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Abstract. The boundary value problem for a system of hyperbolic integro-differential equations of
mixed type with degenerate kernels is considered on a rectangular domain. This problem is reduced
to a family of boundary value problems for a system of integro-differential equations of mixed type
and integral relations. The system of integro-differential equations of mixed type is transferred to a
system of Fredholm integro-differential equations. For solving the family of boundary value problems
for integro-differential equations Dzhumabaev’s parametrization method is applied. A new concept
of a general solution to a system of integro-differential equations with parameter is developed. The
domain is divided into N subdomains by a temporary variable, the values of a solution at the in-
terior lines of the subdomains are considered as additional functional parameters, and a system of
integro-differential equations is reduced to a family of special Cauchy problems on the subdomains for
Fredholm integro-differential equation with functional parameters. Using the solutions to these prob-
lems, a new general solutions to a system of Fredholm integro-differential equations with parameter
is introduced and its properties are established. Based on a general solution, boundary conditions,
and the continuity conditions of a solution at the interior lines of the partition, a system of linear
functional equations with respect to parameters is composed. Its coefficients and right-hand sides
are found by solving the family of special Cauchy problems for Fredholm integro-differential equa-
tions on the subdomains. It is shown that the solvability of the family of boundary value problems
for Fredholm integro-differential equations is equivalent to the solvability of the composed system.
Methods for solving boundary value problems are proposed, which are based on the construction and
solving of these systems. Conditions for the existence and uniqueness of a solution to the boundary
value problem for a system of hyperbolic integro-differential equations of mixed type with degenerate
kernels are obtained.

DOI: https://doi.org/10.32523/2077-9879-2025-16-2-08-22

1 Introduction and statement of problem

Boundary value problems for systems of hyperbolic integro-differential equations of mixed type arise
in various scientific and engineering fields when a phenomena exhibits both hyperbolic and integral
characteristics.

Hyperbolic equations often model wave propagation, and the presence of integro-differential terms
can account for the effects of heterogeneous media. Applications include seismology, acoustics, and
electromagnetic wave propagation in complex environments [13, 31, 32].
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Fluid flow problems involving memory effects, such as viscoelastic or non-Newtonian fluids, can
be described using hyperbolic integro-differential equations. This is relevant in modeling flows with
memory-dependent constitutive relationships [12]. Modeling the dynamic behavior of structures with
distributed parameters, viscoelastic materials, or memory effects in the constitutive relations can lead
to hyperbolic integro-differential equations. This is important in understanding the vibrations and
responses of complex structures [14, 21, 24].

Hyperbolic integro-differential equations with mixed types can appear in the modeling of systems
with time delays, which is common in control theory. These equations can be used to study the
stability and control of systems with delays [22, 23].

The spread of infectious diseases, predator-prey interactions, or other ecological systems may be
modeled using hyperbolic integro-differential equations. The integral terms can represent memory
effects or non-local interactions within populations [25, 33, 34].

Modeling heat conduction in materials with complex structures, like composites or materials with
memory effects, can lead to hyperbolic integro-differential equations. This is crucial in designing
materials with specific thermal properties [5, 26].

In financial mathematics, models with memory effects, stochastic processes, or non-local interac-
tions can be described using hyperbolic integro-differential equations. This is particularly relevant
in option pricing and risk management [29, 30].

Non-local interactions in image processing, such as image denoising or inpainting, can be modeled
using hyperbolic integro-differential equations. These equations allow for the consideration of infor-
mation from distant pixels. Modeling biological systems involving neural dynamics, drug delivery,
or reaction-diffusion processes can lead to hyperbolic integro-differential equations. These equations
can help simulate and understand complex interactions in biological systems [10, 27].

Hyperbolic integro-differential equations are used to model various geophysical phenomena, in-
cluding heat conduction in the Earth’s crust, seismic wave propagation, and groundwater flow in
heterogeneous media [11].

The solutions to these problems provide insights into the behavior of complex systems and aid in
the design and optimization of processes in a wide range of scientific and engineering applications.
Solving these equations often requires a combination of analytical and numerical techniques tailored
to the specific characteristics of the problem at hand.

Therefore, the study of new methods for solving boundary value problems for hyperbolic integro-
differential equations is driven by the need to address the complexities of real-world problems, improve
computational efficiency, enhance accuracy, and adapt to diverse applications across various disci-
plines. It reflects the dynamic nature of scientific inquiry and the ongoing quest to develop more
robust tools for understanding and manipulating complex systems.

This issue can be resolved by developing constructive methods. In present paper we propose an
effective method for solving the boundary value problem for the second order system of hyperbolic
integro-differential equations of mixed type. This method is based on the method of introducing new
unknown functions [3, 7], the parametrization method [15] and a new concept of a general solution
[17].

On the rectangular domain Ω = [0, T ] × [0, ω], we consider the boundary value problem for the
following second order system of hyperbolic integro-differential equations of mixed type:

∂2u

∂x∂t
= A(t, x)

∂u

∂x
+B(t, x)

∂u

∂t
+ C(t, x)u+ f(t, x)+

+Φ1(t, x)

T∫
0

Ψ1(s, x)
∂u(s, x)

∂x
ds+ Ξ1(t, x)

t∫
0

Θ1(s, x)
∂u(s, x)

∂x
ds+
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+ Φ2(t, x)

T∫
0

Ψ2(s, x)u(s, x)ds+ Ξ2(t, x)

t∫
0

Θ2(s, x)u(s, x)ds, (t, x) ∈ Ω, (1.1)

P1(x)
∂u(0, x)

∂x
+ P2(x)u(0, x) + S1(x)

∂u(T, x)

∂x
+ S2(x)u(T, x) = ϕ(x), x ∈ [0, ω], (1.2)

u(t, 0) = ψ(t), t ∈ [0, T ]. (1.3)

Here u = col(u1, u2, ..., un) is the unknown vector-function, the n×n matrices A(t, x), B(t, x), C(t, x)
and n-vector f(t, x) are continuous on Ω; the n × n matrices Φi(t, x), Ψ1(t, x), Ξi(t, x), Θi(t, x),
i = 1, 2, are continuous on Ω; the n × n matrices Pj(x), Sj(x), j = 1, 2, and n-vector ϕ(x) are
continuous on [0, ω]; the n-vector ψ(t) is continuously differentiable on [0, T ].

A vector-function u(t, x) ∈ C(Ω,Rn), which has partial derivatives ∂u(t,x)
∂x
∈ C(Ω,Rn), ∂u(t,x)

∂t
∈

C(Ω,Rn), ∂
2u(t,x)
∂x∂t

∈ C(Ω,Rn), is called a solution to problem (1.1)–(1.3) if it satisfies system (1.1) for
all (t, x) ∈ Ω, the nonlocal condition (1.2) for all x ∈ [0, ω] and the condition on the characteristics
(1.3) for all t ∈ [0, T ].

2 Reduction to a family of problems for first order integro-differential
equations

Previously, the relationship between nonlocal problems for hyperbolic equations and families of prob-
lems for ordinary differential equations was shown in [3, 4, 28]. With the help of new unknown
functions, the problem under consideration was reduced to a family of problems for differential equa-
tions and integral relations. To solve a family of problems for differential equations, Dzhumabaev
parametrization method was used [15] and criteria for the unique solvability of the problem under
investigation were obtained in terms of coefficients and boundary data. This has made it possible
to establish necessary and sufficient conditions for the well-posed solvability of nonlocal problems
for hyperbolic equations in terms of the original data [3, 4]. These results were extended to non-
local problems for loaded hyperbolic equations [19]. An application of this approach to problems
for hyperbolic integro-differential equations leads to a new class of problems for integro-differential
equations of mixed type. This, in turn, requires the development of new approaches and methods
for solving them.

In this Section by method of introduction of new functions we transfer problem (1.1)–(1.3) to a
family of problems for integro-differential equations of mixed type.

We introduce new functions v(t, x) = ∂u(t,x)
∂x

and w(t, x) = ∂u(t,x)
∂t

for all (t, x) ∈ Ω [4]. Problem
(1.1)–(1.3) transfers to a family of boundary value problems for the following integro-differential
equations of mixed type and integral relations

∂v

∂t
= A(t, x)v(t, x) + F (t, x, u, w)+

+ Φ1(t, x)

T∫
0

Ψ1(s, x)v(s, x)ds+ Ξ1(t, x)

t∫
0

Θ1(s, x)v(s, x)ds, (t, x) ∈ Ω, (2.1)

P1(x)v(0, x) + S1(x)v(T, x) = φ(x, u), x ∈ [0, ω], (2.2)

u(t, x) = ψ(t) +

x∫
0

v(t, ξ)dξ, w(t, x) = ψ̇(t) +

x∫
0

∂v(t, ξ)

∂t
dξ, (2.3)



Boundary value problem for hyperbolic integro-differential equations of mixed type 11

where
F (t, x, u, w) = f(t, x) +B(t, x)w(t, x) + C(t, x)u+

+Φ2(t, x)

T∫
0

Ψ2(s, x)u(s, x)ds+ Ξ2(t, x)

t∫
0

Θ2(s, x)u(s, x)ds,

φ(x, u) = ϕ(x)− P2(x)u(0, x)− S2(x)u(T, x).

A triple of functions {v(t, x), u(t, x), w(t, x)}, where v(t, x) ∈ C(Ω,Rn), u(t, x) ∈ C(Ω,Rn),
w(t, x) ∈ C(Ω,Rn) is called a solution to problem (2.1)–(2.3) if it satisfies integro-differential equa-
tions of mixed type with parameters (2.1), condition (2.2) and integral relations (2.3).

Let u∗(t, x) be a classical solution to problem (1.1)–(1.3).
We construct a triple of functions {v∗(t, x), u∗(t, x), w∗(t, x)}, where v∗(t, x) = ∂u∗(t,x)

∂x
, w∗(t, x) =

∂u∗(t,x)
∂t

.
Then

u∗(t, x) = u∗(t, 0) +

x∫
0

∂u∗(t, ξ)

∂ξ
dξ = ψ(t) +

x∫
0

v∗(t, ξ)dξ

and taking into account that u∗(t, x) is a solution to problem (1.1)–(1.3), we have

∂2u∗(t, x)

∂x∂t
=
∂2u∗(t, x)

∂t∂x
,

w∗(t, x) =
∂u∗(t, x)

∂t
=
∂u∗(t, 0)

∂t
+

x∫
0

∂2u∗(t, ξ)

∂ξ∂t
dξ =

=
∂u∗(t, 0)

∂t
+

x∫
0

∂2u∗(t, ξ)

∂t∂ξ
dξ = ψ̇(t) +

x∫
0

∂v∗(t, ξ)

∂t
dξ,

∂v∗

∂t
=
∂2u∗

∂t∂x
= A(t, x)

∂u∗

∂x
+B(t, x)

∂u∗

∂t
+ C(t, x)u∗ + f(t, x)+

+Φ1(t, x)

T∫
0

Ψ1(s, x)
∂u∗(s, x)

∂x
ds+ Ξ1(t, x)

t∫
0

Θ1(s, x)
∂u∗(s, x)

∂x
ds+

+Φ2(t, x)

T∫
0

Ψ2(s, x)u∗(s, x)ds+ Ξ2(t, x)

t∫
0

Θ2(s, x)u∗(s, x)ds =

= A(t, x)v∗ + F (t, x, w∗(t, x), u∗(t, x))+

+Φ1(t, x)

T∫
0

Ψ1(s, x)v∗(s, x)ds+ Ξ1(t, x)

t∫
0

Θ1(s, x)v∗(s, x)ds,

P1(x)v∗(0, x) + S1(x)v∗(T, x) = P1(x)
∂u∗(0, x)

∂x
+ S1(x)

∂u∗(T, x)

∂x
=

= ϕ(x)− P2(x)u∗(0, x)− S2(x)u∗(T, x) = φ(x, u∗),

i.e. the triple of functions {v∗(t, x), u∗(t, x), w∗(t, x)} obtained in this way is a solution to problem
(2.1)–(2.3).
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Conversely, if a triple of functions {v∗∗(t, x), u∗∗(t, x), w∗∗(t, x)} is a solution to problem (2.1)–
(2.3), then from functional relations (2.3) we obtain that the function u∗∗(t, x) satisfies the condition
u∗∗(t, 0) = ψ(t) and has continuous partial derivatives of first order

∂u∗∗(t, x)

∂x
= v∗∗(t, x),

∂u∗∗(t, x)

∂t
= ψ̇(t) +

x∫
0

∂v∗∗(t, ξ)

∂t
dξ = w∗∗(t, x),

and continuous partial derivatives of second order

∂2u∗∗(t, x)

∂t∂x
=
∂v∗∗(t, x)

∂t
,

∂2u∗∗(t, x)

∂x∂t
=
∂v∗∗(t, x)

∂t
.

Substituting them into (2.1), (2.2), we obtain that the function u∗∗(t, x) satisfies system of hyper-
bolic integro-differential equations of mixed type (1.1), boundary condition (1.2), respectively for all
(t, x) ∈ Ω, x ∈ [0, ω]. Since it also satisfies initial condition (1.3), then u∗∗(t, x) is a classical solution
to problem (1.1)–(1.3).

Thus, the original problem for the second order system of hyperbolic integro-differential equations
of mixed type (1.1)–(1.3) is reduced to an equivalent family of boundary value problems for integro-
differential equations of mixed type and integral relations (2.1)–(2.3).

Here, the vector-function v(t, x) is a solution to the family of boundary value problems for integro-
differential equations of mixed type with parameters (2.1), (2.2), where the functional parameters
u(t, x) and w(t, x) are related to v(t, x) and ∂v(t,x)

∂t
by integral relations (2.3).

Now, let us introduce the notations

z(1)(t, x) = v(t, x), z(2)(t, x) =

t∫
0

Θ1(s, x)v(s, x)ds, (t, x) ∈ Ω.

Then we move on to a family of two-point boundary value problems for Fredholm integro-differential
equations with unknown parameters:

∂z

∂t
= Ã(t, x)z(t, x) + Φ̃1(t, x)

T∫
0

Ψ̃1(s, x)z(s, x)ds+ F̃ (t, x, ũ, w̃), (t, x) ∈ Ω, (2.4)

P̃1(x)z(0, x) + S̃1(x)z(T, x) = φ̃(x, ũ), x ∈ [0, ω], (2.5)

ũ(t, x) = ψ̃(t) +

x∫
0

z(t, ξ)dξ, w̃(t, x) =
˙̃
ψ(t) +

x∫
0

∂z(t, ξ)

∂t
dξ, (2.6)

where z(t, x) =

(
z(1)(t, x)
z(2)(t, x)

)
is the unknown vector-function,

Ã(t, x) =

(
A(t, x) Ξ1(t, x)
Θ1(t, x) On

)
, Φ̃1(t, x) =

(
Φ1(t, x) On

On On

)
,

Ψ̃1(s, x) =

(
Ψ1(s, x) On

On On

)
, ũ(t, x) =

(
u(t, x)
On

)
, w̃(t, x) =

(
w(t, x)
On

)
,

F̃ (t, x, ũ, w̃) =

(
F (t, x, u, w)

On

)
, P̃1(x) =

(
P1(x) On

On In

)
,
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S̃1(x) =

(
S1(x) On

On On

)
, φ̃(x, ũ) =

(
φ(x, u)
On

)
, ψ̃(t) =

(
ψ(t)
On

)
,

On and In are the zero and identity matrices of dimension n× n.
A triple of functions {z(t, x), ũ(t, x), w̃(t, x)}, where z(t, x) ∈ C(Ω,R2n), ũ(t, x) ∈ C(Ω,R2n),

w̃(t, x) ∈ C(Ω,R2n) is called a solution to problem (2.4)–(2.6) if it satisfies the family of Fredholm
integro-differential equations with parameters (2.4), two-point condition (2.5) and integral relations
(2.6).

For fixed ũ(t, x) and w̃(t, x) problem (2.4), (2.5) is the family of two-point boundary value prob-
lems for first order Fredholm integro-differential equations [8]. The unknown functions ũ(t, x) and
w̃(t, x) are determined from integral relations (2.6).

It is well known that linear ordinary differential equations and Volterra integro-differential equa-
tions are solvable for any right-hand side and have classical general solutions. Note that there are
linear Fredholm integro-differential equations that do not have classical general solutions [16]. An
important problem arises: is it possible to construct general solutions that would exist for all dif-
ferential and integro-differential equations and use them to solve boundary value problems? A new
approach to defining a general solution was proposed in [17]. Based on Dzhumabaev’s parametriza-
tion method [15], a new general solution is proposed, which, unlike the classical general solution,
exists for all linear Fredholm integro-differential equations. Using a new general solution, criteria
for the solvability of linear boundary value problems for Fredholm integro-differential equations were
established and numerical and approximate methods for finding their solutions were constructed [18].
Further, these results were extended to problems with parameter for Fredholm integro-differential
equations [2, 6, 9], problems for a system of differential equations with piecewise-constant argument
of generalized type [1], problems for nonlinear Fredholm integro-differential equations [20].

3 Scheme of the parametrization method and ∆N general solution

Consider the following family of problems for Fredholm integro-differential equations:

∂z

∂t
= Ã(t, x)z(t, x) + Φ̃1(t, x)

T∫
0

Ψ̃1(s, x)z(s, x)ds+ F (t, x), (3.1)

P̃1(x)z(0, x) + S̃1(x)z(T, x) = g(x), x ∈ [0, ω], (3.2)

where z(t, x) = col(z1(t, x), ..., z2n(t, x)) is the unknown vector-function, the 2n vector-function
F (t, x) is continuous on Ω, the 2n vector-function g(x) is continuous on [0, ω].

A vector-function z(t, x) = col(z1(t, x), ..., z2n(t, x)) ∈ C(Ω,Rn), which has a continuous partial
derivative with respect to t is called a solution to the family of problems (3.1), (3.2), if it satisfies
Fredholm integro-differential equations (3.1) for all (t, x) ∈ Ω and two-point conditions (3.2) for all
x ∈ [0, ω].

The domain Ω is divided into subdomains and this partition is denoted by ∆N :

Ω =
N⋃
r=1

Ωr, Ωr = [tr−1, tr)× [0, ω], r = 1, N, 0 = t0 < t1 < ... < tN = T.

Let C(Ω,∆N ,R2nN) be the space of all vector-functions z([t], x) =
col(z1(t, x), z2(t, x), ..., zN(t, x)), where the notation [t] means partition by t, the functions
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zr : Ωr → R2n are continuous and have finite left-sided limits lim
t→tr−0

zr(t, x) uniformly with respect

to x ∈ [0, ω] for all r = 1, N , with the norm

||v([·], x)||2 = max
r=1,N

sup
t→tr−0

||vr(t, x)||.

We denote by zr(t, x) the restriction of the solution z(t, x) to the subdomain Ωr, i.e. zr(t, x) =
z(t, x) for (t, x) ∈ Ωr, r = 1, N .

Then the vector-functions z([t], x) = col(z1(t, x), ..., zN(t, x)) ∈ C(Ω,∆N ,R2nN) with elements
zr(t, x), r = 1, N , satisfy the following Fredholm integro-differential equations

∂zr
∂t

= Ã(t, x)zr(t, x) + Φ̃1(t, x)
N∑
j=1

tj∫
tj−1

Ψ̃1(s, x)zj(s, x)ds+ F (t, x), (3.3)

(t, x) ∈ Ωr, r = 1, N.
Let us introduce functional parameters λr(x) = zr(tr−1, x), r = 1, N , x ∈ [0, ω]. By replacing

z̃r(t, x) = zr(t, x)− λr(x) on each r-th domain Ωr, we obtain the following system Fredholm integro-
differential equations with parameters

∂z̃r
∂t

= Ã(t, x)z̃r(t, x) + Φ̃1(t, x)
N∑
j=1

tj∫
tj−1

Ψ̃1(s, x)z̃j(s, x)ds+ F (t, x)+

+ Ã(t, x)λr(x) + Φ̃1(t, x)
N∑
j=1

tj∫
tj−1

Ψ̃1(s, x)dsλj(x), (t, x) ∈ Ωr, r = 1, N. (3.4)

and initial conditions
z̃r(tr−1, x) = 0, x ∈ [0, ω], r = 1, N. (3.5)

For fixed λr(x) ∈ C([0, ω],R2n), a special Cauchy problem for the system of Fredholm integro-
differential equations (3.4), (3.5) is obtained. The family of problems (3.4), (3.5) has a unique
solution is a system functions z̃([t], x, λ) = col(z̃1(t, x, λ1), z̃2(t, x, λ2), ..., z̃N(t, x, λN)) with elements
z̃r(t, x, λr) belongs to C(Ω,∆N ,R2nN).

A vector-function z̃([t], x, λ) is called a solution special Cauchy problem with parameters (3.4),
(3.5).

Let us now introduce a new general solution to the family of integro-differential equations (3.1).

Definition 1. Let z̃([t], x, λ) = col(z̃1(t, x, λ1), z̃2(t, x, λ2), . . . , z̃N(t, x, λN)) be a solution to a special
Cauchy problem (3.4), (3.5) for the parameter λ(x) = (λ1(x), λ2(x), ..., λN(x)) ∈ C([0, ω],R2nN).
Then the function z(∆N , t, x, λ), given by the equalities

z(∆N , t, x, λ) = λr(x) + z̃r(t, x, λr), for (t, x) ∈ Ωr, r = 1, N,
and

z(∆N , T, x, λ) = λN(x) + lim
t→T−0

z̃N(t, x, λN),

is called a ∆N general solution to family of Fredholm integro-differential equations (3.1).

From Definition 3.1 it is clear that a ∆N general solution depends on N arbitrary functions
λr(x) ∈ C([0, ω],R2n), x ∈ [0, ω], r = 1, N, and satisfies family of integro-differential equations (3.1)
for all (t, x) ∈ (0, T )\{tp, p = 1, N − 1} × [0, ω].
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Using a fundamental matrix Ur(t, x) of the family of differential equations

∂zr
∂t

= Ã(t, x)zr(t, x), (t, x) ∈ Ωr, r = 1, N,

we write the solution to the family of special Cauchy problems with parameters (3.4), (3.5) in the
following form

z̃r(t, x) = Ur(t, x)

t∫
tr−1

U−1
r (τ, x)Φ̃1(τ, x)

N∑
j=1

tj∫
tj−1

Ψ̃1(s, x)z̃j(s, x)dsdτ+

+Ur(t, x)

t∫
tr−1

U−1
r (τ, x)F (τ, x)dτ + Ur(t, x)

t∫
tr−1

U−1
r (τ, x)Ã(τ, x)dτλr(x)+

+ Ur(t, x)

t∫
tr−1

U−1
r (τ, x)Φ̃1(τ, x)

N∑
j=1

tj∫
tj−1

Ψ̃1(s, x)dsλj(x), (t, x) ∈ Ωr, r = 1, N. (3.6)

Consider the following family of Cauchy problems on subdomains

∂zr
∂t

= Ã(t, x)zr(t, x) + P (t, x), z(tr−1, x) = 0, (t, x) ∈ Ωr, r = 1, N, (3.7)

where P (t, x) is a square matrix or a vector of dimension 2n, continuous on Ω.
Let us denote by ar(P, t, x) the unique solution to family of Cauchy problems (3.7) on each r-th

domain. It has the following form

ar(P, t, x) = Ur(t, x)

t∫
tr−1

U−1
r (τ, x)P (τ, x)dτ, (t, x) ∈ Ωr, r = 1, N.

We introduce the notation µ(x) =
N∑
j=1

tj∫
tj−1

Ψ̃1(s, x)z̃j(s, x)ds. Then we can rewrite (3.7) in the form

z̃r(t, x) = ar(Φ̃1, t, x)µ(x) + ar(F, t, x) + ar(Ã, t, x)λr(x)+

+ ar(Φ̃1, t, x)
N∑
j=1

tj∫
tj−1

Ψ̃1(s, x)dsλj(x), (t, x) ∈ Ωr, r = 1, N. (3.8)

First multiplying both sides by Ψ̃1(t, x), integrating over t from tr−1 to tr, summing over r = 1, N ,
we obtain from (3.8) the following system of equations:

[I −G(N, x)]µ(x) =
N∑
r=1

tr∫
tr−1

Ψ̃1(t, x)ar(F, t, x)dt+
N∑
r=1

tr∫
tr−1

Ψ̃1(t, x)ar(Ã, t, x)dtλr(x)+

+
N∑
r=1

tr∫
tr−1

Ψ̃1(t, x)ar(Φ̃1, t, x)dt
N∑
j=1

tj∫
tj−1

Ψ̃1(s, x)dsλj(x), (t, x) ∈ Ωr, r = 1, N, (3.9)
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where I is a unit matrix on dimension 2n, G(N, x) =
N∑
r=1

tr∫
tr−1

Ψ̃1(t, x)ar(Φ̃1, t, x)dt.

Assuming the invertibility of the 2n × 2n matrix I − G(N, x), from (3.9) for all x ∈ [0, ω] we
uniquely define µ(x) in terms of λr(x), r = 1, N , and F (t, x). Then, substituting the found expression
instead of µ(x) in (3.8), we obtain a representation of z̃r(t, x) via λr(x), (t, x) ∈ Ωr, r = 1, N .

Corollary 3.1. Let z∗(t, x) be a solution to system of equations (3.1) and z(∆N , t, x, λ) be a ∆N

general solution to family integro-differential equations (3.1).
Then there exists a unique λ∗(x) = col(λ∗1(x), λ∗2(x), . . . , λ∗N(x)) ∈ C([0, ω],R2nN) such that the

equality z(∆N , t, x, λ
∗) = z∗(t, x) holds for all (t, x) ∈ Ω.

If z(t, x) is a solution to system (3.1), and z([t], x) = col(z1(t, x), z2(t, x), ..., zN(t, x)) is the vector-
function composed of its restrictions to the subdomains Ωr, r = 1, N, then the following equalities

lim
t→tp−0

zp(t, x) = zp+1(tp, x), x ∈ [0, ω], p = 1, N − 1, (3.10)

hold. These equalities are the continuity conditions for the solution to system (3.1) at the interior
lines of the partition ∆N .

Theorem 3.1. Let a vector-function z([t], x) = col(z1(t, x), z2(t, x), ..., zN(t, x)) belong to
C(Ω,∆N ,R2nN). Assume that the functions zr(t, x), r = 1, N, satisfy system (3.1) and continuity
conditions (3.10). Then the function z∗(t, x), given by the equalities

z∗(t, x) = zr(t, x) for t ∈ (t, x) ∈ Ωr, r = 1, N,
and

z∗(T, x) = lim
t→T−0

zN(t, x), x ∈ [0, ω],

is continuously differentiable on Ω and satisfies system (3.1).

Now, we consider family of problems for systems of 2n Fredholm integro-differential equations
(3.1), (3.2). Using notations above, we obtain the following family of problems

∂z̃r
∂t

= Ã(t, x)z̃r(t, x) + Φ̃1(t, x)
N∑
j=1

tj∫
tj−1

Ψ̃1(s, x)z̃j(s, x)ds+ F (t, x)+

+ Ã(t, x)λr(x) + Φ̃1(t, x)
N∑
j=1

tj∫
tj−1

Ψ̃1(s, x)dsλj(x), (t, x) ∈ Ωr, r = 1, N. (3.11)

z̃r(tr−1, x) = 0, x ∈ [0, ω], r = 1, N. (3.12)

P̃1(x)λ1(x) + S̃1(x) lim
t→T−0

z̃N(t, x) + S̃1(x)λN(x) = g(x), x ∈ [0, ω], (3.13)

lim
t→tp−0

z̃p(t, x) + λp(x) = λp+1(x), x ∈ [0, ω], p = 1, N − 1. (3.14)

A solution to problem (3.11)–(3.14) is the pair {z̃([t], x), λ(x)}, where the vector-functions
z̃([t], x) = col(z̃1(t, x), z̃2(t, x), ..., z̃N(t, x)) ∈ C(Ω,∆N ,R2nN), λ(x) = col(λ1(x), λ2(x), ..., λN(x)) ∈
C([0, ω],R2nN) with the elements z̃r(t, x), λr(x), r = 1, N , satisfy system (3.11), initial conditions
(3.12), boundary conditions (3.13), continuity conditions (3.14).

Using the results of this section, we obtain a representation of z̃r(t, x) in terms of λr(x), (t, x) ∈
Ωr, r = 1, N . From the resulting representation, determining the values of the left-hand limits
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lim
t→T−0

z̃N(t, x), lim
t→tp−0

z̃p(t, x), p = 1, N − 1, and substituting into conditions (3.13), (3.14), we obtain

a system of functional equations of the form

Q(∆N , x)λ(x) = −E(∆N , x, g, F ), λ(x) ∈ C([0, ω],R2nN), (3.15)

where Q(∆N , x) is a 2nN × 2nN matrix, composed of the functions λr(x) ∈ C([0, ω],R2n), r = 1, N ,
and E(∆N , x, g, F ) contains the right-hand sides F and g.

Theorem 3.2. Let the 2n×2n matrix I−G(N, x) and the 2nN×2nN matrix Q(∆N , x) be invertible
for all x ∈ [0, ω]. Then family of problems (3.11)− (3.14) has a unique solution {z̃∗([t], x), λ∗(x)}.

From the equivalence of problems (3.1), (3.2) and (3.11)–(3.14) follows

Theorem 3.3. Let the 2n×2n matrix I−G(N, x) and the 2nN×2nN matrix Q(∆N , x) be invertible
for all x ∈ [0, ω]. Then family of boundary value problems for system of Fredholm integro-differential
equations (3.1), (3.2) has a unique solution z∗(t, x).

The proofs of these theorems are similar to the proofs of the corresponding theorems in [8].

4 Algorithm and main results

Based on the results of Section 3, we offer the following algorithm for finding a solution to the family
of two-point boundary value problems for system of Fredholm integro-differential equations with
functional parameters (2.4)–(2.6).

Algorithm.
Step 1. i) Assume that ũ(0)(t, x) = ψ̃(t), w̃(0)(t, x) =

˙̃
ψ(t) in the left-hand side of (2.4), (2.5).

Solving the family of two-point boundary value problems for system of Fredholm integro-differential
equations, we find of a function z(1)(t, x) for all (t, x) ∈ Ω. ii) From integral relations (2.6) we
determine ũ(1)(t, x) and w̃(1)(t, x) for z(t, x) = z(1)(t, x) and ∂z(t,x)

∂t
= ∂z(1)(t,x)

∂t
for all (t, x) ∈ Ω.

And so on.
Step k. i) Assume that ũ(t, x) = ũ(k−1)(t, x), w̃(t, x) = w̃(k−1)(t, x) in the left-hand side of (2.4),

(2.5). Solving the family of two-point boundary value problems for system of Fredholm integro-
differential equations, we find the function z(k)(t, x) for all (t, x) ∈ Ω. ii) From integral relations (2.6)
we determine the functions ũ(k)(t, x) and w̃(k)(t, x) for z(t, x) = z(k)(t, x) and ∂z(t,x)

∂t
= ∂z(k)(t,x)

∂t
for all

(t, x) ∈ Ω.
k = 1, 2, ...,
The algorithm for finding a solution to the family of two-point boundary value problems for

system of Fredholm integro-differential equations with functional parameters (2.4)–(2.6) consists of
two stages: 1) the family of two-point boundary value problems for system of Fredholm integro-
differential equations (2.4), (2.5) is solved and the unknown function z(t, x) is found for fixed ũ(t, x)
and w̃(t, x); 2) ũ(t, x) and w̃(t, x) are determined from integral relations (2.6) by using z(t, x) and
∂z(t,x)
∂t

.
We show that the conditions for unique solvability of the family of two-point boundary value prob-

lems for system of Fredholm integro-differential equations (3.1), (3.2) are the convergence conditions
of the proposed algorithm.

For fixed ũ(t, x) and w̃(t, x) the family of two-point boundary value problems for system
of Fredholm integro-differential equations with functional parameters (2.4)–(2.6) is the family of
boundary value problems for system of Fredholm integro-differential equations (3.1), (3.2) with
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F (t, x) = F̃ (t, x, ũ, w̃), g(x) = φ̃(x, ũ). From Theorem 3.1 it follows that the family of bound-
ary value problems for system of Fredholm integro-differential equations (3.1), (3.2) has a unique
solution z∗(t, x). Moreover, similarly to Theorem 2.1 in [16], the conditions of Theorem 3.1 ensure
that the estimate

max
t∈[0,T ]

||z∗(t, x)|| ≤ N (x) max
(
||g(x)||, max

t∈[0,T ]
||F (t, x)||

)
, (4.1)

holds, where
N (x) =

eα(x)θ
{

Φ̃∗1(x)
[
||[I −G(N, x)]−1||Ψ̃∗1(x)

(
eα(x)θ − 1 + eα(x)θΦ̃∗1(x)Ψ̃∗1(x)

)
+ Ψ̃∗1(x)

]
+ 1
}

×||[Q(∆N , x)]−1||(1 + ||S̃1(x)||) max
{

1, θeα(x)θ
[
1 + eα(x)θΦ̃∗1(x)||[I −G(N, x)]−1||Ψ̃∗1(x)

]}
+eα(x)θ

[
Φ̃∗1(x)||[I −G(N, x)]−1||Ψ̃∗1(x)eα(x)θ + 1

]
,

α(x) = max
t∈[0,T ]

||Ã(t, x)||, θ = max
r=1,N

(tr − tr−1),

Φ̃∗1(x) = max
r=1,N

tr∫
tr−1

||Φ̃1(t, x)||dt, Ψ̃∗1(x) =

T∫
0

||Ψ̃1(t, x)||dt.

Suppose ũ(k−1)(t, x) and w̃(k−1)(t, x) are known. According to the Step k of the algorithm, we
have

max
t∈[0,T ]

||z(k)(t, x)|| ≤ N (x) max
(
||φ̃(x, ũ(k−1))||, max

t∈[0,T ]
||F̃ (t, x, ũ(k−1), w̃(k−1))||

)
, (4.2)

max
t∈[0,T ]

∣∣∣∣∣∣∂z(k)(t, x)

∂t

∣∣∣∣∣∣ ≤ {max
(
α(x) + max

t∈[0,T ]
||Φ̃1(t, x)||Ψ̃∗1(x)

)
N (x) + 1

}
×max

(
||φ̃(x, ũ(k−1))||, max

t∈[0,T ]
||F̃ (t, x, ũ(k−1), w̃(k−1))||

)
, (4.3)

k = 1, 2, ... .
Once z(k)(t, x) is found the successive approximations for ũ(t, x) and ũ(t, x) are found from rela-

tions (2.6):

ũ(k)(t, x) = ψ̃(t) +

x∫
0

z(k)(t, ξ)dξ, w̃(k)(t, x) =
˙̃
ψ(t) +

x∫
0

∂z(k)(t, ξ)

∂t
dξ, (4.4)

We construct the differences ∆z(k)(t, x) = z(k)(t, x)−z(k−1)(t, x), ∆ũ(k)(t, x) = ũ(k)(t, x)− ũ(k−1)(t, x),
∆w̃(k)(t, x) = w̃(k)(t, x) − w̃(k−1)(t, x), and by using the unique solvability of family problems (3.1),
(3.2), and estimates (4.2), (4.3), we establish estimates

max
{

max
t∈[0,T ]

||∆z(k+1)(t, x)||, max
t∈[0,T ]

∣∣∣∣∣∣∂∆z(k+1)(t, x)

∂t

∣∣∣∣∣∣}
≤ max

{
N (x),max

(
α(x) + max

t∈[0,T ]
||Φ̃1(t, x)||Ψ̃∗1(x)

)
N (x) + 1

}
N1(x)

×max
{

max
t∈[0,T ]

||∆w̃(k)(t, x)||, max
t∈[0,T ]

||∆ũ(k)(t, x)||
}
, (4.5)

max
{

max
t∈[0,T ]

||∆w(k)(t, x)||, max
t∈[0,T ]

||∆u(k)(t, x)||
}
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≤
x∫

0

max
{

max
t∈[0,T ]

||∆z(k)(t, ξ)||, max
t∈[0,T ]

∣∣∣∣∣∣∂∆z(k)(t, ξ)

∂t

∣∣∣∣∣∣}dξ, (4.6)

where
N1(x) = max

{
||P2(x)||+ ||S2(x)||, max

t∈[0,T ]
||B(t, x)||+ max

t∈[0,T ]
||C(t, x)||

+ max
t∈[0,T ]

||Φ2(t, x)||T max
t∈[0,T ]

||Ψ2(t, x)||+ max
t∈[0,T ]

||Ξ2(t, x)||T max
t∈[0,T ]

||Θ2(t, x)||
}
.

This implies the main inequality

max
{

max
t∈[0,T ]

||∆z(k+1)(t, x)||, max
t∈[0,T ]

∣∣∣∣∣∣∂∆z(k+1)(t, x)

∂t

∣∣∣∣∣∣}
≤ max

{
N (x),max

(
α(x) + max

t∈[0,T ]
||Φ̃1(t, x)||Ψ̃∗1(x)

)
N (x) + 1

}
N1(x)

×
x∫

0

max
{

max
t∈[0,T ]

||∆z(k)(t, ξ)||, max
t∈[0,T ]

∣∣∣∣∣∣∂∆z(k)(t, ξ)

∂t

∣∣∣∣∣∣}dξ. (4.7)

From (4.7) it follows that the sequences {z(k)(t, x)} and {∂z
(k)(t,x)
∂t
} are convergent in the space

C(Ω,R2n) as k → ∞. Then the uniform convergence on Ω of the sequences {ũ(k)(t, x)} and
{w̃(k)(t, x)} follows from estimate (4.6).

In this case, the limit functions z∗(t, x), ∂z∗(t,x)
∂t

, ũ∗(t, x) and w̃∗(t, x) are continuous on Ω, and
the triple {z∗(t, x), ũ∗(t, x), w̃∗(t, x)} is a solution to problem (2.4)-(2.6).

The uniqueness of a solution to problem (2.4)-(2.6) is proved assuming the contrary.
Now, using the constructed solution to the family of problems (2.4)–(2.6), the triple of functions

{z∗(t, x), ũ∗(t, x), w̃∗(t, x)}, we verify the validity of the following equalities:

z∗(t, x) = col(z∗(1)(t, x), z∗(2)(t, x)),

ũ∗(t, x) = ψ̃(t) +

x∫
0

z∗(t, ξ)dξ, w̃∗(t, x) =
˙̃
ψ(t) +

x∫
0

∂z∗(t, ξ)

∂t
dξ,

u∗(t, x) = ψ(t) +

x∫
0

z∗(1)(t, ξ)dξ for all (t, x) ∈ Ω.

The function u∗(t, x) is the desired solution to problem (1.1)–(1.3).

Theorem 4.1. Let the 2n×2n matrix I−G(N, x) and the 2nN×2nN matrix Q(∆N , x) be invertible
for all x ∈ [0, ω]. Then boundary value problem for system of hyperbolic integro-differential equations
of mixed type (3.1)− (3.3) has the unique solution u∗(t, x).

The proof of this theorem follows from the above algorithm and is similar to the proof of Theorem
3.2 in [4].

Conclusion. In the paper, we propose an effective method of solving the boundary value problem
for a second order system of hyperbolic integro-differential equations of mixed type with degen-
erate kernels. This method is based on the method of introducing new functions, Dzhumabaev’s
parametrization method and a new concept of a general solution to a family Fredholm integro-
differential equations. New general solution enables us to establish qualitative properties of the



20 A.T. Assanova, Z.S. Kobeyeva, R.A. Medetbekova

boundary value problems for second order systems of hyperbolic integro-differential equations and to
develop algorithms for solving them. The algorithms are based on constructing and solving systems of
linear functional equations with respect to the new general solution and integral equations. Further,
we will study the boundary value problem for second order systems of hyperbolic integro-differential
equations of mixed type in general case. The obtained results can be used to solve the boundary
value problems for impulsive hyperbolic integro-differential equations of mixed type.
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Abstract. The hypothetical possibility of building a quantum computer in the near future has forced
a revision of the foundations of modern cryptography. The fact is that many difficult algorithmic
problems, such as the discrete logarithm, factoring a (large) natural number into prime factors, etc.,
on the complexity of which many cryptographic protocols are based these days, have turned out to
be relatively easy to solve using quantum algorithms.

Intensive research is currently underway to find problems that are difficult even for a quantum
computer and have potential applications for cryptographic protocols. Our article contains notes
related to the so-called generalized Gauss algorithm, which calculates the reduced basis of a two-
dimensional lattice [8], [2]. Note that researchers are increasingly putting forward difficult algorithmic
problems from lattice theory as candidates for the foundation of post-quantum cryptography. The
majority of algorithmic problems related to lattice reduction become NP-hard as the lattice dimension
increases [3], [1]. Fundamental problems such as the Shortest Vector Problem (SVP), the Closest
Vector Problem (CVP), and Bounded Distance Decoding (BDD) are conjectured to remain hard
even for quantum algorithms [4], [6]. Although the generalized Gauss reduction algorithm applies to
two-dimensional lattices, where exact analysis is feasible (dimensions 3 and 4 are studied in [7], [5]),
understanding such low-dimensional reductions provides important insights into the structure and
complexity of lattice-based cryptographic constructions.
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1 Preliminaries

All necessary information on the basics of lattice theory can be found in [8]. For those who are
familiar with the group theory, a lattice is a finitely generated subgroup of the additive group of
the Euclidean space Rn. In this note we will limit ourselves to considering the 2-generated lattice
L ∈ Rn. Any pair of vectors generating L is called a basis of the lattice.

The Euclidean space metric Rn, obtained by the standard dot product, induces a metric on
L. Let us clarify the notation associated with this metric: for vectors a, b ∈ L, let us denote by
(a, b) their dot product, by ‖a‖ the length of vector a, and by [a] the square of this length, that is,
[a] = (a, a) = ‖a‖2.

Definition 1. Vectors a, b ∈ L will be called an ordered basis and denoted by 〈a, b〉 if the following
conditions are satisfied:
(1) ‖a‖ ≤ ‖b‖;
(2) ‖a− b‖ ≤ ‖a+ b‖.
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Note that for any lattice basis it is easy to obtain an ordered basis: if the vectors a, b ∈ L form
a basis, then first we arrange them in increasing length, and if we already have ‖a‖ ≤ ‖b‖, and
‖a− b‖ ≤ ‖a + b‖ is not satisfied, then we change b to −b. Therefore, in what follows only ordered
bases of the lattice L are considered.

Definition 2. (1) If ‖a‖ ≤ ‖a− b‖ < ‖b‖, then the ordered basis 〈a, b〉 is called well-ordered.
(2) An ordered basis 〈a, b〉 is called reduced if ‖b‖ ≤ ‖a− b‖.

In Sections 2 and 3 we present results that are valid for any normed lattices, that is, for lattices
with a norm which their norm is obtained by restricting a certain norm on the space Rn.

Definition 3. A function ‖ · ‖ : Rn → R+, where R+ is the set of all non-negative real numbers, is
called a norm if it satisfies the following conditions for any vectors x, y ∈ Rn and for any real number
α ∈ R:
(1) ‖x‖ = 0 if and only if x is the zero vector;
(2) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (the triangle inequality);
(3) ‖αx‖ = |α| · ‖x‖.

We will call a norm strict if the equality in condition (2) is satisfied only when at least one of the
vectors x, y is the zero vector or the vectors x, y are collinear and co-directional.

The following corollary of the triangle inequality is often useful.

Corollary 1.1. For any x, y ∈ Rn we have
∣∣‖x‖ − ‖y‖∣∣ ≤ ‖x− y‖.

Definition 4. (1) λ1 = min{‖a‖ : 0 6= a ∈ L}
(2) λ2 = min{‖b‖ : 〈a, b〉 is an ordered basis for some a ∈ L}.

The numbers λ1, λ2 are always defined, since the lattice L is a discrete group: any ball of finite
radius centered at the zero vector contains only a finite number of lattice elements [8].

The following theorem, the proof of which can be found in [8, Theorem 16] (see also [2, Theorem
4]), explains why a reduced basis is sometimes called a minimal basis.

Theorem 1.1. An ordered basis 〈a, b〉 is reduced if and only if ‖a‖ = λ1 and ‖b‖ = λ2.

The following useful lemma was also proven in [8, Lemma 17].

Lemma 1.1. Consider three vectors on a line: x, x+y and x+αy, where α ∈ (1,∞). For any norm
‖ · ‖ from the inequality ‖x‖ ≤ ‖x + y‖ it follows that ‖x + y‖ ≤ ‖x + αy‖, and from the inequality
‖x‖ < ‖x+ y‖ it follows that ‖x+ y‖ < ‖x+ αy‖.

Note that using Lemma 1.1 one can prove that if a basis 〈a, b〉 is well-ordered, then ‖a‖ ≤ ‖a−b‖ <
‖b‖ < ‖a+ b‖ (see [2]).

2 About the function l(τ) = ‖b− τa‖

In this section, we study the properties of the function l(τ) = ‖b − τa‖, τ ∈ R, where a, b are
vectors of some real space with the norm ‖ · ‖. If a is the zero vector, then l(τ) ≡ ‖b‖ is a constant
function, and if b is the zero vector, then l(τ) = ‖a‖ · |τ | is the absolute value function multiplied by
the constant ‖a‖. A similar function will be obtained if the vectors a, b are linearly dependent: for
example, if b = γa, then l(τ) = ‖a‖ · |τ − γ|. Therefore, the case is interesting when the vectors a, b
are linearly independent.
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Theorem 2.1. Let a, b be linearly independent vectors of some real space with the norm ‖ · ‖. Then
the function l(τ) = ‖b− τa‖, τ ∈ R, has the following properties:
(1) l is continuous on the entire real line;
(2) l is not bounded from above: lim

τ→−∞
l(τ) = +∞ and lim

τ→+∞
l(τ) = +∞;

(3) there exists µ0
def
= min{l(τ) : τ ∈ R} > 0 and there exists a closed interval of minimality

[τ0, τ1]
def
= {τ ∈ R : l(τ) = µ0};

(4) on the interval (−∞, τ0) the function l strictly decreases, and on the interval (τ1,+∞) it strictly
increases.

Proof. (1) Let us prove the continuity of the function l at an arbitrary point τ0 ∈ R. By Corollary
1.1 we have

|l(τ + τ0)− l(τ0)| = |‖b− (τ + τ0)a‖ − ‖b− τ0a‖| ≤ ‖τa‖ = ‖a‖ · |τ |.

Therefore, |l(τ + τ0)− l(τ0)| < ε holds for |τ | < δ = ε
‖a‖ .

(2) Using Corollary 1.1 again and property (3) of the norm, we obtain

l(τ) = ‖b− τa‖ ≥ ‖a‖ · |τ | − ‖b‖,

which obviously implies lim
τ→−∞

l(τ) = +∞ and lim
τ→+∞

l(τ) = +∞.

(3) Let us choose numbers α0 < 0 < β0 ∈ R so that l(τ) > l(0) = ‖b‖ for any real number τ lying
outside the interval [α0, β0]: this is possible according to (2). According to Weierstrass’s theorem, the
function l reaches its minimum at a point τ0 of the interval [α0, β0], which we denote by µ0 = l(τ0).
Obviously, this µ0 will be the minimum of the function over the entire R.

Let us call τ ∈ R a point of monotonicity (of the function l), if l(τ) > µ0. Let γ < τ0 be a
point of monotonicity. Then note that each δ < γ is a point of monotonicity, since l(δ) > l(γ) > µ0

holds (apply Lemma 1.1 for the vectors x = b − τ0a and y = (τ0 − γ)a). So, the interval (−∞, γ]
consists entirely of monotonicity points. In addition, due to the continuity of the function l, some
neighborhood of the point γ will consist entirely of monotonicity points. This means that each
monotonicity point γ < τ0 is contained in a certain interval of the form (−∞, α), consisting entirely
of monotonicity points. Since the union of intervals of this type again gives an open interval of the
same type, we conclude that the monotonicity points located to the left of τ0 form an interval of
this type, which we will denote without loss of generality by (−∞, τ0). Similar reasoning shows that
monotonicity points located to the right of τ0 form an interval (τ1,+∞) for some τ1 ≥ τ0.

(4) In the last paragraph of the proof of point (3), in fact, it was proven that l(δ) > l(γ) holds
for δ < γ < τ0 , that is, that the function l strictly decreases on the interval (−∞, τ0). Similarly,
using Lemma 1.1 we prove the second statement of this point, namely, that the function l is strictly
increasing on the interval (τ1,+∞).

Example. The norm defined for R2 as follows is not strict: for (α, β) ∈ R2 we set

‖(α, β)‖ def= max{|α|, |β|}.

With a = (0, 1), b = (1, 0) for the function l(τ) = ‖b− τa‖ we have µ0
def
= min{l(τ) : τ ∈ R} = 1, and

the interval of minimality is [−1, 1]. �

Note that it may well be τ0 = τ1, that is, the interval [τ0, τ1] can consist of only one point. This
situation occurs if the norm ‖ · ‖ on the subspace generated by the vectors a, b is strict. Indeed, if
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τ0 6= τ1 and the norm ‖ · ‖ is strict, then the vectors b− τ0a, b− τ1a are not collinear, therefore the
sum of their lengths is strictly greater than the length of their sum:

2µ0 = ‖b− τ0a‖+ ‖b− τ1a‖ > ‖2b− (τ0 + τ1)a‖ = 2

∥∥∥∥b− τ0 + τ1

2
a

∥∥∥∥ .
We obtain l( τ0+τ1

2
) = ‖ τ0+τ1

2
a+ b‖ < µ0, which contradicts the minimality of the value µ0.

In particular, we have τ0 = τ1, when the norm ‖ · ‖ is generated by the dot product in Rn. In
addition, in this case the value of τ0 is explicitly calculated. Indeed, we have

l(τ)2 = [b− τa] = (b− τa, b− τa) = [a]τ 2 − 2(a, b)τ + [b],

and this quadratic function reaches a minimum at point τ0 = (a,b)
(a,a)

= (a,b)
[a]

.

In the next section we use an oracle that solves the following problem.
Problem. For a given ordered basis 〈a, b〉, find an integer µ = µ(a, b) such that ‖b − µa‖ =

min{‖b− na‖ : n ∈ Z}, where Z is the set of integers.
By Theorem 2.1 for the function l(τ) = ‖b− τa‖ it follows that the problem is correct, that is, it

always has a solution. In general, if the interval [τ0, τ1] contains an integer, then any integer from it
will be a solution, if not, then µ = bτ0c or µ = dτ1e, where bxc (dxe) is the largest (smallest) integer
from the interval (−∞, x] ([x,+∞). Thus, this problem can be solved effectively if we can efficiently
calculate an approximate value of some number from [τ0, τ1]. This is the case when, for example, the
norm ‖ · ‖ is defined by the scalar product in Rn, in this case τ0 = τ1 = (a,b)

(a,a)
= (a,b)

[a]
.

As noted in [8], if we know a not very large interval of real numbers containing [τ0, τ1], then the
above problem can be effectively solved using the binary search algorithm. It is also proved there
that µ(a, b) ∈ [1, 2‖b‖/‖a‖) provided ‖b‖ > ‖b− a‖.

3 On the generalized Gauss reduction algorithm

In this section we will give some notes about the generalized Gaussian reduction algorithm, which
allows to find a minimal lattice basis from an initial ordered basis. This algorithm is described in
sufficient detail in [8] and [2].

First, we will describe the introductory part of the algorithm, during which we obtain from a
given ordered basis, in the worst case, some well-ordered basis, and in the best case, a solution to
our problem, i.e. we find some reduced basis.

Let us assume that an ordered basis 〈a, b〉 is given. Recall that by the definition of an ordered
basis we have ‖a‖ ≤ ‖b‖ and ‖a− b‖ ≤ ‖a+ b‖. Let us consider possible cases:

(1)‖b‖ ≤ ‖a− b‖.
In this case, the basis 〈a, b〉 is reduced and our problem is solved.
(2) ‖a− b‖ < ‖a‖.
If ‖a‖ = ‖b‖, then 〈a− b, a〉 is a reduced basis and our problem is solved again:

‖a− b‖ < ‖a‖ = ‖ − b‖ = ‖(a− b)− a‖

= 2‖a‖ − ‖b‖ ≤ ‖2a− b‖ = ‖(a− b) + a‖.

If ‖a‖ < ‖b‖, then 〈b− a, b〉 is a well-ordered basis:

‖b− a‖ = ‖a− b‖ < ‖a‖ = ‖ − a‖ = ‖(b− a)− b‖

< ‖b‖ < 2‖b‖ − ‖a‖ ≤ ‖2b− a‖ = ‖(b− a) + b‖.
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(3) ‖a‖ ≤ ‖a− b‖ < ‖b‖.
In this case, the basis 〈a, b〉 is well-ordered. �

We would like to evaluate the complexity of the generalized Gaussian algorithm, so we must
consider worst-case scenarios in all stages of the algorithm. We assume that having received an
ordered basis at the input, after the introductory part of the algorithm described above, we obtain
a well-ordered basis at the output. The time spent on the introductory part will be short, since the
main operations in it are to compare the lengths of some specific vectors.

We move on to describe the next, main stage of the algorithm, which consists of cyclically re-
peating the same procedure. Let us assume that before the start of this stage we have a well-ordered
basis 〈a, b〉. A cyclically repeated procedure updates this basis as follows. First, using the oracle
described in section 2, we find µ = µ(a, b) and consider the basis consisting of the vectors a and
b − µa. We correct the second vector of this basis, multiplying it by ε ∈ {−1,+1} so that the sum
of vectors a and ε(b− µa) has a norm no less than the norm of their difference. Further,

(1) if ‖a‖ ≤ ‖b− µa‖, then 〈a, ε(b− µa)〉 is a reduced basis and the algorithm terminates,
(2) if ‖b − µa‖ < ‖a‖, then according to the analysis from the introductory part of the algo-

rithm, the ordered basis 〈ε(b− µa), a〉 will be either reduced or well-ordered, since case (2) from the
introductory part of the algorithm for the basis 〈ε(b− µa), a〉 is impossible.

So, the procedure, having obtained a well-ordered basis 〈a, b〉 at the input, produces a new well-
ordered basis 〈ε(b− µa), a〉 at the output (in an unsuccessful scenario). Since each time the procedure
is executed, the length of one of the vectors of the well-ordered basis decreases, after a certain finite
number of steps the procedure, due to the discreteness of the lattice, will produce the reduced basis
and the algorithm completes its work.

Finally, let us move on to estimating the number of repetitions of the procedure of the main
stage of the algorithm. Let k be the number of repetitions and 〈a, b〉 = 〈ak, ak+1〉 be a well-ordered
basis at the beginning of the stage. Let us represent the results of cyclic procedures as a sequence of
ordered bases

〈ak, ak+1〉 , 〈ak−1, ak〉 , . . . ,
〈
a1, a

0
2

〉
,

where 〈a1, a
0
2〉 is a reduced basis. Then the following lemma, proven in [8], is true.

Lemma 3.1. For i ≥ 3, the inequality 2‖ai‖ < ‖ai+1‖ holds.

The notation a0
2 is introduced due to the following circumstances. There are two possibilities

for completing the algorithm by obtaining the reduced basis 〈a1, a
0
2〉 from the well-ordered basis

〈a2, a3〉. It may well be a1 = ε(a3 − µa2), a0
2 = a2, if case (2) occurred during the last update of the

basis by the main stage procedure. But there could also be case (1), then a1 = a2, a0
2 = ε(a3 − µa2).

Note that in any case we have ‖a0
2‖ = λ2 < ‖a3‖. Therefore, we get

‖b‖
λ2

=
‖ak+1‖
λ2

>
2k−2‖a3‖

λ2

> 2k−2,

which implies the estimate k < 2 + log2

(
‖b‖
λ2

)
. �

Finally, the last remark concerns the minimality intervals of the functions l(τ) = ‖b − τa‖,
τ ∈ R, for well-ordered bases 〈a, b〉. It is clear that long minimality intervals can significantly reduce
the running time of the Gaussian reduction algorithm. Without going into complex computational
analysis, we will limit ourselves to just one simple example confirming this fact.

Lemma 3.2. If the minimality interval of the function l(τ) = ‖b − τa‖, τ ∈ R, for the basis 〈a, b〉
contains an integer n0, then ‖b− n0a‖ = λ1 or ‖a‖ = λ1.
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Proof. So, assume that ‖b− n0a‖ = µ0
def
= min{l(τ) : τ ∈ R}. On the other hand, for some α, β ∈ Z

we have ‖αa + βb‖ = λ1. If β = 0, then obviously |α| = 1 and ‖a‖ = λ1. Therefore, let us assume
that β 6= 0. Then, λ1 = |β| · ‖α

β
a+ b‖ = |β| · l(−α

β
) ≥ |β| · µ0 = |β| · ‖b− n0a‖, which implies |β| = 1

and ‖b− n0a‖ = λ1.

Thus, if during the execution of the procedure of the main stage of the algorithm, a well-ordered
basis 〈a, b〉 is given as input, satisfying the condition of Lemma 3.2, then at the output we obtain
an ordered basis 〈c, d〉 with ‖c‖ = λ1, and, if 〈c, d〉 is not a reduced basis, then at the next step
the result of the procedure falling into case (1) will be a reduced basis. Therefore, the number k of
repetitions of the procedure will not exceed 2.
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1 Introduction

The theory of embeddings of spaces of differentiable functions originated in the work of S.L. Sobolev
[26]. This theory studies important connections between differential (smoothness) properties of
functions in various metrics. Further development of this theory is assosicated with new classes of
function spaces introduced by S.M. Nikol’skii, O.V. Besov, P.I. Lizorkin, H. Triebel, and others. This
development was driven both by intrinsic questions of the theory and by applications to the theory of
boundary value problems of mathematical physics, approximation theory, and other areas of analysis
(see, for example, monographs [13, 17, 22, 28]).

In the 1960s, the study of spaces with a dominant mixed derivative was initiated in the works of
S.M. Nikol’skii [23], A.D. Dzhabrailov [20], and T.I. Amanov [3]. Further research of these spaces
in connection with the theory of embeddings, interpolation, and approximation theory, is associated
with the works of A.P. Uninskii, O.V. Besov, V.N. Temlyakov, E.D. Nursultanov, D.B. Bazarkhanov,
A.S. Romanyuk, G.A. Akishev, K.A. Bekmaganbetov, Ye. Toleugazy, and others (see, for example,
[29, 30, 15, 16, 27, 24, 5, 6, 25, 1, 2, 12]).

In Section 2, we define Nikol’skii-Besov spaces with a dominant mixed derivative and with a
mixed metric, and study some elementary embedding properties. In Section 3, we study interpolation
properties of these spaces with respect to the anisotropic interpolation method. In Section 4, we prove
sharp embedding theorems of different metrics for the introduced spaces and anisotropic Lorentz
spaces. In Section 5, we prove trace and extension theorems for the spaces under consideration.

2 Main definitions

By generalizing the construction in [22, Chapter 8], we define the Nikol’skii-Besov spaces with a
dominant mixed derivative and with a mixed metric Sαq

p B(Rn).
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Let 1 ≤ p = (p1, . . . , pn) ≤ ∞. The Lebesgue space with a mixed metric Lp(Rn) is the set of
measurable functions for which the following norm is finite

‖f‖Lp(Rn) =

∫ ∞
−∞

(
. . .

(∫ ∞
−∞
|f(x1, . . . , xn)|p1 dx1

)p2/p1

. . .

)pn/pn−1

dxn

1/pn

.

Here, for p =∞ the expression
(∫ ∞
−∞
|f(t)|p dt

)1/p

is understood as esssupt∈R|f(t)|.

A generalized function f is called regular in the sense of Lp(Rn) if for some ρ0 > 0

Iρ0f = F ∈ Lp(Rn),

where
Iρ0f = F−1

((
1 + |ξ|2

)−ρ0/2 F(f)
)
,

and F and F−1 are the direct and inverse Fourier transforms, respectively.
Let f be a regular function in the sense of Lp(Rn). A regular expansion of a function f in the

sense of Lp(Rn) over the Vallee-Poussin sums is the following representation

f =
∑
s∈Zn+

Qs(f),

where

Qs(f) =
1

πn
I−ρ

(
n∏
i=1

(
V2si (xi)− V[2si−1](xi)

)
∗ Iρf

)
,

where ρ > 0 is sufficiently large so that Iρf ∈ Lp(Rn), VM(t) =
1

M

∫ 2M

M

sinλt

t
dλ is an analogue of

the Vallee-Poussin kernel for the parameter M > 0 and V0(t) ≡ 0.
Let further α = (α1, . . . , αn) ∈ Rn and 1 ≤ q = (q1, . . . , qn) ≤ ∞. The Nikol’skii-Besov space

Sαq
p B(Rn) with a dominant mixed derivative and with a mixed metric is the set of regular in the

sense of Lp(Rn) functions f for which the following norm is finite

‖f‖Sαq
p B(Rn) =

∥∥∥{2(α,s)‖Qs(f)‖Lp(Rn)

}
s∈Zn

+

∥∥∥
lq
,

where (α, s) =
n∑
j=1

αjsj is the inner product and ‖ · ‖lq is the norm of the discrete Lebesgue space lq

with a mixed metric.

Remark 1. In the case in which α = (α1, . . . , αn) > 0, these spaces with the parameter q =
(∞, . . . ,∞) were introduced and studied in the works [29, 30]. The case of p = (p, . . . , p) and
q = (q, . . . , q) was considered in the works [23, 20, 3]. Periodic analogues of these spaces were
studied in the series of work by K.A. Bekmaganbetov, K.Ye. Kervenev and Ye. Toleugazy [7, 8, 9].

The following lemma shows some elementary embeddings of Nikol’skii-Besov spaces with a dom-
inant mixed derivative and with a mixed metric.

Lemma 2.1. a) Let 1 ≤ q0 = (q0
1, . . . , q

0
n) ≤ q1 = (q1

1, . . . , q
1
n) ≤ ∞, then

Sαq0
p B(Rn) ↪→ Sαq1

p B(Rn).

b) Let α0 = (α0
1, . . . , α

0
n) < α1 = (α1

1, . . . , α
1
n) and 1 ≤ q0 = (q0

1, . . . , q
0
n),q1 = (q1

1, . . . , q
1
n) ≤ ∞,

then
Sα1q1

p B(Rn) ↪→ Sα0q0
p B(Rn).
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Proof. The proof of statement a) follows from Jensen’s inequality.
Let us prove statement b). According to paragraph a), for α0 < α1 it suffices to prove the

embedding
Sα1∞

p B(Rn) ↪→ Sα01
p B(Rn). (2.1)

We have
‖f‖

S
α01
p B(Rn)

=
∑
s∈Zn+

2(α0,s)‖Qs(f)‖Lp(Rn)

≤ sup
s∈Zn+

2(α1,s)‖Qs(f)‖Lp(Rn)

∑
s∈Zn+

2(α0−α1,s) = C1‖f‖Sα1∞
p B(Rn).

This inequality shows that embedding (2.1) holds.

3 Interpolation

Let us give the definition of the anisotropic interpolation method. Let E = {0, 1}n, A = {Aε}ε∈E be
a family of Banach spaces that are subspaces of some linear Hausdorff space. This family A is called
a compatible family of Banach spaces (see [10, 21, 24]). For t ∈ Rn

+, we define the functional

K(t, a; A) = inf
a=

∑
ε∈E aε

∑
ε∈E

tε‖aε‖Aε ,

where a is an element of the space
∑

ε∈E Aε and tε = tε11 · . . . · tεnn .
Let 0 < θ = (θ1, . . . , θn) < 1 and 0 < r = (r1, . . . , rn) ≤ ∞. Let Aθr = (Aε; ε ∈ E)θr denote the

linear subspace of the space
∑

ε∈E Aε such that

‖a‖Aθr
=

=

∫ ∞
0

(
. . .

(∫ ∞
0

(
t−θ11 . . . t−θnn K(t, a; A)

)r1 dt1
t1

)r2/r1
. . .

)rn/rn−1

dtn
tn

1/rn

<∞.

Lemma 3.1 ([4, 24]). Let 0 < θ < 1, 0 < r ≤ ∞, and let A = {Aε}ε∈E,B = {Bε}ε∈E be
two compatible families of Banach spaces. If there are two vectors M0 = (M0

1 , . . . ,M
0
n),M1 =

(M1
1 , . . . ,M

1
n) with positive components such that for a linear operator T holds T : Aε → Bε with

the operator norm bounded by Cε

n∏
i=1

M εi
i for any ε ∈ E, where Cε > 0 is independent of M εi

i ,

i = 1, . . . , n, then
T : Aθr → Bθr,

with the norm

‖T‖Aθr→Bθr
≤ max

ε∈E
Cε

n∏
i=1

(
M0

i

)1−θi (M1
i

)θi .
Let multi-indices p = (p1, . . . , pn), r = (r1, . . . , rn) be such that if 1 ≤ pi <∞, then 1 ≤ ri ≤ ∞,

and if pi =∞, then ri =∞ (i = 1, . . . , n).
The anisotropic Lorentz space Lpr(Rn) is the set of all functions f(x) = f(x1, . . . , xn) such that

‖f‖Lpr(Rn) =
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=

∫ ∞
0

(
. . .

(∫ ∞
0

(
t
1/p1

1 . . . t1/pnn f ∗1,...,∗n(t1, . . . , tn)
)r1 dt1

t1

)r2/r1
. . .

)rn/rn−1

dtn
tn

1/rn

<∞,

where f ∗(t) = f ∗1,...,∗n(t1, . . . , tn) is the repeated non-increasing rearrangement of the function f (see
[18]).

Let us denote bε = (bε11 , . . . , b
εn
n ) for multi-indices b0 = (b0

1, . . . , b
0
n),b1 = (b1

1, . . . , b
1
n), and ε =

(ε1, . . . , εn) ∈ E.

Lemma 3.2 ([24]). Let 1 ≤ p0 = (p0
1, . . . , p

0
n) 6= p1 = (p1

1, . . . , p
1
n) ≤ ∞. Then for 0 < θ =

(θ1, . . . , θn) < 1 and 1 ≤ r = (r1, . . . , rn) ≤ ∞ holds

(Lpε(Rn); ε ∈ E)θr = Lpr(Rn),

where 1/p = (1− θ)/p0 + θ/p1.

Let α = (α1, . . . , αn) ∈ Rn and 1 ≤ q = (q1, . . . ,qn) ≤ ∞. We will denote by lαq(A) the set of
multi-sequences {ak}k∈Zn with values in a Banach space A for which the following norm is finite:

‖a‖lαq (A) =

(∑
k∈Zn

(
2(α,k)‖ak‖A

)q)1/q

.

Remark 2. The norm of the space Sαq
p B(Rn) can be written as

‖f‖Sαq
p B(Rn) =

∥∥∥{Qs(f)}s∈Zn
+

∥∥∥
lαq (Lp(Rn))

.

We will need this form of the norm when describing interpolation properties of the spaces Sαq
p B(Rn).

Lemma 3.3 ([7]). Let α0 = (α0
1, . . . , α

0
n) 6= α1 = (α1

1, . . . , α
1
n), 1 ≤ q0 = (q0

1, . . . , q
0
n),q1 =

(q1
1, . . . , q

1
n) ≤ ∞. Then for 0 < θ = (θ1, . . . , θn) < 1, 1 ≤ q = (q1, . . . , qn) ≤ ∞(

lαεqε (A); ε ∈ E
)
θq

= lαq(A),

where α = (1− θ)α0 + θα1.

Definition 1. Let A and B be Banach spaces. An operator R ∈ L(A,B) is called a retraction if
there exists an operator S ∈ L(B,A) such that

RS = E (the identity operator in L(B,B)) .

In this case, the operator S is called a coretraction (corresponding to R).

Lemma 3.4. Let −∞ < α = (α1, . . . , αn) < ∞, 1 ≤ p = (p1, . . . , pn) < ∞, and 1 ≤ q =
(q1, . . . , qn) ≤ ∞. Then the space Sαq

p B(Rn) is a retraction of the space lαq(Lp(Rn)).

Proof. First step. For a function f ∈ Sαq
p B(Rn) we define the operator S by

Sf = {Qs(f)}s∈Zn+ .

Therefore, according to the definition, we have

‖Sf‖lαq (Lp(Rn)) = ‖{Qs(f)}‖lαq (Lp(Rn)) = ‖f‖Sαq
p B(Rn) ,
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which means that the S-property is satisfied.
Second step. For a sequence G = {gs}s∈Zn+ , we define the operator R by

RG =
∑
s∈Zn+

Us ∗ gs,

where

Us(x) =
1

πn

n∏
i=1

(
V2si+1(xi)− V[2si−2](xi)

)
.

Since VM ∈ L1(R), we obtain

‖Us ∗ g‖Lp(Rn) ≤ C2 ‖g‖Lp(Rn) ,

where C2 is an absolute constant, and then

‖RG‖Sαq
p B(Rn) = ‖{Qs (Us ∗ gs)}‖lαq (Lp(Rn)) = ‖{Qs (gs)}‖lαq (Lp(Rn)) ≤

≤ C2 ‖{gs}‖lαq (Lp(Rn)) = C2 ‖G‖lαq (Lp(Rn)) .

The last inequality means that the R-property holds.
Third step. Let us show that RS = E. Indeed,

RSf = R ({Qs(f)}) =
∑
s∈Zn+

Us ∗Qs(f) =
∑
s∈Zn+

Qs(f) = f.

Theorem 3.1. Let 1 ≤ p = (p1, . . . , pn) < ∞, α0 = (α0
1, . . . , α

0
n) 6= α1 = (α1

1, . . . , α
1
n), 1 ≤ q0 =

(q0
1, . . . , q

0
n),q1 = (q1

1, . . . , q
1
n) ≤ ∞, ε = (ε1, . . . , εn) ∈ E. Then for 0 < θ = (θ1, . . . , θn) < 1 and

1 ≤ q = (q1, . . . , qn) ≤ ∞ (
Sαεqεp B(Rn); ε ∈ E

)
θq

= Sαq
p B(Rn),

where α = (1− θ)α0 + θα1.

Proof. The proof of the theorem follows by Lemmas 3.3 and 3.4.

4 Embedding theorems

In this section, the sharp embedding theorems for Nikol’skii-Besov spaces with a dominant mixed
derivative and with a mixed metric and for anisotropic Lorentz spaces are proved.

Lemma 4.1 (Inequality of different metrics, [22]). Let Qs(x) be an entire function of exponential type
of order s = (s1, . . . , sn) by x = (x1, . . . , xn). Then for 1 ≤ p0 = (p0

1, . . . , p
0
n) < p1 = (p1

1, . . . , p
1
n) <

∞ holds

‖Qs‖Lp1 (Rn) ≤ C3

n∏
i=1

s
1/p0

i−1/p1
i

i ‖Qs‖Lp0 (Rn) ,

where C3 is a positive constant independent of s.

Theorem 4.1. Let −∞ < α0 = (α0
1, . . . , α

0
n) ≤ α1 = (α1

1, . . . , α
1
n) < ∞, 1 ≤ τ = (τ1, . . . , τn) ≤ ∞,

and 1 ≤ p0 = (p0
1, . . . , p

0
n),p1 = (p1

1, . . . , p
1
n) <∞. Then

Sα1τ
p1

B(Rn) ↪→ Sα0τ
p0

B(Rn)

for α0 − 1/p0 = α1 − 1/p1.
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Proof. Let f ∈ Sα1τ
p1

B(Rn). Then, according to the inequality of different metrics (Lemma 4.1), we
obtain

‖f‖Sα0τ
p0

B(Rn) =
∥∥{2(α0,s)‖Qs(f)‖Lp0 (Rn)

}∥∥
lτ

≤ C3

∥∥{2(α0+1/p1−1/p0,s)‖Qs(f)‖Lp1 (Rn)

}∥∥
lτ

= C3

∥∥{2(α1,s)‖Qs(f)‖Lp1 (Rn)

}∥∥
lτ

= C3‖f‖Sα1τ
p1

B(Rn).

Theorem 4.2. Let 1 ≤ p = (p1, . . . , pn) < q = (q1, . . . , qn) < ∞ and 1 ≤ τ = (τ1, . . . , τn) ≤ ∞.
Then

Sατp B(Rn) ↪→ Lqτ (Rn)

for α = 1/p− 1/q.

Proof. According to Minkowski’s inequality and the inequality of different metrics (Lemma 4.1), we
obtain

‖f‖Lq(Rn) =

∥∥∥∥∥
∞∑

s=0

Qs(f)

∥∥∥∥∥
Lq(Rn)

≤
∞∑

s=0

‖Qs(f)‖Lq(Rn) ≤ C3

∞∑
s=0

2(1/p−1/q,s) ‖Qs(f)‖Lp(Rn) = C3‖f‖Sα1
p B(Rn),

where α = 1/p− 1/q.
Therefore, for α = 1/p− 1/q we get

Sα1
p B(Rn) ↪→ Lq(Rn).

Let us fix p = (p1, . . . , pn) and let us choose αi = (αi1, . . . , α
i
n) and qi = (qi1, . . . , q

i
n) such that

αij = 1/pj − 1/qij, where i = 0, 1 and j = 1, . . . , n. Then for every ε ∈ E we have

Sαε1p B(Rn) ↪→ Lqε(Rn).

According to Lemma 3.2 and Theorem 3.1 we obtain(
Sαε1p B(Rn); ε ∈ E

)
θτ
↪→ (Lqε(Rn); ε ∈ E)θτ

or
Sατp B(Rn) ↪→ Lqτ (Rn),

where α = (1− θ)α0 + θα1, 1/q =(1− θ)/q0 + θ/q1.
Let us check the relationship between the parameters α, p and q

α = (1− θ)α0 + θα1 = (1− θ) (1/p− 1/q0) + θ (1/p− 1/q1) =

= ((1− θ)/p + θ/p)− ((1− θ)/q0 + θ/q1) = 1/p− 1/q.

Theorem 4.3. Let 1 < q = (q1, . . . , qn) < p = (p1, . . . , pn) < ∞ and 1 ≤ τ = (τ1, . . . , τn) ≤ ∞.
Then

Lqτ (Rn) ↪→ Sατp B(Rn),

where α = 1/p− 1/q.
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Proof. According to the inequality of different metrics (Lemma 4.1) since VM ∈ L1(R), we obtain

‖f‖Sα∞p B(Rn) = sup
s≥0

2(α,s) ‖Qs(f)‖Lp(Rn) ≤ C3 sup
s≥0

2(α+1/q−1/p,s) ‖Qs(f)‖Lq(Rn)

= C3 sup
s≥0

∥∥∥∥∥ 1

πn

n∏
i=1

(
V2si (·)− V[2si−1](·)

)
∗ f

∥∥∥∥∥
Lq(Rn)

≤ C4 ‖f‖Lq(Rn) ,

for α = 1/p− 1/q, where C4 > 0 is independent of f .
Thus, for α = 1/p− 1/q we have

Lq(Rn) ↪→ Sα∞p B(Rn).

Let us fix p = (p1, . . . , pn) and let us choose parameters αi = (αi1, . . . , α
i
n) and qi = (qi1, . . . , q

i
n)

such that αij = 1/pj − 1/qij, where i = 0, 1 and j = 1, . . . , n. Then for every ε ∈ E we obtain

Lqε(Rn) ↪→ Sαε∞p B(Rn).

According to Lemma 3.2 and Theorem 3.1 we obtain

(Lqε(Rn); ε ∈ E)θτ ↪→
(
Sαε∞p B(Rn); ε ∈ E

)
θτ

or
Lqτ (Rn) ↪→ Sατp B(Rn),

where α = (1− θ)α0 + θα1, 1/q = (1− θ)/q0 + θ/q1.
Let us check the relationship between the parameters α, p and q

α = (1− θ)α0 + θα1 = (1− θ) (1/p− 1/q0) + θ (1/p− 1/q1) =

= ((1− θ)/p + θ/p)− ((1− θ)/q0 + θ/q1) = 1/p− 1/q.

Remark 3. It is possible to show that the conditions of Theorems 4.1 – 4.3 are sharp. The proof of
these facts can be carried out by analogy with the corresponding proofs in the papers [8, 11].

5 The theorems about trace and extension

In this section, trace and extension theorems for functions belonging to Nikol’skii-Besov spaces with
a dominant mixed derivative and with a mixed metric are proved.

Let 1 ≤ m < n. For a = (a1, . . . , am, am+1, . . . , an), we denote ā = (a1, . . . , am) and ã =
(am+1, . . . , an) .

Lemma 5.1 (Inequality of different dimensions, [22]). Let 1 ≤ p = (p1, . . . , pm, pm+1, . . . , pn) < ∞
and let Qs(x) be an entire function of exponential type of order s = (s1, . . . , sm, sm+1, . . . , sn) by
x = (x1, . . . , xm, xm+1, . . . , xn). Then for an arbitrary fixed point x̃ ∈ Rn−m holds the inequality

‖Qs(·, x̃)‖Lp̄(Rm) ≤ C5

n∏
i=m+1

s
1/pi
i ‖Qs‖Lp(Rn) ,

where C5 is a positive constant independent of s and x̃.
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Theorem 5.1. Let 1 ≤ p = (p1, . . . , pm, pm+1, . . . , pn) < ∞, α = (α1, . . . , αm, αm+1, . . . , αn), and
1 ≤ τ = (τ1, . . . , τm, τm+1, . . . , τn) ≤ ∞ with αi = 1/pi and τi = 1 for i = m + 1, . . . , n. Then the
trace operator T : f 7→ f(·, 0̃) is well-defined and satisfies

T : Sατp B(Rn)→ Sᾱτ̄p̄ B(Rm).

Proof. Fix any f ∈ Sατp B(Rn). We will show that

f ∈ L∞(Rn−m;Sᾱτ̄p̄ B(Rm)) (5.1)

and
‖f(·, ·+ h̃)− f(·, ·)‖L∞(Rn−m;Sᾱτ̄p̄ B(Rm)) → 0 (5.2)

as h̃ → 0̃. By properties (5.1) and (5.2) it follows that f coincides almost everywhere with a
unique bounded uniformly continuous function g : Rn−m → Sᾱτ̄p̄ B(Rm). The trace operator is then
well-defined by Tf := g(0̃).

We now show (5.1). According to the inequality of different dimensions (Lemma 5.1) and
Minkowski’s inequality, for almost everywhere x̃ ∈ Rn−m holds

‖f(·, x̃)‖Sᾱτ̄p̄ B(Rm) =

∥∥∥∥∥∥∥
2(ᾱ,̄s)

∥∥∥∥∥∥
∑

s̃∈Zn−m+

Q(̄s,̃s)(f)(·, x̃)

∥∥∥∥∥∥
Lp̄(Rm)


∥∥∥∥∥∥∥
lτ̄

≤

∥∥∥∥∥∥
 ∑

s̃∈Zn−m+

2(ᾱ,s̄)
∥∥Q(̄s,̃s)(f)(·, x̃)

∥∥
Lp̄(Rm)


∥∥∥∥∥∥
lτ̄

≤
∑

s̃∈Zn−m+

∥∥∥{2(ᾱ,s̄)
∥∥Q(̄s,̃s)(f)(·, x̃)

∥∥
Lp̄(Rm)

}∥∥∥
lτ̄

=
∑

s̃∈Zn−m+

∥∥∥{2(ᾱ,s̄) ‖Qs(f)(·, x̃)‖Lp̄(Rm)

}∥∥∥
lτ̄

≤ C5

∑
s̃∈Zn−m+

2(1/p̃,̃s)
∥∥∥{2(ᾱ,s̄) ‖Qs (f)‖Lp(Rn)

}∥∥∥
lτ̄

= C5

∥∥∥{2(α,s) ‖Qs (f)‖Lp(Rn)

}∥∥∥
lτ

= C5 ‖f‖Sατp B(Rn) . (5.3)

We now show (5.2).
Since f ∈ Sατp B(Rn), for any ε > 0 there exists N(ε) ∈ N such that

I2
N(ε) =

∥∥∥∥{2(α,s) ‖Qs(f)‖Lp(Rn)

}
{s:(s,1)>N(ε)}

∥∥∥∥
lτ

<
ε

3C5

. (5.4)

Applying inequality (5.3) and the Minkowski inequality, according to estimate (5.4) we obtain

‖f(·, ·+ h̃)− f(·, ·)‖L∞(Rn−m;Sᾱτ̄p̄ B(Rm)) ≤ C5‖f(·, ·+ h̃)− f(·, ·))‖Sατp B(Rn)

≤ C5

(∥∥∥∥∥
{

2(α,s)
∥∥∥Qs(f(·, ·+ h̃))−Qs(f(·, ·))

∥∥∥
Lp(Rn)

}
{s:(s,1)≤N(ε)}

∥∥∥∥∥
lτ
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+

∥∥∥∥∥
{

2(α,s)
∥∥∥Qs(f(·, ·+ h̃))−Qs(f(·, ·))

∥∥∥
Lp(Rn)

}
{s:(s,1)>N(ε)}

∥∥∥∥∥
lτ

)

≤ C5

(∥∥∥∥∥
{

2(α,s)
∥∥∥Qs(f(·, ·+ h̃))−Qs(f(·, ·))

∥∥∥
Lp(Rn)

}
{s:(s,1)≤N(ε)}

∥∥∥∥∥
lτ

+ 2

∥∥∥∥{2(α,s) ‖Qs(f)‖Lp(Rn)

}
{s:(s,1)>N(ε)}

∥∥∥∥
lτ

)

= C5

(
I1
N(ε) + 2I2

N(ε)

)
< C5I

1
N(ε) +

2ε

3
. (5.5)

In order to evaluate I1
N(ε), we will use the following inequality (see [3])∥∥∥Qs(f(·, ·+ h̃))−Qs(f(·, ·))

∥∥∥
Lp(Rn)

≤ C62(s̃,1̃) max
i=m+1,...,n

|hi| ‖Qs(f)‖Lp(Rn) ,

where C6 > 0 is independent of f .
Hence, we get

I1 (N(ε)) ≤ C62N(ε) max
i=m+1,...,n

|hi|
∥∥∥∥{2(α,s) ‖Qs(f)‖Lp(Rn)

}
{s:(s,1)≤N(ε)}

∥∥∥∥
lτ

≤ C62N(ε)|h̃|‖f‖Sατp B(Rn).

We now choose |h̃| < ε

3C5C62N(ε)‖f‖Sατp B(Rn)

, then

I1
N(ε) <

ε

3C5

. (5.6)

Plugging estimate (5.6) into (5.5), we obtain

‖f(·, ·+ h̃)− f(·, ·)‖L∞(Rn−m;Sᾱτ̄p̄ B(Rm)) < ε.

Since ε > 0 is arbitrary, (5.2) is proved.

Remark 4. Trace theorems for Nikol’skii-Besov spaces with a dominant mixed derivative were
previously obtained in [23, 20, 3, 30] under the condition αi > 1/pi for i = m+ 1, . . . , n. Compared
to the above mentioned works, in Theorem 5.1 we allow a weaker condition αi = 1/pi with τi = 1
(this effect was previously seen, for instance, in [14, 15] and [11]).

Theorem 5.2. Let α = (α1, . . . , αm, αm+1, . . . , αn), 1 ≤ τ = (τ1, . . . , τm, τm+1, . . . , τn) ≤ ∞ with
αi = 1/pi, τi = 1 for i = m + 1, . . . , n, and 1 ≤ p = (p1, . . . , pm, pm+1, . . . , pn) < ∞. Then for any
function ϕ(x̄) ∈ Sᾱτ̄p̄ B(Rm) there exists a function f(x̄, x̃) having the following properties:

f ∈ Sατp B(Rn);

‖f‖Sατp B(Rn) ≤ C7 ‖ϕ‖Sᾱτ̄p̄ B(Rm) ,

where C7 > 0 is independent of ϕ;

f(x̄, 0̃) = ϕ(x̄), x̄ ∈ Rm.
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Proof. Let ϕ ∈ Sᾱτ̄p̄ B(Rm). This function can be represented as a series

ϕ(x̄) =
∞∑

s̄=0

Qs̄(ϕ)(x̄)

and
‖ϕ‖Sᾱτ̄p̄ B(Rm) =

∥∥∥{2(ᾱ,̄s) ‖Qs̄ (ϕ)‖Lp̄(Rm)

}∥∥∥
lτ̄
.

Fix any functions fi(xi) ∈ C∞0 (R) with fi(0) = 1, i = m+ 1, . . . , n. We introduce a new function
f(x) by

f(x̄, x̃) = ϕ(x̄) ·
n∏

i=m+1

fi(xi).

Clearly, Qs(f) = Qs̄(ϕ)
n∏

i=m+1

Qsi(fi). Therefore,

‖f‖Sατp B(Rn) =
∥∥∥{2(α,s) ‖Qs (f)‖Lp(Rn)

}∥∥∥
lτ

=
∥∥∥{2(ᾱ,s̄) ‖Qs̄ (ϕ)‖Lp̄(Rm)

}∥∥∥
lτ̄

n∏
i=m+1

∥∥∥{2si/pi ‖Qsi(fi)‖Lpi (R)

}∥∥∥
l1

= C7 ‖ϕ‖Sᾱτ̄p̄ B(Rm) .

Here C7 <∞ since the norm
∥∥{2si/pi‖Qsi(·)‖Lpi (R)

}∥∥
l1
is equivalent to the Besov norm ‖ · ‖

B
1/pi,1
pi

(R)

(see [22]), and fi ∈ C∞0 (R) ⊂ B
1/pi,1
pi (R).

Further, we have

lim
h̃→0̃

∥∥∥f(·, h̃)− ϕ(·)
∥∥∥
Sᾱτ̄p̄ B(Rm)

= lim
h̃→0̃

∥∥∥∥∥ϕ(·)

(
n∏

i=m+1

fi(hi)− 1

)∥∥∥∥∥
Sᾱτ̄p̄ B(Rm)

= ‖ϕ‖Sᾱτ̄p̄ B(Rm) · lim
h̃→0̃

∣∣∣∣∣
n∏

i=m+1

fi(hi)− 1

∣∣∣∣∣ = 0.

These arguments show that ϕ is the trace of the function f .

Remark 5. The extension operator constructed in the proof of Theorem 5.2 is linear. It should be
noted that in the work of V.I. Burenkov and M.L. Gol’dman [19] it was shown that in the limiting
case for Nikol’skii-Besov spaces it is possible to construct only a nonlinear extension operator, but
this effect is not observed for Nikol’skii-Besov spaces with a dominant mixed derivative.
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1 Introduction

In recent years non-associative analogues of classical constructions have become of interest in con-
nection with their applications in many branches of mathematics and physics. The notions of local
and 2-local derivations have also become popular for some non-associative algebras such as Lie and
Leibniz algebras.

The notions of local derivations were introduced in 1990 by R.V. Kadison [17] and D.R. Larson,
A.R. Sourour [18]. Later in 1997, P. Šemrl introduced the notions of 2-local derivations and 2-local
automorphisms on algebras [16]. The main problems concerning these notions are to find conditions
under which all local (2-local) derivations become (global) derivations and to present examples of
algebras with local (2-local) derivations that are not derivations.

Investigation of local derivations on Lie algebras was initiated in papers [7] and [14]. Sh.A. Ayupov
and K.K. Kudaybergenov have proved that every local derivation on a semi-simple Lie algebra is
a derivation and gave examples of nilpotent finite-dimensional Lie algebras with local derivations
which are not derivations. In [8] local derivations and automorphisms of complex finite-dimensional
simple Leibniz algebras are investigated. They proved that all local derivations on finite-dimensional
complex simple Leibniz algebras are automatically derivations and it is shown that filiform Leibniz
algebras admit local derivations which are not derivations.

Several papers have been devoted to similar notions and corresponding problems for 2-local deriva-
tions and automorphisms of finite-dimensional Lie and Leibniz algebras [5, 8, 9, 14]. Namely, in [9]
it is proved that every 2-local derivation on a semi-simple Lie algebra is a derivation and that each
finite-dimensional nilpotent Lie algebra, with dimension larger than two admits a 2-local derivation
which is not a derivation. Concerning 2-local automorphisms, Z. Chen and D. Wang in [14] proved
that if L is a simple Lie algebra of type Al, Dl or Ek, (k = 6, 7, 8) over an algebraically closed field
of characteristic zero, then every 2-local automorphism of L is an automorphism. Finally, in [5]
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Sh.A. Ayupov and K.K. Kudaybergenov generalized this result of [14] and proved that every 2-local
automorphism of a finite-dimensional semi-simple Lie algebra over an algebraically closed field of
characteristic zero is an automorphism. Moreover, they also showed that every nilpotent Lie algebra
of finite dimension greater than two admits a 2-local automorphism which is not an automorphism.

In [3] local derivations of solvable Lie algebras are investigated and it is shown that in the class of
solvable Lie algebras there exist algebras which admit local derivations which are not derivations and
also algebras for which every local derivation is a derivation. Moreover, it is proved that every local
derivation on a finite-dimensional solvable Lie algebra with model nilradical and maximal dimension
of complementary space is a derivation. Sh.A. Ayupov, A.Kh. Khudoyberdiyev and B.B. Yusupov
proved similar results concerning local derivations on solvable Leibniz algebras in their recent paper
[4]. The results of paper [10] show that p-filiform Leibniz algebras as a rule admit local derivations
which are not derivations. Similar results concerning local derivations on direct sum null-filiform
Leibniz algebras were obtained in [2].

In [13], [21] Sh.A. Ayupov and B.B. Yusupov investigated 2-local derivations on infinite-
dimensional Lie algebras over a field of characteristic zero. They proved that all 2-local derivations
on a Witt algebra as well as on a positive Witt algebra are (global) derivations, and gave an example
of an infinite-dimensional Lie algebra with a 2-local derivation which is not a derivation. In [11] they
have proved that every 2-local derivation on a generalized Witt algebraWn(F) over a vector space Fn
is a derivation. In [15] Y. Chen, K. Zhao and Y. Zhao studied local derivations on generalized Witt
algebras. They proved that every local derivation a Witt algebra is a derivation and that every local
derivation on a centerless generalized Virasoro algebra of higher rank is a derivation. In [12] Sh.A.
Ayupov, K.K. Kudaybergenov and B.B. Yusupov studied local and 2-local derivations of locally finite
split simple Lie algebras. They proved that every local and 2-local derivation on a locally finite split
simple Lie algebra is a derivation.

In the present paper we study local and 2-local 1
2
-derivations of solvable Leibniz algebras. We show

that any local 1
2
-derivation on a solvable Leibniz algebra with model or abelian nilradicals, whose

dimension of the complementary space is maximal, is a 1
2
-derivation. Moreover, similar problems

concerning 2-local 1
2
-derivations of such algebras are investigated.

2 Preliminaries

In this section we give some necessary definitions and preliminary results.

Definition 1. A vector space with a bilinear bracket (L, [·, ·]) is called a Leibniz algebra if for any
x, y, z ∈ L the so-called Leibniz identity[

x, [y, z]
]

=
[
[x, y], z

]
−
[
[x, z], y

]
,

holds, or equivalently, [[x, y], z] = [[x, z], y] + [x, [y, z]].

Here, we adopt the right Leibniz identity; since the bracket is not skew-symmetric, there exists
the version corresponding to the left Leibniz identity,[

[x, y], z
]

=
[
x, [y, z]

]
−
[
y, [x, z]

]
.

Let L be a Leibniz algebra. For a Leibniz algebra L consider the following lower central and
derived sequences:

L1 = L, Lk+1 = [Lk,L1], k ≥ 1,

L[1] = L, L[s+1] = [L[s],L[s]], s ≥ 1.
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Definition 2. A Leibniz algebra L is called nilpotent (respectively, solvable), if there exists k ∈ N
(s ∈ N) such that Lk = 0 (respectively, L[s] = 0).The minimal number k (respectively, s) with such
property is said to be the index of nilpotency (respectively, of solvability) of the algebra L.

Note that any Leibniz algebra L contains a unique maximal solvable (respectively nilpotent) ideal,
called the radical (respectively nilradical) of the algebra.

A 1
2
-derivation on a Leibniz algebra L is a linear map D : L → L which satisfies the Leibniz rule:

D([x, y]) =
1

2
([D(x), y] + [x,D(y)]) for any x, y ∈ L. (2.1)

The set of all 1
2
-derivations of a Leibniz algebra L is a Lie algebra with respect to the usual matrix

commutator and it is denoted by 1
2
Der(L).

For a finite-dimensional nilpotent Leibniz algebra N and for the matrix of the linear operator adx
denote by C(x) the descending sequence of its Jordan blocks’ dimensions. Consider the lexicograph-
ical order on the set C(N) = {C(x) | x ∈ N}.

Definition 3. The sequence (
max

x∈N\N2
C(x)

)
is said to be the characteristic sequence of a nilpotent Leibniz algebra N.

Definition 4. A linear operator ∆ is called a local 1
2
-derivation, if for any x ∈ L, there exists a

1
2
-derivation Dx : L → L (depending on x) such that ∆(x) = Dx(x). The set of all local 1

2
-derivations

on L we denote by Loc1
2
Der(L).

Definition 5. A map ∇ : L → L (not necessary linear) is called a 2-local 1
2
-derivation, if for any

x, y ∈ L, there exists a 1
2
-derivation Dx,y ∈ 1

2
Der(L) such that

∇(x) = Dx,y(x), ∇(y) = Dx,y(y).

2.1 Solvable Leibniz algebras with abelian nilradical

Let an be an n-dimensional abelian algebra and let R be a solvable Leibniz algebra with the nilradical
an. Take a basis {f1, f2, . . . , fn, x1, x2, . . . xk} of R, such that {f1, f2, . . . , fn} is a basis of an. In [1]
such solvable algebras in the case of k = n are classified and it is proved that any 2n-dimensional
solvable Leibniz algebra with the nilradical an is isomorphic to the direct sum of two dimensional
algebras, i.e., isomorphic to the algebra

Lt : [fj, xj] = fj, [xj, fj] = αjfj, 1 ≤ j ≤ n,

where αj ∈ {−1, 0} and t is the number of zero parameters αj.
Moreover, in the following theorem a classification of (n+1)-dimensional solvable Leibniz algebras

with n-dimensional abelian nilradical is given.

Theorem 2.1. [1] Let R be an (n + 1)-dimensional solvable Leibniz algebra with n-dimensional
abelian nilradical. If R has a basis {f1, f2, . . . , fn, x} such that the operator adx|an has Jordan block
form, then it is isomorphic to one of the following two non-isomorphic algebras:

R1 :

{
[fi, x] = fi + fi+1, 1 ≤ i ≤ n− 1,

[fn, x] = fn,
R2 :


[fi, x] = fi + fi+1, 1 ≤ i ≤ n− 1,

[fn, x] = fn,

[x, fi] = −fi − fi+1, 1 ≤ i ≤ n− 1,

[x, fn] = −fn.
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2.2 Solvable Leibniz algebras with model nilradical

Let N be a nilpotent Leibniz algebra with the characteristic sequence (m1, . . . ,ms), and with the
table of multiplication

Nm1,...,ms : [eti, e
1
1] = eti+1, 1 ≤ t ≤ s, 1 ≤ i ≤ mt − 1.

The algebra Nm1,...,ms is usually said to be a model Leibniz algebra. For solvable Leibniz algebras
with nilradical Nm1,...,ms and the complement dimension space equal to s, we will use the notation
R(Nm1,...,ms , s).

Theorem 2.2. [20] A solvable Leibniz algebra R(Nm1,...,ms , s) with nilradical Nm1,...,ms , such that
DimR(Nm1,...,ms , s)−DimNm1,...,ms = s, is isomorphic to the algebra:

R(Nm1,...,ms , s) :



[eti, e
1
1] = eti+1, 1 ≤ t ≤ s, 1 ≤ i ≤ mt − 1,

[e1
i , x1] = ie1

i , 1 ≤ i ≤ m1,

[eti, x1] = (i− 1)eti, 2 ≤ t ≤ s, 2 ≤ i ≤ mt,

[eti, xt] = eti, 2 ≤ t ≤ s, 1 ≤ i ≤ mt,

[x1, e
1
1] = −e1

1,

where {x1, . . . xs} is a basis of the complementary vector space.

3 1
2-derivation of solvable Leibniz algebras

In the following propositions, we present a general form of the 1
2
-derivation of the algebras

R(Nm1,...,ms , s), Lt, R1 and R2.

Proposition 3.1. Any 1
2
-derivation D of the algebra 1

2
Der(R(Nm1,...,ms , s)) has the following form:

D(e1
i ) = α1e

1
i , 1 ≤ i ≤ m1,

D(eti) = 1
2i−1 ((2i−1 − 1)α1 + αt)e

t
i, 2 ≤ t ≤ s, 1 ≤ i ≤ mt,

D(xi) = αixi, 1 ≤ i ≤ s.

Proof. Let {e1
1, e

2
1, . . . , e

s
1, x1, . . . , xs} be a basis elements of the algebra R(Nm1,...,ms , s).

Let d be a 1
2
-derivation of the algebra R(Nm1,...,ms , s).

We put

D(ep1) =
s∑
t=1

mt∑
i=1

αpt,ie
t
i +

s∑
i=1

βp1,ixi, D(xp) =
s∑
t=1

mt∑
i=1

γpt,ie
t
i +

s∑
i=1

βp2,ixi, 1 ≤ p ≤ s.

The following restrictions follow from the equality

D([e1
1, x1]) =

1

2
([D(e1

1), x1] + [e1
1, D(x1)]) :

α1
1,i = 0, 3 ≤ i ≤ m1, γ1

1,1 = 0, β1
2,1 = α1

1,1,
α1
t,i = 0, 2 ≤ t ≤ s, i = 1, 2, 4 ≤ i ≤ mt.
β1

1,i = 0, 1 ≤ i ≤ s.
Consider the equality

D([ep1, x1]) =
1

2
([D(e1

p), x1] + [e1
p, D(x1)]), for 2 ≤ p ≤ s.
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Then we get 
αp1,i = 0, 1 ≤ i ≤ m1,

αpt,i = 0, 2 ≤ t ≤ s, 2 ≤ i ≤ mt,

β1
2,p = 0.

Similarly, from the equality

0 = D([xp, x1]) =
1

2
([D(xp), x1] + [xp, D(x1)]),

with 1 ≤ p ≤ s we have {
γpt,i = 0, 1 ≤ t ≤ s, 2 ≤ i ≤ mt, 1 ≤ p ≤ s,

γp1,1 = 0, 2 ≤ p ≤ s.

The equality

D([e1
1, xp]) =

1

2
([D(e1

1), xp] + [e1
1, D(xp)]),

for 2 ≤ p ≤ s which imply
α1
p,3 = βp2,1, 2 ≤ p ≤ s.

Consequently,

D(e1
1) = α1

1,1e
1
1 + α1

1,2e
1
2, D(xp) =

s∑
t=2

γpt,1e
t
1 +

s∑
i=2

βp2,ixi, 2 ≤ p ≤ s.

From the equality

0 = D([xp, xj]) =
1

2
([D(xp), xj] + [xp, D(xj)]),

for 2 ≤ p, j ≤ s we obtain the following restrictions:

γpj,1 = 0, 1 ≤ p, j ≤ s.

From the relations

D([x1, e
1
1]) =

1

2
([D(x1), e1

1] + [x1, D(e1
1)]), D([ep1, xj]) =

1

2
([D(ep1), xj] + [ep1, D(xj)]),

for 2 ≤ p, j ≤ s, we have
α1

1,2 = 0, γ1
t,1 = 0, 2 ≤ t ≤ s,

αpt,1 = 0, 2 ≤ p, t ≤ s, p 6= t,

βp1,j = 0, βp2,p = αpp,1, 2 ≤ p ≤ s, 1 ≤ j ≤ s,

βj2,p = 0, 2 ≤ j, p ≤ s j 6= p.

Consequently, {
D(ep1) = αpp,1e

p
1, 1 ≤ p ≤ s,

D(xp) = αpp,1xp, 1 ≤ p ≤ s.

From the chain of equalities
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D(epi ) = D([epi−1, e
1
1]) =

1

2
[D(epi−1), e1

1] +
1

2
[epi−1, D(e1

1)], 1 ≤ p ≤ s, 2 ≤ i ≤ mp,

and the restrictions obtained above, it is easy to establish that

D(e1
i ) = α1

1,1e
1
i , 1 ≤ i ≤ m1,

D(epi ) = 1
2i−1 ((2i−1 − 1)α1

1,1 + αpp,1)epi , 2 ≤ p ≤ s, 1 ≤ i ≤ mp.

Proposition 3.2. Any 1
2
-derivation D of the algebra Lt has the following form:

D(fj) = ajfj, D(xj) = αjbjfj, 1 ≤ j ≤ n.

Proof. The proof is similar to the proof of Proposition 3.1.

Proposition 3.3. Any 1
2
-derivation D of the algebras R1 and R2 have the following forms, respec-

tively:

Der(R1) :

{
D(fi) = α1fi, 1 ≤ i ≤ n,
D(x) = α1x.

Der(R2) :


D(fi) = α1fi, 1 ≤ i ≤ n,

D(x) =
n∑
j=1

βjfj + α1x.

Proof. The proof is similar to the proof of Proposition 3.1.

4 Local 1
2-derivation of solvable Leibniz algebras

4.1 Local 1
2-derivation of solvable Leibniz algebra R(Nm1,...,ms

, s)

Now we shall give the main result concerning local 1
2
-derivations of the solvable Leibniz algebra

R(Nm1,...,ms , s).

Theorem 4.1. Any local 1
2
-derivation on the solvable Leibniz algebra R(Nm1,...,ms , s) is a

1
2
-derivation.

Proof. Let ∆ be a local 1
2
-derivation on R(Nm1,...,ms , s), then we have

∆(xi) =
s∑
j=1

ai,jxj +
s∑

p=1

mp∑
j=1

bpi,je
p
j , ∆(eti) =

s∑
j=1

cti,jxj +
s∑

p=1

mp∑
j=1

dt,pi,je
p
j .

Let D be a 1
2
-derivation on R(Nm1,...,ms , s), then by Proposition 3.1, we obtain

D(e1
i ) = α1,e1i

e1
i , 1 ≤ i ≤ m1,

D(eti) = 1
2i−1 ((2i−1 − 1)α1,eti

+ αt,eti)e
t
i, 2 ≤ t ≤ s, 1 ≤ i ≤ mt,

D(xi) = αi,xixi, 1 ≤ i ≤ s.

Considering the equalities
∆(xj) = Dxj(xj), 1 ≤ j ≤ s,

∆(eti) = Deti
(eti), 1 ≤ t ≤ s, 1 ≤ i ≤ mt,
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we have

s∑
j=1

c1
i,jxj +

s∑
p=1

mp∑
j=1

d1,p
i,j e

p
j = α1,e1i

e1
i , 1 ≤ i ≤ m1

s∑
j=1

cti,jxj +
s∑

p=1

mp∑
j=1

dt,pi,je
p
j = 1

2i−1 ((2i−1 − 1)α1,eti
+ αt,eti)e

t
i, 2 ≤ t ≤ s, 1 ≤ i ≤ mt,

s∑
j=1

ai,jxj +
s∑

p=1

mp∑
j=1

bpi,je
p
j = αi,xixi, 1 ≤ i ≤ n.

From the previous restrictions, we get that

∆(e1
i ) = d1,1

i,i e
1
i , 1 ≤ i ≤ m1,

∆(eti) = dt,ti,ie
t
i, 2 ≤ t ≤ s, 1 ≤ i ≤ mt,

∆(xi) = ai,ixi 1 ≤ i ≤ s.

Considering ∆(e1
1 + e1

i ) for 2 ≤ i ≤ m1, we have

∆(e1
1 + e1

i ) = d1,1
1,1e

1
1 + d1,1

i,i e
1
i .

On the other hand,

∆(e1
1 + e1

i ) = De11+e1i
(e1

1 + e1
i ) = De11+e1i

(e1
1) +De11+e1i

(e1
i ) =

= α1,e11+e1i
e1

1 + αi,e11+e1i
e1
i

Comparing the coefficients at the basis elements e1
1 and e1

i , we get the equalities α1,e11+e1i
= d1,1

1,1,

α1,e11+e1i
= d1,1

i,i , which imply
d1,1
i,i = d1,1

1,1, 2 ≤ i ≤ m1.

Now for 2 ≤ t ≤ s, 1 ≤ i ≤ mt, we consider

∆(eti + e1
1 + x1 + xt) = dt,ti,ie

t
i + d1,1

1,1e
1
1 + a1,1x1 + at,txt.

On the other hand,

∆(eti + e1
1 + x1 + xt) = Deti+e

1
1+x1+xt(e

t
i + e1

1 + x1 + xt) =

=
1

2i−1
((2i−1 − 1)α1,eti+e

1
1+x1+xt + αi,eti+e11+x1+xt)e

t
i+

+ α1,eti+e
1
1+x1+xte

1
1 + α1,eti+e

1
1+x1+xtx1 + αt,eti+e11+x1+xtxt

Comparing the coefficients at the basis elements eti, e1
1, x1 and xt, we get the equalities

α1,eti+e
1
1+x1+xt = d1,1

1,1 = a1,1,
1

2i−1
((2i−1 − 1)α1,eti+e

1
1+x1+xt + αi,eti+e11+x1+xt) = dt,ti,i,

αt,eti+e11+x1+xt = at,t,

which imply

dt,ti,i =
1

2i−1
((2i−1 − 1)d1,1

1,1 + at,t), a1,1 = d1,1
1,1, 2 ≤ t ≤ s, 1 ≤ i ≤ mt.
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Thus, we obtain that the local 1
2
-derivation ∆ has the following form:

∆(e1
i ) = d1,1

1,1e
1
i , 1 ≤ i ≤ m1,

∆(eti) = 1
2i−1 ((2i−1 − 1)d1,1

1,1 + at,t)e
t
i, 2 ≤ t ≤ s, 1 ≤ i ≤ mt,

∆(x1) = d1,1
1,1x1,

∆(xi) = at,txi, i ≤ t ≤ s.

Proposition 3.1 implies that ∆ is a 1
2
-derivation. Hence, every local 1

2
-derivation on R(Nm1,...,ms , s)

is a 1
2
-derivation.

4.2 Local 1
2-derivation of solvable Leibniz algebras with abelian nilradical

Now we shall give the main result concerning local 1
2
-derivations on solvable Leibniz algebras with

abelian nilradicals.

Theorem 4.2. Any local 1
2
-derivation on the algebra Lt is a 1

2
-derivation.

Proof. For any local 1
2
-derivation ∆ on the algebra Lt, we put the 1

2
-derivation D, such that:

D(fj) = ajfj, D(xj) = αjbjfj, 1 ≤ j ≤ n,

Then, we get
∆(fj) = Dfj(fj) = ajfj, ∆(xj) = Dxj(xj) = αjbjfj.

Hence, ∆ is a 1
2
-derivation.

In the following theorem, we show that (n + 1)-dimensional solvable Leibniz algebras with n-
dimensional abelian nilradical have a local derivation which is not a derivation.

Theorem 4.3. Consider the (n+ 1)-dimensional solvable Leibniz algebras R1 and R2 (see Theorem
2.1). Any local 1

2
-derivation on the algebras R1 and R2 is a 1

2
-derivation.

Proof. We prove the theorem for the algebra R1, and for the algebra R2 the proof is similar.
Let ∆ be a local 1

2
-derivation on R1, then we have

∆(fi) =
n∑
j=1

ai,jfj + cix, 1 ≤ i ≤ n,

∆(x) =
n∑
j=1

bjfj + dx.

(4.1)

Let D be a 1
2
-derivation on R1, then by Proposition 3.3, we obtain{

D(fi) = α1,fifi, 1 ≤ i ≤ n,
D(x) = α1,xx.

Considering the equalities

∆(x) = Dx(x), ∆(fi) = Dfi(fi), 1 ≤ i ≤ n,

we have 
n∑
j=1

ai,jfj + cix = α1,fifi, 1 ≤ i ≤ n

n∑
j=1

bjfj + dx = α1,xx.
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From the previous restrictions, we get that

∆(fi) = ai,ifi, 1 ≤ i ≤ n,

∆(x) = dx.

For 2 ≤ i ≤ n, we have
∆(f1 + fi) = a1,1f1 + ai,ifi.

On the other hand,

∆(f1 + fi) = Df1+fi(f1 + fi) = Df1+fi(f1) +Df1+fi(fi) =

= α1,f1+fif1 + α1,f1+fifi.

Comparing the coefficients at the basis elements f1 and fi, we get the equalities α1,f1+fi = a1,1,
α1,f1+fi = ai,i, which imply

ai,i = a1,1, 2 ≤ i ≤ n.

Similarly, the equalities

∆(f1 + x) = a1,1f + dx

= Df1+x(f1 + x) = Df1+x(f1) +Df1+x(x)

= α1,f1+xf1 + α1,f1+xx,

imply
d = a1,1.

Thus, we obtain that the local 1
2
-derivation ∆ has the following form:

∆(fi) = a1,1fi, 1 ≤ i ≤ n,

∆(x) = a1,1x

Proposition 3.3 implies that ∆ is a 1
2
-derivation. Hence, every local 1

2
-derivation on R1 is a

1
2
-derivation.

5 2-local 1
2-derivation of solvable Leibniz algebras

5.1 2-local 1
2-derivation of solvable Leibniz algebra R(Nm1,...,ms

, s)

Now we shall give the main result concerning of the 2-local 1
2
-derivations of the solvable Leibniz

algebra R(Nm1,...,ms , s).

Consider an element q =
s∑
t=1

xt of R(Nm1,...,ms , s).

Theorem 5.1. Any 2-local 1
2
-derivation of the solvable Leibniz algebra R(Nm1,...,ms , s) is a 1

2
-

derivation.

Proof. Let ∇ be a 2-local 1
2
-derivation on R(Nm1,...,ms , s) such that ∇(q) = 0. Then for any element

p =
s∑
t=1

mt∑
i=1

ξtie
t
i +

s∑
t=1

ζtxt ∈ R(Nm1,...,ms , s),
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there exists a 1
2
-derivation Dq,p(p), such that

∇(q) = Dq,p(q), ∇(p) = Dq,p(p).

Hence,

0 = ∇(q) = Dq,p(q) =
s∑
t=1

αtxt,

which implies, αt = 0, 1 ≤ t ≤ s.
Consequently, from the description of the 1

2
-derivation R(Nm1,...,ms , s), we conclude that Dq,p = 0.

Thus, we obtain that if ∇(q) = 0, then ∇ is a zero.
Let now ∇ be an arbitrary 2-local 1

2
-derivation of R(Nm1,...,ms , s). Take a 1

2
-derivation Dq,p, such

that
∇(q) = Dq,p(q) and ∇(p) = Dq,p(p).

Set ∇1 = ∇−Dq,p. Then ∇1 is a 2-local 1
2
-derivation, such that ∇1(q) = 0. Hence ∇1(p) = 0 for

all ξ ∈ R(Nm1,...,ms , s), which implies ∇ = Dq,p. Therefore, ∇ is a 1
2
-derivation.

5.2 2-local 1
2-derivation of solvable Leibniz algebras with alebian nilradical

Now we shall give the result concerning of 2-local 1
2
-derivations of solvable Leibniz algebras with

abelian nilradical.

Proposition 5.1. Any 2-local 1
2
-derivation of the algebra R1 is a derivation.

Proof. Let ∇ be a 2-local 1
2
-derivation on R1, such that ∇(f1) = 0. Then for any element ξ =

n∑
i=1

ξifi + ξn+1x ∈ R1, there exists a 1
2
-derivation Df1,ξ(ξ), such that

∇(f1) = Df1,ξ(f1), ∇(ξ) = Df1,ξ(ξ).

Hence,
0 = ∇(f1) = Df1,ξ(f1) = α1f1,

which implies, α1 = 0.
Consequently, from the description of the 1

2
-derivation of R1, we conclude that Df1,ξ = 0. Thus,

we obtain that if ∇(f1) = 0, then ∇ is a zero.
Let now ∇ be an arbitrary 2-local 1

2
-derivation of R1. Take a 1

2
-derivation Df1,ξ, such that

∇(f1) = Df1,ξ(f1) and ∇(ξ) = Df1,ξ(ξ).

Set ∇1 = ∇−Df1,ξ. Then ∇1 is a 2-local 1
2
-derivation, such that ∇1(f1) = 0. Hence, ∇1(ξ) = 0

for all ξ ∈ R1, which implies that ∇ = Df1,ξ. Therefore, ∇ is a 1
2
-derivation.

Theorem 5.2. The solvable Leibniz algebra R2 admits a 2-local 1
2
-derivation which is not a 1

2
-

derivation.

Proof. Let us define a homogeneous non-additive function f on C2 as follows

f(z1, z2) =

{
z2
1

z2
, if z2 6= 0,

0, if z2 = 0,
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where (z1, z2) ∈ C2.
Define the operator ∇ on R2, such that

∇(ξ) = f(ξ1, ξn+1)f1, (5.1)

for any element ξ =
n∑
i=1

ξifi +
n∑
i=1

ξn+ixi,

The operator ∇ is not a 1
2
-derivation, since it is not linear.

Let us show that ∇ is a 2-local 1
2
-derivation. For this purpose, define a 1

2
-derivation D on R2 by

D(ξ) = (aξ1 + bξ2)fn.

For each pair of elements ξ and η, we choose a and b, such that ∇(ξ) = D(ξ) and ∇(η) = D(η).
Let us rewrite the above equalities as system of linear equations with respect to the unknowns a, b
as follows {

ξ1a+ ξ2b = f(ξ1, ξ2),

η1a+ η2b = f(η1, η2).
(5.2)

Case 1. ξ1η2 − ξ2η1 = 0. In this case, since the right-hand side of system (5.2) is homogeneous,
it has infinitely many solutions.

Case 2. ξ1η2 − ξ2η1 6= 0. In this case, system (5.2) has a unique solution.

Theorem 5.3. The algebra Lt admits a 2-local 1
2
-derivation which is not a 1

2
-derivation.

Proof. The proof is similar to the proof of Theorem 5.2.
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Abstract. We consider in a Banach space the following two abstract systems of first-order and
second-order linear ordinary differential equations with general boundary conditions, respectively,

X ′(t)− A0(t)X(t) = F (t), Φ(X) =
n∑
j=1

MjΨj(X),

and
X ′′(t)− S(t)X ′(t)−Q(t)X(t) = F (t),

Φ(X) =
n∑
i=j

MjΨj(X), Φ(X ′) = CΦ(X) +
r∑
j=1

NjΘj(X),

where X(t) = col (x1(t), . . . , xm(t)) denotes a vector of unknown functions, F (t) is a given vector and
A0(t), S(t), Q(t) are given matrices, Φ,Ψ1, . . . ,Ψn, Θ1, . . . ,Θr are vectors of linear bounded func-
tionals, and M1, . . . ,Mn, C, N1, . . . , Nr are constant matrices. We first provide solvability conditions
and a solution formula for the first-order system. Then we construct in closed form the solution of a
special system of 2m first-order linear ordinary differential equations with constant coefficients when
the solution of the associated system of m first-order linear ordinary differential equations is known.
Finally, we construct in closed form the solution of the second-order system in the case in which it
can be factorized into first-order systems.
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1 Introduction

Boundary value problems (BVPs) for ordinary differential equations (ODEs) appear in a wide range
of sciences. Many of these are nonlocal problems with integral and multipoint boundary conditions,
such as in the modeling of power networks, telecommunication lines, electric railway systems, kinetic
reaction problems in chemistry, elasticity, and elsewhere [19, 18, 15].

Perhaps the first problem with nonlocal integral boundary conditions for a system of linear first
order ODEs was Hilb’s problem

LY = PY ′ +QY = f,

∫ 1

0

K(ξ)Y (ξ)dξ + γY (0)− ΓY (1) = 0,
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which was investigated in 1911 [12]. The multipoint boundary value problems for a system of Trans-
ferable Differential-Algebraic Equations was investigated in [15]. In [4] an approach is given to
solving the overdetermined problem for a system of the first and second order ODEs. The unique
exact solution to the BVP

Y ′(t)−M(t)Y (t) = F (t), Φ(Y ) = ~c,

was obtained in [10]. The solvability condition and exact solution to the BVP

Y ′(t)− AY (t) = F (t),
m∑
i=1

AiY (ti) +
s∑
j=0

Bj

∫ zj+1

zj

Cj(t)Y (t)dt = ~0,

where A,Ai, Bj are constant matrices, are given in [5]. Necessary and sufficient conditions are
established in [7] for the existence of a unique holomorphic solution of the BVP

X ′(t) = T (t)X(t) + F (t),
m∑
i=1

AiX(ti) +
m∑
j=0

∫ ti

ti−1

Φi(t)X(t)dt = h

with holomorphic coefficients and general linear boundary conditions. The existence of positive
solutions of nonlocal BVPs for ordinary second order differential systems is given in [8]. The existence
of solutions of nonlocal BVPs for ordinary differential systems of higher order was investigated in
[9]. A numerical method for solving systems of linear nonautonomous ODEs with nonseparated
multipoint and integral conditions was considered in [1]. Numerical solutions of systems of loaded
ordinary differential equations are given in [2]. Ordinary differential equations and systems of various
types were studied by the parametrization method in [13], [3] (see also [16]). The factorization
(decomposition) method is a powerful tool for finding solutions to systems of ODEs. The factorization
method proposed here for systems of ODEs is essentially different from other factorization methods
in the relevant literature, where usually approximate solutions to ordinary differential systems are
found by using the Adomian decomposition method and its many modifications [17], [6]. Note that
finding of the fundamental and particular solutions for the following system of linear second order
ODEs

B2X(t) = X ′′(t)− S(t)X ′(t)−Q(t)X(t) = F,

with nonlocal boundary conditions, is usually a difficult problem. Our goal is to find special cases
that allow factorization like B2X(t) = B2X(t), where an operator B corresponds to a system of
linear first order ODEs with a simpler nonlocal boundary condition. The technique proposed in this
article is simple to use and can be easily incorporated to any Computer Algebra System (CAS).

2 Preliminaries

Let X be a Banach space such as the space of continuous functions C[0, 1] or the space of Lebesgue
integrable functions Lp(0, 1). Let Xm be the space of column vectors X(t) = col(x1(t), . . . , xm(t)),
xi(t) ∈ X , i = 1, . . . ,m, i.e. Xm = Cm = Cm[0, 1] or Xm = Lp,m = Lp,m(0, 1) with the norm

||X(t)||Xm =
m∑
i=1

||xi(t)||X .

In addition, let X k, k > 0, be the space Ck[0, 1] with the norm

||x(t)||Xk =
k∑
`=0

||x(`)(t)||C ,
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or the Sobolev space Ŵ k
p (0, 1) with the norm

||x(t)||Xk =
k∑
`=0

||x(`)(t)||Lp ,

(in the case of the Sobolev spaces x(l) are weak derivatives), and X k
m be the space Ck

m[0, 1] or Ŵ k
p,m(0, 1)

with the norm

||X(t)||Xkm =
k∑
`=0

||X(`)(t)||Xm .

Let X ∗ be the adjoint space of X , i.e. the set of all linear and bounded functionals Φ on X .
We denote by Φ(x) the value of Φ ∈ X ∗ on x ∈ X . Let Ψj ∈ X ∗, j = 1, . . . , n, and the vector
Ψ = col(Ψ1, . . . ,Ψn) ∈ [Xm]∗. For X ∈ Xm we write

Φ(X) =

 Φ(x1)
...

Φ(xm)

 , Ψj(X) =

 Ψj(x1)
...

Ψj(xm)

 , Ψ(X) =

 Ψ1(X)
...

Ψn(X)

 .

Remark 1. Let m = 2, k = 1, X(t) = col(x1(t), x2(t)) ∈ X2 and the functional vector Θ (X(t)) =
col(Θ(x1),Θ(x2)). Then Θ ∈ [X2]∗ if there exists a constant c1 > 0, such that

|Θ(X)| =
√

[Θ(x1)]2 + [Θ(x2)]2 ≤ |Θ(x1)|+ |Θ(x2)|
≤ c1||x1||X + c1||x2||X = c1||X(t)||X2 .

Similarly Θ ∈ [X 1
2 ]∗ if there exists a constant c2 > 0, such that

|Θ(X)| =
√

[Θ(x1)]2 + [Θ(x2)]2 ≤ |Θ(x1)|+ |Θ(x2)|
≤ c2(||x1||X + ||x2||X + ||x′1||X + ||x′2||X )

= c2(||X(t)||X2 + ||X ′(t)||X2) = c2||X(t)||X 1
2
.

Let X ,Y be Banach spaces as above. Let the operator A : X → Y and let D(A) and R(A) denote
its domain and the range, respectively. The operator A is said to be injective or uniquelly solvable
if for all x1, x2 ∈ D(A) such that Ax1 = Ax2, it follows that x1 = x2. Recall that a linear operator
A is injective if and only if kerA = {0}. The operator A is called surjective or everywhere solvable
if R(A) = Y . The operator A is called bijective if it is both injective and surjective. Finally, the
operator A is said to be correct if A is bijective and its inverse A−1 is bounded on Y . Recall that the
problem Au = f is said to be well-posed if the operator A is correct.

We denote by 0m and Im the m×m zero and identity matrix, respectively, 0m,n the m× n zero
matrix, and ~0 the zero column vector.

Definition 1. Two n × m matrices P = P (t) = (P1(t), . . . , Pm(t)) and G = G(t) =
(G1(t), . . . , Gm(t)), where Pi(t) = col(p1i(t), . . . , pn i(t)) and Gi(t) = col(g1i(t), . . . , gni(t)),
i = 1, . . . ,m, respectively, are said to be linearly independent if the vectors
P1(t), . . . , Pm(t), G1(t), . . . , Gm(t) are linearly independent, that is, if ~c1,~c2 are two m-dimensional
constant column vectors and P (t)~c1 +G(t)~c2 = ~0, then ~c1 = ~c2 = ~0.
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3 General systems of m first-order ODEs

Let A : Xm → Xm be the differential operator defined by

AX(t) = X ′(t)− A0(t)X(t), X(t) ∈ D(A) = X 1
m, (3.1)

where A0(t) is an m × m matrix with entries from X . Let the m × m matrix Z = Z(t) =
(Z1(t), . . . , Zm(t)) = (zij(t)), i, j = 1, . . . ,m, be a fundamental matrix of the homogeneous system

AX(t) = ~0, (3.2)

such that

Φ(Z) =
(

Φ(Z1), . . . ,Φ(Zm)
)

=

 Φ(z11) . . . Φ(z1m)
... . . . ...

Φ(zm1) . . . Φ(zmm)

 = Im,

where Φ ∈ X ∗.

Lemma 3.1. Let the operator A be defined as in (3.1), Z be a fundamental matrix of the homogeneous
system (3.2), and F = F (t) = col(f1(t), . . . , fm(t)) ∈ Xm. Then:

(i) the operator Â : Xm → Xm, corresponding to the problem

ÂX(t) = AX(t) = F (t), D(Â) = {X(t) ∈ D(A) = X 1
m : Φ(X) = ~0}, (3.3)

is correct and the unique solution X(t) of equation (3.3) is given by

X(t) = Â−1F (t)

= −Z(t)Φ

(
Z(t)

∫ t

0

Z−1(s)F (s)ds

)
+ Z(t)

∫ t

0

Z−1(s)F (s)ds, (3.4)

(ii) if in (i), Φ(X) = X(0) then

X(t) = Â−1F (t) = Z(t)

∫ t

0

Z−1(s)F (s)ds. (3.5)

Proof. (i) It is well known that every solution of the system AX(t) = F (t), is given by

X(t) = Z(t)~c+ Z(t)

∫ t

0

Z−1(s)F (s)ds, (3.6)

where ~c is an arbitrary m-dimensional constant column vector. Acting by functional vector Φ on
both sides of (3.6) and taking into account the boundary condition in (3.3) and that Φ(Z) = Im, we
obtain

Φ(X) = ~c+ Φ

(
Z(t)

∫ t

0

Z−1(s)F (s)ds

)
= ~0,

~c = −Φ

(
Z(t)

∫ t

0

Z−1(s)F (s)ds

)
.

Substituting ~c into (3.6), we get (3.4).
(ii) Equation (3.5) is derived directly from (3.4) using Φ(X) = X(0) = ~0.
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Theorem 3.1. Let the operators A and Â, the vector F and the matrix Z be defined as in Lemma
3.1. In addition, let the m × (mn) constant matrix M = (M1, . . . ,Mn), where Mj, j = 1, . . . , n,
are m × m constant matrices, the functionals Φ,Ψj ∈ X ∗, j = 1, . . . , n, and the functional vector
Ψ = col(Ψ1, . . . ,Ψn) are given. Then:

(i) the operator B : Xm → Xm, corresponding to the problem

BX(t) = AX(t) = F (t),

D(B) = {X(t) ∈ D(A) = X 1
m : Φ(X) =

n∑
j=1

MjΨj(X)} (3.7)

is injective if and only if
detW = det[Imn −Ψ(Z)M ] 6= 0, (3.8)

(ii) if the operator B is injective, then it is also correct and the unique solution to problem (3.7) is
given by

X(t) = B−1F (t) = Â−1F (t) + ZMW−1Ψ(Â−1F ), (3.9)

where Â−1F (t) is the solution of system (3.3) given in (3.4).

Proof. (i) Let detW 6= 0 and X(t) ∈ kerB. Then from problem (3.7) we get

AX(t) = ~0, Φ(X) = MΨ(X), (3.10)

which, since Z ∈ kerA and Φ(Z) = Im, can be written as

A (X(t)− ZMΨ(X)) = ~0, Φ(X(t)− ZMΨ(X)) = ~0. (3.11)

From the second equation of (3.11) by taking into account (3.3) we get X(t) − ZMΨ(X) ∈ D(Â)

and then from the first equation of (3.11), since ker Â = {0} and A is the extension of Â, it follows
that

X(t) = ZMΨ(X). (3.12)

Acting by the functional vector Ψ on both sides we get

[Imn −Ψ(Z)M ]Ψ(X) = WΨ(X) = ~0,

and since detW 6= 0, it is implied that Ψ(X) = ~0. Substitution into (3.10) yields ÂX(t) = ~0. This
means that X(t) = ~0 and therefore the operator B is injective.

Conversely, let detW = 0. Then there exists a nonzero vector ~c = col(c1, . . . , cmn), such that
W~c = ~0. Consider the element

X0(t) = Z(t)M~c, (3.13)

and note that X0(t) 6= ~0, since otherwise W~c = [Imn −Ψ(Z)M ]~c = ~c−Ψ(Z)M~c = ~c = ~0. Then

BX0(t) = AX0(t) = ~0,

Φ(X0)−MΨ(X0) = M~c−MΨ(Z)M~c = M [Imn −Ψ(Z)M ]~c = MW~c = ~0,

and, hence, X0(t) ∈ kerB. Therefore, B is not injective. Thus, we proved that if B is injective, then
detW 6= 0.

(ii) Let detW 6= 0, then the operator B is injective. Problem (3.7) can be written as

A (X(t)− Z(t)MΨ(X)) = F (t), Φ (X(t)− Z(t)MΨ(X)) = ~0. (3.14)
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Then, since (3.3) we get X(t)− Z(t)MΨ(X) ∈ D(Â), and from (3.14) it follows that

X(t) = Z(t)MΨ(X) + Â−1F. (3.15)

Acting by the functional vector Ψ on both sides of the above equation we get

[Imn −Ψ(Z)M ]Ψ(X) = Ψ(Â−1F ),

Ψ(X) = [Imn −Ψ(Z)M ]−1Ψ(Â−1F ) = W−1Ψ(Â−1F ).

Substituting into (3.12), we get solution (3.9). Since the functionals Ψ1, . . . ,Ψn and the operator Â−1

in (3.9) are bounded, then the operator B−1 is also bounded. Note that solution (3.9) is obtained
for any arbitrary vector F (t) ∈ Xm. This means that R(B) = Xm, i.e. the operator B is everywhere
solvable. So, the operator B is correct.

Lemma 3.2. Let the operators A, Â and the m×m fundamental matrix Z be defined as in Lemma
3.1. Then:

(i) the set Z ∪ Â−1Z, with Â−1Z = (Â−1Z1(t), . . . , Â−1Zm(t)), is linearly independent,

(ii) the set Z ∪ tZ, 0 < t < 1, is also linearly independent.

Proof. (i) The vectors Z1(t), . . . , Zm(t) are linearly independent since they are the columns of the
fundamental matrix. Furthermore, the vectors Â−1Z1(t), . . . , Â−1Zm(t) are also linearly independent
since ker Â = {0}. Let Z~c1 + Â−1Z~c2 = ~0, where ~c1,~c2 are two m-dimensional constant column
vectors. Then, since kerA ∩ D(Â) = {0} [11], we have Z~c1 = ~0 and Â−1Z~c2 = ~0, and hence
~c1 = ~c2 = ~0 since which since Z1, . . . , Zm and Â−1Z1(t), . . . , Â−1Zm(t) are linealy independent. Thus,
the set Z ∪ Â−1Z is linearly independent.

(ii) Let Φ(X) = X(0). Then from (3.5) and (i) it follows that Â−1Z(t) = tZ(t) and so the set
Z ∪ tZ, 0 < t < 1, is linearly independent.

4 Special type systems of 2m first-order ODEs with constant coefficients

In this section, we consider the solvability and the construction of the exact solution of a special type
of systems of 2m first-order ODEs with constant coefficients.

Lemma 4.1. Let the operator A, where A0 is an m × m nonsingular constant matrix, and the
associated fundamental matrix Z = Z(t) be defined as in Lemma 3.1. Let the operator A : X2m → X2m

be defined by
AU(t) = U ′(t)−D0U(t) = ~0, D(A) = X 1

2m, (4.1)

where the vector U = U(t) = col (u1(t), . . . , u2m(t)) ∈ X 1
2m and the 2m× 2m constant matrix D0 has

the special form

D0 =

(
2A0 −A2

0

Im 0m

)
.

Then the 2m× 2m matrix

Z(t) =

(
Z(t) tZ(t)∫ t

0
Z(s)ds+ A−1

0

∫ t
0
sZ(s)ds− [A−1

0 ]2

)
(4.2)

is a fundamental matrix of the homogeneous system (4.1).
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Proof. The two 2m×m matrices(
Z∫ t

0
Z(s)ds+ A−1

0

)
,

(
tZ∫ t

0
sZ(s)ds− [A−1

0 ]2

)
(4.3)

satisfy equation (4.1). Indeed, since Z ′ = A0Z and Z(0) = Im, we have(
Z∫ t

0
Z(s)ds+ A−1

0

)′
−
(

2A0 −A2
0

Im 0m

)(
Z∫ t

0
Z(s)ds+ A−1

0

)
=

(
−A0Z + A0

∫ t
0
A0Z(s)ds+ A0

Z − Z

)
=

(
−A0Z + A0

∫ t
0
Z ′(s)ds+ A0

0m

)
=

(
0m
0m

)
,

and (
tZ∫ t

0
sZ(s)ds− [A−1

0 ]2

)′
−
(

2A0 −A2
0

Im 0m

)(
tZ∫ t

0
sZ(s)ds− [A−1

0 ]2

)
=

(
Z + tZ ′

tZ

)
−
(

2A0tZ − A0

∫ t
0
sA0Z(s)ds+ Im
tZ

)
=

(
Z + tZ ′ − 2A0tZ + A0

∫ t
0
sZ ′(s)ds− Im

0m

)
=

(
Z + t(Z ′ − A0Z)− A0tZ + A0[sZ(s)]t0 −

∫ t
0
A0Z(s)ds− Im

0m

)
=

(
Z −

∫ t
0
Z ′(s)ds− Im

0m

)
=

(
Z(t)− [Z(t)− Z(0)]− Im

0m

)
=

(
0m
0m

)
.

Furthermore, as shown below, the two matrices in (4.3) are linearly independent. Let(
Z∫ t

0
Z(s)ds+ A−1

0

)
~c1 +

(
tZ∫ t

0
sZ(s)ds− [A−1

0 ]2

)
~c2 = ~0,

where ~c1,~c2 are m-dimensional constant column vectors. Then we have Z~c1 + tZ~c2 = ~0 and since
Z, tZ, are linearly independent by Lemma 3.2, it follows that ~c1 = ~c2 = ~0. Thus, the two matrices in
(4.3) are linearly independent and Z is a fundamental matrix for the system (4.1).

Theorem 4.1. Let the operator A and the 2m×2m fundamental matrix Z be defined as in Lemma 4.1.
Let the vector F = F(t) = col (f1(t), . . . , f2m(t)) ∈ X2m, the vector of functionals Ψ = (Ψ1, . . . ,Ψn),
Ψj ∈ X ∗, j = 1, . . . , n, and M be a 2m× 2mn constant matrix. Then:

(i) the operator B : X2m → X2m defined by the problem

BU(t) = AU(t) = F, D(B) = {U(t) ∈ D(A) : U(0) = MΨ(U)} (4.4)

is injective if and only if
detW = det[Z(0)−MΨ(Z)] 6= 0, (4.5)

where
Z(0) =

(
Im 0m
A−1

0 −[A−1
0 ]2

)
, (4.6)
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(ii) the unique solution of problem (4.4) for every F ∈ X2m is given by

U(t) = ZW−1MΨ

(
Z(t)

∫ t

0

Z−1(s)F(s)ds

)
+ Z(t)

∫ t

0

Z−1(s)F(s)ds. (4.7)

Proof. The proof follows the same procedure as for the proof of Theorem 3.1.

5 Factorization of systems of second-order ODEs

In this section, we present the main results regarding the factorization method for solving nonlocal
systems of second-order linear differential equations.

Lemma 5.1. Let the operators A, Â, where the elements of A0(t) belong to X 1 and the functional
Φ ∈ [X 1]∗, the vectors X,F and the fundamental matrix Z be defined as in Lemma 3.1. Then:

(i) for the operator A2 : Xm → Xm defined as

A2X(t) = X ′′(t)− 2A0(t)X ′(t) + [A2
0(t)− A′0(t)]X(t), D(A2) = X 2

m, (5.1)

(ii) the operator Â2 defined by

Â2X = A2X = F, D(Â2) = {X(t) ∈ D(A2) : Φ(X) = ~0, Φ(AX) = ~0} (5.2)

is correct and the unique solution of system (5.2) is given by

X(t) = Â−2F (t) = Â−1Y (t)

= −Z(t)Φ

(
Z(t)

∫ t

0

Z−1(s)Y (s)ds

)
+ Z(t)

∫ t

0

Z−1(s)Y (s)ds, (5.3)

where

Y (t) = Â−1F (t)

= −Z(t)Φ

(
Z(t)

∫ t

0

Z−1(s)F (s)ds

)
+ Z(t)

∫ t

0

Z−1(s)F (s)ds, (5.4)

(iii) in the case that Φ(X) = X(0), Z, tZ ∈ kerA2 and (Z, tZ), 0 < t < 1, is a fundamental matrix
of the homogeneous system

A2X(t) = ~0, (5.5)

and

Â−2F (t) = Z(t)

∫ t

0

(t− s)Z−1(s)F (s)ds. (5.6)

Proof. (i) Let Y (t) = AX(t) = X ′(t)− A0(t)X(t). Then

A2X(t) = AY (t) = Y ′(t)− A0(t)Y (t)

= [X ′(t)− A0(t)X(t)]′ − A0(t)[X ′(t)− A0(t)X(t)]

= X ′′(t)− A′0(t)X(t)− A0(t)X ′(t)− A0(t)X ′(t) + A2
0(t)X(t)

= X ′′(t)− 2A0(t)X ′(t) + [A2
0(t)− A′0(t)]X(t). (5.7)
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It easily follows that if D(A) = X 1
m, then D(A2) = X 2

m.
(ii) By using (5.7) system (5.2) can be factorized into the following two systems of first order

differential equations

ÂY (t) = AY (t) = Y ′(t)− A0(t)Y (t) = F (t), Φ(Y ) = ~0,

ÂX(t) = AX(t) = X ′(t)− A0(t)X(t) = Y (t), Φ(X) = ~0,

which, by Lemma 3.1, are well-posed and their solutions are given by Y (t) = Â−1F (t) and X(t) =

Â−1Y (t), respectively, from where (5.3) and (5.4) are derived. The operator Â2 is correct because it
is a superposition of two correct operators [14].

(iii) Let A2X = ~0. Setting Y = AX we get AY = ~0. Then Y = Z~c1 or AX = Z~c1, which
gives X = Z~c2 + Â−1Y = Z~c2 + Â−1Z~c1, where ~c1,~c2 are m-dimensional constant column vectors.
From here, taking into account (5.3) and Φ(X) = X(0), for F = Z~c1 we obtain Â−1Z = tZ and
X(t) = Z(t)~c2 + tZ(t)~c1 ∈ ker A2. By Lemma 3.2, the system Z ∪ tZ is linearly independent. Hence
Z, tZ ∈ ker A2 and the system (Z, tZ) constitutes a fundamental solution to (5.5). From (5.3), (5.4),
because of Φ(0) = X(0) = ~0, by Fubini’s theorem, equality (5.6) easily follows.

Theorem 5.1. Let the operator A : Xm → Xm be defined by

AX(t) = X ′′(t)− S(t)X ′(t)−Q(t)X(t), D(A) = X 2
m, (5.8)

where Q(t) and S(t) are m×m matrices with entries from X and X 1, respectively, and the operator
B2 : Xm → Xm be defined as

B2X(t) = AX(t) = F (t),

D(B2) = {X(t) ∈ X 2
m : Φ(X) =

n∑
i=1

MiΨi(X),

Φ(X ′) = Φ(TX) +
r∑
j=1

NjΘj(X)}, (5.9)

where F ∈ Xm, T (t) is an m×m matrix with entries from X , Mj, j = 1, . . . , n, and Nj, j = 1, . . . , r,
are m×m constant matrices, Φ ∈ [X 1]∗, Ψj ∈ X ∗, j = 1, . . . , n, and Θj ∈ X ∗, j = 1, . . . , r. Then:

(i) if

Q(t) =
1

2
S ′(t)− 1

4
S2(t), (5.10)

the operator A can be factorized as follows

AX(t) = A2X(t), X(t) ∈ D(A), (5.11)

where
AX(t) = X ′(t)− 1

2
S(t)X(t), D(A) = X 1

m, (5.12)

(ii) if, in addition to (i), we have T (t) = 1
2
S(t), the operator B2 is injective if and only if

detW2 = det

(
Imn −Ψ(Z)M −Ψ(Â−1Z)N

−Θ(Z)M Imk −Θ(Â−1Z)N

)
6= 0, (5.13)

where W2 is an m(n+ r)×m(n+ r) matrix, Z is a fundamental matrix of the system AX = ~0,

ÂX(t) = AX(t) = F (t), D(Â) = {X(t) ∈ D(A) : Φ(X) = ~0}, (5.14)

and Ψ = col(Ψ1, . . . ,Ψn) and Θ = col(Θ1, . . . ,Θr),
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(iii) under (ii), the operator B2 is correct and the unique solution of system (5.9) is given by

X(t) = B−1
2 F (t) = Â−2F (t) +

(
Z(t)M, Â−1Z(t)N

)
W−1

2

(
Ψ(Â−2F )

Θ(Â−2F )

)
, (5.15)

where Â−2F (t), Â−1F (t) are given by (5.3), (5.4), respectively.

Proof. (i) Denote Y (t) = X ′(t)− 1
2
S(t)X(t). Then since (5.10) and (5.12), we get

AX(t) = X ′′(t)− S(t)X ′(t)−Q(t)X(t)

= X ′′(t)− S(t)X ′(t)−
[

1

2
S ′(t)− 1

4
S2(t)

]
X(t)

= X ′′(t)− 1

2
(S(t)X(t))′ − 1

2
S

(
X ′ − 1

2
SX

)
=

(
X ′ − 1

2
SX

)′
− 1

2
S

(
X ′ − 1

2
SX

)
= Y ′ − 1

2
SY = AY = A2X.

From D(A) = Xm it easily follows that D(A2) = X 2
m. Thus, we proved that B2X(t) = AX(t) =

A2X(t).
(ii) If T (t) = 1

2
S(t), then Φ(X ′) − Φ(TX) = Φ

(
X ′ − 1

2
SX
)

= Φ(AX) and problem (5.9) is
reduced to

B2X(t) = A2X(t) = F (t), Φ(X) = MΨ(X), Φ(AX) = NΘ(X). (5.16)

Let detW2 6= 0 and X(t) ∈ kerB2. Then from problem (5.16) we get

B2X(t) = A2X(t) = ~0, Φ(X) = MΨ(X), Φ(AX) = NΘ(X), (5.17)

which, since Φ(Z) = Im and AZ = 0m, can be represented as

A (AX(t)− ZNΘ(X)) = ~0, (5.18)
Φ(X(t)− ZMΨ(X)) = ~0, (5.19)
Φ(AX(t)− ZNΘ(X)) = ~0. (5.20)

Further taking into account (3.3), we get X(t)− ZMΨ(X), AX(t)− ZNΘ(X) ∈ D(Â) and from
(5.18), because of A is an extension of Â and ker Â = {0}, it follows that

AX(t) = ZNΘ(X),

A(X(t)− ZMΨ(X)) = ZNΘ(X),

Â(X(t)− ZMΨ(X)) = ZNΘ(X),

X(t) = ZMΨ(X) + Â−1ZNΘ(X).

Then acting by functional vectors Ψ,Θ on both sides of the above equation we get

[Imn −Ψ(Z)M ]Ψ(X)−Ψ(Â−1Z)NΘ(X) = ~0, (5.21)
−Θ(Z)MΨ(X) + [Imk −Θ(Â−1Z)N ]Θ(X) = ~0. (5.22)

From the last system, since detW2 6= 0, it follows that Ψ(X) = ~0, Θ(X) = ~0. Substituting these
values into (5.17), we obtain that Â2X(t) = ~0, and so, because Â2 is correct, we have X(t) = ~0.
Then kerB2 = {~0} and B2 is injective.
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Conversely, let detW2 = 0. Then there exists a nonzero constant vector ~c = col(c1, c2), where
c1 = col(c11, . . . , c1,mn), c2 = col(c21, . . . , c2,mk), such that

W2~c =

(
Imn −Ψ(Z)M −Ψ(Â−1Z)N

−Θ(Z)M Imk −Θ(Â−1Z)N

)(
c1

c2

)
=

(
~0
~0

)
. (5.23)

Consider the vector
X0(t) = Z(t)Mc1 + Â−1Z(t)Nc2. (5.24)

Note that X0(t) = ~0, if and only if Mc1 = ~0, Nc2 = ~0, since Z(t) is the fundamental matrix and the
set Z(t) ∪ Â−1Z(t), by Lemma 3.2, is linearly independent. But if Mc1 = ~0, Nc2 = ~0, then from
(5.23) follows that c1 = ~0, c2 = ~0. Thus, we obtain ~c = ~0. But by hypothesis ~c 6= ~0. So X0(t) 6= ~0.
Further using (5.24) and taking into account (5.23), we find

B2X0(t) = A2X0(t) = ~0,

Φ(X0)−MΨ(X0) = M [Imn −Ψ(Z)M ]c1 −MΨ(Â−1Z)Nc2 = ~0,

AX0(t) = Z(t)Nc2,

Φ(AX0)−NΘ(X0) = −NΘ(Z)Mc1 +N [Imk −Θ(Â−1Z)N ]c2 = ~0.

From here it follows that X0(t) ∈ kerB2 and B2 is not injective. Thus, by way of contradiction we
proved that if B2 is injective, then detW 6= 0.

(iii) Let detW2 6= 0, then the operator B2 is injective. From (5.16) we obtain

A (AX(t)− Z(t)NΘ(X)) = F (t), Φ (AX(t)− Z(t)NΘ(X)) = ~0. (5.25)

Then since Â is a restriction of A and (3.3), we get AX(t)−Z(t)NΘ(X) ∈ D(Â). From (5.25) and
first boundary condition (5.16) it follows that

AX(t) = Z(t)NΘ(X) + Â−1F (t), Φ(X(t)− Z(t)MΨ(X)) = ~0. (5.26)

By means (3.3) we get X(t)−Z(t)MΨ(X) ∈ D(Â). Then from (5.26), taking into account that Â is
a restriction of A, we get

Â[X(t)− Z(t)MΨ(X)]− Z(t)NΘ(X) = Â−1F (t),

X(t)− Z(t)MΨ(X)− Â−1Z(t)NΘ(X) = Â−2F (t). (5.27)

Acting by functional vectors Ψ,Θ on both sides of the above equation, obtain

[Imn −Ψ(Z)M ]Ψ(X)−Ψ(Â−1Z)NΘ(X) = Ψ(Â−2F ), (5.28)
−Θ(Z)MΨ(X) + [Imk −Θ(Â−1Z)N ]Θ(X) = Θ(Â−2F ), (5.29)

or

W2

(
Ψ(X)
Θ(X)

)
=

(
Ψ(Â−2F )

Θ(Â−2F )

)
.

The last equation yelds (
Ψ(X)
Θ(X)

)
= W−1

2

(
Ψ(Â−2F )

Θ(Â−2F )

)
.

Substituting this value into (5.27), we get solution (5.15). Since the functionals
Ψ1, . . . ,Ψn,Θ1, . . . ,Θk and the operators Â−1, Â−2 in (5.15) are bounded, then the operator B−1

2

is also bounded. Note that formula (5.15) was proved for any arbitrary vector F (t) ∈ Xm. This
means that R(B2) = Xm, i.e. the operator B2 is everywhere solvable. Before we proved that B2 is
injective and B−1

2 is bounded. Hence, B2 is correct.
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Corollary 5.1. In Theorem 5.1 let Φ(X) = X(t0), t0 ∈ [0, 1], r = n, Ψj,Θj ∈ [X 1]∗, j = 1, . . . , n,
Q(t) satisfies (5.10) and T be a constant matrix. Then

B2X(t) = AX(t) = F (t),

D(B2) = {X(t) ∈ X 2
m : X(t0) =

n∑
j=1

MjΨj(X),

X ′(t0) = TX(t0) +
n∑
j=1

NjΘj(X)}. (5.30)

(i) If

T =
1

2
S(t0), Nj = Mj, Θj(X) = Ψj(AX), i = 1, . . . , n, (5.31)

then there exists an operator B : Xm → Xm defined by

BX(t) = AX(t), D(B) = {X(t) ∈ D(A) : X(t0) =
n∑
j=1

MjΨj(X)}, (5.32)

such that B2 can be factorized into B2 = B2,

(ii) in addition, problem (5.30) is uniquely solvable if and only if

detW3 = det[Imn −Ψ(Z)M ] 6= 0, (5.33)

and its unique solution for all F ∈ Xm is given by

X(t) = B−1
2 F (t) = Â−1Y (t) + ZMW−1

3 Ψ(Â−1Y ), (5.34)

where

Y (t) = Â−1F (t) + ZMW−1
3 Ψ(Â−1F ), (5.35)

Â−1F (t) = −Z(t)Z(t0)
∫ t0

0
Z−1(s)F (s)ds+ Z(t)

∫ t
0
Z−1(s)F (s)ds, (5.36)

Â−1Y (t) = −Z(t)Z(t0)
∫ t0

0
Z−1(s)Y (s)ds+ Z(t)

∫ t
0
Z−1(s)Y (s)ds, (5.37)

Z = Z(t) is a fundamental matrix of AX(t) = ~0, satisfying Z(t0) = Im, and

ÂX(t) = AX(t), D(Â) = {X(t) ∈ D(A) : X(t0) = ~0}. (5.38)

Proof. (i) Consider the operator B defined by (5.32), namely

BX(t) = AX(t) = X ′(t)− 1

2
S(t)X(t), X(t) ∈ D(B).

Then for X(t) ∈ D(B2) ∩D(B2), since (5.10), the following formula is valid

B2X(t) = A2X(t) = X ′′(t)− S(t)X ′(t)−
[

1

2
S ′(t)− 1

4
S2(t)

]
X(t) = B2X(t).

It remains to prove that D(B2) = D(B2) for T,N and Θ(X), satisfying (5.31). Indeed, because of
the equality BX = AX, X ∈ D(B), we obtain

D(B2) = {X(t) ∈ D(B) : BX(t) ∈ D(B)} (5.39)
= {X(t) ∈ D(A2) : X(t0) = MΨ(X), (BX)(t0) = MΨ(BX)}
= {X(t) ∈ D(A2) : X(t0) = MΨ(X), (AX)(t0) = MΨ(AX)},
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where

(AX)(t0) = Φ(AX) = Φ

(
X ′(t)− 1

2
S(t)X(t)

)
= X ′(t0)− 1

2
S(t0)X(t0) = X ′(t0)− TX(t0).

Then from (5.39) we get

D(B2) = {X(t) ∈ D(A2) : X(t0) = MΨ(X), X ′(t0) = TX(t0) +MΨ(AX)}
= D(B2).

(ii) By Theorem 5.1, the operator B2 is injective if and only if (5.13) is fulfilled, where k = n, N =

M, Θ(Z) = Ψ(AZ) and Θ(Â−1Z) = Ψ(AÂ−1Z), or if and only if

detW2 = det

(
Imn −Ψ(Z)M −Ψ(Â−1Z)M

−Ψ(AZ)M Imn −Ψ(AÂ−1Z)M

)
6= 0,

or

det

(
Imn −Ψ(Z)M −Ψ(Â−1Z)M

0mn Imn −Ψ(Z)M

)
= [det (Imn −Ψ(Z)M)]2 = [detW3]2 6= 0.

Thus, B2 = B2 is injective if and only if detW3 6= 0. The problem B2X(t) = F (t) by substituting
BX(t) = Y (t) is reduced to two systems BY (t) = F (t) and BX(t) = Y (t). By Theorem 3.1, a
unique solution to the first system is given by (5.35), where Â−1F (t) is given by (3.4) or (5.36).
Substituting the value Y (t) from (5.35) into the system BX(t) = Y (t) and again using Theorem 3.1,
we obtain (5.34).

6 Examples

Example 1 In the function space C1[0, 1], the following system of four first-order differential equa-
tions with four homogeneous initial conditions

y′1(t) + 2πy2(t) + π2y3(t) = cos πt,

y′2(t) − 2πy1(t)− π2y4(t) = sinπt,

y′3(t) − y1(t) = 2 sin πt,

y′4(t) − y2(t) = − cos πt,

y1(0) = y2(0) = y3(0) = y4(0) = 0, (6.1)

has the unique solution

y1(t) =
1

4

[
t(π + 4) cosπt+

(
πt2(3π − 2)− 1

)
sin πt

]
,

y2(t) =
1

4

[
πt2(2− 3π) cosπt+ t(π + 4) sinπt

]
,

y3(t) =
1

4

[
t2(2− 3π) cosπt+ 7t sin πt

]
,

y4(t) =
1

4π

[(
3− πt2(3π − 2)

)
sin πt− 7πt cos πt

]
. (6.2)

Proof. Let Y = Y (t) = col (y1(t), y2(t), y3(t), y4(t)) and write (6.1) in the matrix form

Y ′(t)−D0Y (t) = F, (6.3)
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where

D0 =


0 −2π π2 0

2π 0 0 π2

1 0 0 0
0 1 0 0

 , F =


cosπt
sin πt

2 sinπt
− cos πt

 .

Note that D0 can be written as

D0 =

(
2A0 −A2

0

I2 02

)
, A0 =

(
0 −π
π 0

)
, A2

0 =

(
−π2 0

0 −π2

)
.

Let X = C[0, 1], X 1 = C1[0, 1], m = 2, X = col (x1(t), x2(t)). Consider the homogeneous system

X ′(t)− A0X(t) = ~0.

It can be easily shown that the fundamental matrix of this system is

Z =

(
cos πt − sin πt
sin πt cos πt

)
.

Then from (4.2) it follows that the fundamental matrix of the homogeneous system

Y ′(t)−D0Y (t) = ~0

is

Z(t) =


cosπt − sinπt t cos πt −t sinπt
sin πt cosπt t sin πt t cos πt

1
π

sin πt 1
π

cosπt 1
π2 cos πt+ t

π
sin πt − 1

π2 sin πt+ t
π

cosπt
− 1
π

cos πt 1
π

sin πt − t
π

cos πt+ 1
π2 sinπt 1

π2 cos πt+ t
π

sin πt

 . (6.4)

Since M ≡ 0 it follows from (4.5) and (6.4) that det W = det Z(0) = 1/π4 6= 0 and hence by
Theorem 4.1 problem (6.3) is uniquely solvable and its solution is given by (4.7), i.e.

Y (t) = Z

∫ t

0

Z−1(s)F(s)ds,

where

Z−1(t) =


cosπt− πt sinπt πt cosπt+ sin πt −π2t cosπt −π2t sinπt
−πt cos πt− sin πt cosπt− πt sin πt π2t sin πt −π2t cos πt

π sin πt −π cosπt π2 cos πt π2 sin πt
π cosπt π sin πt −π2 sin πt π2 cosπt

 .

After performing the calculations, we get solution (6.2).

Example 2 Let X(t) = col (x(t), y(t)) , F (t) = col (f1(t), f2(t)) . Find the unique solution of the
problem B2X(t) = F (t) on C[0, 1] defined by

x′′(t)− 2x′(t)− 4y′(t) + 9x(t) + 8y(t) = f1(t), (6.5)
y′′(t)− 8x′(t)− 6y′(t) + 16x(t) + 17y(t) = f2(t),

x(0) = 3x(1), y(0) = −2y(1),

x′(0) = x(0) + 2y(0) + 3x′(1)− 3x(1)− 6y(1),

y′(0) = 4x(0) + 3y(0)− 2y′(1) + 8x(1) + 6y(1).
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Proof. First we rewrite problem (6.5) in the matrix form

B2

(
x(t)
y(t)

)
=

(
x′′(t)
y′′(t)

)
−
(

2 4
8 6

)(
x′(t)
y′(t)

)
+

(
9 8
16 17

)(
x(t)
y(t)

)
=

(
f1(t)
f2(t)

)
, (6.6)

(
x(0)
y(0)

)
=

(
3 0
0 −2

)(
x(1)
y(1)

)
,(

x′(0)
y′(0)

)
=

(
1 2
4 3

)(
x(0)
y(0)

)
+

(
3 0
0 −2

)(
x′(1)− x(1)− 2y(1)
y′(1)− 4x(1)− 3y(1)

)
.

If we compare problem (6.6) with (5.30), it is natural to take X = C = C[0, 1], X 1 = C1[0, 1] =
C1, X 2 = C2[0, 1], X 1

2 = C1
2 [0, 1] = C1

2 , m = 2, n = 1, t0 = 0,

S(t) =

(
2 4
8 6

)
, Q(t) = −

(
9 8
16 17

)
, T =

(
1 2
4 3

)
,

M = N =

(
3 0
0 −2

)
, X(t0) =

(
x(0)
y(0)

)
, X ′(t0) =

(
x′(0)
y′(0)

)
,

Ψ(X) = X(1) =

(
x(1)
y(1)

)
, Θ(X) =

(
x′(1)− x(1)− 2y(1)
y′(1)− 4x(1)− 3y(1)

)
=

(
x′(1)
y′(1)

)
−
(

1 2
4 3

)(
x(1)
y(1)

)
.

By Remark 1, it follows that Ψ ∈ [C2[0, 1]]∗ and Θ ∈ [C1
2 [0, 1]]∗, since Ψi,Θi, i = 1, 2 are linear and

|Ψ(X)| ≤ ||X(t)||C2 and

|Θ(X)| ≤ 5(||x′(t)||C + ||y′(t)||C + ||x(t)||C + ||y(t)||C) = 5(||X ′(t)||C2 + ||X(t)||C2) = 5||X(t)||C1
2
.

It is easy to verify that Q and S satisfy (5.10), then by Theorem 5.1, there exists the operator A
defined by (5.12), namely

AX(t) = X ′(t)− 1

2
S(t)X(t) =

(
x′(t)
y′(t)

)
−
(

1 2
4 3

)(
x(t)
y(t)

)
.

Note that Θ(X) = Ψ(AX) = (AX)(1), M = N, T = 1
2
S(0), i.e. conditions (5.31) are fulfilled.

Then, by Corollary 5.1, problem (6.6) is uniquelly solved if and only if (5.33) holds, namely detW3 =
det[I2 −Ψ(Z)M ] 6= 0. It is easy to verify that the fundamental matrix Z = Z(t), Z(0) = I2 for the
system AX(t) = ~0 has the form

Z =
1

3

(
e5t + 2e−t e5t − e−t
2e5t − 2e−t 2e5t + e−t

)
, Z−1 =

1

3

(
e−5t + 2et e−5t − et
2e−5t − 2et 2e−5t + et

)
,

Φ(Z) = I2, detW3 6= 0,

W−1
3 =

1

e6 − 18e5 + 3e− 4

(
4e6 + 3e+ 2) 2(1− e6)

6(e6 − 1) −3(e6 − e+ 2)

)
.

By Corollary 5.1, problem (6.5) has the unique solution which is given by (5.34), where
Â−1F (t) = Z(t)

∫ t
0
Z−1(s)F (s)ds, Ψ(Â−1F ) = (Â−1F )(1),

Y (t) = Â−1F (t) + ZMW−1
3 (Â−1F )(1), Â−1Y (t) = Z(t)

∫ t
0
Z−1(s)Y (s)ds,

Ψ(Â−1Y ) = (Â−1Y )(1).
Substituting these values into (5.34), we obtain the unique solution to (6.5)

X(t) = Â−1Y (t) + ZMW−1
3 (Â−1Y )(1).



70 I.N. Parasidis, E. Providas

Example 3 The following system of two second-order differential equations with nonlocal boundary
conditions

y′′(t) + 2πx′(t)− π2y(t) = sinπt,

x′′(t) − 2πy′(t)− π2x(t) = cos πt,

y(0) = −2y(1) + 2x(1),

x(0) = x(1),

y′(0) = −πx(0)− 2y′(1)− 2πx(1) + 2x′(1)− 2πy(1),

x′(0) = πy(0) + x′(1)− πy(1) (6.7)

has the unique solution

y(t) =
t− 2

2π
cos πt− 1

2π2
sin πt,

x(t) =
t− 2

2π
sin πt. (6.8)

Proof. First we write problem (6.7) in the matrix form(
y′′(t)
x′′(t)

)
−

(
0 −2π

2π 0

)(
y′(t)
x′(t)

)
−
(
π2 0
0 π2

)(
y(t)
x(t)

)
=

(
sin πt
cos πt

)
,(

y(0)
x(0)

)
=

(
−2 2
0 1

)(
y(1)
x(1)

)
,(

y′(0)
x′(0)

)
=

(
0 −π
π 0

)(
y(0)
x(0)

)
+

(
−2 2
0 1

)(
y′(1) + πx(1)
x′(1)− πy(1)

)
. (6.9)

If we compare problem (6.9) with (5.30), it is natural to take X = C[0, 1], X 1 = C1[0, 1], X 2 =
C2[0, 1], m = 2, n = 1, t0 = 0,

S(t) =

(
0 −2π

2π 0

)
, Q(t) =

(
π2 0
0 π2

)
, T =

(
0 −π
π 0

)
,

M = N =

(
−2 2
0 1

)
, X(t) =

(
y(t)
x(t)

)
, X(t0) =

(
y(0)
x(0)

)
, X ′(t0) =

(
y′(0)
x′(0)

)
,

Ψ(X) =

(
y(1)
x(1)

)
, Θ(X) =

(
y′(1) + πx(1)
x′(1)− πy(1)

)
, F (t) =

(
sin πt
cosπt

)
.

By Remark 1, it follows that Ψ ∈ [C1
2 [0, 1]]

∗ and Θ ∈ [C1
2 [0, 1]]

∗
, since Ψi,Θi, i = 1, 2 are linear and

|Ψ(X)| ≤ ||X(t)||C2 , |Θ(X)| ≤ π||X(t)||C1
2
.

It is easy to verify that Q and S satisfy (5.10), then, by Theorem 5.1, there exists the operator A
defined by (5.12), namely

AX(t) = X ′(t)− 1

2
S(t)X(t) =

(
y′(t)
x′(t)

)
−
(

0 −π
π 0

)(
y(t)
x(t)

)
.

Let Z = Z(t), Z(0) = I2 be a fundamental matrix to the system AX(t) = ~0. Note that Θ(X) =
Ψ(AX) = (AX)(1), M = N, T = 1

2
S(0), i.e. conditions (5.31) are fulfilled. Then, by Corollary 5.1,

problem (6.7) is uniquelly solved if and only if (5.33) holds, namely detW3 = det[I2 −Ψ(Z)M ] 6= 0.
It is easy to verify that

Z =

(
cosπt − sin πt
sin πt cos πt

)
, Z−1 =

(
cos πt sin πt
− sin πt cosπt

)
, Ψ(Z) =

(
−1 0
0 −1

)
,
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Φ(Z) = Z(0) = I2, detW3 = det

(
−1 2
0 −2

)
6= 0, W−1

3 = −
(

1 1
0 1/2

)
.

By Corollary 5.1, problem (6.7) has solution given by (5.34), where Â−1F (t) =

Z(t)
∫ t

0
Z−1(s)F (s)ds =

(
0

1
π

sin πt

)
, Ψ(Â−1F ) = (Â−1F )(1) =

(
0
0

)
,

Y (t) = Â−1F (t) + ZMW−1
3 Ψ(Â−1F ) =

(
0

1
π

sin πt

)
,

Â−1Y (t) = Z(t)
∫ t

0
Z−1(s)Y (s)ds =

(
t

2π
cos πt− 1

2π2 sin πt
t

2π
sin πt

)
,

Ψ(Â−1Y ) = (Â−1Y )(1) =

(
− 1

2π

0

)
.

Substituting these values into (5.34) we obtain the unique solution to (6.7)

X(t) = Â−1Y (t) + ZMW−1
3 Ψ(Â−1Y ) =

(
t−2
2π

cos πt− 1
2π2 sin πt

t−2
2π

sin πt

)
,

which gives (6.8).
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1 Introduction and setting up the problem

For studying objects or processes in the surrounding world, methods of mathematical modeling are
extensively used. An efficient way to study processes by mathematical methods is by modeling these
processes in the form of fractional differential equations.

Fractional differential equations have excited, in recent years, a considerable interest both in
mathematics and in applications. They were used in the modeling of many physical and chemi-
cal processes and engineering (see, e.g., [2]-[4]). Other studies [7]-[6] demonstrate several interesting
features of the fractional diffusion-wave equations, which represent a peculiar union of properties typ-
ical for second-order parabolic and wave differential equations. Fractional evolution inclusions are
an important form of differential inclusions within nonlinear mathematical analysis. They are gener-
alizations of the much more widely developed fractional evolution equations (such as time-fractional
diffusion equations) seen through the lens of multivariate analysis. Compared with fractional evolu-
tion equations, research on the theory of fractional differential inclusions is however only in its initial
stage of development. This is important because differential models with the fractional derivative
provide an excellent instrument for the description of memory and hereditary properties, and have
recently been proven valuable tools in the modeling of many physical phenomena (see, [20] and the
references therein).

According to the fractional order α, the diffusion process can be specified as sub-diffusion (α ∈
(0, 1)) and super-diffusion (α ∈ (1, 2)), respectively. There is abundant literature on the studies
of fractional equations on various aspects, such as physical backgrounds, weak solutions, maximum
principle and numerical methods (see, [19] and the references therein).
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Practical needs often lead to problems in determining the coefficients, kernel, or the right-hand
side of a differential equation from certain known information about its solution. Such problems
have received the name inverse problems of mathematical physics. Inverse problems arise in various
domains of human activity, such as seismology, prospecting for mineral deposits, biology, medi-
cal visualization, computer-aided tomography, the remote sounding of the Earth, spectral analysis,
nondestructive control, etc., (see [3], [10]-[17]). In this paper, we discuss an inverse problem of de-
termining a coefficient and kernel depending on the time in a fractional-differential equation by the
measurement data of time trace at a fixed point xi.

Let QT
0 := (0, 1) × (0, T ) for a given time T > 0. We consider the following fractional integro-

differential equation with a fractional derivative in time t:

∂αt u(x, t) + Lu(x, t) = q(t)ut(x, t) + k ∗ u(x, ·) + f(x, t), (x, t) ∈ QT
0 , (1.1)

where 1 < α < 2 and ∂αt u(x, t) is the left Gerasimov-Caputo fractional derivative with respect to t
and is defined in [9] as

∂αt v(t) = K ∗ v′′,
here the kernel function K is given by

K(t) =

{
t1−α

Γ(2−α)
, t > 0,

0, t ≤ 0,

Γ(·) is the Gamma function and L is the differential operator defined by

Lu ≡ −(%(x)u′)′ + c(x)u,

where the coefficients belong to the set:

Λ :=
{

(%, c) ∈ C1[0, 1]× C[0, 1] : c(x) > 0, %(x) ≥ %0 > 0
}
,

and ∗ denotes the Laplace convolution

f ∗ g(t) =

∫ t

0

f(t− τ)g(τ)dτ.

Note that if α = 1 and α = 2, then equation (1.1) represents a parabolic and a hyperbolic integro-
differential equations, respectively. Since we are interested mainly in the fractional cases, we restrict
the order α to 1 < α < 2.

We supplement the above fractional wave equation with the following initial conditions:

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x), 0 < x < 1, (1.2)

and the zero boundary condition:

u(0, t) = u(1, t) = 0, 0 < t < T. (1.3)

For convenience of the reader, we present here the necessary definitions from functional analysis
and fractional calculus theory.

For integers m, we denote Hm(0, 1) = Wm,2(0, 1) andW k,1(0, T ) the usual Sobolev spaces defined
for spatial and time variables respectively (see [1]), and Hm

0 (0, 1) is the closure of C∞0 (0, 1) in the
norm of space Hm(0, 1). For a given Banach space V on (0, 1), we use the notation Cm([0, T ];V ) to
denote the following space:

Cm([0, T ];V ) :=
{
u : [0, T ]→ V : ‖∂jtu(t)‖V is continuous in t on [0, T ] for all 0 ≤ j ≤ m

}
.
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We endow Cm([0, T ];V ) with the following norm, making it a Banach space:

‖u‖Cm([0,T ];V ) =
m∑
j=0

(
max

0≤t≤T
‖∂jtu(t)‖V

)
.

In addition, we define the Banach space XT
0 by

XT
0 := C([0, T ];D(Lγ+ 1

α )) ∩ C1([0, T ];D(Lγ))

with the norm
‖u‖XT

0
:= ‖u‖

C([0,T ];D(Lγ+ 1
α ))

+ ‖u‖C1([0,T ];D(Lγ)).

The notation XT
0 indicates that zero represents the initial state of the time variable, i.e., t = 0.

Furthermore, we set
Y T

0 = XT
0 × C1[0, T ]× C[0, T ]

endowed with the norm

‖(u, q, k)‖Y T0 := ‖u‖XT
0

+ ‖q‖C1[0,T ] + ‖k‖C[0,T ].

We denote the domain of L by D(L) = H2(0, 1)∩H1
0 (0, 1). It is well known that, if the coefficients

% and c of the operator L are in the set Λ, then the operator L has only real and simple eigenvalues
λn, and with suitable numbering, we have 0 < λ1 ≤ λ2 ≤ · · · , lim

k→∞
λk = ∞. By ek, we denote

the eigenfunction corresponding to λk, which satisfies ‖ek‖2
L2(0,1) = (ek, ek) = 1, where (·, ·) denotes

the inner product in the Hilbert space L2(0, 1) and λk, ek satisfy Lek = λkek, ek(0) = ek(1) = 0,
{ek} ⊂ H2(0, 1) ∩H1

0 (0, 1) is an orthonormal basis of L2(0, 1).
Now we define the fractional power operator Lγ for γ ∈ R (e.g. [13]) and the Hilbert space D(Lγ)

by

D(Lγ) :=
{
u ∈ L2(0, 1) :

∞∑
k=1

λ2γ
k |(u, ek)|

2 <∞
}
, Lγu =

∞∑
k=1

λγk(u, ek)ek

with the inner product (u, v)D(Lγ) = (Lγu,Lγv)L2(0,1) and, respectively, the norm

‖u‖D(Lγ) = ‖Lγu‖ =

(
∞∑
k=1

λ2γ
k |(u, ek)|

2

)1/2

.

Moreover, we shall use the Mittag-Leffler function (see [9]):

Eρ,µ(z) =
∞∑
k=0

zk

Γ(ρk + µ)
, z ∈ C

with Re(ρ) > 0 and µ ∈ C. It is known that Eρ,µ(z) is an entire function in z ∈ C.

Lemma 1.1. Let 0 < ρ < 2, µ ∈ R be arbitrary and θ satisfy πρ
2
< θ < min{π, πρ}. Then there

exists a constant c = c(ρ, µ, θ) > 0 such that

|Eρ,µ(z)| ≤ c

1 + |z|
, θ ≤ |arg(z)| ≤ π,

and the asymptotic behavior of Eρ,µ(z) at infinity is as follows: for any N ∈ N

Eρ,µ(z) = −
N∑
n=1

z−n

Γ(µ− ρn)
+O(z−N−1).
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For the proof, we refer, for example, to [5].

Remark 1. In the paper, the Mittag-Leffler function is used only for real negative z, in which case
the constant c depends only on ρ and µ.

Proposition 1.1. (see [9]) For λ > 0, α > 0, β ∈ C and positive integer m ∈ N, we have

dm

dtm
Eα,1(−λtα) = −λtα−mEα,α−m+1(−λtα), t > 0,

d

dt

(
tβ−1Eα,β(−λtα)

)
= tβ−2Eα,β−1(−λtα), t > 0

and
∂αt (Eα,1(−λtα)) = −λEα,1(−λtα), t ≥ 0.

Also, we shall use the following simple equality

max
y≥0

yθ

1 + y
= θθ(1− θ)1−θ < 1 for 0 < θ < 1. (1.4)

If q(t), k(t), f(x, t), ϕ(x) and ψ(x) are known, then problem (1.1)-(1.3) is called a direct problem.
The inverse problem in this paper is to reconstruct q(t) and k(t) according to the additional data

u(xi, t) = hi(t), t ∈ [0, T ], (1.5)

where xi ∈ (0, 1), i = 1, 2 are fixed points, hi(t), i = 1, 2 are given functions.
We investigate the following inverse problem.
Inverse problem. Find u ∈ XT

0 , q ∈ C1[0, T ] and k ∈ C[0, T ] to satisfy (1.1)-(1.3) and addi-
tional measurements (1.5), where D(Lγ) is a Hilbert space with some positive constant γ satisfying
inequality (1.6).

We now give a similar definition of a weak solution to (1.1)-(1.3), which is introduced in [15].

Definition 1. We call u a weak solution to (1.1)-(1.3) if (1.1) holds in L2(0, 1) and u(·, t) ∈ H1
0 (0, 1)

for almost all t ∈ (0, T ), u, ∂tu ∈ C([0, T ];D(L−γ)) and

lim
t→0
‖u(·, t)− ϕ‖D(L−γ) = lim

t→0
‖ut(·, t)− ψ‖D(L−γ) = 0

with some γ > 0.

Throughout this paper, we assume that 3
2
< γ0 and

5

4
< γ ≤ γ0. (1.6)

We make the following assumptions:

(C1) ∂αt hi ∈ C1[0, T ] (i = 1, 2), ϕ ∈ D(Lγ0+ 1
α ), ψ ∈ D(Lγ0), f ∈ C1([0, T ];D(Lγ));

(C2) h′i(0)q(0) = ∂αt hi(0) + Lϕ(xi)− f̃i(0), where f̃i(t) = f(xi, t), (i = 1, 2);
(C3) ϕ(xi) = hi(0), ψ(xi) = h′i(0), (i = 1, 2);
(C4) p(t) = h′1(t)h2(0)− h′2(t)h1(0) 6= 0 and p ∈ C1[0, T ] satisfies the following inequality:

|p(t)| ≥ 1

p0

,

where p0 is a positive constant.
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Remark 2. In (C1), ∂αt h ∈ C1[0, T ] implies hi ∈ W 2,1(0, T ) ↪→ H1(0, T ) (see [17]).

Remark 3. (C2)-(C3) are the consistency conditions for our problem (1.1)-(1.3), (1.5), which guar-
antees that inverse problem (1.1)-(1.3), (1.5) is equivalent to (2.36) and (2.38) (see Lemma 2.6).

Remark 4. In order to guarantee that ∂αt h ∈ C1[0, T ], we could give the usual regularity condition
hi ∈ C3[0, T ], such that h′′i (0) = 0 (see [17]).

The main result of this paper is the following local existence and uniqueness result for an inverse
problem.

Theorem 1.1. Let the assumptions (C1)-(C4) hold. Then, the inverse problem has a unique solution
(u, q, k) ∈ Y T

0 for sufficiently small T > 0.

The outline of the paper is as follows. Section 2 presents preliminary results, including the
existence and uniqueness of the direct problem (1.1)-(1.3), along with an equivalent problem. In
Section 3, we establish the local existence and global uniqueness of the solution to the inverse problem
(1.1)-(1.3), (1.5) using the Fourier method and the Banach fixed-point theorem. In Section 4, we
provide examples of the inverse problem (1.1)-(1.3), (1.5).

2 Preliminary results

This section presents some preliminary results, including the well-posedness for a fractional differ-
ential equation, an equivalent lemma for our inverse problem, and a technical result, which will be
used to prove our main results.

Let 
Z1(t)η(x) =

∞∑
n=1

(η, en)Eα,1(−λntα)en(x),

Z2(t)η(x) =
∞∑
n=1

(η, en)tEα,2(−λntα)en(x), (x, t) ∈ QT
0 ,

Z3(t)η(x) = −
∞∑
n=1

λn(η, en)tα−1Eα,α(−λntα)en(x).

for η ∈ L2(0, 1).
We first consider the following initial and boundary value problem:

∂αt u(x, t) + Lu(x, t) = F (x, t), (x, t) ∈ QT
0 ,

u(0, t) = u(1, t) = 0, 0 < t < T,

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x), 0 < x < 1.

(2.1)

We split (2.1) into the following two initial and boundary value problems:
∂αt v(x, t) + Lv(x, t) = 0, (x, t) ∈ QT

0 ,

v(0, t) = v(1, t) = 0, 0 < t < T,

v(x, 0) = ϕ(x), vt(x, 0) = ψ(x), 0 < x < 1,

(2.2)

and 
∂αt w(x, t) + Lw(x, t) = F (x, t), (x, t) ∈ QT

0 ,

w(0, t) = w(1, t) = 0, 0 < t < T,

w(x, 0) = 0, wt(x, 0) = 0, 0 < x < 1.

(2.3)

Similarly to Theorem 2.3 in [15], it is easy to obtain the following assertion:
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Lemma 2.1. Let ϕ ∈ H2(0, 1) ∩H1
0 (0, 1) and ψ ∈ H1

0 (0, 1). Let γ > 0. Then there exists a unique
weak solution v ∈ C([0, T ];H2(0, 1) ∩H1

0 (0, 1)) ∩ C1([0, T ];D(L−γ)) to (2.2). Moreover, there exists
a constant c > 0, depending only on α, γ and λ1, such that

‖v(·, t)‖H2(0,1) + ‖vt(·, t)‖D(L−γ) ≤ c
(
‖ϕ‖H2(0,1) + ‖ψ‖H1(0,1)

)
, t ∈ (0, T ). (2.4)

Furthermore, we have {
v(x, t) = Z1(t)ϕ(x) + Z2(t)ψ(x), (x, t) ∈ QT

0 ,

vt(x, t) = Z3(t)ϕ(x) + Z1(t)ψ(x), (x, t) ∈ QT
0 .

(2.5)

Proof. The uniqueness and existence of a weak solution are verified similarly to Theorem 2.1 in
[15], but the statement about the smoothness for the function v given in the lemma differs from the
statement about the smoothness given in [15]. Therefore, here we prove only inequality (2.4). Using
Lemma 1.1, we have

‖v(·, t)‖2
H2(0,1) ≤ 2

∞∑
n=1

λ2
n |(ϕ, en)Eα,1(−λntα)|2 + 2

∞∑
n=1

λ2
n |(ψ, en)tEα,2(−λntα)|2

≤ 2c2‖ϕ‖2
H2(0,1) + 2c2

∞∑
n=1

λn|(ψ, en)|2
(

(λnt
α)

1
α

1 + λntα

)2

λ
1− 2

α
n ,

where c > 0, depending only on α, is given in Lemma 1.1. Since λ1− 2
α

n ≤ λ
1− 2

α
1 , n = 1, 2, ..., by (1.4)

we have
‖v(·, t)‖2

H2(0,1) ≤ 2c2 max{1, λ1− 2
α

1 }
(
‖ϕ‖2

H2(0,1) + ‖ψ‖2
H1(0,1)

)
. (2.6)

Further, by the second formula of (2.5), we have

‖vt(·, t)‖2
D(L−γ) ≤ 2

∞∑
n=1

λ−2γ
n

∣∣λntα−1(ϕ, en)Eα,α(−λntα)
∣∣2

+ 2
∞∑
n=1

λ−2γ
n |(ψ, en)Eα,1(−λntα)|2

≤ 2c2

∞∑
n=1

λ2
n|(ϕ, en)|2

(
(λnt

α)
α−1
α

1 + λntα

)2

λ
−2(γ+1− 1

α
)

n + 2c2

∞∑
n=1

λn|(ψ, en)|2λ−2(γ+ 1
2

)
n . (2.7)

Now, using Lemma 1.1 and (1.4), we have

‖vt(·, t)‖2
D(L−γ) ≤ 2c2 max{λ−2(γ+1− 1

α
)

1 , λ
−2(γ+ 1

2
)

1 }
(
‖ϕ‖2

H2(0,1) + ‖ψ‖2
H1(0,1)

)
. (2.8)

We introduce the following auxiliary lemmas to obtain the main results.

Lemma 2.2. Let F ∈ C([0, T ];D(L1/α)). Then there exists a unique weak solution w ∈
C([0, T ];H2(0, 1) ∩ H1

0 (0, 1)) to (2.3) with ∂αt w ∈ C([0, T ];L2(0, 1)). Moreover, for any γ > 0,
we have wt ∈ C([0, T ];D(L−γ)),

lim
t→0
‖w(·, t)‖H2(0,1) = lim

t→0
‖wt(·, t)‖D(L−γ) = 0. (2.9)
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Furthermore, there exists a constant c > 0, depending only on α, γ and λ1, such that

‖w(·, t)‖H2(0,1) + ‖wt(·, t)‖D(L−γ) ≤ c
(
t+ tα−1

)
‖F‖C([0,T ];D(L1/α)) (2.10)

and we have w(x, t) = −
∫ t

0
L−1Z3(t− s)F (x, s)ds, (x, t) ∈ QT

0 ,

wt(x, t) =
∫ t

0
L−1Z4(t− s)F (x, s)ds, (x, t) ∈ QT

0 ,
(2.11)

where

Z4(t)η(x) =
∞∑
n=1

λn(η, en)tα−2Eα,α−1(−λntα)en(x)

and the function w belongs to the space C([0, T ];H2(0, 1) ∩H1
0 (0, 1)) ∩ C1([0, T ];D(L−γ)).

Proof. By Theorem 2.2 in [15], for F ∈ C([0, T ];D(L1/α)), the unique solution w ∈ C([0, T ];H2(0, 1)∩
H1

0 (0, 1)) to (2.3) can be expressed by (2.11). As above, the uniqueness and existence of the weak
solution are verified similarly to Theorem 2.1 in [15]. Therefore, here we omitted it and we prove
only equality (2.9) and inequality (2.10).

We first have

‖w(·, t)‖2
L2(0,1) =

∞∑
n=1

∣∣∣∣∫ t

0

(F (·, s), en)(t− s)α−1Eα,α(−λn(t− s)α)ds

∣∣∣∣2

≤ c2

∞∑
n=1

∣∣∣∣∣
∫ t

0

λ
1
α
n |(F (·, s), en)|(λn(t− s)α)

α−1
α

1 + λn(t− s)α
λ−1
n ds

∣∣∣∣∣
2

,

or, by virtue of the generalized Minkowski inequality, we have

‖w(·, t)‖2
L2(0,1) ≤ c2

∣∣∣∣ ∫ t

0

( ∞∑
n=1

λ
2
α
n |(F (·, s), en)|2

)1/2

λ−1
1 ds

∣∣∣∣2
≤ c2λ−2

1 max
0≤s≤t

‖F (·, s)‖2
D(L1/α)

∣∣∣∣∫ t

0

ds

∣∣∣∣2 ≤ c2λ−2
1 ‖F‖2

C([0,T ];D(L1/α))t
2. (2.12)

Furthermore, according to Lemma 2.2, for F ∈ C([0, T ];D(L1/α)) and by Lemma 1.1, we have

‖ω(·, t)‖2
H2(0,1)

≤ ‖Lω(·, t)‖2
L2(0,1) =

∞∑
n=1

λ2
n

∣∣∣∣∫ t

0

(F (·, s), en)(t− s)α−1Eα,α(−λn(t− s)α)ds

∣∣∣∣2
≤ c2

∣∣∣∣ ∫ t

0

( ∞∑
n=1

λ
2
α
n |(F (·, s), en)|2

)1/2
(λn(t− s)α)

α−1
α

1 + λn(t− s)α
ds

∣∣∣∣2
≤ c2‖F‖2

C([0,T ];D(L1/α))t
2. (2.13)

By (2.3) and (2.13) we can estimate also ‖∂αt ω(·, t)‖C([0,T ];L2(0,1)) and we have lim
t→0
‖ω(·, t)‖H2(0,1) = 0.

Next, applying Lemma 1.1, Proposition 1, and the Cauchy-Schwarz inequality, for any γ > 0, we
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have

‖ωt(·, t)‖2
D(L−γ) =

∞∑
n=1

λ−2γ
n

∣∣∣∣ ∫ t

0

(F (·, s), en)(t− s)α−2Eα,α−1(−λn(t− s)α)ds

∣∣∣∣2
≤ c2

∣∣∣∣ ∫ t

0

( ∞∑
n=1

λ
1
α
n |(F (·, s), en)|2λ−2γ− 2

α
n

)1/2

(t− s)α−2ds

∣∣∣∣2
≤ c2

(α− 1)2
λ
−2γ− 2

α
1 ‖F‖2

C([0,T ];D(L1/α))t
2α−2. (2.14)

Therefore, lim
t→0
‖ωt(·, t)‖2

D(L−γ) = 0. Inequality (2.10) follows from inequalities (2.13) and (2.14).

By Lemma 2.1 and 2.2, we get the following assertion:

Lemma 2.3. Let ϕ ∈ H2(0, 1)∩H1
0 (0, 1), ψ ∈ H1

0 (0, 1) and F (x, t) ∈ C([0, T ];D(L1/α)). Then there
exists a unique weak solution u ∈ C([0, T ];H2(0, 1) ∩ H1

0 (0, 1)) ∩ C1([0, T ];D(L−γ)) to (2.1), such
that

‖u(·, t)‖H2(0,1) + ‖ut(·, t)‖D(L−γ)

≤ c
[
‖ϕ‖H2(0,1) + ‖ψ‖H1(0,1) + (t+ tα−1)‖F‖C([0,T ];D(L1/α))

]
(2.15)

for all t ∈ [0, T ], where the constant c > 0 depends only on α, γ and λ1, in particular, does not depend
on T . Furthermore, for all (x, t) ∈ QT

0 we have

{
u(x, t) = Z1(t)ϕ(x) + Z2(t)ψ(x)−

∫ t
0
L−1Z3(t− s)F (x, s)ds,

ut(x, t) = Z3(t)ϕ(x) + Z1(t)ψ(x) +
∫ t

0
L−1Z4(t− s)F (x, s)ds,

(2.16)

where Zj(t)[·](j = 1, 2, 3, 4) are defined above.

The next two lemmas are regularity results of the solution u to problem (2.1).

Lemma 2.4. Let ϕ ∈ D(Lγ+ 1
α ), ψ ∈ D(Lγ) and F ∈ C([0, T ];D(Lγ). Then the unique weak solution

u ∈ XT
0 to (2.1) is such that

‖u(·, t)‖
D(Lγ+ 1

α )
+ ‖ut(·, t)‖D(Lγ) ≤ c

(
‖ϕ‖

D(Lγ+ 1
α )

+ ‖ψ‖D(Lγ) + tα−1‖F‖C([0,T ];D(Lγ)

)
, (2.17)

where c > 0 depends only on α.
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Proof. Obviously, by Lemma 1.1 and the Cauchy-Schwarz inequality, we have

‖u(·, t)‖2

D(Lγ+ 1
α )
≤ 3

∞∑
n=1

λ
2γ+ 2

α
n |(ϕ, en)Eα,1(−λntα)|2 + 3

∞∑
n=1

λ
2γ+ 2

α
n t2|(ψ, en)Eα,2(−λntα)|2

+ 3
∞∑
n=1

λ
2γ+ 2

α
n

∣∣∣∣∫ t

0

(F (·, s), en)(t− s)α−1Eα,α(−λn(t− s)α)ds

∣∣∣∣2
≤ 3c2

∞∑
n=1

λ
2γ+ 2

α
n |(ϕ, en)|2 + 3c2

∞∑
n=1

λ2γ
n (ψ, en)2

(
(λnt

α)1/α

1 + λntα

)2

+ 3

∣∣∣∣ ∫ t

0

( ∞∑
n=1

λ2γ
n |(F (·, s), en)|2

)1/2

λ
1
α
n (t− s)α−1Eα,α(−λn(t− s)α)ds

∣∣∣∣2
≤ 3c2‖ϕ‖2

D(Lγ+ 1
α )

+ 3c2‖ψ‖2
D(Lγ)

+ 3c2

∣∣∣∣ ∫ t

0

( ∞∑
n=1

λ2γ
n |(F (·, s), en)|2

)1/2
(λn(t− s)α)

1
α

1 + λn(t− s)α
(t− s)α−2ds

∣∣∣∣2
≤ 3c2‖ϕ‖2

D(Lγ+ 1
α )

+ 3c2‖ψ‖2
D(Lγ) + 3c2‖F‖2

C([0,T ];D(Lγ))

∣∣∣ ∫ t

0

(t− s)α−2ds
∣∣∣2. (2.18)

As a result, we get

‖u(·, t)‖
D(Lγ+ 1

α )
≤ c(α)

(
‖ϕ‖

D(Lγ+ 1
α )

+ ‖ψ‖D(Lγ) + tα−1‖F‖C([0,T ];D(Lγ))

)
, (2.19)

where c(α) = 3c2

(α−1)2 . Furthermore, by Lemma 2.3, we have

ut(x, t) =
∞∑
n=1

{
−λntα−1(ϕ, en)Eα,α(−λntα) + (ψ, en)Eα,1(−λntα)

}
en(x)

+
∞∑
n=1

{∫ t

0

(F (·, s), en)(t− s)α−2Eα,α−1(−λn(t− s)α)ds

}
en(x). (2.20)

Therefore, by applying (1.4), and Lemma 1.1 again, we have

‖ut(·, t)‖2
D(Lγ)

≤ 3
∞∑
n=1

λ2γ
n λ

2
n|(ϕ, en)|2|tα−1Eα,α(−λntα)|2 + 3

∞∑
n=1

λ2γ
n |(ψ, en)|2|Eα,1(−λntα)|2

+ 3
∞∑
n=1

λ2γ
n

∣∣∣∣ ∫ t

0

(F (·, s), en)(t− s)α−2Eα,α−1(−λn(t− s)α)ds

∣∣∣∣2
≤ 3c2

∞∑
n=1

λ
2γ+ 2

α
n (ϕ, en)2

(
(λnt

α)
α−1
α

1 + λntα

)2

+ 3c2

∞∑
n=1

λ2γ
n (ψ, en)2

+ 3c2

∣∣∣∣ ∫ t

0

( ∞∑
n=1

λ2γ
n |(F (·, s), en)|2

)1/2
(t− s)α−2

1 + λ1(t− s)α
ds

∣∣∣∣2
≤ 3c2‖ϕ‖2

D(Lγ+ 1
α )

+ 3c2‖ψ‖2
D(Lγ) +

3c2

(α− 1)2
t2(α−1)‖F‖2

C([0,T ];D(Lγ)). (2.21)
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Thus,
‖ut(·, t)‖D(Lγ) ≤ c1

(
‖ϕ‖

D(Lγ+ 1
α )

+ ‖ψ‖D(Lγ) + tα−1‖F‖C([0,T ];D(Lγ))

)
(2.22)

for all t ∈ [0, T ], where c1 > 0 depends only on α. Then, we immediately obtain the desired estimate
(2.17).

It is easy to see that

Lu(xi, t) = LZ1(t)ϕ(xi) + LZ2(t)ψ(xi)−
∫ t

0

Z3(t− s)F (xi, s)ds, i = 1, 2. (2.23)

The following lemma is valid.

Lemma 2.5. Let ϕ ∈ D(Lγ0+ 1
α ), ψ ∈ D(Lγ0), c0 = min

x∈[0,1]
c(x) > 0 and F ∈ C([0, T ];D(Lγ)). Then

there exists a positive constant c > 0, depending only on α, ρ0, c0, γ, γ0, λ1, such that

‖Lu(xi, ·)‖C[0,T ] ≤ c
(
‖ϕ‖

D(Lγ0+ 1
α )

+ ‖ψ‖D(Lγ0 ) + T‖F‖C([0,T ];D(Lγ))

)
, i = 1, 2, (2.24)

and

‖Lut(xi, ·)‖C[0,T ] ≤ c
(
‖ϕ‖

D(Lγ0+ 1
α )

+ ‖ψ‖D(Lγ0 ) + Tα−1‖F‖C([0,T ];D(Lγ))

)
, i = 1, 2. (2.25)

Proof. An inequality similar to the estimate in (2.24) was derived in [18]. However, the smoothness
assumptions differ from those in [18], so we provide a detailed proof of inequalities (2.24) and (2.25).

Recall the following inequality for the fractional power Lβ of L with β ∈ R, β > 0 :

‖u‖H2β(0,1) ≤ c2‖Lβu‖L2(0,1)

where constant c2 > 0 depends only on β and λ1 (see., [13], p. 208).
Let ε0 = min{ε01, ε02} with 2ε01 = γ0 + 1

α
− 3

2
> 0 and 2ε02 = γ − 1

4
− 1

α
> 0. According to the

Sobolev embedding theorem H2β(0, 1) ⊂ C[0, 1] for β = 1
4

+ ε0, we have

‖en‖C[0,1] ≤ c3‖en‖H2β(0,1) ≤ c3c2‖Lβen‖L2(0,1) ≤ c4λ
β
n, (2.26)

where c2, c3, c4 > 0 depend only of β, λ1.
For convenience, we split Lu(xi, t) in three parts, namely Lu(xi, t) := I1 + I2 + I3, where

I1 := LZ1(t)ϕ(xi), I2 := LZ2(t)ψ(xi), I3 := −
∫ t

0

Z3(t− s)F (xi, s)ds, i = 1, 2.

Note that
λn ≥ c5n

2,

where c5 > 0 depends only on ρ0 and c0 (see [12], p. 190). For I1, by Lemma 1.1, and , we have

|I1| ≤
∞∑
n=1

λn|(ϕ, en)||Eα,1(−λntα)||en(xi)| ≤ c
∞∑
n=1

λ
γ0+ 1

α
n |(ϕ, en)|λ−(γ0+ 1

α
−β−1)

n

≤ c

( ∞∑
n=1

λ
2γ0+ 2

α
n |(ϕ, en)|2

)1/2( ∞∑
n=1

λ
−2(γ0+ 1

α
−β−1)

n

)1/2

≤ cc5‖ϕ‖D(Lγ0+ 1
α )

( ∞∑
n=1

n−4(γ0+ 1
α
−β−1)

)1/2

. (2.27)
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By the choice of β, we have 4(γ0 + 1
α
− β − 1) = 1 + 8ε01 − 4ε0 > 1, which implies

∞∑
n=1

n−4(γ0+ 1
α
−β−1) < c(α, γ0, γ).

So, we get
|I1| ≤ c(α, γ0, γ, ρ0, c0)‖ϕ‖

D(Lγ0+ 1
α )
. (2.28)

Further, by Lemma 1.1 and (1.4), we have the following estimate for I2:

|I2| ≤
∞∑
n=1

λn|(ψ, en)|t|Eα,2(−λntα)||en(xi)| ≤ cc4

∞∑
n=1

|(ψ, en)| λnt

1 + λntα
λβn

≤ cc4

∞∑
n=1

λγ0
n |(ψ, en)| (λnt

α)
1
α

1 + λntα
λ
−(γ0+ 1

α
−β−1)

n

≤ cc4

(
∞∑
n=1

λ2γ0
n |(ψ, en)|2

)1/2( ∞∑
n=1

λ
−2(γ0+ 1

α
−β−1)

n

)1/2

≤ c6‖ψ‖D(Lγ0 ), (2.29)

where c6 > 0 depends only on α, γ, γ0, λ1, ρ0, c0. Next, we estimate I3. The estimate for I3 is the same
as in [18] for γ − β − 1

α
= 2ε02 − ε0 > 0, and we have

|I3|2 =
∞∑
n=1

∣∣∣∣λn ∫ t

0

(F (·, s), en)(t− s)α−1Eα,α(−λn(t− s)α)ds · en(xi)

∣∣∣∣2
≤ c2c2

4

∣∣∣∣ ∫ t

0

( ∞∑
n=1

λ2γ
n |(F (·, s), en)|2

)1/2
(λn(t− s)α)

α−1
α

1 + λn(t− s)α
ds

∣∣∣∣2λ−2(γ−β− 1
α

)
n

≤ c2c2
4λ
−2(γ−β− 1

α
)

1 ‖F‖2
C([0,T ];D(L))t

2. (2.30)

So,
|I3| ≤ c(α, γ, γ0, λ1, ρ0, c0)t‖F‖C([0,T ];D(Lγ)), ∀t ∈ [0, T ]. (2.31)

According to (2.28)-(2.31), we obtain (2.24).
By differentiating (2.20) with respect to the variable t and taking into account Proposition 1, we

obtain
d

dt
Lu(xi, t) = −

∞∑
n=1

λ2
n(ϕ, en)tα−1Eα,α(−λntα)en(xi)

+
∞∑
n=1

λn(ψ, en)Eα,1(−λntα)en(xi)

+
∞∑
n=1

λn

(∫ t

0

(F (·, s), en)(t− s)α−2Eα,α−1(−λn(t− s)α)ds

)
en(xi)

:= Ĩ1 + Ĩ2 + Ĩ3. (2.32)

Let ε0 = min{ε10, ε11} where 2ε10 = γ0 − 3
2
> 0 and 2ε11 = γ − 5

4
> 0.
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By the asymptotic property of the eigenvalues λn ≥ c5n
2, for Ĩ1, using Lemma 1.1 and (1.4), we

have

|̃I1| ≤
∞∑
n=1

λ2
n|(ϕ, en)|tα−1|Eα,α(−λntα)||en(xi)|

≤ cc4

∞∑
n=1

λ
γ0+ 1

α
n |(ϕ, en)|(λnt

α)
α−1
α

1 + λntα
λ−(γ0−β−1)
n

≤ cc4

(
∞∑
n=1

λ
2γ0+ 2

α
n |(ϕ, en)|2

)1/2( ∞∑
n=1

λ−2(γ0−β−1)
n

)1/2

≤ cc4c5‖ϕ‖D(Lγ0+ 1
α )

(
∞∑
n=1

n−4(γ0−β−1)

)1/2

.

By choice of β, we have 4(γ0 − β − 1) = 1 + 8ε10 − 4ε0 > 1, which implies

∞∑
n=1

n−4(γ0−β−1) < c(γ, γ0).

Thus, we obtain
|̃I1| ≤ c(α, γ0, ρ0, c0)‖ϕ‖

D(Lγ0+ 1
α )
. (2.33)

Similarly, we have the following estimate for Ĩ2:

|̃I2| ≤
∞∑
n=1

λn|(ψ, en)||Eα,1(−λntα)||en(xi)|

≤ cc4

∞∑
n=1

λγ0
n |(ψ, en)|λ

−(γ0−β−1)
n

1 + λntα
≤ cc4

( ∞∑
n=1

λ2γ0
n |(ψ, en)|2

)1/2

×
( ∞∑

n=1

n−4(γ0−β−1)

)1/2

≤ c(α, γ, γ0, ρ0, c0)‖ψ‖D(Lγ0 ). (2.34)

Further, we estimate Ĩ3. By Lemma 1.1 and γ − β − 1 = 2ε11 − ε0 > 0, we have

|̃I3|2 ≤
∞∑
n=1

∣∣∣∣λn ∫ t

0

(F (·, s), en)(t− s)α−2Eα,α−1(−λn(t− s)α)ds · en(xi)

∣∣∣∣2
≤ c2c2

4

∣∣∣∣ ∫ t

0

( ∞∑
n=1

λ2γ
n |(F (·, s), en)|2

)1/2
(t− s)α−2

1 + λ1(t− s)α
ds

∣∣∣∣2 · λ−2(γ−β−1)
n

≤ c2c2
4 max

0≤s≤t
‖F (·, s)‖2

D(Lγ)

∣∣∣∣ ∫ t

0

sα−2ds

∣∣∣∣2 · λ−2(γ−β−1)
1 .

So that
|̃I3| ≤ c(α, γ, γ0, λ1, ρ0, c0)‖F‖C([0,T ],D(Lγ))t

α−1, ∀t ∈ [0, T ]. (2.35)

Finally, by (2.33)-(2.35), we get (2.25), thereby completing the proof of this lemma.

To study the main problem (1.1)-(1.3), (1.5), we consider the following auxiliary inverse initial
and boundary value problem.
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Lemma 2.6. Let (C1)-(C4) be held. Then the problem of finding a solution to (1.1)-(1.3), (1.5) is
equivalent to the problem of determining functions u(x, t) ∈ XT

0 , q(t) ∈ C1[0, T ] and k(t) ∈ C[0, T ]
satisfying 

∂αt u(x, t) + Lu(x, t) = q(t)ut(x, t) + (k ∗ u)(t) + f(x, t), (x, t) ∈ QT
0 ,

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x) 0 < x < 1,

u(0, t) = u(1, t) = 0, 0 < t < T,

(2.36)

and
q(t) =

1

p(t)

(
h2(0)N1[u, l](t)− h1(0)N2[u, l](t)

)
, 0 ≤ t ≤ T, (2.37)

k(t) = Dt

[
1

p(t)

(
h′1(t)N2[u, l](t)− h′2(t)N1[u, l](t)

)]
, 0 ≤ t ≤ T, (2.38)

where Dt := (d/dt),

Ni = ∂αt hi(t) + Lu(xi, t)− (l ∗ h′i)(t)− f̃i(t), (i = 1, 2) (2.39)

and

l(t) =

∫ t

0

k(τ)dτ. (2.40)

Remark 5. By Lemma 2.6, we know that problem (2.36)-(2.38) is an equivalent form of the original
inverse problem (1.1)-(1.3), (1.5). Therefore, in the following sections, we will discuss problem (2.36)-
(2.38), rather than the original one.

Proof. The solution (u(x, t), q(t), k(t)) ∈ Y T
0 of our inverse problem (1.1)-(1.3), (1.5) is also a solution

to problem (2.36) in Y T
0 , because problem (2.36) is the same as (1.1)-(1.3). Therefore, we should show

only (2.37) and (2.38). Let the three {u(x, t), q(t), k(t)} functions be a solution to problem (1.1)-
(1.3), (1.5). Taking into account the conditions ∂αt hi(t) ∈ C[0, T ] which imply that hi ∈ C1[0, T ],
and fractional differentiating both sides of (1.5) with respect to t gives

∂αt u(xi, t) = ∂αt hi(t), ut(xi, t) = h′i(t), 0 ≤ t ≤ T. (2.41)

Set x = xi in equation (1.1), the procedure yields

∂αt u(xi, t) + Lu(xi, t) = q(t)ut(xi, t) +

∫ t

0

k(t− τ)u(xi, τ)dτ + f(xi, t), i = 1, 2. (2.42)

We note that l(t) =
∫ t

0
k(τ)dτ . Then by integration by parts, we get the following equality:∫ t

0

k(τ)hi(t− τ)dτ = hi(0)l(t) +

∫ t

0

l(t− τ)h′i(τ)dτ. (2.43)

With the help of (2.41) and (2.43), we can rewrite (2.42) as

h′i(t)q(t) + hi(0)l(t) = ∂αt hi(t) + Lu(xi, t)− (l ∗ h′i)(t)− f̃i(t), i = 1, 2.

Due to (C4), we can solve this system to get (2.37) and

l(t) =
1

p(t)

(
h′1(t)N2[u, l](t)− h′2(t)N1[u, l](t)

)
. (2.44)

Furthermore, by differentiating (2.44) with respect to t, we get (2.38).
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Now, assume that (u, q, k) satisfies (2.36)-(2.38). To prove that {u, q, k} is a solution to the
inverse problem (1.1)-(1.3), (1.5), it suffices to show that {u, q, k} satisfies (1.5).

Setting x = xi in equation (2.36), we have

∂αt u(xi, t) + Lu(xi, t) = q(t)ut(xi, t) + (k ∗ u)(t) + f̃i(t). (2.45)

On the other hand, from (C2), we easily see that

1

p(0)

(
h′1(0)N2[u, l](0)− h′2(0)N1[u, l](0)

)
= 0.

We get (2.44) by integrating (2.38) over [0, t]. From (2.37) and (2.44), we conclude that

h′i(t)q(t) = −hi(0)l(t) + ∂αt hi(t) + Lu(xi, t)− (l ∗ h′i)(t)− f̃i(t)
= ∂αt hi(t) + Lu(xi, t)− (k ∗ hi)(t)− f̃i(t)

or
f̃i(t) = −h′i(t)q(t) + ∂αt hi(t) + Lu(xi, t)− (k ∗ hi)(t). (2.46)

Then substituting (2.46) into (2.45), and using (C3), we have that Pi(t) := u(xi, t)− hi(t) (i = 1, 2)
satisfies {

∂αt Pi(t) = q(t)P ′i (t) + (k ∗ Pi)(t), t > 0,

Pi(0) = P ′i (0) = 0.
(2.47)

Then, the fractional initial value problem (2.47) is equivalent to the integral equation (see, [9], p.
199)

Pi(t) =
1

Γ(α)

∫ t

0

(∫ t

s

(t− τ)α−1k(τ − s)dτ
)
Pi(s)ds

− 1

Γ(α)

∫ t

0

(t− s)α−1q′(s)Pi(s)ds

+
1

Γ(α− 1)

∫ t

0

(t− s)α−2q(s)Pi(s)ds, i = 1, 2. (2.48)

This is a weakly singular homogeneous integral equation, and it has only a trivial solution for q(t) ∈
C1[0, T ] and k(t) ∈ C[0, T ] (see [8]). Therefore, u(xi, t) − hi(t) = 0, for 0 ≤ t ≤ T , i.e., condition
(1.5) is satisfied.

At the end of this section, we present a lemma that will be used to estimate q and k.

Lemma 2.7. Let (C1) hold. Then for all (u, q, k) ∈ Y T
0 and l ∈ C1[0, T ], there exists a constant

c > 0 depending only on α, γ, γ0, λ1, ρ0, c0, in particular, independent of T , ϕ, ψ, such that

‖Ni[u, l]‖C1[0,T ] ≤ ‖∂αt hi‖C1[0,T ] + c
(
‖ϕ‖

D(Lγ0+ 1
α )

+ ‖ψ‖D(Lγ0 )

)
+ ‖f̃i‖C1[0,T ]

+ c(T + Tα−1)‖q‖C[0,T ]‖ut‖C([0,T ];D(Lγ))) + c(T 2 + Tα)‖k‖C[0,T ]‖u‖C([0,T ];D(Lγ+ 1
α ))

+ c(T + Tα−1)‖f‖C([0,T ];D(Lγ)) + T
1
2‖l‖C1[0,T ]

]
, (2.49)

where Ni (i = 1, 2) are the same as those in (2.39) and l(t) as in (2.40).
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Proof. By Lemma 2.5 and condition (C1), we see that

‖Ni[u, l]‖C[0,T ] ≤ ‖∂αt hi‖C[0,T ] + ‖Lu(xi, t)‖C[0,T ] + ‖l ∗ h′i‖C[0,T ]

+‖fi‖C[0,T ] ≤ ‖∂αt hi‖C[0,T ] + c
(
‖ϕ‖

D(Lγ0+ 1
α )

+ ‖ψ‖D(Lγ0 )

+T
α
2 ‖F‖C([0,T ];D(Lγ))

)
+ T

1
2‖l‖C[0,T ]‖h′i‖L2(0,T ) + ‖f̃i‖C[0,T ].

By the definition of F , the last inequality gives

‖Ni[u, l]‖C[0,T ] ≤ ‖∂αt hi‖C[0,T ] + c
[
‖ϕ‖

D(Lγ0+ 1
α )

+ ‖ψ‖D(Lγ0 )

+ T
(
‖q‖C[0,T ]‖ut‖C([0,T ];D(Lγ)) + λ

− 1
α

1 T‖k‖C[0,T ]‖u‖C([0,T ];D(Lγ+ 1
α ))

+ ‖f‖C([0,T ];D(Lγ))

)]
+ T

1
2‖l‖C[0,T ]‖h′i‖L2(0,T ) + ‖f̃i‖C[0,T ], (2.50)

where we have used that

‖v‖2
D(Lγ) =

∞∑
n=1

λ
2γ+ 2

α
n (v, en)2λ

− 2
α

n ≤ λ
− 2
α

1 ‖v‖2

D(Lγ+ 1
α )
.

On the other hand, direct calculations yields

DtNi[u, l](t) = (∂αt hi)
′ + Lut(xi, t)− (l′ ∗ h′i)(t)− f̃ ′i(t). (2.51)

Here we have taken into account that l(0) = 0. By Lemma 2.5, we have

‖DtNi[u, l]‖C[0,T ] ≤ ‖(∂αt hi)′‖C[0,T ] + c
[
‖ϕ‖

D(Lγ0+ 1
α )

+ ‖ψ‖D(Lγ0 )

+Tα−1
(
‖q‖C[0,T ]‖ut‖C([0,T ];D(Lγ)) + λ

− 1
α

1 T‖k‖C[0,T ]‖u‖C([0,T ];D(Lγ+ 1
α ))

+ ‖f‖C([0,T ];D(Lγ))

)]
+ T

1
2‖l′‖C[0,T ]‖h′i‖L2(0,T ) + ‖f̃ ′i‖C[0,T ]. (2.52)

Using (2.50) and (2.52), we obtain the desired estimate given in (2.49).

3 Well-posedness of the inverse problem

We can now prove the existence of a solution to our inverse problem, i.e. Theorem 1.1, which proceeds
by a fixed point argument. First, we define the function set

Bρ,T =
{

(ū, q̄, k̄) ∈ Y T
0 : ū(x, 0) = ϕ(x), ūt(x, 0) = ψ(x), ū(0, t) = ū(1, t) = 0,

‖ū‖XT
0

+ ‖q̄‖C1[0,T ] + ‖k̄‖C[0,T ] ≤ ρ
}
.

Here ρ is a large constant that depends on the initial and source data ϕ, ψ, f , as well on the
measurement data hi. For a given (ū, q̄, k̄) ∈ Bρ,T , we consider

∂αt u(x, t) + Lu(x, t) = F (x, t), (x, t) ∈ QT
0 ,

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x), 0 < x < 1,

u(0, t) = u(1, t) = 0, 0 < t < T,

(3.1)
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where
F (x, t) = q̄(t)ūt(x, t) + (k̄ ∗ ū)(t) + f(x, t),

and
q(t) =

1

p(t)

(
h2(0)N1[u, l̄](t)− h1(0)N2[u, l̄](t)

)
, (3.2)

k(t) =
d

dt

(
h′1(t)N2[u, l̄](t)− h′2(t)N1[u, l̄](t)

p(t)

)
(3.3)

to generate (u, q, k), where l̄(t) =
∫ t

0
k̄(τ)dτ , Ni (i = 1, 2) are the same as those in (2.37).

By Hölder’s inequality, we have

‖(k̄ ∗ ū)(t)‖2
D(Lγ) ≤

∫ t

0

|k̄(t− τ)|2dτ
∫ t

0

‖u(·, τ)‖2
D(Lγ)dτ ≤ λ

− 2
α

1 t2‖k̄‖2
C[0,t]‖ū‖2

D(Lγ+ 1
α )

(3.4)

which implies
‖(k̄ ∗ ū)(t)‖C([0,T ];D(Lγ)) ≤ λ

− 1
α

1 ρ2T.

Furthermore

‖q̄ūt‖2
C([0,T ];D(Lγ)) = max

0≤t≤T

∣∣∣∣ ∞∑
n=1

λ2γ
n (q̄(t)ūt(·, t), en)2

∣∣∣∣ ≤ ‖q̄‖2
C[0,T ]‖ūt‖2

C([0,T ];D(Lγ)) ≤ ρ4. (3.5)

Using these results, along with f ∈ C1([0, T ];D(Lγ)), we have

q̄(t)ūt(x, t) + (k̄ ∗ ū)(t) + f(x, t) ∈ C([0, T ];D(Lγ)).

By Lemma 2.4, the unique solution u ∈ XT
0 to problem (3.1), given by (2.16) satisfies

‖u‖XT
0
≤ c

(
‖ϕ‖

D(Lγ+ 1
α )

+ ‖ψ‖D(Lγ) + Tα−1‖F‖C([0,T ];D(Lγ))

)
, (3.6)

where c > 0 depends only on α. Further, (3.2)-(3.3) define the functions q(t) and k(t) in terms of u.
Furthermore, by Lemma 2.7, we have

‖q‖C1[0,T ] + ‖k‖C[0,T ] ≤ c‖1/p‖C1[0,T ]

(
|h1(0)|+ |h2(0)|+ ‖h′1‖C1[0,T ] + ‖h′2‖C1[0,T ]

)
×
(

1 + (T + Tα−1)(1 + ‖q̄‖C[0,T ]‖ut‖C([0,T ];D(Lγ)))

+ (T 2 + Tα)‖k̄‖C[0,T ]‖u‖C([0,T ];D(Lγ+ 1
α ))

+ T
1
2‖l̄‖C1[0,T ]

)
. (3.7)

Note l̄(t) =
∫ t

0
k̄(τ)dτ . Then, we get

‖l̄‖C1[0,T ] =
∥∥∥∫ t

0

k̄(τ)dτ
∥∥∥
C[0,T ]

+ ‖k̄‖C[0,T ] ≤ (1 + T )‖k̄‖C[0,T ]. (3.8)

Substituting (3.8) into (3.7) yields

‖q‖C1[0,T ] + ‖k‖C[0,T ] ≤ c(T )
[
1 + ‖q̄‖C[0,T ]‖ut‖C([0,T ];D(Lγ))

+ ‖k̄‖C[0,T ]‖u‖C([0,T ];D(Lγ+ 1
α )

+ ‖k̄‖C[0,T ]

]
. (3.9)

This implies that q(t) ∈ C1[0, T ] and k(t) ∈ C[0, T ].
Thus the mapping

Z : Bρ,T → Y T
0 , (ū, q̄, k̄) 7→ (u, q, k) (3.10)

given by (3.1)-(3.3) is well defined.
The next lemma shows that Z is a contraction map on Bρ,T for sufficiently small T > 0. More

precisely, we have the following result.
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Lemma 3.1. Let (C1)-(C4) be hold. For (ū, q̄, k̄), (Ū , Q̄, K̄) ∈ Bρ,T , define

(u, q, k) = Z(ū, q̄, k̄), (U,Q,K) = Z(Ū , Q̄, K̄).

Then for any sufficiently large ρ and suitably small τ(ρ) > 0, we have

‖(u, q, k)‖Y T0 ≤ ρ

and
‖(u− U, q −Q, k −K)‖Y T0 ≤

1

2
‖(ū− Ū , q̄ − Q̄, k̄ − K̄)‖Y T0 (3.11)

for all T ∈ (0, τ(ρ)].

In the following proof, we use cj (j = 7, ...) to denote a constant that depends on α, γ, γ0, λ1, ρ0, c0

and the known functions ϕ, ψ, f and measurement data hi, i = 1, 2, but is independent of ρ.

Proof. First, we prove that Z(Bρ,T ) ⊂ Bρ,T for sufficiently large ρ and suitably small T . Without
loss of generality, we assume that ρ ∈ [1,∞) and T ∈ (0, 1].

By Lemma 2.4 and inequalities (3.4)-(3.6), we have

‖u‖XT
0
≤ cλ

−(γ0−γ)
1 (‖ϕ‖

D(Lγ0+ 1
α )

+ ‖ψ‖D(Lγ0 ))

+ cTα−1
[
‖q̄(t)ūt‖C([0,T ],D(Lγ)) + ‖(k̄ ∗ ū)‖C([0,T ],D(Lγ))

+ ‖f‖C([0,T ],D(Lγ)))
]
≤ c7

[
1 + ρ2Tα−1

]
. (3.12)

Here we have used the assumptions ρ ∈ [1,∞) and T ∈ (0, 1] (and we shall use them further on).
On the other hand, by (3.2)-(3.3), together with Lemma 2.7 and (3.8), we have

‖q‖C1[0,T ] + ‖k‖C[0,T ] ≤ c8

(
‖N1[u, l̄]‖C1[0,T ] + ‖N2[u, l̄]‖C1[0,T ]

)
≤ c9

[
1 + T + Tα−1 + ρ(T + Tα−1)‖ut‖C([0,T ];D(Lγ))

+ ρ(T 2 + Tα)‖u‖
C([0,T ];D(Lγ+ 1

α ))
+ ρT

1
2 (1 + T )

]
≤ c10

[
1 + T + Tα−1 + ρ(T 2 + Tα−1)‖u‖XT

0
+ ρT

1
2 (1 + T )

]
≤ c11[1 + c7ρT

α−1(1 + ρ2Tα−1) + ρT 1/2]

≤ c12[1 + ρ3(Tα−1 + T 1/2)]. (3.13)

Adding inequalities (3.12) and (3.13) gives us

‖(u, q, k)‖Y T0 ≤ c7

[
1 + ρ2Tα−1

]
+ c12

[
1 + ρ3(Tα−1 + T 1/2)

]
≤ c13

[
1 + ρ3

(
Tα−1 + T 1/2

) ]
. (3.14)

For ρ > c13, we choose a sufficiently small τ1(ρ) such that, for ρ > c13 and 0 < T < τ1(ρ)

c13

[
1 + ρ3

(
Tα−1 + T 1/2

) ]
≤ ρ. (3.15)

Therefore, for all T < min{1, τ1(ρ)}, we have

‖(u, q, k)‖Y T0 ≤ ρ. (3.16)
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That is, Z maps Bρ,T into itself for each fixed ρ > c13 and T ∈ (0,min{1, τ1(ρ)}].
Next, we check the second condition of contractive mapping Z. Let (u, q, k) = Z(ū, q̄, k̄) and

(U,Q,K) = Z(Ū , Q̄, K̄). Then we obtain that (u− U, q −Q, k −K) satisfies the equalities

u(x, t)− U(x, t) =

∫ t

0

A−1Y (t− s)F̄ (x, s)ds, (x, t) ∈ QT
0 , (3.17)

and

q(t)−Q(t) =
1

p(t)

(
h2(0)(N1[u, l̄](t)−N1[U, L̄](t))− h1(0)(N2[u, l̄](t)−N2[U, L̄](t))

)
, (3.18)

k(t)−K(t) =
d

dt

(h′1(t)(N2[u, l̄](t)−N2[U, L̄](t))

p(t)
− h′2(t)(N1[u, l̄](t)−N1[U, L̄](t))

p(t)

)
(3.19)

where L̄(t) =
∫ t

0
K̄(τ)dτ and

F̄ := q(ut − Ut) + (q −Q)Ut + k ∗ (u− U) + (k −K) ∗ U.

Using Lemma 2.4, (3.5) and (3.6), we get

‖u− U‖XT
0
≤ c14T

α−1
[
‖(q̄ − Q̄)ūt‖C([0,T ],D(Lγ)) + ‖(ūt − Ūt)q̄‖C([0,T ],D(Lγ))

+ ‖(k̄ − K̄) ∗ ū)‖C([0,T ],D(Lγ)) + ‖k̄ ∗ (ū− Ū)‖C([0,T ],D(Lγ))

]
≤ c14T

α−1
[
‖q̄ − Q̄‖C[0,T ]‖ūt‖C([0,T ];D(Lγ))

+ ‖ūt − Ūt‖C([0,T ],D(Lγ))‖q̄‖C[0,T ] + T 2λ
− 1
α

1 ‖k̄ − K̄‖C[0,T ]‖ū‖C([0,T ],D(Lγ+ 1
α ))

+ T 2λ
− 1
α

1 ‖ū− Ū‖C([0,T ],D(Lγ+ 1
α ))
‖k̄‖C[0,T ]

]
≤ c14ρT

α−1 max{1, T 2λ
− 1
α

1 }
[
‖q̄ − Q̄‖C[0,T ] + ‖ū− Ū‖XT

0
+ ‖k̄ − K̄‖C[0,T ]

]
. (3.20)

Similarly, by (3.18)-(3.19) and Lemma 2.7, we have

‖q −Q‖C1[0,T ] + ‖k −K‖C[0,T ] ≤ c15ρ(T 2 + Tα−1) max{1, T 2λ
− 1
α

1 , T
3
2}

×
[
‖q̄ − Q̄‖C[0,T ] + ‖ū− Ū‖XT

0
+ ‖k̄ − K̄‖C[0,T ]

]
. (3.21)

Therefore, by (3.20) and (3.21), we have

‖(u− U, q −Q, k −K)‖Y T0 ≤ c16ρ
[
Tα−1 max{1, T 2λ

− 1
α

1 }

+ (T 2 + Tα−1) max{1, T 2λ
− 1
α

1 , T
3
2}
]
‖(ū− Ū , q̄ − Q̄, k̄ − K̄)‖Y T0 . (3.22)

Hence, we can choose a sufficiently small τ2 such that

c16ρ
[
Tα−1 max{1, T 2λ

− 1
α

1 }+ (T 2 + Tα−1) max{1, T 2λ
− 1
α

1 , T
3
2}
]
≤ 1/2 (3.23)

for all T ∈ (0, τ2] to obtain

‖(u− U, q −Q, k −K)‖Y T0 ≤
1

2
‖(ū− Ū , q̄ − Q̄, k̄ − K̄)‖Y T0 . (3.24)

Estimates (3.16) and (3.24) show that Z is a contraction map on Bρ,T for all T ∈ (0, τ ], if we choose
τ ≤ min{1, τ1, τ2}.



92 A.A. Rahmonov

Let us now prove Theorem 1.1.

Proof. Lemma 3.1 shows that there exists a sufficiently large ρ > 0 and a corresponding sufficiently
small τ(ρ) > 0, such that, for any 0 < T < τ(ρ), the mapping Z is a contraction on Bρ,T . Hence,
the Banach fixed point theorem guarantees the existence of a unique solution (u, q, k) ∈ Bρ,T ⊂ Y τ

0

to the system (2.36)-(2.38), for sufficiently small τ. As a consequence, the problem constituted by
(1.1)-(1.3) and (1.5) also admits a unique solution (u, q, k) ∈ Bρ,T ⊂ Y τ

0 by Lemma 2.6.

Now, we present a global uniqueness result in time.

Lemma 3.2. Under conditions (C1)-(C4), for given measurement data hi(t) for i = 1, 2 in (1.5), if
the inverse problem (1.1)-(1.3), (1.5) has two solutions (uj, qj, kj) ∈ Y T

0 (j = 1, 2) for any time, then
(u1, q1, k1) = (u2, q2, k2) in [0, T ].

According to Remark 5, we know that (2.36)-(2.38) is equivalent to (1.1)-(1.3), (1.5). In Lemma
3.2, we discuss the global uniqueness of inverse problem (2.36)-(2.38).

Proof. Given any time T , let (ui, qi, ki) (i = 1, 2) be two solutions to inverse problem (2.36)-(2.38) in
[0, T ] such that (ui, qi, ki) ∈ Y T

0 . This implies

‖(ui, qi, ki)‖Y T0 ≤ C∗, i = 1, 2, (3.25)

where C∗ > 0 depends only on α, T , initial data ϕ and ψ, the known function f and measurement
data hi.

Let
ũ = u1 − u2, q̃ = q1 − q2, k̃ = k1 − k2.

Then (ũ, q̃, k̃) satisfies
∂αt ũ+ Lũ = q1ũt + q̃u2t + k1 ∗ ũ+ k̃ ∗ u2, (x, t) ∈ QT

0 ,

ũ(x, 0) = ũt(x, 0) = 0, 0 < x < 1,

ũ(0, t) = ũ(1, t) = 0, 0 < t < T,

(3.26)

and
q̃(t) =

1

p(t)

(
h2(0)Lũ(x1, t)− h1(0)Lũ(x2, t)− l̃ ∗ p

)
, (3.27)

k̃(t) =
d

dt

[h′1(t)
(
Lũ(x2, t)− l̃ ∗ h′2

)
− h′2(t)

(
Lũ(x1, t)− l̃ ∗ h′1

)
p(t)

]
, (3.28)

where l̃(t) = l1 − l2 and li(t) =
∫ t

0
ki(s)ds. We have to show

‖(ũ, q̃, k̃)‖Y T0 = 0. (3.29)

Define
σ = inf

{
t ∈ (0, T ] : ‖(ũ, q̃, k̃)‖Y t0 > 0

}
. (3.30)

If (3.29) does not hold, then it is clear that σ is well-defined and satisfies 0 ≤ σ ≤ T . Moreover,
by Theorem 1.1, we have σ > 0, and σ < T follows from the fact that ‖(ũ, q̃, k̃)‖Y T0 > 0 and the
continuity of the norm with respect to time t.

Let 0 < ε < T − σ. Further, by (2.16), we can write the solution ũ as

ũ(x, t) = −
∫ t

0

L−1Z3(t− s)F̃ (x, s)ds, (x, t) ∈ Qσ+ε
σ , (3.31)
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where
F̃ (x, t) = q1ũt + q̃u2t + k1 ∗ ũ+ k̃ ∗ u2.

Then, similarly to the proofs of Lemma 2.4 and 2.5, we have

‖ũ‖Xσ+ε
σ
≤ cεα−1‖F̃‖C([σ,σ+ε];D(Lγ)), (3.32)

and {
‖Lũ(xi, ·)‖C[σ,σ+ε] ≤ c17ε‖F̃‖C([σ,σ+ε];D(Lγ)),

‖Lũt(xi, ·)‖C[σ,σ+ε] ≤ c18ε
α−1‖F̃‖C([σ,σ+ε];D(Lγ)).

(3.33)

From the definition of σ, we see that

ũ = q̃ = k̃ = 0 in [0, σ]. (3.34)

By the definition of F̃ , and using (3.4), (3.5) and (3.25), we have

‖ũ‖Xσ+ε
σ
≤ c19ε

α−1
(
‖q1ũt‖C([σ,σ+ε];D(Lγ)) + ‖q̃u2t‖C([σ,σ+ε];D(Lγ))

+ ‖k1 ∗ ũ‖C([σ,σ+ε];D(Lγ)) + ‖k̃ ∗ u2‖C([σ,σ+ε];D(Lγ))

)
≤ c20C

∗εα−1
(
‖ũt‖C([σ,σ+ε];D(Lγ)) + ‖q̃‖C[σ,σ+ε]

+ λ
− 1
α

1 ε‖ũ‖
C([σ,σ+ε];D(Lγ+ 1

α ))
+ λ

− 1
α

1 ε‖k̃‖C[σ,σ+ε]

)
. (3.35)

Due to q̃(σ) = 0, then implies

‖q̃‖C[σ,σ+ε] = max
σ≤t≤σ+ε

|
∫ t

σ

q̃′(s)ds| ≤ ε‖q̃‖C1[σ,σ+ε]. (3.36)

Substituting (3.36) into (3.35), we have

‖ũ‖Xσ+ε
σ
≤ c20C

∗εα−1 max{1, ε, λ−
1
α

1 ε}‖(ũ, q̃, k̃)‖Y σ+ε
σ

. (3.37)

Note ‖q̃‖C1[0,σ] = ‖k̃‖C[0,σ] = 0. On the other hand, by (3.27), and using (3.33), we have the following
estimate for q̃

‖q̃‖C1[σ,σ+ε]

≤ c21(ε+ εα−1)
(
‖h2(0)/p(t)‖C1[σ,σ+ε] + ‖h2(0)/p(t)‖C1[σ,σ+ε]

)
‖F̃‖C([σ,σ+ε];D(Lγ))

+ ε1/2‖p‖C[σ,σ+ε]‖l̃‖C[σ,σ+ε]

≤ c21C(‖h1‖C1[0,T ], ‖h2‖C1[0,T ])(ε+ εα−1)
(
‖ũt‖C([σ,σ+ε];D(Lγ)) + ε‖q̃‖C1[σ,σ+ε]

+ λ
− 1
α

1 ε‖ũ‖
C([σ,σ+ε];D(Lγ+ 1

α ))

)
+ C(‖h1‖C[0,T ], ‖h2‖C[0,T ])ε

3/2‖k̃‖C[σ,σ+ε], (3.38)

where we have used that

‖l̃‖C[σ,σ+ε] = max
σ≤t≤σ+ε

|
∫ t

σ

k̃(s)ds| ≤ ε‖k̃‖C[σ,σ+ε].

Similarly to (3.38), by (3.28) we can easily estimate k̃

‖k̃‖C[σ,σ+ε] ≤ C(‖h1‖C2[0,T ], ‖h2‖C2[0,T ])
[
c21(ε+ εα−1)

(
‖ũt‖C([σ,σ+ε];D(Lγ))

+ ε‖q̃‖C1[σ,σ+ε] + λ
− 1
α

1 ε‖ũ‖
C([σ,σ+ε];D(Lγ+ 1

α ))

)
+ ε3/2‖k̃‖C[σ,σ+ε]

]
. (3.39)
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From (3.37)-(3.39), we obtain

‖(ũ, q̃, k̃)‖Y σ+ε
σ
≤ C(‖hi‖C2[0,T ], C

∗)η(ε)‖(ũ, q̃, k̃)‖Y σ+ε
σ

(3.40)

with
lim
ε→+0

η(ε) = lim
ε→+0

(
ε+ 2εα−1 + ε3/2

)
max{1, ε, λ−

1
α

1 ε} = 0,

and implying
‖(ũ, q̃, k̃)‖Y σ+ε

σ
= 0

for some sufficiently small positive constant ε. This means that (u1− u2, q1− q2, k1− k2) vanishes in
[0, σ + ε], which contradicts with the definition of σ. Therefore (3.29) is proved. From here, we can
conclude that

(u1, q1, k1) = (u2, q2, k2) in [0, T ]

for any time T .

4 Examples

In this section, as an illustration, we provide two examples of inverse problem (1.1)-(1.3), (1.5).
Example 1. In this example, we consider inverse problem (1.1)-(1.3), (1.5) with the following input
data:

ϕ(x) = sin 2πx, ψ(x) =
(
(8− 16

√
2)x2 + (8

√
2− 2)x

)
sin πx, x1 := 1

4
, x2 := 1

2
,

f(x, t) = −ϕ′′(x)−
[(
ψ′′(x) + (64− 74

√
2 + 7π2)ψ(x)

)
t+ (48− 42

√
2 + 8π2)t2ψ(x)

]
−
[
(48− 42

√
2 + 8π2)t+ 4π2t2

]
ϕ(x),

h1(t) := 1 + t, h2(t) := t.

It is easy to see that all functions given in Example 1 satisfy conditions (C1)-(C4).
Then, the exact solution of the inverse problem is

u(x, t) = ϕ(x) + ψ(x)t, k(t) = 48− 42
√

2 + 8π2 + 8π2t,

q(t) = (64− 74
√

2 + 7π2)t+ (24− 21
√

2 + 4π2)t2 − 4π2

3
t3.

Example 2. In this example, we consider inverse problem (1.1)-(1.3), (1.5) with the following input
data: 

ϕ(x) = sin 2πx, ψ(x) =
(
(8− 16

√
2)x2 + (8

√
2− 2)x

)
sin πx, x1 := 1

4
, x2 := 1

2
,

f(x, t) = −ϕ′′(x) + ϕ(x)ϕ′′(x1)

−
[
ψ′′(x) + (ϕ(x)− ψ(x))ψ′′(x2) + (ϕ′′(x1)− ψ′′(x1))ϕ(x)

]
cos t,

h1(t) := 1 + t, h2(t) := t.

Then the exact solution of the inverse problem is

u(x, t) = ϕ(x) + ψ(x)t, k(t) = 48− 42
√

2 + 4π2 sin t,

q(t) = (−64 + 74
√

2− 3π2)t+ (24− 21
√

2)t2 + 4π2 sin t.

Since the inverse problem considered in equations (1.1)-(1.3), (1.5) is nonlinear, hence, an ana-
lytical solution cannot be found, however, to obtain the exact solutions provided in Examples 1 and
2, we employed a reverse approach: first, we define the functions ϕ, ψ, h1, h2 that satisfy conditions
(C1)-(C4) and the function u(t, x) that satisfies conditions (1.2), (1.3) and (1.5), then we determine
the remaining functions q, k, f from the system of equations (2.36)-(2.38).
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A. Gogatishvili (Czech Republic), B.E. Kanguzhin (Kazakhstan), R.M. Kamatov (Kazakhstan), B.S.
Koshkarova (Kazakhstan), P.D. Lamberti (Italy), M.B. Muratbekov (Kazakhstan), I.N. Parasidis
(Greece), M.A. Sadybekov (Kazakhstan), A.M. Sarsenbi (Kazakhstan), A.Yu. Seipisheva (Kaza-
khstan), T.V. Tararykova (Russia), N.T. Tleukhanova (Kazakhstan), B.H. Turmetov (Kazakhstan),
J.A. Tusupov (Kazakhstan).

Executive secretary: A.M. Temirkhanova.
Secretariat: R.D. Akhmetkaliyeva, A.N. Beszhanova, Рђ.Рђ. Dzhumabayeva, D.S. Karatay,

A.N. Sharipova, D. Matin, Zh.B. Mukanov, B.S. Nurimov, Zh.B. Eskabylova, A. Kankenova, I.
Gaidarov, D. Sarsenaly, N. Zhanabergenova, A. Abek, Ye.O. Moldagali.

Conference Schedule:

08.01.2025
09.00 – 10.00 Registration
10.00 – 10.10 Opening of the conference
10.30 – 12.50 Plenary talks
12.50 – 14.00 Lunch
14.00 – 18.10 Session talks

09.01.2025
10.00 – 13.00 Plenary talks
13.00 – 14.00 Lunch
14.00 – 18.50 Session talks
19.00 – Dinner for participants of the conference

10.01.2025
10.00 – 12.30 Plenary talks
12.30 – 13.00 Closing of the conference
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At the opening ceremony welcome speeches were given by A.B. Beisenbai, Vice-Rector for Aca-
demic Affairs of the ENU, Co-chair of the Organizing Committee of the conference; V.I. Burenkov,
professor of the RUDN University, Editor-in-Chief of the EMJ.

Plenary talks were given by
V.I. Burenkov (Russia), E.D. Nursultanov (Kazakhstan), M.A. Sadybekov (Kazakhstan) – on

08.01.2025;
A. Muravnik (Russia), T. Nurlybekuly (Kazakhstan), M.I. Dyachenko (Russia), N. Markhabatov

(Kazakhstan) – on 09.01.2025;
D. Suragan (Kazakhstan), D.E. Apushkinskaya (Russia), A. Kashkynbayev (Kazakhstan) – on

10.01.2025.
At the closing ceremony all participants unanimously congratulated the staff of the L.N. Gumilyov

Eurasian National University and the Editorial Board of the Eurasian Mathematical Journal with
the 15th anniversary of the journal and wished further creative successes.

They expressed hope that the journal will continue to play an important role in the development
of mathematical science and education in Kazakhstan in the future.

V.I. Burenkov, K.N. Ospanov, A.M. Temirkhanova
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