ2(η,r0,g1,g2)
Φ2(+∞,r0,g1,g2)

∣∣∣∣
≤ Φ2(η,r0,f1,f2)

Φ2(+∞,r0,f1,f2)

∣∣∣∣G2(+∞,r0,f1,f2)
H2(s0,r0,f1,f2)

− G2(+∞,r0,g1,g2)
H2(s0,r0,g1,g2)

∣∣∣∣
+G2(+∞,r0,g1,g2)

H2(s0,r0,g1,g2)

∣∣∣∣ Φ2(η,r0,f1,f2)
Φ2(+∞,r0,f1,f2)

− Φ2(η,r0,g1,g2)
Φ2(+∞,r0,g1,g2)

∣∣∣∣
≤
(

Φ2sup(r0,s0)

Φ2inf (+∞,r0,s0)
ε22(r0, s0) + G2sup(r0,s0)

H2
inf (r0,s0)

ε21(r0, s0)
)
||~f − ~g||

= ε23(r0, s0)||~f − ~g||.

(3.76)

From the previous inequalities, for each η ≥ r0, it follows that

|V2(~f)(η)− V2(~g)(η)|

≤
∣∣∣∣D∗2G2(+∞,r0,f1,f2)

H2(r0,s0,f1,f2)
Φ2(η,r0,f1,f2)

Φ2(+∞,r0,f1,f2)
− D∗2G2(+∞,r0,g1,g2)

H2(r0,s0,g1,g2)
Φ2(η,r0,g1,g2)

Φ2(+∞,r0,g1,g2)

∣∣∣∣
+

∣∣∣∣ Φ2(η,r0,f1,f2)
Φ2(+∞,r0,f1,f2)

− Φ2(η,r0,g1,g2)
Φ2(+∞,r0,g1,g2)

∣∣∣∣+

∣∣∣∣D∗2G2(η,r0,f1,f2)

H2(r0,s0,f1,f2)
− D∗2G2(η,r0,g1,g2)

H2(r0,s0,g1,g2)

∣∣∣∣
≤ ε2(r0, s0)||~f − ~g||.

(3.77)

Theorem 3.1. For every ~f = (f1, f2), ~g = (g1, g2) ∈ K it follows that

||Ψ(~f)−Ψ(~g)|| ≤ ε(r0, s0)||~f − ~g||

with
ε(r0, s0) = max {ε1(r0, s0), ε2(r0, s0)} , (3.78)

where ε1(r0, s0) and ε2(r0, s0) are given by (3.70) and (3.73), respectively.

Proof. From the previous lemmas we have that

||Ψ(~f)−Ψ(~g)|| = max
{
||V1(~f)− V1(~g)||C[s0,r0], ||V2(~f)− V2(~g)||Cb[r0,+∞)

}
= max

{
ε1(r0, s0)||~f − ~g||, ε2(r0, s0)||~f − ~g||

}
= ε(r0, s0)||~f − ~g||.
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Now we will look for conditions that guarantee that Ψ is a contraction mapping.
For each s0 > 0 �xed, we de�ne the functions

ε1,s0(r0) = ε1(r0, s0) and ε2,s0(r0) = ε2(r0, s0), for all r0 > s0,

where ε1, ε2 are given by (3.70) and (3.73), respectively. The following results hold.

Lemma 3.6. a) The function ε1,s0 is a decreasing function that satis�es ε1,s0(s0) = +∞ and
ε1,s0(+∞) = j1(s0), where

j1(s0) = 2sν0Q exp(−s2
0)Φ̃1(+∞, s0)

+2D∗1

(
G1sup(+∞,s0)2Hsup(+∞,s0)H̃(+∞,s0)

H4
inf (+∞,s0)

+ G̃1(+∞,s0)

H2
inf+∞,s0)

)
.

(3.79)

b) If
2D∗1K̃1

L1mK2
1m

(
2K1M

K2
1m

+ 1
)
< 1, (3.80)

then there exists a unique s1 > 0 such that j1(s0) < 1 for all s0 > s1.

Moreover, for each s0 > s1 there exists r1 = r1(s0) > s0 such that ε1,s0(r1) = 1 and
ε1,s0(r0) < 1 for all r0 > r1.

Proof. a) According to the de�nition of ε1 given by (3.70), the proof follows straightforwardly
from Lemmas 3.1 and 3.2.

b) From the de�nition of j1 given by (3.79), we have that it is a decreasing function that satis�es

j1(0) = +∞ and j1(+∞) =
2D∗1K̃1

L1mK2
1m

(
2K1M

K2
1m

+ 1
)
. Then, assuming (3.80), it follows that there

exists a unique s1 > s0 such that j1(s1) = 1 and j1(s0) < 1 for all s0 > s1. Moreover, from
item a), for each s0 > s1 there exists r1 = r1(s0) > s0 such that ε1,s0(r1) = 1 and ε1,s0(r0) < 1
for all r0 > r1.

Lemma 3.7. a) The function ε2,s0 is a decreasing function that satis�es the equalities ε2,s0(s0) =
+∞ and ε2,s0(+∞) = 0.

b) For each s0 > 0 there exists r2 = r2(s0) > s0 such that ε2,s0(r2) = 1 and ε2,s0(r0) < 1 for all
r0 > r2.

Proof. a) It follows from Lemmas 3.1 and 3.3, by taking into account that ε2 is de�ned by (3.73).

b) It clearly follows from item a).

Theorem 3.2. If inequality (3.80) holds, then for each (r0, s0) ∈ Σ with

Σ = {(r0, s0) : s0 > s1, r0 > r0(s0)} (3.81)

we have that ε(r0, s0) < 1, where ε is given by (3.78) and

r0(s0) = max{r1(s0), r2(s0)} (3.82)

with s1, r1 and r2 de�ned in Lemmas 3.6 and 3.7, respectively.

Proof. The proof follows immediately by Lemmas 3.6 and 3.7.
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Corollary 3.1. Under assumption (3.80), for each (r0, s0) ∈ Σ, the operator Ψ de�ned by (3.2) is
a contraction mapping.

Theorem 3.3. Under assumption (3.80), for each (r0, s0) ∈ Σ, there exists a unique �xed point
(f ∗1 , f

∗
2 ) ∈ K of the operator Ψ.

Proof. First, notice that K is a closed subset of the Banach space C given by (3.1). In addition, it

is easy to see that Ψ(~f) ∈ K given that V1(~f) ∈ C[s0, r0], V2(~f) ∈ Cb[r0,+∞), V2(~f)(r0) = 0 and

V2(~f)(+∞) = 0. Finally, according to Corollary 3.1, under assumption (3.80), for each (r0, s0) ∈ Σ
it follows that Ψ is a contraction mapping. As a corollary, applying the �xed point Banach theorem,
we get that there exists a unique �xed point (f ∗1 , f

∗
2 ) ∈ K of the operator Ψ for each (r0, s0) ∈ Σ.

Corollary 3.2. If (3.80) holds, for each (r0, s0) ∈ Σ, then there exists a unique solution (f ∗1 , f
∗
2 ) to

the system of equations (2.24)-(2.25).

It remains to prove the existence of solution (r0, s0) ∈ Σ to the system of equations given by
(2.26) and (2.27), where f1 = f ∗1 and f2 = f ∗2 are the unique solutions to equations (2.24)-(2.25).
For that purpose we will need some preliminary results.

Let us notice that equation (2.26) can be rewritten as

X(r0, s0) = Y (r0, s0), (3.83)

where
X(r0, s0) = Z(r0, s0)−B, Z(r0, s0) =

D∗1G1(r0,s0,f∗1 ,f
∗
2 )

H2(r0,s0,f∗1 ,f
∗
2 )
, (3.84)

and
Y (r0, s0) = −Qsν0 exp(−s2

0)Φ1(r0, s0, f
∗
1 , f

∗
2 ). (3.85)

Lemma 3.8. The following properties hold:

a) Y (r0, s0) < 0 for each (r0, s0) ∈ Σ,

b) Z(r0, s0) > Zinf (r0, s0) for each (r0, s0) ∈ Σ, where

Zinf (r0, s0) =
D∗1E1inf (r0,s0)K1m

2L1M

(
rµ+ν−1
0 −sµ+ν−1

0

K1Mr
µ+ν−1
0 +K2Ms

µ+ν−1
0

)2

,

c) for a �xed s0 > s1, if we assume that

X(r0(s0), s0) < Y (r0(s0), s0), (3.86)

then Zinf (·, s0) is an increasing function that satis�es the conditions

Zinf (r0(s0), s0) < B, Zinf (+∞, s0) = j2(s0), (3.87)

where
j2(s0) =

D∗1E1inf (+∞,s0)K1m

L1MK
2
1M

(3.88)

is an increasing function that satis�es the equality

j2(+∞) =
D∗1K1m

2L1MK
2
1M
,

d) if we assume that
D∗1K1m

2L1MK
2
1M

> B, (3.89)

then there exists a unique s2 = min{s0 ≥ s1 : j2(s0) ≥ B}. Moreover, for each s0 > s2, we
have that j2(s0) > B,
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e) if (3.86) and (3.89) hold for each s0 > s2, then there exists a unique rB(s0) > s0 such that
Zinf (r0, s0) > B for all r0 > rB(s0).

Proof.

a) It is clear from the de�nition of the function Y given by (3.85).

b) It follows from the inequalities obtained in Lemmas 3.1 and 3.2.

c) From the de�nition of Zinf it it easy to see that Zinf (·, s0) is an increasing function for each �xed
s0 > s1. In addition, assumption (3.86) and item a) lead to the inequalities

Zinf (r0(s0), s0)−B < Z(r0(s0), s0)−B < Y (r0(s0), s0) < 0.

Hence, it follows that Zinf (r0(s0), s0) < B. Finally, taking a limit gives that Zinf (+∞, s0) = j2(s0)
for each s0 > s1.

d) First, notice that hypothesis (3.89) can be rewritten as j2(+∞) > B. From the fact that j2 is
an increasing function, we can conclude that there exists a unique s2 = min {s0 ≥ s1 : j2(s0) ≥ B}.
Notice that s2 = s1 in the case j2(s1) > B. As a corollary, for each s0 > s2, we get that j2(s0) > B.

e) For each �xed s0 > s2, we have that Zinf (r0(s0), s0) < B from item c) and Zinf (+∞, s0) > B
from item d). Then, there exists a unique rB = rB(s0) > r0(s0) such that Zinf (rB(s0), s0) = B and
Zinf (r0, s0) > B for all r0 > rB(s0).

Lemma 3.9. For each s0 > s2, if we assume that inequalities (3.86) and (3.89) hold, then there
exists at least one solution r∗0 = r∗0(s0, f

∗
1 , f

∗
2 ) ∈ (r0(s0), rB(s0)) to equation (2.26).

Proof. For each s0 > s2, taking into account assumption (3.86) and the fact that from item e) of
Lemma 3.8 the following inequality holds

X(rB(s0), s0) ≥ Zinf (rB(s0), s0)−B = 0 > Y (rB(s0), s0),

we obtain that there exists at least one solution r∗0 ∈ (r0(s0), rB(s0)) to equation (2.26).

Now we will analyze equation (2.27). If we replace r0 by r∗0(s0) and (f1, f2) by (f ∗1 , f
∗
2 ), the

resulting equation is equivalent to the equation

W (r∗0(s0), s0) = M, (3.90)

where

W (r∗0(s0), s0) =
E1(r∗0(s0),s0,f∗1 ,f

∗
2 )

rν+1
0

[
Q exp(−s2

0)sν0

+
D∗1

H2(r∗0(s0),s0,f∗1 ,f
∗
2 )
H1(r∗0(s0), s0, f

∗
1 , f

∗
2 )

]

− 1
r∗0(s0)ν+1Φ2(+∞,r∗0(s0),f∗1 ,f

∗
2 )

[
1− D∗2

H2(r∗0(s0),s0,f∗1 ,f
∗
2 )
G2(+∞, r∗0(s0), f ∗1 , f

∗
2 )

]
.

(3.91)

Lemma 3.10. If any of the following two systems of inequalities hold
Winf (s2) > M

Wsup(+∞) < M
or


Wsup(s2) < M

Winf (+∞) > M,
(3.92)
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then there exists at least one solution ŝ0 > s2 to equation (3.90), where

Winf (s0) =
E1inf (r∗0(s0),s0)

rν+1
B (s0)

[
Q exp(−s2

0)sν0 +
D∗1

H2
sup(r∗0(s0),s0)

H1inf (r
∗
0(s0), s0)

]

− 1
r0ν+1(s0)Φ2inf (+∞,r∗0(s0),s0)

+ 1
rν+1
B (s0)Φ2sup(r∗0(s0))

· D∗2
H2
sup(r∗0(s0),s0)

G2inf (+∞, r∗0(s0), s0),

(3.93)

Wsup(s0) = 1
r0ν+1(s0)

[
Q exp(−s2

0)sν0 +
D∗1

H2
inf (r∗0(s0),s0)

H1sup(r
∗
0(s0), s0)

+ 1
Φ2inf (+∞,r∗0(s0),s0)

D∗2
H2
inf (r∗0(s0),s0)

G2sup(r
∗
0(s0), s0).

]
.

(3.94)

The above analysis allows to establish the following existence theorem.

Theorem 3.4. If hypotheses (A1) − (A5) and inequalities (3.80), (3.86), (3.89) and (3.92) hold,
then there exists at least one solution (ŝ0, r

∗
0(ŝ0), f ∗1 , f

∗
2 ) to the system of equations (2.24)-(2.27),

where (f ∗1 , f
∗
2 ) is the unique �xed point of the operator Ψ corresponding to (ŝ0, r

∗
0(ŝ0)) ∈ Σ.

Corollary 3.3. If hypotheses (A1) − (A5) and inequalities (3.80), (3.86), (3.89) and (3.92) hold,
then there exists at least one solution to problem (1.4)-(1.17), where

T1(z, t) = Tmf
∗
1

(
z

2a
√
t

)
+ Tm, s(t) ≤ z ≤ r(t), t > 0,

T2(z, t) = Tmf
∗
2

(
z

2a
√
t

)
+ Tm, z ≥ r(t), t > 0,

ϕ1(z, t) =
Uc
2
·

F1

(
z

2a
√
t
, ŝ0, f

∗
1

)
H(r∗0(ŝ0), ŝ0, f ∗1 , f

∗
2 )
, s(t) ≤ z ≤ r(t), t > 0,

ϕ2(z, t) =
Uc
2
·
F1(r∗0(ŝ0), ŝ0, f

∗
1 ) + F2

(
z

2a
√
t
, r∗0(ŝ0), f ∗2

)
H(r∗0(ŝ0), ŝ0, f ∗1 , f

∗
2 )

, z ≥ r(t), t > 0,

with s(t) = 2aŝ0

√
t and r(t) = 2ar∗0(ŝ0)

√
t.

Conclusion

We have considered a two-phase Stefan type problem governed by the generalized heat equation with
the Thomson e�ect and nonlinear thermal coe�cients, that models the dynamics of electromagnetic
�elds and heat transfer within closed electrical contacts, particularly focusing on the instantaneous
explosion of micro-asperities.

By employing similarity transformations, we have e�ectively reduced the problem to a set of
coupled ordinary di�erential equations, thereby facilitating tractable analysis and solution.

The validity and utility of our approach have been rigorously demonstrated through discussions
and proofs grounded on the �xed point theory within the framework of Banach spaces. This theo-
retical underpinning not only enhances our con�dence in the proposed solutions, but also provides
a solid foundation for future research endeavors in related domains.
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Furthermore, the insights gained from this study hold signi�cant implications for various prac-
tical applications involving electrical contacts, such as in the design and optimization of electronic
devices, electrical connectors, and power transmission systems. By elucidating the intricate inter-
play between electromagnetic �elds and heat transfer phenomena, our work contributes to advancing
the understanding and engineering of such systems in both industrial and academic contexts.
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Additionally, we investigate the asymptotic behaviour of solutions in resonance cases.

DOI: https://doi.org/10.32523/2077-9879-2025-16-3-90-101

1 Introduction

Numerous studies have focused on the asymptotic properties of solutions to singular Sturm-Liouville
equations and di�erential equations of arbitrary orders, as discussed in papers [1, 2, 12] and papers
cited there. These studies predominantly assumed that the equation's coe�cients exhibit regular
growth to in�nity. In contrast, works [3, 4, 5, 7, 8, 10, 11] explored the asymptotic properties of
solutions to ordinary di�erential equations with coe�cients from broader classes, particularly those
that do not meet the Titchmarsh-Levitan conditions.

In [11], a method was proposed to study the asymptotic behaviour of solutions of the Sturm-
Liouville equation

y′′ + (1 + q(x))y = 0, x0 < x <∞ (1.1)

for the case in which q(x) is a rapidly oscillating function belonging to the class σ as de�ned in [11].
This method enables the construction of asymptotic formulas for solutions whether q(x) in�uences
the leading term of the asymptotic expansion or not. However, this method does not address the
classes in which q(x) oscillates but does not belong to the class described in [11]. An example of
such a function is sin(x)/xα, where α > 0.

In [9], this approach was modi�ed to construct the asymptotics of perturbations of the form
p(x)/xα, where α > 0 and p(x) is a quasi-periodic function.

Note that for α > 1 the condition
∫
|p(x)/xα|dx < ∞ is satis�ed, hence, due to Theorem 1 in

[1] (p. 133), all solutions of equation (1.1) are bounded. Therefore, further study of this case is not
of interest.

In this paper, we extend the methods of [8, 9] to construct asymptotic formulas for the solution
of the Sturm-Liouville equation in the two-dimensional vector-function space:

~y′′ +

(
A0 +

p(x)

xα
A1

)
~y = 0, x0 < x <∞,
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where

~y =

(
y1

y2

)
, Aj =

(
ajlk
)
, Aj = const, j = 0, 1, A∗0 = A0 > 0,

and p(x) is a quasi-periodic function.

2 Construction of asymptotic formulas

We consider the Sturm-Liouville equation in the two-dimensional vector-function space:

~ϕ′′ +

(
A0 +

p(x)

xα
A1

)
~ϕ = 0, A∗0 = A0 > 0, α > 0, (2.1)

p(x) =
m∑
k=1

ske
ipkx, sk ∈ C, pk ∈ R \ {0}. (2.2)

The substitution
~ϕ = T~y, (2.3)

transforms equation (2.1) to the equation

~y′′ +

(
µ2

1 0
0 µ2

2

)
~y +

p(x)

xα
B~y = 0, x0 ≤ x <∞, α > 0, (2.4)

where

T−1A0T =

(
µ2

1 0
0 µ2

2

)
, B = T−1A1T =

(
bjk
)
, j, k = 1, 2.

We present the main result of this paper.

Theorem 2.1. Let α > 1/3, and let a function p(x) have form (2.2). Moreover, suppose that the
following conditions hold.

1. For any set of numbers {c1, ..., cm}, where cj ∈ 0 ∪ N,
m∑
j=1

cj 6= 0, the following condition is

satis�ed:
m∑
k=1

ckpk 6= 0. (2.5)

2. For any pk, k = 1, . . . ,m, it is true that

pk /∈ {±2µ1, ±2µ2, ±µ1 ± µ2}. (2.6)

Then, for the fundamental system of solutions of equation (2.4), as x→ +∞, the following asymp-
totic relation holds:

~y ∼
(
c11e

iµ1x c12e
−iµ1x

c21e
iµ2x c22e

−iµ2x

)
(I + o(1))~y0, cjk = const, j, k = 1, 2, ~y0 = const.

Proof. We reduce equation (2.4) to an equivalent �rst-order system of equations.
Let us introduce the following vector-function:

~z(x, µ) = col(z1, z2, z3, z4) : z1 = y1, z2 = y2, z3 = y′1, z4 = y′2.
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Then, equation (2.4) transforms into the following form:

~z′ = (L+
p(x)

xα
A)~z, (2.7)

where

L =


0 0 1 0
0 0 0 1
−µ2

1 0 0 0
0 −µ2

2 0 0

 , A =


0 0 0 0
0 0 0 0
−b11 −b12 0 0
−b21 −b22 0 0

 .

The substitution

~z(x) = T1~u, T1 =


− i
µ1

i
µ1

0 0

0 0 − i
µ2

i
µ2

1 1 0 0
0 0 1 1

 (2.8)

transforms system (2.7) into the system

~u′ = iΛ0~u+
1

xα
B̃(x)~u, (2.9)

Λ0 =


µ1 0 0 0
0 −µ1 0 0
0 0 µ2 0
0 0 0 −µ2

 , B̃(x) =
ip(x)

2


b11
µ1

−b11
µ1

b12
µ2

−b12
µ2

b11
µ1

−b11
µ1

b12
µ2

−b12
µ2

b21
µ1

−b21
µ1

b22
µ2

−b22
µ2

b21
µ1

−b21
µ1

b22
µ2

−b22
µ2

 .

We apply the following substitution:

~u = C(x)~v, C(x) = C0(x) +
1

xα
C1(x), (2.10)

which leads us to the following system:

C ′(x)~v + C(x)~v′ = iΛ0C(x)~v +
1

xα
B̃(x)C(x)~v. (2.11)

We seek the matrices C0(x) and C1(x) from the following system of matrix equations:{
C ′0(x) = iΛ0C0(x),

C ′1(x) = iΛ0C1(x) + B̃(x)C0(x).
(2.12)

From (2.12), we obtain

C0(x) = eiΛ0x =


eiµ1x 0 0 0

0 e−iµ1x 0 0
0 0 eiµ2x 0
0 0 0 e−iµ2x

 .

Also, from (2.12), we have

C1(x) = C0(x)− C0(x)D(x), D′(x) = D1(x) = −C−1
0 (x)B̃(x)C0(x), (2.13)

D1(x) =
ip(x)

2


b11
µ1

− b11
µ1
e−2iµ1x b12

µ2
ei(−µ1+µ2)x − b12

µ2
ei(−µ1−µ2)x

b11
µ1
e2iµ1x − b11

µ1

b12
µ2
ei(µ1+µ2)x − b12

µ2
ei(µ1−µ2)x

b21
µ1
ei(µ1−µ2)x − b21

µ1
ei(−µ1−µ2)x b22

µ2
− b22

µ2
e−2iµ2x

b21
µ1
ei(µ1+µ2)x − b21

µ1
ei(−µ1+µ2)x b22

µ2
e2iµ2 − b22

µ2

 .
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We de�ne the matrix D(x) as the antiderivative of the matrix function D1(x)

D(x) =


p11(x, 0) −p11(x,−2µ1) p12(x,−µ1 + µ2) −p12(x,−µ1 − µ2)
p11(x, 2µ1) −p11(x, 0) p12(x, µ1 + µ2) −p12(x, µ1 − µ2)

p21(x, µ1 − µ2) −p21(x,−µ1 − µ2) p22(x, 0) −p22(x,−2µ2)
p21(x, µ1 + µ2) −p21(x,−µ1 + µ2) p22(x, 2µ2) −p22(x, 0)

 ,

where

pjk(x, σml) =

∫
ibjkp(x)

2µk
eiσmlxdx, j, k = 1, 2, m, l = 1, 4,

σml ∈ {0,±2µ1,±2µ2,±µ1 ± µ2}.

Thus, the solution C1(x) of system (2.12) has the form

C1(x) = C0(x) · (I −D(x)). (2.14)

It is easy to prove that due to conditions (2.5) and (2.6) of Theorem 2.1, all elements of the
matrix D(x) are bounded. Hence, the matrices C0(x) and C1(x) are bounded. Taking into account
the last expressions, for the matrix C(x) we obtain

C(x) = C0(x)

(
I +

1

xα
(I −D(x))

)
. (2.15)

Since C0(x) is a diagonal matrix, D(x) is bounded, and x−α → 0 as x→∞, the matrix C(x) admits
a bounded inverse.

Considering (2.12) and (2.15), we can rewrite system (2.11) in the following form:

(~v)′ =
1

x2α

(
C0(x) +

1

xα
C1(x)

)−1

B̃(x)C1(x)~v

+
α

xα+1

(
C0(x) +

1

xα
C1(x)

)−1

C1(x)~v. (2.16)

From the boundedness of the matrices C0(x) and C1(x), it follows that the matrices C−1B̃C1,
C−1C1 are also bounded.

Let us consider the case α > 1/2. We rewrite system (2.16) as follows:

(~v)′ = C̃(x)~v, (2.17)

where

C̃(x) =
1

x2α
C−1(x)B̃(x)C1(x) +

α

xα+1
C−1(x)C1(x).

If α > 1/2, then the boundedness of C−1B̃C1 and C
−1C1 obviously implies that all elements of the

matrix C̃(x) are summable, i.e., ‖C̃(x)‖ ∈ L1(x0,∞). Therefore, using successive approximations
for system (2.17), we obtain

~v = ~v0 +

∞∫
x

C̃(ξ)~v(ξ)dξ, ~v0 = const,

which implies
~v = (I + o(1))~v0.
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Taking into account substitutions (2.10), (2.8), we obtain the solution to equation (2.7) as follows:

~z(x) = T1 ·
(
C0(x) +

1

xα
C1(x)

)
· (I + o(1)) · ~v0, v0 = const. (2.18)

Now, let us consider the case 1/3 < α < 1/2. In this case, the elements of the matrix α
xα+1C

−1C1

are summable. Given that 2α < 1, the asymptotic relation xα+1 = o(x3α) as x → ∞ holds.
Therefore, we can rewrite system (2.16) by using the Neumann series for the inverse matrix

C−1(x) =

(
I +

1

xα
(I −D(x))

)−1

C−1
0 (x) = C−1

0 (x) +O(x−α),

in the following form:

(~v)′ =
1

x2α
C−1

0 (x)B̃(x)C1(x)~v +
1

x3α
F (x, µ1, µ2)~v, (2.19)

where
1

x3α
F (x, µ1, µ2) =

1

x2α
O(x−α) +

α

xα+1
C−1(x)C1(x),

and
∥∥ 1
x3α
F (x, µ)

∥∥ ∈ L1(x0,∞). Taking into account (2.13) and (2.14), for the matrix

C−1
0 (x)B̃(x)C1(x) we have

C−1
0 (x)B̃(x)C1(x) = C−1

0 (x)B̃(x)C0(x)D(x) = D′(x)D(x).

Hence, the elements of the matrix C−1
0 B̃C1 are oscillating functions and can be represented as

G(x, µ1, µ2) =
∑

Gke
iσkx, σk ∈ {pk, ±2µ1, ±2µ2, ±µ1 ± µ2}, Gk = const.

Thus, system (2.19) takes the form

(~v)′ =
1

x2α
G(x, µ1, µ2)~v +

1

x3α
F (x, µ1, µ2)~v. (2.20)

The substitution

ξ =
x1−2α

1− 2α
, x = ((1− 2α)ξ)

1
1−2α , ~v(x) = ~w(ξ), (2.21)

β =
1

1− 2α
, γ =

α

1− 2α
,

transforms system (2.20) to the system

(~w)′ξ = G
(
aξβ, µ1, µ2

)
~w +

βγ

ξγ
F
(
aξβ, µ1, µ2

)
~w, (2.22)

where a = β−β is a constant, which does not a�ect the asymptotic behaviour of the solutions.
The condition 1/3 < α < 1/2 implies 3 < β < ∞, hence γ = α

1−2α
= βα > 1. Therefore, the

second term of system (2.22) is summable.
By by integration, from (2.22), we obtain

~w(ξ) = ~w(ξ0) +

∞∫
ξ

G
(
τβ, µ1, µ2

)
~w(τ)dτ + βγ

∞∫
ξ

τ−γF
(
τβ, µ1, µ2

)
~w(τ)dτ. (2.23)
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Integrating by part the second term of expression (2.23), we have

∞∫
ξ

G
(
τβ, µ1, µ2

)
~w(τ)dτ = Ĝ

(
τβ, µ1, µ2

)
~w(τ)

∣∣∣∣∞
ξ

−
∞∫
ξ

Ĝ
(
τβ, µ1, µ2

)
~w′(τ)dτ, (2.24)

where

∣∣∣Ĝ (ξβ, µ1, µ2

)∣∣∣ =

∣∣∣∣∣∣
∞∫
ξ

G
(
τβ, µ1, µ2

)
dτ

∣∣∣∣∣∣ =

∣∣∣∣∣∣ 1β
∞∫
ξ

G
(
τβ, µ1, µ2

) dτβ
τβ−1

∣∣∣∣∣∣ = O

(
1

τβ−1

)
.

Hence, ‖Ĝ (ξ, µ1, µ2) ‖ ∈ L1(ξ0,∞). By using (2.22) for (2.24), we get

J :=

∞∫
ξ

G
(
τβ, µ1, µ2

)
~w(τ)dτ = Ĝ

(
τβ, µ1, µ2

)
~w(τ)

∣∣∣∣∞
ξ

−
∞∫
ξ

Ĝ
(
τβ, µ1, µ2

)(
G
(
τβ, µ1, µ2

)
~w(τ) +

βγ

τ γ
F
(
τβ, µ1, µ2

)
~w(τ)

)
dτ.

Taking into account the last expressions and (2.23), we obtain the following estimate:

‖~w − ~w0‖C(ξ0,∞) ≤ K‖~w‖C(ξ0,∞), K = const.

Hence, it follows that
~w(ξ) = ~w(ξ0) + o(1), (2.25)

where ~w(ξ) = ~w0. Returning from system (2.25) to system (2.7), taking into account substitutions
(2.21), (2.10) and (2.8), we obtain (2.18).

Let us consider the case α = 1/2. In this case, system (2.24) takes the form

(~v)′ =
1

x
G(x, µ1, µ2)~v +

1

x3/2
F (x, µ1, µ2)~v. (2.26)

Substituting
ξ = lnx, x = eξ, ~v(x) = ~w(ξ),

converts system (2.26) to the system

(~w)′ξ = G(eξ, µ1, µ2)~w + e−
ξ
2F (eξ, µ1, µ2)~w.

Similarly to (2.22), by using successive approximations, we obtain

~w(ξ) = ~w(ξ0) + o(1).

Taking into account (2.21), (2.10) and (2.8), we obtain (2.18).
Finally, we obtain the asymptotics of the solutions to system (2.4) in the following form

~y ∼
(
c11e

iµ1x c12e
−iµ1x

c21e
iµ2x c22e

−iµ2x

)
(I + o(1))~y0,

where cjk = const, j, k = 1, 2, ~y0 = const.
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Remark 1. From the proven theorem, it follows that the perturbation p(x)/xα does not a�ect the
dominant part of the asymptotics of the solution to equation (2.4) provided that conditions (2.5)
and (2.6) are satis�ed.

Remark 2. The condition α > 1/3 arises from the selection of the substitution:

C(x) = C0(x) +
1

xα
C1(x).

For the general case, the substitution takes the form:

C(x) =
m∑
k=0

1

xkα
Ck(x),

as provided in [9] for the scalar case.

Remark 3. If condition (2.5) of Theorem 2.1 is not satis�ed, a resonance case occurs, and the
asymptotics will signi�cantly di�er from those obtained above.

3 Resonance case

In this section, we will show that the conditions of Theorem 2.1 are essential. To do this, let us
consider the case in which pk ∈ {±2µ1, ±2µ2, ±µ1 ± µ2}, i.e., condition (2.5) is not satis�ed. For
the matrix C(x) in (2.15), we obtain

C(x) = C0(x)

(
I − 1

xα
D̃(x)− x1−αD2(x)

)
,

where
D̃(x) =

∑
D̃ke

iσk , D2(x) =
∑

(D2)ke
iσk , D̃k, (D2)k = const,

σk ∈ {±2µ1,±2µ2,±µ1 ± µ2, pk.}

For the case α < 1, the matrix C(x) becomes unbounded as x→∞. This generates the resonance
case and the method described in the previous section is no longer applicable. Therefore, we apply
a di�erent approach to study the asymptotic behaviour of solutions.

Let p(x) = cos(µ1 + µ2)x, µ1, µ2 ∈ R \ 0. Then, system (2.9) takes the following form:

~u′ =
i

2
Λ0~u+

i cos(µ1 + µ2)x

2xα
B~u, (3.1)

where

Λ0 =


µ1 0 0 0
0 −µ1 0 0
0 0 µ2 0
0 0 0 −µ2

 , B =


b11
µ1

−b11
µ1

b12
µ2

−b12
µ2

b11
µ1

−b11
µ1

b12
µ2

−b12
µ2

b21
µ1

−b21
µ1

b22
µ2

−b22
µ2

b21
µ1

−b21
µ1

b22
µ2

−b22
µ2

 .

In the case µ1 = µ2, system (3.1) becomes equivalent to two second-order scalar linear di�erential
equations. Therefore, we consider the case µ1 6= µ2.

The substitution
~u = e

i
2

Λ0x~v (3.2)

transforms system (3.1) to

~v′ =
i cos(µ1 + µ2)x

2xα
e−

i
2

Λ0xBe
i
2

Λ0x~v.
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After some modi�cations, we get

~v′ =
1

xα

(
B0 +

m∑
k=1

eiσkxBk

)
~v, (3.3)

where

B0 =


0 0 0 − ib12

4µ2

0 0 ib12
4µ2

0

0 − ib21
4µ1

0 0
ib21
4µ1

0 0 0

 , Bk = const, k = 1, . . . ,m,

σk ∈ {±2µ1; ±2µ2; ±2(µ1 + µ2); ±(µ1 ± µ2); ±(3µ1 + µ2); ±(µ1 + 3µ2)}.

Replacing independent variable x by ξ as in (2.21):

ξ =
x1−α

1− α
, x = ((1− α)ξ)

1
1−α , ~v(x) = ~w(ξ), (3.4)

β =
1

1− α
, a = (1− α)β,

we obtain

~w′ξ = B0 ~w +
m∑
k=1

eiaσkξ
β

Bk ~w. (3.5)

Denote

φk(ξ) =

∞∫
ξ

eiaσkτ
β

dτ, k = 1, . . . ,m.

Assume that 1/2 < α < 1, which implies β > 2. Then

φk(ξ) =

∞∫
ξ

eiaσkτ
β

dτ =
1

β

∞∫
ξ

eiaσkτ
β

τβ−1
dτβ ∈ L1(ξ0,∞). (3.6)

Applying the substitution
~w = e−φ1(ξ)B1 ~w1, (3.7)

we get

~w′1(ξ) = eφ1(ξ)B1B0e
−φ1(ξ)C1 ~w1 + eφ1(ξ)B1 ·

(
m∑
k=2

eiaσkξ
β

Bk

)
· e−φ1(ξ)B1 ~w1. (3.8)

Using the properties of the matrix exponent, from (3.6) we obtain

eφ1(ξ)B1 = I + F1(ξ), ‖F1(ξ)‖ ∈ L1(ξ0,∞),

and
e−φ1(ξ)B1 = I + F2(ξ), ‖F2(ξ)‖ ∈ L1(ξ0,∞).

Therefore,
eφ1(ξ)B1B0e

−φ1(ξ)B1 = B0 + F3(ξ), ‖F3(ξ)‖ ∈ L1(ξ0,∞),

where
F3(ξ) = B0F2(ξ) + F1(ξ)B0 + F1(ξ)B0F2(ξ).
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For the remaining terms of system (3.8), we have

eφ1(ξ)B1 ·
(
eiaσkξ

β

Bk

)
· e−φ1(ξ)B1 = (I + F1(ξ))eiaσkξ

β

Bk(I + F2(ξ)) = eiaσkξ
β

Bk +Gk(ξ),

Gk(ξ) = eiaσkξ
β

(BkF2(ξ) + F1(ξ)Bk + F1(ξ)BkF2) , k = 2, . . . ,m.

The matrices eiaσkξ
β
Bk are bounded, and the matrices F1(ξ), F2(ξ) are summable. Hence, the

matrices Gk(ξ) are summable. On the base of these relations, system (3.8) takes the form

~w′1(ξ) = B0 ~w1 +
m∑
k=2

eiaσkξ
β

Bk ~w1 +G(ξ)~w1, (3.9)

where

G(ξ) =
m∑
k=2

Gk(ξ), ‖G(ξ)‖ ∈ L1(ξ0,∞).

Using the substitutions
~wk−1 = eiaσkξ

βBk ~wk, k = 2, . . . ,m, (3.10)

one by one and conducting similar calculations, we �nally obtain

~w′m(ξ) = B0 ~wm + P (ξ)~wm, ‖P (ξ)‖ ∈ L1(ξ0,∞). (3.11)

Applying Levinson's Theorem to (3.11) (see [6], p. 292), we obtain the solution

~wm(ξ) = eξB0 · (I +M · o(1)), M = const.

Using substitutions (3.9), (3.7), (3.4), (3.2) and (2.8), we obtain the solution for system (2.7) in the
following form:

~z = T1 · e
i
2

Λ0ξβ ·
m∏
k=1

e−φk(ξ)BkeξB0(I +M · o(1))~wm(ξ0).

The dominant part of asymptotics of solutions is

~z ∼ e
i
2

Λ0x · exp

{
x1−α

1− α
B0

}
(I +M · o(1))z0, z0 = const.

Let us consider the case α = 1. Then, system (3.3) takes the form

~v′ =
1

x

(
B0 +

m∑
k=1

eiσkxBk

)
~v.

By using the substitution
ξ = lnx, x = eξ, ~v(x) = ~w(ξ) (3.12)

we obtain the system

~w′ξ =

(
B0 +

m∑
k=1

eiσke
ξ

Bk

)
~w.

Denote

ψk(ξ) =

∞∫
ξ

eiσke
τ

dτ, k = 1, . . . ,m.
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As ψk(ξ) ∈ L1(ξ0,∞), j = 1, . . . ,m, using the substitutions

~w = e−ψ1(ξ)B1 ~w1, ~wk−1 = e−ψk(ξ)Bk ~wk, k = 2, . . . ,m, (3.13)

and conducting similar calculations as in the previous case, we obtain

~w′m(ξ) = B0 ~wm +G(ξ)~wm, ‖G(ξ)‖ ∈ L1(ξ0,∞).

Applying Levinson's Theorem (see [6], p. 292) and using substitutions (3.13), (3.12), (3.2) and
(2.8), we obtain the following expression for the solution to system (2.7):

~z = T1 · e
i
2

Λ0eξ ·
m∏
k=1

e−ψk(ξ)Bk · eξB0 · (I +M · o(1)) · ~wm(ξ0).

The dominant part of the asymptotics of the solution is given by

~z ∼ e
i
2

Λ0x · elnxB0 · (I +M · o(1))~z0, ~z0 = const.

Remark 4. In both cases α < 1 and α = 1, the asymptotics of solutions to system (2.7), as
described by equation (2.4), will depend on the elements of the constant matrix B.
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• Department of General Control Problems, Faculty of Mechanics and Mathematics, M.V.
Lomonosov Moscow State University (MSU);

• S.M. Nikolskii Mathematical Institute, Patrice Lumumba Peoples' Friendship University of
Russia (RUDN University);

• Astana International University;

• North Caucasus Center for Mathematical Research of the VSC RAS;

• Southern Mathematical Institute of the VSC RAS.

The event was held with the support of the Russian Ministry of Education and Science, agreement
No. 075-02-2025-1633.

Organizing Committee

• D.Sc., Professor Anatoly Geogievich Kusraev (VSC RAS);

• D.Sc., Professor Georgii Georgievich Magaril-Il'yaev (M.V. Lomonosov Moscow State
University);

• D.Sc., Professor Andrey Borisovich Muravnik (S.M. Nikolskii Mathematical Institute,
RUDN University).

The event was held with the support of the Russian Ministry of Education and Science, agreement
No. 075-02-2025-1633.

Working group:

• Dr. Elza Gizarovna Bakhtigareeva (the S.M. Nikolskii Mathematical Institute, RUDN
University);
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• Dr. Gulden Zhumabekkyzy Karshigina (Astana International University);

• Victoria Amurkhanovna Tamaeva (North Caucasus Center for Mathematical Research
of the VSC RAS), the secretary of the Organizing Committee;

• Dr. Batradz Botazovich Tasoev (Southern Mathematical Institute of the VSC RAS).

WORKSHOP PROGRAMME
April 15, 2025 / Tuesday

Moderator: D.Sc., Professor Georgii Georgievich Magaril-Ilyaev

15:00 � 15:15 Opening of the Workshop

Professor Georgii Georgievich Magaril-Ilyaev delivered a welcoming speech on behalf of the Orga-
nizing Committee.

Professor Tikhomirov Vladimir Mikhailovich spoke about the activities of Professor Mikhail L'vovich
Goldman

15:20 � 15:55
D.Sc., Professor, Corresponding Member of the RAS
Besov Oleg Vladimirovich
"Estimates of the entropy numbers of the Sobolev embedding operator on a Hölder domain"

15:55 � 16:30 D.Sc., Professor, Foreign Member of the NAS of Kazakhstan
Burenkov Victor Ivanovich
"On joint scienti�c work with M.L. Goldman"

16:30 � 17:05 D.Sc., Professor Nazarov Alexander Ilyich
"Hardy-type inequalities with general cylindrical-spherical weights"

17:05 � 17:40 D.Sc., Professor, Corresponding Member of the RAS
Stepanov Vladimir Dmitrievich
"The space of fractional Riemann�Liouville potentials on the half-axis"

17:40 Discussions

April 16, 2025 / Wednesday

Moderator: D.Sc., Professor Kusraev Anatoly Georgievich

15:00 � 15:35 D.Sc., Professor, Academician of the NAS of Kazakhstan
Oinarov Ryskul
"Boundedness of a class of integral operators in Lebesgue spaces"

15:35 � 16:10 Dr. Tikhonov Sergey Yuryevich
"Absolute convergence of Fourier series"
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16:10 � 16:45 D.Sc., Professor Muratov Mustafa Abdureshitovich
"Lower and upper Marcinkiewicz classes of measurable functions on the half-axis"

16:45 � 17:20 D.Sc., Professor Nursultanov Erlan Dautbekovich
"Network spaces and Hölder inequality"

17:20 Discussions.

April 17, 2025 / Thursday

Moderator: Dr. Pliev Marat Amurkhanovich

15:00 � 15:35 D.Sc., Associate Professor Avsyankin Oleg Gennadievich
"Some issues in the theory of integral operators in Morrey spaces"

15:35 � 16:10 D.Sc., Professor Bokayev Nurzhan Adilkhanovich
"On the embedding of the space of generalized fractional maximal functions and the space of the
generalized Riesz potentials in rearrangement-invariant spaces"

16:10 � 16:45 Dr. Gogatishvili Amiran
"Weighted inequalities containing Hardy operators"

16:45 � 17:20 D.Sc., Professor, Corresponding Member of the NAS of Azerbaijan
Guliyev Vagif Sabirovich
"Lorentz boundedness criteria for commutators of the maximal operator on spaces of homogeneous
type"

17:20 Discussions

More detailed information on the delivered talks can be found in
https : //smath.ru/upload/iblock/001/Program_Workshop_G − ML80_Rus_1.pdf (in Rus-
sian).

V.I. Burenkov, A.G. Kusraev, G.G. Magaril-Ilyaev
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