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1 Introduction

Let a closed linear operator L be given in a Hilbert space H. The linear equation
Lu=f (1.1)

is said to be well-definedly solvable on R(L) if ||u|| < C||Lu|| for all w € D(L) (where C' > 0 does
not depend on u) and everywhere solvable if R(L) = H. If is simultaneously well-defined and
solvable everywhere, then we say that L is a well-defined operator. A well-definedly solvable operator
Ly is said to be minimal if R(Ly) # H. A closed operator L is called a mazimal operator if R(L) = H
and Ker L # {0}. An operator A is called a restriction of an operator B and B is said to be an
extension of A if D(A) C D(B) and Au = Bu for all u € D(A).

Note that if one of the well-defined restriction L of a maximal operator L is known, then the
inverses of all well-defined restrictions of L have in the form [9]

L f=L"'f+KJ, (1.2)

where K is an arbitrary bounded linear operator in H such that R(K) C Ker L.

Let Lo be a minimal operator, and let M, be another minimal operator related to Ly by the
equation (Lou,v) = (u, Mov) for all u € D(Ly) and v € D(My). Then L = Mg and M = Lj
are maxir/r\lal operators such that Ly C L and My C M. A well-defined restriction L of a maximal
operator L such that L is simultaneously a well-defined extension of the minimal operator L is called
a boundary well-defined extension. The existence of at least one boundary well-defined extension L
was proved by Vishik in [I4], that is, Lo C L C L.

The inverse operators to all possible well-defined restrictions L of the maximal operator L have

form , moreover
D(Lg)={ue D(L): (I - KL)u€ D(L)}
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is dense in H if and only if Ker (I + K*L*) = {0}. All possible well-defined extensions My of M,
have inverses of the form

M f = (L) f = (L) f+ K f,
where K is an arbitrary bounded linear operator in H with R(K) C Ker L such that
Ker (I + K*L*) = {0}.
The main result of this work is the following.

Theorem 1.1. Let L be a boundary well-defined extension of Lg, that is, Ly C L C L. If Lg s
densely defined in H and
R(K™) C D(L*)n D(LY),

where K and L are the operators in representation (1.2), then the operator KLy, where the bar
denotes the closure of an operator in H, is bounded in H and a well-defined restriction Ly of the
mazximal operator L is similar to the well-defined extension

AK =L —EKL on D(AK) = D(L),

of the minimal operator Ay, where D(Ag) = D(L) N Ker(KLgL) and Ayu = Lu on D(Ag) (hence,
Ag C L)

The theory of well-defined restrictions and extensions is intended for the study of unbounded
operators in a Hilbert space. A well-defined restriction of a certain maximal operator L is obtained
by the domain restriction of the maximal operator. All possible well-defined restrictions Lg are
described using one fixed boundary well-defined restriction L in terms of the inverse operator .
Then the direct operator Lx acts as a maximal operator, and its domain is given as a perturbation
of the domain of a fixed boundary well-defined restriction L.

The main result of this work is the description of all well-defined restrictions Lg, which are similar
to the well-defined extension Ay, of some minimal operator Ag. The domain of Ak coincides with
the domain of L, and the action is defined as a perturbation of L.

It is clear that the spectra of these similar operators Ly and Ay coincide. Their eigenvectors
are different. Further in the work, examples of the application of this abstract theorem to some
differential equations are given. We note that a weak perturbation of the boundary condition L is
equivalent to a singular perturbation of the action of the differential operator L.

The study of the properties of singular perturbations of some differential operators and well-
defined restrictions is devoted to the works [5], [8].

2 Preliminaries

In this section, we present some results for the well-defined restrictions and extensions [3] which are
used in Section 3.

Let A and B be bounded operators in a Hilbert space H. Operators A and B are said to be
similar if there exist an invertible operator P such that P~'AP = B. Similar operators have the
same spectrum. If at least one of two operators A and B is invertible, then the operators AB and
BA are similar.

Lemma 2.1. Let L be a densely defined well-defined restriction of a mazximal operator L in a Hilbert
space H, and K be a bounded linear operator in H. Then the operator KL is bounded on D(L)
(hence, KL is bounded in H) if and only if

R(K*) c D(L*).
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Proof. Let R(K*) C D(L*). Then, by virtue of the equality (KL)* = L*K*, we have that KL is
bounded in H. Here we have used the boundedness of the operator L*K*. Then the operator KL is
bounded on D(L). Conversely, let KL be bounded on D(L). Then KL is bounded on H, by virtue
of the equality (KL)* = (KL)* and, hence, the operator (KL)* is defined on the whole space H.
Moreover, the operator K* transfers any element f in H to D(L*). Indeed, for any element g of
D(L) we have

(Lg, K" f) = (KLg, f) = (9, (KL)"f).
Therefore, K*f belongs to the domain D(L*). O

Lemma 2.2. Let Lix be a densely defined well-defined restriction of a mazximal operator Lina
Hilbert space H. Then D(L*) = D(L%;) if and only if R(K*) C D(L*) N D(L3), where L and K are
the operators entering representation (|1.2]).

Proof. If D(L*) = D(L3},), then by representation (|1.2)) we easily get
R(K*) C D(L*)ND(Ly) = D(L*) = D(L}).

Let us prove the converse. If
R(K*) C D(L*)ND(L%),

then we obtain

(L) f= (L) f+ K f = (L)' (I+ L'K") f, (2.1)
(L) = (L)' f = K*f = (Li) "' (I = LK) f, (2.2)
for all fin H. It follows from that D(L3,) C D(L*), and taking into account this implies
that D(L*) € D(L%). Thus D(L*) = D(L%). 0

Corollary 2.1. Let Lk be any densely defined well-defined restriction of a mazimal operator Lina
Hilbert space H. If R(K*) C D(L*) and KL is a compact operator in H, then

D(L*) = D(L%).

Proof. Compactness of KL implies compactness of L*K*. Then R(I + L*K*) is a closed subspace
in H. It follows from the dense definiteness of Ly that R(I + L*K*) is a dense set in H. Hence
R(I + L*K*) = H. Then from the equality (2.1) we get D(L*) = D(L3). O

Lemma 2.3. If R(K*) C D(L*)ND(L%), then the bounded operators I + L*K* and I — Lj,K* from
(2.1) and (2.2)), respectively, have bounded inverses defined on H.

Proof. By virtue of the density of the domains of the operators L} and L* it follows that the

operators [ + L*K* and I — L3 K* are invertible. By (2.1) and (2.2)) we have Ker (I + L*K*) = {0}

and Ker (I — L, K*) = {0}, respectively. By representations (2.1) and (2.2) it also follows that
RI+L'K*)=H and R(—L,K*) =H,

since D(L*) = D(L%). The inverse operators (I +L*K*)~' and (I — Lj K*)~! of the closed operators
I — L K* and I + L*K*, respectively, are closed. Then the closed operators (I + L*K*)~! and
(I — L3 K*)7!, defined on the whole of H, are bounded. O

Under the assumptions of Lemma [2.3[the operators KL and K Ly will be (see [2]) restrictions of
the bounded operators KL and K Ly, respectively. Thus,

(I-Li K '=I+L*K* and (I-KLg)'=1+KL.
In what follows, we need the following theorem.

Theorem 2.1 (Theorem 1.1 [6, p.307]). A sequence {1;}52, biorthogonal to a basis {¢;}52, of a
Hilbert space H is also a basis of H.
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3 Proof of Theorem [1.1

In this section we prove our main result Theorem

Proof. We transform ([1.2]) to the form
Lt =L"'"+K=(I+KL)L" (3.1)

By Lemma and Lemma the operators KL and K Ly are bounded, the operator I + KL is
invertible and
(I+KL)y'=1-KLg.

Then we have

A = I+ KL) 'L (I +KL)
= (I+KL'(U+KL)L*I+KL)=L"'(I+KL).
Hence, by Corollary 1 [4], p.259] we have D(Ax) = D(L) and
Ax = (I -KLg)L =L —KLgL.

Note that Ax = Ag = L on D(Ag) = D(L)NKer (KLgL) and Ak is a well-defined extension of the
minimal operator Ay. [

Corollary 3.1. Suppose the hypothesis of Theorem 18 satisfied. Then a well-defined extension
L3 of a minimal operator My is similar to the well-defined operator

At = L*(I — LK)

on

D(Ay)={ve H: (I - LyK*)v e D(L*)}.

4 An application of Theorem (1.1| to the differentiation operator

of order n

In this section, we give some applications of the main result to differential operators.
As a maximal operator L in L?(0,1), we consider the operator

Ly =y,

~

with the domain D(L) = W}(0,1), n € N (W3(0,1) in the Sobolev space). Then the minimal
operator Ly is the restriction of L on D(Ly) = W} (0,1). As a fixed boundary well-defined extension
L of the minimal operator L, we take the restriction of L on

D(L) = {y e W3(0,1): y9(0) +yP (1) =0, £=1,2,....,n—1}.
We find the inverse to all well-defined restrictions of Ly C L

L =L+ K,
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where
n 1
Kf= ng(x)/ f()F,(t)dt, o, € L*0,1),
=1 0
and w, € Ker Z, ¢=1,2,...,n are linearly independent functions with the properties

_ - 1, L=k,
wék 1)(0)—|—wék 1)(1):{0 (4K (k=1,2,...,n

Then the operator Ly is the restriction of L on

D(Lk)
= {u e Wi(0,1) : u*V(0) + ukY(1) = /1 u™ ()T (t) dt, k=1,2,... n} :

We will consider restrictions of Lx with dense domains in L?(0, 1), that is,
D(Ly) = L*(0,1).

If R(K*) C D(L*), then by Corollary B.1] the operators KL and K Ly will be bounded in L2(0, 1).
Since KL is a compact operator, then by Lemma the operator I + KL is invertible and (I +
KL)™' =1 — KLg. The operator KL is bounded if and only if

or € D(L*) = {o, e W(0,1) : o) (0) + 0 V(1) =0, 6,k=1,2,...,n}.

Hence, we have

KLy = wi(x) / Yy (071 dt = (—1)" 3 wi() / y(t)y" (t) dt.

We find the operator K Lg. For this, we invert the operator

(I+KLy=y+(-1)"> wx) / YO (t) dt = u,
(=1 0

where y € D(L), u € D(Lk). Then we can write

y= (1= KLy =u— (=" wila) 3 B /0 u(t)7 (1) dt,

where (g, ¢,j =1,2,...,n are elements of the inverse matrix U~! of the matrix U
U
L (Dt ) (1)) e 320 <30 3i(0)
| om0 1+ () 0) e 720) —5(0)  7a(0)
(C)EEO) () A0) e () —a(0) 1+7,(0)

Note that the conditions R(K*) C D(L*) and D(Lg) = L?*(0,1) imply that det U # 0. Thereby, the

operator
KLKU— — ng Zﬂg]/ F" (t)dt,
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is a bounded operator in L?(0,1). Then the operator Ax has the form

Agv=Lv— KLgLv = 0™ ng ZﬁgJ/ n)(t)dt,

on

D(Ag) = D(L) = {v e W3(0,1) : v*D(0) +o* V(1) =0, k=1,2,...,n}.

The operator Ax can be written as

Ao =v™ — (=1)" Y wi(w) Y Br F(v)
P =1

where )
Fi(v) =< Fj,v >:/ VW E (t) dt, j=1,2,...,n.
0

It can be seen that F; € W5 "(0,1) in the sense of Lions-Magenes (see [10]).
In this case

D(Ay) ={ve D(L): Fj(v)=0, j=12,...,n},

Ay C L and Ay C Ax.
We transform the boundary conditions of L to the form

w(0) + u(1) fo t 5§ t dt
w1 (0) + u=D(1) i uta) @) d

Then we get

WD (0) 4 e ZB@/ ()7 () dt, £=1,2,. (4.1)

where u € D(Lg), a§n) € L*0,1), 7 = 1,2,...,n. Boundary condition is regular in the
Shkalikov sense (see [I2]). Then, by virtue of [I2], the operator Lx has a system of root vectors
forming a Riesz basis with brackets in L?*(0,1). Thereby the operator Ag, being similar to the
operator Ly, also has a basis with brackets property. The eigenvalues of these operators coincide. If
{uy }3° are eigenfunctions of the operator Ly, then the eigenfunctions vy of Ax are related to them

by the relations
= (I 4+ KLy, = v, + (— sz / () dt, k=1,2,....n

If, in particular, we take
Uzgn)@) =sign(x —x), 0<z, <1, £=12,....n

then we get
Fy(v) = =20 Y(zy), £=1,2,...,n
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By Corollary Theorem and |13 p.928|, we can assert that the system of root vectors of the
adjoint operator

i = (1 o) = (" 3 Bl ) [ tentoya]

dx™ A
4,j=1

on

D(A}) = {v € L*(0,1) : v(z) — (=1)" Z ngajn)(x)/o v(t)we(t) dt € D(L)},

£,j=1

forms a Riesz basis with brackets in L?(0,1).

5 Example in case n = 2

If the maximal operator L acts as
"

Ly=—y
on the domain D(L) = W2(0,1), then the minimal operator Ly is a restriction of L on D(Lg) =
W2(0,1). As a fixed operator L we take the restriction of L on

D(L) = {y € W§(0,1) : y(0) = y(1) = 0}.
Then
Lf=L"'"f+Kf= —/Om(x—t)f(t)dt—i—x/o (1—t)f(t)dt
+(1—x)/0 f(t)a(t) dt+x/0 f(t)aa(t)dt,

Kf=(1-u1) /01 £ () dt + x/; FOF () dt.
KL is bounded in L2(0,1), if R(K*) C D(L*) = D(L), that is,
o1, 02 € D(L) = {o1,02 € W3(0,1) : 61(0) = 01(1) = 02(0) = 05(1) = 0},
and has the form ) X
KLy=—(1—2) /O (BT (1) dt — /0 y(EF(1) dt.
The operator K L is also bounded in L?(0,1) and

l1—2z

KLgu=——"[(1-0) /01 w5 (1) dt+6’1(1)/01u(t)6’2’(t) ]

- 20 mo) [ wostoa -0 [ ot o)

where

A= (1+71(0))(1—a%(1)) +75(0) 77 (1).
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Then the operator Ax has the form

Agv = =o' — %[((1 — 2)(1 = 7y(1)) — 255(0)) /O V(0 (L) dt

1
+ (1 = 2)7)(1) + (1 +71(0))) / v ()T (t) dt},
0
on
D(Ak) =D(L) = {v e W3(0,1) : v(0) =v(1) =0},
where o, ol € L*(0,1).
We rewrite the operator Ay in the form

Agv = —v"+a(x)Fy(v) + b(z) F3(v), (5.1)

where
ale) = —5 (1= D)1= 7(1) =270). Fi(w) = [ V070
1

b(z) = ——((1 — 2)71(1) + z(1 +71(0)), Fo(v) = /0 V" ()75 () dt.

Note that Fy, Fy € W5 2(0,1) in the sense of Lions-Magenes (see [10]).
Further, we see that the operator L acts as L on the domain

D(Lg) = {u € W3(0,1) :

)
( 1+a,0) 0 —a}(1) o) W) | _ [ = Jy u®)F () dt
75(0) 0 1-a5(1) 0 (1) — [Ju)zytydt) |
and the determinant of the matrix composed of the first and third columns of the boundary conditions
matrix is

Jiz = (1+7(0)) (1 —75(1)) +75(0) 77 (1) = A #0,

since R(K*) C D(L*) and D(Lk) = L?*(0,1). Then the left-hand side of this boundary condition
is non-degenerate according to Marchenko [I1], hence regular according to Birkhoff (see [12]). By
virtue of Theorem (see [12], p. 15]), the system of root vectors of the operator Lk forms a Riesz basis
with brackets in L?(0,1). Thus, by virtue of Theorem the system of root vectors of Ag also
forms a Riesz basis with brackets and the eigenvalues of Lx and Ag coincide, and the eigenfunctions
are related to each other as follows

up =vp — (1 — x)/o v(t)ay (t) dt — x/o v(t)ay(t) dt, ke N.

If in the particular case we take

o (x) = sign(z — 1) — sign(z — z3),

7y () = x[sign(z — 1) — sign(z — z3)],



16 B.N. Biyarov

where 0 < 1 < x5 < 1, then we get

Fi(v) = 20" (22) — 20" (1),
Fy(v) = 2290 (29) — 2210 (1) — 20(x2) + 20(11),
in (51).

In this case
D(Ag) ={v e D(L) : v(zy) =v(xs), v'(x1)="1"(22)},

Ay C L and Ay C Ag.
By Corollary [3.1] Theorem and [I3] p.928|, for n = 2, we can assert that the system of root
vectors of the operator

2 4

Ajw = (=1 [v(:v)—c(x) /01(1—t)v(t) dt — d(z) /01 to(t) dt],

D(A30) = {v e 2(0,1) : w(z) - c(:c)/o (1 tyo(t) dt — d(x)/o oty dt € D(L) ),
forms a Riesz basis with brackets in L?(0,1), where
(w) = =5 | (1 = o5(D) ol () + o1 (V)03 ()],

() = 5 [(1+61(0))74(2) ~ o400 ()]

Note that
ot 05 € L*(0,1), D(L) = {y € W3(0,1): y(0) =y(1) = 0}.

For clarity, we consider the special case (5.2), then we have

' — 1) — si _ 3.3 .2 .2
() = sign(x — x1) ASlgn(aU ) {1 s el G 9614,

d(z) = sign(z — z1) — sign(z — 2) [(1 + T2 — 21 — i I%)x

A

The domain of A will have the form
D(A3) = {v € L*(0,1) N W2(0,z1) N WE(xy, 29) N WE(x5,1) : v(0) = v(1) =0,

oy — 0) — v(zs +0) = —c(ay +0) /01(1 ~ t)o(t) dt — d(a, +0) /01 to(t) dt,

o(w2 4+ 0) — v(za — 0) = —c(za — 0) /01(1 ~ o(t) dt — d(zs — 0) /01 to(t) dt.
oy = 0) = o (21 + 0) = =/ (a1 + 0) /01(1 — t)o(t) dt — d' (21 + 0) /01 fo(t) dt,

V(xg +0) — 0 (22 — 0) = = (29 — O)/0 (1—t)v(t)dt — d'(xe — O)/O to(t) dt},
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where
c<x1+0>—%(1+x3;ﬁ’—5”3;“’%9:1),
d($1+0):_%<(1+x2—x1—x2;x%)xl_x%;x% 37:25;55?)7
c(:pZ—O):% 1+x%;$?_$§;x%$2>7
o0 -2y o A
/(0 +0) =~ 5 (e 1),
d’(:c1+0):%(1+m1_x2+x§;x%)7
d(xy—0)=Cd(x1+0), d(xy—0)=d(x;+0),
A:1+l‘2—x1_x§;x% x%;ﬁ) xZ;Qxl((Iz—m1)3+6x1x2)7é0,

since 1, x9 € (0,1). Moreover, the operator A} acts as follows

Ao = —"(z) + () /O (1= tyo(t) dt + d' () /O fo(t) dt,

where
d'(x) = % [1 + 22 g g ; al (g — xl)l (8'(x — 1) = 0'(z — 22))
Lo o
- Z(xQ —27) (6(z — 21) — 6(z — 32)),

2 T
1! _ = o 2 1 o o
d(x)_A{(sz -2 )(:m m) - 2 B

X (5’(x —x1) =8 (x — 1:2))

1<1+ B Bk
- — Tog— T
A S

)(5(3: —z1) — 6(z — x9)),

here ¢ is the Dirac delta-function.

6 An application to the Laplace operator

In the Hilbert space Ly(2), where Q is a bounded domain in R™ with infinitely smooth boundary
0f, let us consider the minimal Ly, and maximal L operators generated by the Laplace operator

0’u  0%u 0%u
) (6.1

The closure Lg in the space Lo(2) of the Laplace operator (6.1) with the domain C§°(2) is called
the minimal operator corresponding to the Laplace operator.
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The operator E, adjoint to the minimal operator L corresponding to the Laplace operator is
called the maximal operator (see [7]). Note that

D(L) = {u € Ly(Q) : Lu=—Au € Ly(Q)}.
Denote by L the operator corresponding to the Dirichlet problem with the domain
D(L) = {u € Wi (Q) : u|osq = 0}.

Then the inverse operators Ll}l to all possible well-defined restrictions of the maximal operator L
corresponding to the Laplace operator (6.1)) have the following form:

u= L f=L"f+Kf, (6.2)
where K is an arbitrary bounded (in Lo(2)) linear operator with
R(K) CKerL = {u € Ly(Q) : —Au = 0}.
Then the direct operator L is determined from the following problem:

Lu=f, [f€LyQ), (6.3)

~

D(Lg) ={ue D(L): (I — KL)u|sq =0}, (6.4)

where [ is the unit operator in Ls(£2). There are no other linear well-defined restrictions of the
operator L (see [I]).
The operators (L% )~!, corresponding to the operators L,

v = (L}“()‘lg =L 'g+ K*g,

describe the inverse operators to all possible well-defined extensions of the minimal operator Lg if
and only if K satisfies the condition (see [1])

Ker (I + K*L) = {0}.

Note that the last condition is equivalent to the following one: D(Lg) = Lo(2). If the additional
condition

KR(Lo) = {0}

is imposed on the operator K from (6.2), then the operator Lk corresponding to problem (6.3)), (6.4)),
will turn out to be boundary well-defined. By applying Theorem to this particular case we have

Theorem 6.1. Let the operator K have the form

Kf(z) = d(x) / / (€)9E)de, x, E€QCR™,

where ¢ is a harmonic function in Ly(Q), g € Ly(Q), and

K*f(a) = gla) [ [ riyatee
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If K satisfies the assumptions of Theorem then g € W2(Q), g(x) |sa= 0,

[ s 21

and the well-defined operator

= —Aulx qb(x) U q
An(e) = ~8ule) ¢ T e / [aw©a @,

D(Ag) = {u e W2(Q) : (u(@) |pa= o}

describes a relatively bounded perturbation of Ly which has the same eigenvalues as L.
The system of root vectors of Ak is complete in Lo(2). Morever, if {vi} is a system of eigen-
functions of Ly , then the system of eigenvectors {u} of Ak has the form

wn(@) = (I + KD)u)() = wi(a) + olx) / / w(6)(AG)(E)de, k=1,2,...
Q

We can rewrite

¢(z)

Axule) = —Aulo) + 7 IEGIEIGLE

F(u),

where

Fu) = / / (M) (€)(AF)(€)d.

Note that ' € W5 2(9) in the sense of Lions-Magenes (see [10]).
In this case

D(Ag) = { e D(L) - / / (Au)(€)(AT)(E)de = o} ,
Q

Ag C L and Ay C Ak.

Consider a more visual cases when m = 2 and m = 3, that is, Q C R? and Q C R? respectively.
To do this, we define the operator K by using the function g constructed in the following way. Let
Ty € Q, be a point lying strictly inside the closed domain Q. As functions g(z) we take the solution
to the following Dirichlet problem

— (Ag)(z) = —In|z —xo|, gloa =0, (6.5)
for m = 2 and
—(Ag)(z) = |z — 0|, gloa =0, (6.6)
for m = 3, respectively. Then we get the following:
- ola) du

¢(x)u(wo)

iy [T 9(€) I € = au)dE’

D(Ag) = {u e W2(Q) : u(z) |po= o}
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for the case m = 2 and

#() du, 1
=] ¢<5>md5£ on el ®

¢(x)u(zo)
1+ éf A& gy dE’

Agu(z) = —Au(z) +

+

D(Ag) = {u e W2(Q) : ul) |on= o}

for the case m = 3. We have obtained a relatively bounded perturbation Ag of Lx which has the
same eigenvalues as the operator Lg. The system of root vectors of A is complete in the Ly(Q2). If
{vk} is a system of eigenfunctions of Lk, then the system of eigenfunctions {ux} of Ax has the form

un(z) = (T + BL)u) (x) = v (x) + 6(x) / / o) Inf¢ — molde, k=1,2,....

in the case m = 2 and

(o) = (1 + KDue)a) = vn(o) + (o) [ [ on()7=

|§—l’o

de, k=1,2,...,

in the case m = 3, respectively.
Thus, we have constructed a singular perturbation Ag of the Ly with a complete system of root
vectors. Indeed,
L=L"'"+K=(I+KL)L",

where KL is compact operator, I + K L is invertable operator. Selfadjoint operator L~! is positive,
compact and belongs to the Neumann-Schatten class. Then by Theorem 8.1 [6], p. 257|the system of
root vectors Ly is complete in Ly(£2). Hence, by Theorem the system of root vectors of Ax is
complete in Ly(€).
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1 Introduction and problem statement

Everywhere below in this paper we denote by

fla,x) = %-}-;ancosnm (1.1)

and o
g(a,x) = Zan sin nx (1.2)

n=1

for all = for which the corresponding series converges.

It is known that one of the most important classes of trigonometric series is the class of series
with monotone coefficients, i.e. the sequence @ = {a,} —, is such that a, | 0 as n — oco. In this
case series and have a lot of very good properties. For instance, the following theorem
was proved by G. Hardy and J. Littlewood.

’I‘fheorem 1.1 ([14]). Let p € (1,00). Then f(a,x) € Ly([0,7]) (or g(a,z) € L,([0,7])) if and only

Jp(a) = Za};ﬂ*’”*2 < 00.
n=1
We mention also the well-known theorems of G. Lorentz (Theorem and T. Chaundy and
A. Jolliffe (Theorem |1.3]).

Theorem 1.2 ([16]). Let o € (0,1). Then f(a,x) € Lipa (or g(a,z) € Lipa) if and only if for
some C' > 0 we have a,, < C/n““a for alln € N.
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Theorem 1.3 ([7]). Series (1.2)) uniformly converges if and only if na, — 0 as n — oo.

One of the main topics of the present paper is the so-called asymptotic behaviour of the sums
of trigonometric series with monotone coefficients in a neighbourhood of zero. The first results in
this direction were obtained by R. Salem [22], [23] (see also [6]). His research was continued by
S. Izumi [15], S.A. Telyakovskii [28], [29], A.Yu. Popov and A.P. Solodov (see [18|-[21], [24]-]27]),
and others. Note that the properties of sine and cosine series differ significantly in this problem. In
Section 2 we discuss in detail the asymptotics of the sums of sine series and new approaches to this
problem.

As series with monotone coefficients are very interesting because of their properties, many authors
introduced the classes of trigonometric series with generalized monotone coefficients. In Section 3 we
discuss fractional monotone sequences and the corresponding trigonometric series. M.I. Dyachenko
introduced this class in paper [§] and proved some convergence and smoothness properties of cosine
and sine series with coefficients belonging to this class. It is necessary to say that many impor-
tant auxiliary results essential for the study of monotonicity of fractional order were established
by A. Andersen [4]. A number of new results in this direction were obtained by M.I. Dyachenko,
E.D. Nursultanov, A.P. Solodov, A.B. Mukanov, and E.D. Alferova (see [8|-[13], [17], |2]). Similar
questions were also considered in the works [I], [5], [30].

2 New approaches to asymptotic properties

This section is devoted to the study of the asymptotic behavior in the right half-neighbourhood of
zero of sums of a sine series with monotone coefficients.

To obtain a two-sided estimate of the sum of a series (1.2), R. Salem [22]| defined the following
function:

v(a,x) =2z Z na,, m(x)=|r/z].

Under some additional assumptions on the sequence a monotonically tending to zero, he proved
the existence of positive constants Ci(a), Cy(a), and zg > 0 such that the following estimates hold:

Cy(a)v(a,z) < g(a,x) < Ci(a)v(a,z), 0<z < ). (2.1)

S.A. Telyakovskii has improved this result by deriving estimate with absolute constants C'
and Cjy, freeing the sequence a from additional requirements and showing that the upper bound
holds for any monotone sequence a, and the lower bound — for any convex sequence a (i.e. a, —
20,11 + apae = 0, n € N).

Theorem 2.1 (28|, [29]). There exists a constant Cy; > 0 such that for any nonincreasing null
sequence a
gla,z) < Civ(a,z), 0<z<m/ll.

There exists a constant Cy > 0 such that for any convezr null sequence a
g(a,z) > Cy(a)v(a,z), 0<x<m/lL

A.Yu. Popov calculated the sharp values of the constants in the estimates of Telyakovskii. He
proved the following results.

Theorem 2.2 ([I8]). For any nonincreasing null sequence a,

gla,z) <v(a,z), 0<z<m. (2.2)
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Theorem 2.3 ([18]). For any convex null sequence a,

2
g(a,z) > Pv(a,x) — 046 Gy, 0< <

|5

. (2.3)

The estimate , in general, does not hold if there is no second negative term in its right-hand
side. The question arises: is it possible to modify the Salem function v(a, x) in such way so that the
two-sided estimate with constants C; = 1 and Cy = 272 still holds in some right half-neighbourhood
of zero? The answer to this question is positive.

In [24] was shown that the estimate can be strengthened. As a new majorant, consider the
function

[(m(z)+1)/2] m(z)
u(a,r) =x Z na, + x Z (m(z) + 1 —n)a,.
n=1 n={(m(2)+3)/2]

The following refinement, of Theorem [2.2] is valid.

Theorem 2.4 (|24]). For any nonincreasing null sequence a,
gla,z) <u(a,z), 0<z<m.

Under the additional condition of convexity of the sequence a, the function 27 2u(a, ) turns
out to be a minorant of the sum of the sine series not only in a certain neighbourhood of zero, but
practically over the entire interval (0, 7/2].

Theorem 2.5 (|24]). For any convex null sequence a,

g(a,x) > %u(a,x), 0<z< Z—g
In |21], the asymptotic behavior of sums of the particular sine series as r — 0+ was studied.
Their coefficient sequences not only monotonically tend to zero, but also belong to the following two
special classes. First class — let us denote it as B | — consists of all sequences a monotonically
tending to zero such that the sequence {na,} , does not increase, that is (n+ 1)a,4+1 < na,, n € N.
Second class — let us denote it as B 1 — consists of all sequences a monotonically tending to zero
such that the sequence {na,} -, does not decrease, that is na, < (n + 1)a,+1, n € N.

Theorem 2.6 ([21]). If a € B |, then, for any x € (0,7/3], the following lower estimate holds:

1 3
g(a’vx) = <l - m(x)) ’U(a,l‘) - 5 Am(z)+1 Singa

where o
1:1/ S — 0451 .
0 t

™

Moreover, there exist sequences a € B | and {xy}32, such that

z, >0 (VkeN), lim z, =0, gla,zp) ~Lv(a,zg), k— oc.

k—o0

Theorem 2.7 (|21]). If a € B 1, then, for any x € (0,7), the following upper estimate holds:

1

- 1
g(a,x) <1 (1 + W) U(G,I) + 5 Am(z)+1 tan% )
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where .
/ ST — 0580,
Moreover, there exist sequences a € B 1 and {xk}kzl such that
z, >0 (VkeN), klim x, =0, g(@,z) ~ITv(@,x), k— oco.
—00
In [24], a lower bound for the sums of sine series with convex coefficients was studied. The
following result of Popov was refined.

Theorem 2.8 ([I8]). For any convex null sequence a,

:1

( )>2 (a, ) 1 L 1? 0<z<
a,r) > —v(a,r) — — Qnz) — Q) | — — =cot = |, r < —
g\@ 2 oo @\z 2 2 2

It has been established that the Salem function with a sharp constant 2772 is not, in general, a
minorant for the sum of a sine series for the class of all convex sequences a.
A sequence {f;}32, is called slowly varying if limy_, By /B = 1 for any 6 > 0.

Theorem 2.9 (|24]). There exists a convex slowly varying null sequence a such that

2
g(a,zx) < - v(a, k)
™

for a sequence of points {xy}32, with v — +0.

It is shown that, as an alternative, one can take the modified Salem function

m(z)
QCL[B —:L'(Z na, + am(x)>.

Theorem 2.10 (|24]). Let a be a positive convezr null sequence. Then for some xq > 0

2
g(a,z) > Fvg(a,z), 0 <z <.

For any € > 0 there exists a convex slowly varying null sequence a for which there exists a sequence
of points {xy}32, with xx — +0 such that

m(z)
2 1
g(a,x) < = xk( Z na, + (5 + 5) m(:z:k)am(xk))

In other words, the coefficient 1/2 multiplying the term m(x)a,, ;) in the modified Salem majorant
is sharp. This shows that in some sense the function vg(b, x) is optimal for estimating the sum of a
sine series with convex coefficients from below.

In [26], the sharp constants were found in the two-sided Telyakovskii estimate for the sum of a
sine series with a monotone sequence of coefficients a under the additional condition of convexity.

S.A. Telyakovskii showed that it is convenient to compare the difference between the sum of
series and the main term of its asymptotic expansion, i.e.

A (z) X
_ "7 t —
gla,z) = 22 cot S
with the function
1 m(z)—1
ola,x) = (@) Z n?Ala,, Ala, = a, — anyq > 0.
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Theorem 2.11 (|28, [29]). There exist positive absolute constants Cy and Cy such that

a’mﬂ?
Zmlz) < Cyo(a, ), 0<x<1,

¢ x
co
11

Cio(a,z) < gla,z)— B)
for any convex null sequence a.
In the following theorem, the sharp values of the constants C'; and (5 are obtained.

Theorem 2.12 (|26]). The following equalities hold:

— g(a,r) = (am@)/2) cot (x/2) =«

P xllglo o(a, ) Pk (24)
— (A2 /2) cot (/2 —

ot 9000~ (a0t 0/2) 3 1) s
uf lim o(a,) 2

moreover, the supremum in (2.4) and the infimum in (2.5) are attained for slowly varying sequences.

The following theorems answer the question how large is the deviation between the sum of sine
series (|1.2)) and its asymptotically sharp majorant and minorant for the class of all convex sequences
of coeflicients.

Theorem 2.13 (|24]). There exists a convex slowly varying null sequence a such that

9+ 72
672

2

0<gla,xy) — = vola,zp) < = ¢ 7T2a1$ka3n(xk) + L ()

1
2
for some sequence of points {xy}32,, T — +0.

Theorem 2.14 (|25]). For any € > 0, there exists a convez slowly varying null sequence a such that

m(zg)—1
am x . —
0> g(a,zy) — % cot % — sin % Z n(n+1)A'a, > —ayzi°

n=1

for some sequence of points {x}3,, T — +0.

At the end of the section, we present a result that refines the asymptotics of the sum of a sine
series ([1.1) with a convex slowly varying sequence of coefficients, obtained by S. Aljanc¢i¢, R. Bo-
jani¢ and M. Tomié, in the case when the sequence of coefficients satisfies the additional regularity
condition.

Theorem 2.15 ([27]). Let a be a non-negative convex null sequence, and let {nA'a,}°° | be a convex
slowly varying sequence. Then

Al mix

_ @)
g(a,x) . .

where v — 1is the Fuler constant.
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3 The fractional monotonicity

Let us give the corresponding definitions.

Definition 1. Let a € (—00,00). The Cesaro numbers { A%}, are defined as the coefficients in the
eTpansion

(1—x) ' = Z Atx™  forxz € (0,1).
n=0

The following properties of the Cesaro numbers are known (see [31]):
(1) A2 =1forn=0,1,... and A3 =1 for any a.
(2) If « # —1,—2,..., then there are constants C;(«) > 0 and Cy(«) > 0 depending only on «
such that
Co(a)n® < |AN] < Cy(a)n®  for all n > 0.

(3) For a > —1 and any n, AY > 0; for a« > 0, A2 1 00 as n — oo; and, for —1 < a <0, A2 |0
as n — oo.
(4) For all o, B and n=0,1,...

n
S0 AL A7 = A
k=0

In particular, A — A% | = A2~1,
(5) Fora > —1 and n=0,1,... we have

a+)(a+2)...(a+n)
n! '

o (
A% =
Given a number sequence a = {a,} -, and a real number «, we set
oo
« —a—1
A Ay = E Ak‘ Apik

k=0

for n = 0,1,... if this series converges (this is so, for example, if « > 0 and the sequence a is

bounded).

Definition 2. Let o > 0, and let a = {a,} -, be a sequence of real numbers. We say that a € M,
if lim, o0 @, = 0 and A%, >0 forn=0,1,....

It follows from Definition [2| that the class M, coincides with the class of null sequences of nonneg-
ative numbers, M; is the class of monotone nonincreasing null sequences, Ms is the class of convex
null sequences, etc. In addition, in [8, Lemma 1, assertion b)| it was shown that M, C M;p for
a>f3>=0.

Definition 3. Let v € (0,1). We say that a sequence a € P, if a € My and

o0
E -y

n 'a, < oo.
n=1

In [8], M.I. Dyachenko proved the following statements. They were proved for cosine series, but
the analogous statements remain valid for sine series.
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Theorem 3.1 ([§]). Let a € (0,1), a sequence a € M, N P,. Then a function f(a,x) ezists for
x € (0,2m), such that f(a,z) € C((0,27)) and |f(a,x)] < C(a)xz™® for x € (0,7), where C(«)

depends only on «.

Theorem 3.2 ([8]). Let o € (0,1), a sequence b € My and b ¢ P,. Then there exists a sequence
a € M, such that a,, < b, for all n, but series (L.1)) diverges at the point w/2.

Theorem 3.3 ([§]). Let a € (1,2) and a € M,. Then for any v € (0,7) we have f(a,xz +t) —
fla,z) = o(t*1) as t — 40 uniformly for x € [y,27 — 7).

Theorem 3.4 ([|8]). Let o € (1,2) and a function ¢ be defined on [0,1] and ¢(t) | 0 as t | 0.
Then there exist a sequence a € M, and a sequence {t,} -, such that t, L 0 as n — oo and
|f(a,7/2+t,) — fla,7/2)] = Ct>lp(t,) for all n where C' > 0 does not depend on n.

In [9], the following statements connected with Theorem were obtained.

Theorem 3.5 (|9]). Let a € (0,1), p € (1/a,0), a sequence a € M, and Jy,(a) < oco. Then
series (1.1)) converges at any x € (0,27).

Theorem 3.6 (|9]). Let a € (1/2,1), p € (1/a,0), a sequence a € M, and J,(a) < co. Then the
function f(a,x) € Ly([0,7]).

Theorem 3.7 ([9]). Let a € (1/2,1). Then there exists a sequence a € M, such that J,(a) < oo
for every p € (1,1/a), but (1.1) is not a Fourier-Lebesque series.

It is natural to suppose that the following hypothesis is true.

Hypothesis 3.1. Let o € (1/2,1), p € (2,1/(1 — ), a function f € L,([0,7]) and has the Fourier
series of type (L.1) or (1.2) with a € M,. Then Jy(a) < cc.

This conjecture is still unsolved, but M.I. Dyachenko and E. D. Nursultanov [I2] proved, in
particular, the following result.

Theorem 3.8 ([12]). Let o € (1/2,1) and p > 1/(1 — «). Then there exists an even function
f € L,([0,7]) such that its Fourier coefficients a € M,, but J,(a) = .

As for asymptotic properties of the sums of trigonometric series with fractional monotone coefhi-
cients, the results are the following. For cosine series they were established by M.I. Dyachenko [I0].
Note that the sums of cosine series are usually estimated using the function

[r/z]
@) = 3 (14 Dl — ).
n=0
Theorem 3.9 ([10]). For any o € (1,2), there exists a sequence a € M, and a monotone null
sequence {t;},;~, such that
. q(a’atl)
im
l—00 f(a,’ tl)
Theorem 3.10 ([I0]). Let a > 2. Then there ezists a constant C(a) > 0 such that if a sequence
a € M,, then, for x € (0,7/6), the sum of series ([L.1)) satisfies the inequality f(a,z) > C(a)q(a,x).

In the same paper [I0], an example showing that the condition @ € M, does not guarantee
the validity of the lower bound in terms of ¢(a,z) was given. Of course, the condition a € M, is
sufficient for the upper bound f(a,z) < Cq(a,x), x € (0,7), to hold. So, for cosine series, we need
2-monotonicity for the upper estimate, and (2 + ¢)-monotonicity for the lower estimate.

For the sine series the situation is quite different. This was shown by M.I. Dyachenko and
A.P. Solodov in the paper [I3]. They proved the following results.
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Theorem 3.11 ([13]). For any o € (0,1), there exists a sequence a € M, such that series (|1.2))
diverges almost everywhere.

Theorem 3.12 ([13]). Let o > 1. Then there exist positive constants C(«a) and x(a) such that if a
sequence a € M,, then, for x € (0,z(«)), the sum of series (1.2)) satisfies the inequality g(a,x) >
Cla)v(a, ).

Also, it was shown in [13] that there exists a sequence @ € M; and a monotone null sequence
{t:},2, such that

g(a’> tl)

l—o0 v(a, tl)

In [2], the following analogue of Theorem [1.2] was obtained.

=0.

Theorem 3.13 ([2]). Let an even 2m-periodic function f be in the class Lip § with some 0 < 5 < 1
and its cosine Fourier coefficients be in the class M, with some 0 < o < 1. Then for some C' > 0
we have a, < C/n"P forn=1,2,....

This result cannot be improved as it follows from the next statement.

Theorem 3.14 (|2]). Let a € (0,1) and B € (0,1). Then there exists an even 2m-periodic function
f € Lip B such that its cosine Fourier coefficients are in the class M, and also there exists a monotone
increasing sequence of natural numbers {1, },- such that the Fourier coefficients a;, (f) = 1,*7 for
all r.

Also in [2], the following property of a-monotone sequences was established.

Theorem 3.15 ([2]). Let o € (0,1) and a = {a,},., be an a-monotone sequence. Then for any
n > 1 holds the inequality ay > a, Ag‘:,lC for all 0 < k < n—1, and this inequality cannot be improved.

In [I1], M.I. Dyachenko proved the following generalization of one part of Theorem

Theorem 3.16 ([I1]). Let o € (0,1), the coefficients of series (1.2)) belong to the class M, and
na, — 0 as n — oo. Then series (1.2)) uniformly converges.

As for reverse statement, the following is true.

Theorem 3.17 ([I1]). Let a € (0,1), series (1.2)) uniformly converge and its coefficients belong to
the class M,. Then n“a, — 0 as n — oo and this result cannot be improved.

Also in [I1] the following generalization of Kolmogorov’s theorem was obtained.
Theorem 3.18 ([1I]). Let a > 1 and a sequence a € M,. Then the sum of series (L.1) f(a,z) €
L([0, 7).
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1 Introduction and problem statement

It is known that in many cases it is impossible to find an exact solution of Dirichlet boundary
value problems for the Helmholtz equation in the two-dimensional space. This generates interest for
studying approximate solution of these problems with theoretical justification. One of the methods
to solve Dirichlet boundary value problem for the Helmholtz equation in two-dimensional space is
to reduce it to an integral equation of the first kind. Note that the main advantage of applying the
method of integral equations to exterior boundary value problems is that this method allows reducing
the problem for an unbounded domain to the one for a bounded domain of lower dimension.

Let D C R? be a bounded domain with twice continuously differentiable boundary L, and f be a
given continuous function on L. Consider the Dirichlet boundary value problems for the Helmholtz
equation:

Interior Dirichlet problem. Find a function u, which is twice continuously differentiable on
D, continuous on D, and satisfies the Helmholtz equation Au + k*>u = 0 in D and the boundary
condition v = f on L, where A is the Laplace operator, and k is a wave number with Im k > 0.

Exterior Dirichlet problem. Find a function u, which is twice continuously differentiable
on R?\D, continuous on R2\D, satisfies the Helmholtz equation in R?\D, Sommerfeld radiation

condition
x , 1
(—,gradu(m))—zku(:z:)zo —7 |, T o0,
] o]

uniformly in all directions =/ |z| and the boundary condition v = f on L.
It was shown in [3, p. 87] that the simple-layer potential

u(x) = / B (.y) ¢(y) dL,, =€ RA\L,
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with continuous density ¢ is a solution of the interior and exterior Dirichlet boundary value problems
if © is a solution of the integral equation of the first kind

So=2F, (1.1)

where

() () = 2 / @ (r,y) p(y) dL, v €L,

®(x, y) is the fundamental solution of the Helmholtz equation, i.e.

<I>(93,y)={

where H(()l) is the zero degree Hankel function of the first kind defined by the formula Hél) (z) =
J(] (Z) + ZNO (Z),

—In L for k=0,

-y

HO (kJe —yl)  for k0,

ms |~

o0

o &)

[e=]

is the Bessel function of zero degree,

No(z) =2 (inZ+C) Z (Z ) %(%)m

is the Neumann function of zero degree, and C' = 0.57721... is Euler’s constant.
Note that the integral equations of the first kind do not fit into the Riesz-Fredholm theory. But,
it was proved in [3, p. 89-90] that if Im k > 0, then the operators S and

0 0P (z, y)
@) =250 ([ B gt ) aer

Tl =5 (I—f(>_1 (I+f(>_17

(f(p) () =2 A%p(y)dLy, x € L,

v (x) is the outer unit normal at the point = € L, and I is the unit operator in C' (L), the space of
all continuous functions on L with the norm ||¢|| = max |© (z) |. Then the inverse operator S~ is
TE

defined by

are invertible, and

where

S (I—f()l (1+R>1T.

Consequently, the solution of equation ([1.1]) has the form

=2 <]—f(>_1 (I+K>_1Tf. (1.2)

Note that in spite of invertibility of the operators I — K and I + K, the explicit forms of the

N\ -1 N\ -1
inverse operators ([ - K ) and (I + K ) are unknown. Besides, Lyapunov’s counterexample
shows (|6, p. 89-90|) that the derivatives of the double-layer potential with continuous density,

in general, do not exist, i.e. the operator S—!, inverse to the compact operator S, is unbounded
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in N (L), the space of all continuous functions ¢, whose double-layer potential with the density
¢ has continuous normal derivatives on both sides of the curve L. Note that in [17], quadrature
formulas for the simple-layer and double-layer potentials have been constructed using the asymptotic
formula for the zero degree Hankel functions of the first kind, which does not allow to find the
convergence rate of these quadrature formulas. But, in [11]|, quadrature formulas for the simple-
layer and double-layer potentials have been constructed by using more practical method, and in [12],
quadrature formulas for the normal derivative of the simple-layer potential have been constructed
and the error estimates have been obtained for the constructed quadrature formulas. Further, in [2,
16], quadrature formulas for the normal derivative of the simple-layer and double-layer logarithmic
potentials have been constructed and approximate solutions for integral equations of the exterior
Dirichlet boundary value problem and the mixed problem for the Laplace equation have been studied
in the two-dimensional space. In [10, 13|, a new method for the construction of a cubature formula
for the normal derivative of the acoustic double-layer potential has been proposed and justification
of the collocation method for the integral equations of exterior Dirichlet and Neumann boundary
value problems for the Helmholtz equation has been given in the three-dimensional space. However,
it is known that the fundamental solution of the Helmholtz equation in three-dimensional space has
the form

exp (ik |z — y|)

At |z —y|

Oz, y) = L Ty ER, w#y,

which differs essentially from the fundamental solution of the Helmholtz equation in the two-
dimensional space. Also note that in [18, p. 115-116], considering normal derivative of the double-
layer potential as a hypersingular integral, i.e. considering integral in the sense of finite value ac-
cording to Hadamard, quadrature formula for the normal derivative of the double-layer potential has
been constructed using subdomain method with an additional condition on the density of f ([18,
p. 285-291]). It is known that with this condition the expression for the normal derivative of the
double-layer potential can be represented in the form of singular integral (|3, p. 57|, [18, p. 100]), i.e
the integral (T'f) (z), x € L, exists in the sense of the Cauchy principal value. Besides, it should be
noted that the quadrature formula constructed in [18] is not practical, in other words, its coefficients
are singular integrals.

Despite important results in the field of numerical solution of integral equations of the first kind
(|4, 5, 7, 8, 20]), due to the above reasons, approximate solving of Dirichlet boundary value problems
for the Helmholtz equation in the two-dimensional space has not yet been studied by the method of
integral equations of the first kind . In this work, considering the normal derivative of the double-
layer potential as an integral in the sense of the Cauchy principal value, we construct a quadrature
formula for the normal derivative of the double-layer potential by a more practical method, and,
using formula , we give a method for calculating an approximate solution to equation at
some selected points.

2 Approximate solution to equation (1.1)

Assume that the curve L is defined by the parametric equation z (t) = (z; (¢ ) ( ), t € la,b]. Let
us divide the interval [a, b] into n > 2M, (b — a) /d equal parts: t, = a + ( —9)p ) =0, n, where

My = max /() (£))* + (2} (1))* < +oc

te[a,b]
(see [19, p. 561]) and d is the standard radius (|21, p. 400]). As control points, we consider z (7,),
b—a) (2p—1 s : "
%. Then the curve L is divided into elementary parts: L = U1 L,,
p:

p=1,n, where 7, = a +

where L, = {z (t): t,o1 <t <t,}.
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It is known (]|14]) that
(1) Vp e {1,2,...,n}: rp(n) ~ R,(n), where

rp (n) = min{ [z (7,) =z (L), 2 (t) =2 (7)] }

Ry (n) = max{ [z () =z (tp-1)| , [ (L) — 2 ()] },
a(n)
b(n)
(2) Vpe{l,2,...n}: R,(n) <d/2;

(3) Vp,j €{1,2,...,n} :r;(n) ~r,(n);

(4) r(n) ~ R(n) ~ %, where R (n) = ;E%Rp (n), r(n) = prilli%rp (n).

and a (n) ~ b(n) means C; < < Cy, with the positive constants C; and C5 independent of n.

The following lemma is true.

Lemma 2.1. [14]. There exist constants Cj > 0 and C| > 0, independent of n, such that the
mequalities
Co ly =z (m)| < o (r) =2 ()| < C1 |y — 2 (7)]

hold for Vp,j € {1, 2,...,n},j #p, and Vy € L;.

Let .
1
e, y) = (Hp (ke —yl), zye L, w#y,
where .
(1) .y _ : (=™ (g)Qm
HG ) = o (2) 4 o (2 o () = 20 (3
and

2z LSS\ (D)™ szy2m
Now (2) = <1“§ +C) Jon (2)+ 2 (Z 7) im0 <§> '
It is not difficult to show that
0P, (x,y) i <(9J0,n (klx—y)) L ONo» (k |z — y|)>
4 )

ov (x) ov (x) ov (x)
where S
AJon (klz —yl) —~ (=D)" B |z -y
ov (z) = (r—y,v(z)) = 22 (m—1)Im!
and
ONow (klz —yl)
ov (x)
2 ( klz—y )5J0n(/f\x—y\) 2 (z —y,v(z))
=—(In——=—+C : Jon (klx — +
n m 1 (_1)m+1 ka ’CE _ y’2m72
"’(x—yaV(x))mz_:l <;j> 22m=1(m — 1) Im| :
Consider the matrix K" = (l%p])n with the elements
p,j=1

L LR LN A Y ey

Pl n (z (1))
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It was proved in [12] that if ¢ € C' (L), then the expression

(KW) Z Kpj

#p

is a quadrature formula for the integral (IN(cp) (x) at the control points x (7,), p =1, n, Wit

max
p=1,n

- n
(£) @) = (Ro) (o )] < 3 (w0, 1) 4 ol P20 )
where w (¢, ¢) is the modulus of continuity of the function ¢, i.e.

w (i, 0) = max |p(z) —¢(y)l, §>0.

lz—y|<é
z,yeL

It is known that if Im k > 0, then for every right-hand side g € C' (L) the integral equations (|3,

p- 81]) N

prKp=g
are uniquely solvable in the space C' (L). Then, proceeding in the same way as in [9], it is not difficult
to prove the following lemmas.

N\l
Lemma 2.2. If Imk > 0, then there exists the inverse matriz <I“ + K”) with

-1

M, = sup H (]"+}~{”> < +00

and

max
I=1,n

)| <21 (o g1/ + ol 22).

<(I+K)_1 ) Zk

where I™ is a unit operator in the space C™, and /;77] 1s the element of the matrix (I” + f(”) in

the [—th row and j—th column.

N\l
Lemma 2.3. If Imk > 0, then there exists the inverse matrix <[“ — K”) with

-1
M, = sup H <I”—K"> < 40

n

and

max
I=1,n

)| <01 (o 1/ + ol 22

((I—f()_l ) Z’?‘

where l;:l_] 15 the element of the matrix (I" — f(") wn the [—th row and j—th column.

! Hereinafter M denotes different positive constants which can be different in different inequalities.
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Now, let us construct a quadrature formula for the normal derivative of the double-layer potential.
For this, let us first determine the conditions for the existence of the normal derivative of the double-
layer potential and derive the formulas for calculating it.

Lemma 2.4. Let a function p be continuously differentiable on L and

/diamL w (gradp, t)
0 t

dt < +o00.

Then the double-layer potential

0P (z, y)

W=l e

p(y)dL,, z€L,

has the normal derivative in L, with

oW (z) [0V (z,y) 1 f@=—yv(y) @—yrv()
= [ gyan, -2 [ o (0(4) ~ p (&) Lyt
ton [ ) - (@)L, e 2.)
and
oW (x) 4w (gradp, t) .
| =0 (Wl + [ ER D) voe 1,
where

i C 1. klz—y| > )" R | — y[Qm_z
V(:E,y):(—————ln—) —xz,v( Z 22m1 “1) I -

m=1

N T e D K = P
_(y—q:,v(y))z <27> ( 23m+1(m_|1) 1y7’n[ N

) Y (':L;f' ,

the first and the second integral terms in (2.1)) are weakly singular, and the last integral exists in the
sense of the Cauchy principal value.

Proof. 1t is easy to calculate that
o0 (z,y) i (&]0 (k|x —y|) e ONy (k|x — y|)>

— 17— i
ov(y) 4 v (y) v (y)
where . -
0Jo (kle—yl) - Z "R Ifc yI ™
ov (y) — 22m im—1) I'm!
and

Jo (K fz —yl) +

ONo (klz—yl) _ 2 () klr—y| OJo (kle—yl)  2y—=v(y)
A (y) _w(l 2 +O> v (y) 7z —yl?
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m=1 =1

9] m 1 (_1)m+1 ka |ZE . y|2m—2
Then the expression W (z) can be represented as
_ [ (l=y,v )
Wi(z) = ———==+V(x,y)) p(y)dL,, x€L.
L\ 27 |z =y

It was shown in [15] that if a function p is continuously differentiable on L and

/diamL w (gradp, t)
0 t

dt < 400,

then the function

W)= 5 [ L pgat, e

has the normal derivative in L, with

oWy (z) 1/(x—y,V(y)) (r —y, v(z))
- p

|z —y|*

ov (x) T

+i/M (0(y) —p(a))dLy. z €L

2m |z —y/?

d dp,t
<01 (ol + ool + [ 2E22 0 o e 1.
0

t

and

‘GWQ ()
o (z)

The last integral in (2.2 exists in the sense of the Cauchy principal value.
As ([21, p. 403])

|(ZE—y, l/(l‘))| < M|x_y|27vx7y € L7

taking into account the inequalities

ol o = |3 (Rl ay

. (|k| diamL)*"
<y WAl et
m=0

o 4qm m'
and
00 m 1 m+1 k’2m|l' |2m—2
Z Zi 22m U(m —1)!'m! =
m=1 \I=1 B
NN | W’” d1amL)2m 2
< = ‘v’ L,
we obtain

|V (z,y)| <M |z —vy|, Va,y€ L.

Consequently, the function

has the normal derivative in L, with

oWy (x) _ oV (z,y)
ov (z) . Ov(z)

(2.2)

(2.5)
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1 / = v@) - v) g~ CO"E" e - Uy

|Qj—y| el 22m71 (m—l) 'm'

‘/L (E‘Q—LIHW) v Y S I ) ar,+

2r 27 = 22 (m—1) Im!
(G5 e ) - ) - v @)
x mz_:z (_231_21{:(:1 = ;ﬁ'm!_ p(y) dL,+
[/ m Ly g 22
+/L (v(y),v(x)) Z_l (; %) ( ;gm—i-l ?m_ll) !yﬂ’ﬂ p(y)dLy,—
- [@-nr@) s ) (Z%) g P Lyt
L m=2 =1 ’ ’
tor L0 ) ) S R g ar, -
! =, ()" (m = 1) 7 [ = g
—5- L(fv—yﬂ/(fv)) (y—ww(y))mz:z Pt ()2 p(y)dLy
and a1
‘#‘ <M |ln|z—y||, Yo,y € L.
Hence, we have
an (.Z‘)
’ 5y | <M ol Vo e L

Obviously, there exists a positive integer ng such that

VR(n) <min{l, d/2}, Vn > n,.

Let
P={il1<i<n. le(m-o(m)|< VR },
Q={il1<j<n. |z -=(r) > VE®m |
and

(i C 1. klx—y| (=) E o — g
Vn(a:,y)<—————1n—) (y_”“"”’(y»mZ:l 22m—1(m —1) Im!

n m 1 (_1)m+1 kgm |.f1: . y|2m—2
_(y—:zc,u(y))z (Zf) 22mt1 (m — 1) Im!
1 (D) E -y

2 22m (m1)?

39

(2.6)
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It is easy to see that

Wolry) 1 (y—av@)ly—zv@y) -~ ED"F e -y

ov (z) 27 |z — y|? = 22m=(m—1)!m!
i C 1 klz—y (=) R =y
S (i PPN b4
(4 or  or 2 ) v (y),y(x))m:1 2o (m — 1) lm!

n

(5 ) ) ey 3 T

22m=2(m —2) Im!

m=2

(_1)m+1 ka |ﬂj _ y|2m72

+ (v (y),v(2)) (Z %) 2mtl (i — 1) Im!|

m 1 -1 m—+1 ka ., |2m—4
Zz) (-1) ey

22m (m —2) I'm!

m=2 =1
1 (=) E =y
to - Wly),v(@) (y -, v (y)) 2 22m (1)’ B
I (D" (m = DR ey
—o- =y v @) (- u(y))m:2 221 (]2 :

The following theorem is true.

Theorem 2.1. Let a function p be continuously differentiable on L and

diam L

do, t
/ MW*”
0

Then the expression

(L) o ) = 2o 57 LI fa (7)) 4 (0 () o )
o
20-0) Nn(r(n) () v () () —a(n) viam) |
mn § 2 () — 2 ()

V@ @)+ @ @) (0 () - o () +
e W ) fiad () 4 (0 ()7 (0 ) = p @ 7,))

2 le(n)—x(m)

is a quadrature formula for (Tp) (x) at the control points x (1,) , p = 1, n, and the following estimate

holds:
max |(Tp) (z (7)) = (Tup) (& (7))] <
1/v/n
.y [npnmlnn , llgradopl, / w(grad p, ¢) dt]'
n Vn 0 t
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Proof. Tt was proved in [1] that if a function p is continuously differentiable on L and

/diamL w(gradp, t)
0 t

dt < 400,

then the expression

N bea s () —aln) v @) @) o) (e ()
(3) won=-"5 2 2 (5) — 2 ()]
J#p

Grma s W), v @) o 2 4 @ () (0 (7)) — o (7))

2mn Z5 Ja(r) —x(r,)]

Wo(z)
ov(z)

max [T () @6

Ipllnn  |lgrad pf . /“%<gradp,t> ]
—+ -+ —= " 2 dt].
n \/ﬁ 0 t

Now, let us show that the expression

(52) ) =2 5o T2 o 1) 4 () oo (1)

is a quadrature formula for the integral 2
estimate holds:

at the control points z (7,) , p = 1, n, and the following

<

<M

n

is a quadrature formula for the integral %VZ—ES) at the control points x (1) , [ = 1, n. It is not difficult

to see that
Wi (m) (W' [ V(). )
T (8) i) = [ S ) ¢
y) 0V( (), z (15))
+Z/ ( 9 ( (0) )p(y)dLy+
J#p
u oV, (z (1), x(15))
+Z/ T 20D (o)~ p o () a4
J#p
u LoV, (x (1), (15))
Z L. @)
J#p

Denote the terms in the last equality by 67 (z (7)), 0% (2 (7)), 0% (2 (7)) and 0} (x (7)), respec-
tively.
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Taking into account (2.6)) and the formula for calculating a curvilinear integral, we obtain
R(n)
|07 (= ()] < M {|pll /0 Inr|dr < M |lpll B (n) [In R (n)].

Let y € Lj and j # p. From Lemma 2.1 and inequality it is obvious that
e (1) =yl — | () — @ (7;)|] < Mq R (n) (diamL)"""
(v (y), v (@ (7)) = (v (2 (1)), v (2 (7)))] < M R(n),
(@ (1) =y, v () = (& (7)) == (), v ()| = [(&(75) =y, v (y)| < M (R

(
(@ () =y, v (2(1) = (2 (mp) = (75), v (z (R)))| = [(x(75) =y, v (2 (7))
< | (n) —y, v (@@ + (@ (5) —y, v (@ (n) —v(e(r )))!<M|y—fv(7p

n))*,
)l <
)| R (n)

and

I (k|2 () — o) — Do (k |z () — 2 (m)])| = ’m 'ﬂ%p;f(yffﬂ _

i (1 O )l () )] R

|z (75) — ¥ - |z () — % (1) — I’
where ¢ € N. Then, taking into account inequalities (2.4)) and (2.5), it is not difficult to show that

‘3V(I(Tp),’y) 3V( (70) , z(75))
ov (v (7)) v (z (7))

Also, by the inequality

<M (R(n) |ln|x(7p)—y||+%)'

OV (x (1), x (1)) V(2 (1), (7)) In |2 (7) — vl
‘ v (x (1)) v (x (1)) =M n! ’ (2.7)
we have
‘3‘/ (z (1), 9)  OVa(z (), x(15))
v (z (7)) v (x (7p)) B
R(n) . Inle(s) gl
<01 (R(0) e (5) ol + oy e =)

So, we obtain

105 (2 (7))] <
diam L diam L dr 1 diam L
<M |pllo <R(n)/ |ln7']dT+R(n)/ ——i——'/ |1n7’|d7’> <
r(n) r T n: r(n)

(n)

<0 foll (RO R 0]+ ).

Let y € L; and j # p. From Lemma 2.1 and inequalities (2.6, (2.7) it is obvious that

OV, (x (7). (7))
‘ wam) |-
OV (2(1), 5 ()| |0V (2 (1), 2(13)  Va(w(n), (1))
S| T (m) *’ v (z () W) |-
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<M (]ln\x(Tp) —x (15)]| + L ) Vn € N. (2.8)

Then,
aV Tp ), x (7))

z (7))

185 (2 (7,))] < 2w (p, R ‘dLyg

J#p

<2wpRM) [ anj<g>(;j)@>>\dLngw (0. R (n)).

Besides, taking into account Lemma inequality ([2.8) and

W (24 (B + (w5 (1)* = \/ (@ (73))° + (a5 (7))’

< MR(n),vVtetji_1,t;],

we obtain

6% (2 (1) < Mol R Z / s ;jf >>‘dt<
J#p o
< Ml R el ar, <
J#p
<M ol R [ \%ﬁ;;i;;;wwd% <M ol Rn).

Summing up the estimates obtained for the expressions 07 (x (7)), 05 (x (7)), 0% (z (7)) and
04 ( (7)), and considering the relation R (n) ~ <, we obtain

| Zo ) (20) )

<01 (o, 1)+ ol ")

| O (2 (1)) ov
As a result, summing up the quadrature formulas constructed for the integrals 8gy/ ‘z() nd amy’t;))
at the control points x (7,) , p =1, n, we get the validity of Theorem a

Now, let us state the main result of this work. Let

2(b—a) i ((n) — 2 (), v(x(r))) (z(n) —a(r), vz(n)

by = 1
|z (1) — 2 (7)]
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hyi = @\/@3 (73))% + (25 (7)) (8Vn (@ (n),z (7)) _

el e, v ) ) st vem) | Gt v <ng>>> for j € Q1.

@ (m) —a ()"

From Theorem 2.1] it follows that
(Top) (z (1)) = Ztlj/)(l’ (m)).1=1,n.
=1

Theorem 2.2. Let Imk > 0, a function f be continuously differentiable on L and

/diame(gradf’ t)
t

0

dt < +o0.

Then the expression

utetn = 2315 (S8 (3 s et ] )

p=1

max | ¢ (z (1)) = ¢n (2 (7)) | <

I=1,n

1 UV (grad f, t) 1 fdismlo, (grad f, t)
<M |— df,1 —=— 2 dt + — —=— 2 dt] .
<M | e g [ 2ERE Dy L

Proof. From Lemmas 2.2 and 2.3 we obtain

n n
- -
max E ‘kjl‘ SM“}E% E )kﬂ‘ < M.
=1 =1

Jj=1,n T~

Besides, taking into account the error estimate for the quadrature formula for (T'f) (x),z € L, at the
control points x (1) , [ = 1, n, we have

[ (2 (1) = @n (x(n)) | <

- ( i

M {(I+K’)1 ITf . R(n) |lnR(n)|+w <(I+K’)_1Tf,R(n)>} +

+M M, [||Tf|l, R(n) |InR(n)|+w (Tf,R(n)] +
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1 d Lvn dp, t
ML [Hpum nn | Jgradpll,, / w(grad p, >dt]_
n N4 0 t

From Lemma 2.4 it follows

diam L
w ad | t

175 < 3 (11 + o FL+ [

Further, as the integral aggtg% x € L, is weakly singular, it is not difficult to show that
oW
w( 5 1,5) <M |pll, 0 |Iné|,6>0.
v

It was shown in [15] that if a function f is continuously differentiable on L and

/diamL w(gradf, t)
t

0

dt < 400,

oW,
270 5 <
w( ov ’5> -

4 diamL
§M(5 IInd| + w (grad f, §) + / Mdt+5/ %ﬁ’ﬂdt),
5

then

o

where 6 > 0. Hence, it follows that

w (Tf,6) <2 <w <%,5> +w (%,5)) <

é diamL
<M (5 IInd| + w (grad f, ) + / Mdtjté/ Mdt>,5>0.

o 1) t2

It is known ([3, p. 53-54]) that

w(Kp,6) <M |lpll, § | né],6>0.

Then, if a function p, is a solution of the equation p + Kp = T'f, we have
N . -
W <<I+K> Tf,é) — w(p.,9) :w(Tf—Kp*,(S) gw(Tf,(S)—irw(Kp*,(S) <
N -1
<w(Tf,8)+ M |p.] 6 |1n6|:w(Tf,6)+MH (1+K) TfH 5 |1nd| <

<w(Tf,0)+ M

‘ (”K)_lH ITf]l,00 | ] <

t2

é diamZL
<M (5 IInd| + w (grad f, ) + / Mdt—i—é/ Mdt>,5>0.
o 0

45

So, taking into account the above obtained inequalities in (2.9)) and the relation R (n) ~ %, we get

the validity of the theorem.

Theorem 2.2 has the following corollaries.

]
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Corollary 2.1. Let Imk > 0, a function f be continuously differentiable on L and

/diamL w(gradf, t)
t

0

dt < +o0.

Then the sequence

un) = 2= Y Pulenz(n) eule(n) \/(w’l (m))° + (25 (n))*, @. €D,

n
=1

converges to the value u (z.) of the solution u(x) to the interior Dirichlet boundary value problem
for the Helmholtz equation at the point ., with

Jun () — u(2.)] <

1 1/vn d t 1 diam L d "
——I—w(gradf71/n)+/ MdH_/ wlgradf, 1) .1

<M
=7 | Vn 0 t n Jijm 2

where
eutotmy = 2355 (328 (3 s et ) )
7j=1 p=1 m=1
Corollary 2.2. Let Imk > 0, a function f be continuously differentiable on L and

/diamL w(gradf, t)
t

0

dt < +o0.

Then the sequence

n

Y ez (n) pulz(n) \/(1”1 (m))” + (25 (n))*, 2" € R\D,

=1

_b—a

converges to the value u (z*) of the solution u (x) to the exterior Dirichlet boundary value problem
for the Helmholtz equation at the point x*, with

|t (27) = u (27)] <

1 UV (grad f t) 1 fdismlo, (grad f, t)
<M |— df,1 —=— 2 dt+ — —=—dt
= \/ﬁ—i—w(gra f7 /n)+/0 t +n/1/n t2 ’

where

m=1

oot =23 (S8 (3 s ) ).
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1 Introduction

The fractional calculus which permits the integration and differentiation of functions with non-
integer orders, is one of the fastest-growing fields of mathematics due to the discovery that fractional
operators were utilized in mathematical modeling, see [10, 19, 20, 27, 29]. Fractional differential
equations, which can be used to model and describe non-homogeneous physical events, have recently
attracted a lot of attention, particularly initial and boundary value problems for nonlinear fractional
differential equations. Different researchers have found some interesting solutions to initial and
boundary value problems for fractional differential equations involving various fractional derivatives,
including their existence and uniqueness, such as Riemann-Liouville [23], Caputo [3], Hilfer [24],
Erdelyi-Kober [25] and Hadamard [2]. There is a certain type of kernel dependency included in all
those definitions. Therefore, a fractional derivative with respect to another function known as the
W-Caputo derivative was introduced in order to study fractional differential equations in a general
manner. For specific selections of ¥, we can obtain some well-known fractional derivatives, such
as the Caputo, Caputo-Hadamard, or Caputo-Erdelyi-Kober fractional derivatives, which depend
on a kernel. From the viewpoint of applications, this approach also seems appropriate. With
the help of a good selection of a "trial" function ¥, the W-Caputo fractional derivative allows
some measure of control over the modeling of the phenomenon under consideration. Almeida
et al. [5] investigated the existence and uniqueness results for nonlinear fractional differential
equations involving a W-Caputo-type fractional derivative by using fixed point theorems and
Picard iteration method. For more details, the reader can also consult [7, 16, 17, 18 28] and
references therein. In particular, the pantograph equation was employed as a useful tool to shed
light on some of the modern problems originating from several scientific disciplines, including
electrodynamics, probability, quantum mechanics, and number theory. However, a substantial
investigation on the characteristics of this type of fractional differential equation, both analyti-
cal and numerical, has been done, and intriguing findings have been published in [1 6] 8 9, 13|, 14} 15].
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Inspired by the above recent results, in this paper, we investigate the existence and uniqueness of
solutions to the following nonlinear fractional pantograph differential equation with W-Caputo type
fractional derivatives of order 8 € (1,2):

DI u(t) = h(t, ult),u(st),  teJ=]0,T]

(1.1)
w'(0) =0, u(0)+w(u)=u,

where CDg’f’ is the W—Caputo fractional derivative of w of order 5, ¢ € (0,1), T" > 0,
heC(JxRxR/R), up € Rand w: C(J) — Ris a nonlocal term satisfying some given conditions,
which will be stated in Section 3. For more details we refer the reader to [14] [15].

To the best of the authors’ knowledge, topological degree theory for condensing maps has not
been applied to nonlinear pantograph differential equations with W-Caputo fractional derivatives.

The structure of this paper is as follows. In Section 2, we give some basic definitions and pre-
liminary results that we will need to prove our main results. In Section 3, we prove the existence
of solutions for pantograph equation . After that, we give a concrete example to illustrate our
main results in Section 4 and the last Section 5 contains conclusions on the results obtained in the

paper.

2 Basic concepts

This section deals with some preliminaries and notations which are used throughout this paper. For
more details we refer the reader to [4].

Definition 1. [5] Let ¢ > 0, g € L'(J,R) and ¥ € C™(J,R) be such that W'(¢) > 0 for all t € J.
The U-Riemann-Liouville fractional integral of order ¢ of a function g is given by

19%g(t) = ﬁ / T (s) (B () — W(s))1 g(s)ds, (2.1)

where I'(.) is the Euler Gamma function.

Definition 2. [5] Let ¢ > 0, g € C"(J,R) and ¥ € C"(J,R) such that ¥'(¢) > 0 for all ¢ € J. The
V-Caputo fractional derivative of order ¢ of a function g is given by
“Dlg(t) =

; t /S . s n—q—1 {n}s <
F(n_q)/o W(s)(U(t) = W(s))"" gy (s)ds, (2.2)

where g;{l,n (s) = (W,l(s)%> g(s) and n = [q] +1 ([¢] denotes the integer part of the real number
q)-

Remark 1. In particular, if ¢ €]0, 1], then we have

CDu¥g(t) = ﬁ / ((t) — W(s)) g/ (s)ds.

and
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Proposition 2.1. [5] Let ¢ > 0, if g € C"Y(J,R), then we have

1) “DEITEY g(t) = g(1).

n—1 [k]
2) 1% CDa) = o)~ 3 20 wir) - wio)

3) Igf} 1s linear and bounded from C to C.

Proposition 2.2. [5| Let p>v >0 andt € J, then

R - ) = s - o,
2) DM (0) — W) = s (wle) - w0

3) DY (W(t) — 0(0)" =0, VkeN.

Definition 3. [II] Let X be a Banach space with the norm |.|| and Bx be the family of all
non-empty and bounded subsets of X. The Kuratowski measure of non-compactness is the mapping
p: Bx — [0,400] defined by: for any A € By

p(A) =inf{ r > 0: A admits a finite cover by sets of diameter < r}.

Proposition 2.3. [I1I]| The Kuratowski measure of noncompactness p satisfies the following asser-
tions: for any A, Ay, Ay € Bx

1. p(A) =0 if and only if A is relatively compact.
p(kA) = [k|p(A), keR.

p(Ar + Az) < p(A1) + p(Az).

If Ay C As then p(Ay) < p(As).

p(A1U Az) = max{p(A1), p(As)}.

p(A) = p(A) = p(convA) where A and convA denote the closure and the convex hull of A,
respectively.

S & e e

Definition 4. [IT] Let ¢ : Q@ € X — X be a continuous bounded map. We say that ¢ is p-Lipschitz
if there exists [ > 0 such that

p(p(A)) <lp(A), forevery A CQ.
Moreover, if [ < 1 then we say that ¢ is a strict p-contraction.
Definition 5. [I1] We say that a function w is p-condensing if

pw(A)) < p(A),
for every bounded subset A of 2 with p(A) > 0. In other words

pw(A)) = p(A) = p(A) = 0.
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Definition 6. [11] We say that a function g : Q — X is Lipschitz if there exists { > 0 such that

I 9(w) = g(v) [<Ufw—wvl], forall uwve.

Moreover, if [ < 1 then we say that g is a strict contraction.

Lemma 2.1. [I1] If L, F : Q — X are p-Lipschitz mappings with the constants l; respectively lo,
then the mapping F' + L : Q — X s p-Lipschitz with the constant ly + [5.

Lemma 2.2. [11]| If g : Q — X is compact, then g is p-Lipschitz with constant ¢ = 0.

Lemma 2.3. [II]| If g : Q@ — X is Lipschitz with constant 1, then g is p—Lipschitz with the same
constant [.

Theorem 2.1. (See Isaia [22]). Let H : X — X be p-condensing and

E, ={r e X :2x=~Hxzx for some 0 <y <1}

If &, is a bounded set in X, then there exists v > 0 such that S, C B, = {x € X : ||z|| < r}, 7 >0,
and we have
deg(I — 0H,B,,0) =1, ¥o€]|0,1],

where deg(+, -, ) denotes the topological degree in the sense of Leray-Schauder.

As a consequence, the operator H has at least one fixed point and the set of all fixed points of H
lies in B, .

3 Main results

We start this section by introducing necessary notations and hypotheses on the functions w € C(R, R)
and h € C(J x R x R, R), entering equation ({1.1].
e We denote by C := C(J,R) the space of continuous real-valued functions defined on J provided
with the maximum norm
= t)l.
| l= max fu(t)

e We denote by B, the closed ball in C centred at 0 of radius n > 0.
(H:1) There exists a constant L, > 0 such that

lw(u) — w(v)| < Ly|lu— ||, for each u,v € C.

(Hy) There exist two constants K, M,, > 0 and ¢ € (0,1) such that

lw(u)| < Ky||ul|* + M, for each u € C.

(H3) There exist two constants Kp, M, > 0 and p € (0,1) such that

|h(t, u(t), u(et))| < Ky | u(t) |P +M,, for each u € C,e € (0,1).

Lemma 3.1. A function u € C is a solution of (L.1)) if and only if u satisfies the following fractional
integral equation
1

u(t) = ug — w(u) + m/o U (s)(W(t) — U(s)) " h(s, u(s),u(es))ds,t € J. (3.1)
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Proof. Let u be a solution to (1.1)), then by applying W-fractional integral Iéﬁ‘y to both sides of (1.1)
we obtain
15Y D u(t) = 15V h(t, u(t), u(et)),

and by employing Proposition [2.1] we get
u(t) = co + (W(t) — W(0))er + 107 h(t, u(t), ulet)),
where ¢y, c; € R, hence,

I (N hs. uls). wlesN ds
F(ﬂ)/o (V'()(() = U())" " Als, u(s), u(es))), ds.

Since u(0) + w(u) = ug and u/(0) = 0, then ¢y = up — w(u) and ¢; = 0. Hence, (3.1)) holds.

u'(t) = V(1) +

Conversely, by simple calculus, it is clear that if u satisfies (3.1]), then (1.1} holds. n

To prove that (3.1) has at least one solution u € C, we consider two operators B, A : C — C
defined by
Au(t) = ug — w(u(t)), teJ, (3.2)

and
Bu(t) = ﬁ /0 W(s)(U(E) — U(s))P (s, uls), ules))ds, t€J (3.3)

thus (3.1) can be formulated as follows
u(t) = Fu(t) == Au(t) + Bu(t), te.J (3.4)

Theorem 3.1. Assume that hypotheses (Hy) — (H3) are satisfied, then fractional pantograph differ-
ential equation (1.1) has at least one solution uw € C(J,R). Moreover, the set of all solutions to (1.1
is bounded in C(J,R) .

In order to prove the Theorem [B.I| we will need to show some lemmas and preliminary results
under the assumption that hypotheses (H;) — (Hj) are satisfied.

Lemma 3.2. The operator A is p-Lipschitz with the constant L,,. Moreover, A satisfies the following
mequality:

| Aul| < |uo| + K, ||ul|? + M, for every u € C. (3.5)
Proof. To prove that the operator A is Lipschitz with the constant L., we argue as follows.

Let u,v € C, then we have
[Au(t) — Av(t)] < |w(u) — w(v)],
by using hypothesis (H;) we get
[ Au(t) — Av(t)] < Lllu - o]

Taking supremum over ¢, we obtain

[ Au = Av|| < Lo |lu = o],
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hence, A is Lipschitz with the constant L,. By using Lemma it follows that A is p-Lipschitz
with the same constant L.

To prove (3.5)), let u € C, then we have
[Au(t)] = [ug — w(w)| < Juo| + [w(w)],
by using assumption (Hs) we get

[Aul] < Juo| + Ko flul|? + M.

m
Lemma 3.3. The operator B is continuous and the following inequality holds
1
Bu|| < —— (K, ||ul|P + M) (¥(T) — ¥(0))°, VueC. 3.6
I UII_F(5+1)( [ul[” + M) (¥(T) = ¥(0))", Vue (3.6)

Proof. To prove that the operator B is continuous, let a sequence {u, },eny C C converge to u in C, it
follows that there exists > 0 such that ||u,| < § and ||u|| <. Now let ¢ € J, then we have

1 ! / -1
|Bu,,(t) — Bu(t)| < m/o U (s)(W(t) — W(s))? (s, un(s), un(es)) — h(s,u(s), u(es))| ds.

Since h is continuous, we have

lim A(s, un(s), un(es)) = h(s,u(s),u(es)).

n—oo

On the other hand, by using (H3) we obtain

—(U'(s — ()P (s, un(s), un(es)) — h(s,u(s), ules P
F(B)(‘I’()(‘I’(t) ()" [[h(s, un(s), un(es)) — h(s, u(s), u(es))|| < (Kud” + M)

><L "(s —P(s))P !
W0~ ),

1
since s W(\D’(s)(\lf(t) — W(s))?~! is an integrable function on [0,], then Lebesgue dominated

convergence theorem implies that

m ﬁ / W U(E) — U(5)) (), une5)) — s, uls), ules))] ds = 0.
It follows that
nl:)rio | Bu,, — Bu ||=0,

hence, B is continuous .

To show (3.6}, let w € C, then we have

Lt’s — U(s))° 7 h(s, u(s), u(es))| ds
Bult)] < 755 | W) = W) Ih(s,u(s) u(es) s,
from (H3) we obtain

putn] < SITEEEED sy uge) - wiepy s



Nonlinear fractional pantograph differential equations 99

Finally, we obtain

(Ko llull? + M) (¥(T) — ¥(0))”
r(B+1) '

I Bu ||<

Lemma 3.4. B:C — C is a compact operator.

Proof. In order to demonstrate the compactness of B we need to show that BB, is relatively compact
in C and we use the Arzela-Ascoli Theorem [2I]. Let u € B,, then from (3.6 we get

Kon? + M,,)(¥(T) — ¥(0))”
rpg+1)
So, it follows that BB, C B¢. Hence BB, is bounded.

| Bu <

=&

To prove that BB, is is uniformly equicontinuous, let u € BB, and t;,t, € J such that #; < 15,
then we have

Bu(ts) — Bu(ty)| < XLt ’ *M / (s)P s,
Bu(ts) — Bu(i)| < “L A *M / ()P s,
K.nP + M,
|Bu(ty) — Bu(t,)] < W(‘I’(tz) —W(ty))”,

K.n®+ M,
su su Bu(ty) — Bu(t))] < —_——* gy U(ty) — W(t)|?.
Sy swp|Bulty) —Bu(t)| < Syt sup [9() — W)

Since W is a continuous function on the closed interval J, then we obtain

lim sup sup |Bu(ty) — Bu(ts)| = 0.
60" ueBB, |t —t2|<6

which shows that BB, is uniformly equicontinuous.

Hence, BB, is uniformly bounded and is uniformly equicontinuous. Arzela-Ascoli Theorem [21]
permits us to conclude that BB, is relatively compact, thus B is compact. O

Corollary 3.1. B : C — C s p-Lipschitz with zero constant.

Proof. Since the operator B is compact and by Lemma [2.2] it follows that B is p-Lipschitz with zero
constant. 0

Now, we have all tools to establish the proof of Theorem
Proof of Theorem [3.11

Let A, B, F: C — C be the operators given by equations (3.2),(3.3) and (3.4]) respectively.

The operators A, B, F are continuous and bounded. Moreover, by using Lemma, we have that
A is p-Lipschitz with constant L, € [0,1) and by using Corollary we have that A is p-Lipschitz
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with zero constant. It follows from Lemma that F is a strict p-contraction with constant L.

We consider the following set
S, ={ueC:u=~Fu forsome 7€ |0,1]}.

Let us show that S, is bounded in C. For this purpose let u € S,, then v = vFu = v(Au + Bu). It
follows that
Jull = vl Full < (| Au]l + [[Bul),

by using Lemmas [3.2 and [3.3] we get
(Knlull” + M) (¥(T) — ¥(0))”
LB+1)

From inequality (3.7) we deduce that S, is bounded in C with p <1 and ¢ < 1.
If this is not the case, we suppose that £ := ||u|| — oo. Dividing both sides of (3.7) by &, and
taking & — oo, it follows that

[ull < Juol + Kollull” + M., + (3.7)

(Ko&” + M,)(¥(T) — 9(0))”
|uo| + K€+ M, +

which is a contradiction. By using Theorem we conclude that F has at least one fixed
point which is a solution of (1.1)) and the set of the fixed points of F is bounded in C.
O

Remark 2. Note that if assumptions (Hs) and (Hj3) are formulated for ¢ = 1 and p = 1, then the
conclusions of Theorem [3.1] remain valid provided that

4 An illustrative example

In this section, we give an example to illustrate the usefulness of our main result.
Consider the following problem:

3 _t

D2 u(t) = h(t,ult),ulet), teJ=10,1],

20 (4.1)

u'(0) =0, w(0)=> bilu(t;)l, 0;>0, 0<t;<1, j=12 .20,

j=1
_sin(u(%5)) (o)
where h(t, u(t), u(et)) = Ore)va (1+‘U<¢t§)‘> .

20 20
Here ¢ = \%, B=3T=1 U = ¢, and w(u) = 29j|u(tj)\ with Zl@j < 1. Clearly

=1 =

20
h e C(J xR xR,R) and (H;), (Hy) hold with K, = L, = >_6;, M, =0 and ¢ = 1. Indeed, we
i=j
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can write

20
ww)] <Y 65 lull,
j=1

20
thus, K, = >_0;, M,=0and q=1.
=1

J

Moreover, we have

Y

fwu(®) = w@®)] = | 3 fu(t)] = 3 8l

hence,

jwlu) —w(v)] < Z% lu =l

20
thus, in (Hs), L, = > 0;.
j=1

To prove (H3), let t € J and u € R, then we have

[At; u(t), u(et))] < ——=(Ju[ +1).

Thus, (Hj3) holds with K} = M), = and p = 1.

1
10v/2
Consequently, Theorem implies that problem (4.1) has at least one solution. Moreover, by
inequality (3.7) we have
(e —1)3/2)
~ (.19,
10v/21°(8/3) — 1

thus, the set of all solutions to (4.1) is bounded.

lull <

5 Conclusion

In this paper, we studied the existence of solutions to nonlinear pantograph differential equations
involving Caputo type fractional derivative with respect to another function ¥. The proofs of our
proposed model are based on the topological degree theory for condensing maps. We also provided
an example to make our results clear.
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1 Introduction

A one-dimensional Hardy inequality

e ([ dy>qd“ gl e ([ rorwma (y>)” g

has been studied in detail and complete characterizations of its validity for all non-negative functions
f have been obtained in terms of pairs of weights u,v and measures p, v for all pairs of exponents
p,q, see |11, [12], [13], |14], |20] for the history and extensive references. By a characterization
we mean obtaining a functional ® (u, v, u, ) such that for all weights and measures the inequality
1C < @ (u,v, u,v) < coC is true, where C'is the best constant in the above inequality and ¢, co > 0
can depend on p,q but are not allowed to depend on wu,v, u,v. Those characterizations are very
different for the cases p < g and ¢ < p.

In the one-dimensional case most researchers have used tools of one-dimensional calculus, such
as integration by parts [33]. The lack of such tools has been the main obstacle on the way to
multidimensional results. Some general results for p < ¢ and for Banach function spaces have been
established in [7]. Obtaining full characterizations has been facilitated by the possibility to reduce
the multidimensional case to the one-dimensional, by using spherical coordinates [31], [4], the polar
decomposition [26], [27] or assuming that the weights are products of functions of one variable [35],
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[36]. The result by Sawyer [29] does not allow reduction to dimension one but is limited to a quadrant
on the plane R2.

In a recent paper Sinnamon [32] suggested a very general method that covers totally ordered sets
of domains on a measure space. The method relies on a non-increasing rearrangement involving the
weights and measures and reduces the multidimensional case to the one-dimensional. Apart from
generality, the method allows Sinnamon to improve the constants ci,cs. The analysis of ordered
cores is of independent interest.

For applications it is desirable to have everything to be expressed in terms of original weights and
measures, the most important examples being the Hardy-Steklov type operator [9] and the Hardy
inequality on cones of monotone functions [30], [34]. In Sinnamon’s method one additional step is
required to derive the criteria in terms of original weights and measures from his one-dimensional
formulations. K. Mynbaev [2I] has obtained results in terms of original weights and measures under
the assumptions on the domains that are close to the ones imposed by Sinnamon (see [21, Remark
1] for a more detailed comparison with Sinnamon’s paper).

Here we develop a different approach to the norm estimation, compactness conditions and bounds
for approximation numbers using domain partitions. The boundedness criteria obtained below can
be derived from both [32] and [21]. Nevertheless, we give full proofs of boundedness, compactness and
estimates of approximation numbers to show that domain partitions combined with the conditions
on the operator 1" imposed here allow one to extend many of the existing one-dimensional results to
the current setup in a Hausdorff space. Possible extensions include results that employ the Oinarov
condition [22], [I5]. Since Sinnamon’s approach covers also discrete Hardy inequalities, it would be
interesting to see if the results of [I6] can deduced following Sinnamon.

We consider integration over expanding subsets Q(t) of an arbitrary open set {2 in a Hausdorff
topological space X with o-additive Borel measures p,v. As in [32] and [2I], neither ©(¢) nor their
complements Q\€(t) need to be connected and there are no requirements on the shape of {)(¢) when
X is a linear space. In the classical case one can notice that the subdomain Q (¢) = (0,%) of Q@ = (0, 00)
has w (t) =t as the boundary in the relative topology and that Q(¢) = {s € Q:w(s) <w(t)}. Our
conditions on the family {2 (¢)} are based on this observation.

The existing results on integral Hardy inequalities for R or measure metric spaces (in which (¢)
are balls, see [4], [2], [26], [27], [28]) follow from ours, as well as from [32] and [2I]. Product weights
are not included as well as Sawyer’s result [29] (his rectangles do not satisfy condition below).
In papers [26], [27], [28] a metric is required to generate balls and a polar decomposition to use
the one-dimensional techniques, while we avoid these requirements. There is a number of situations
(homogeneous groups, hyperbolic spaces, Cartan-Hadamard manifolds, and connected Lie groups)
when the polar decomposition is available, see also [I] for a study of polarizable metric measure
spaces. All such situations are covered by our statements. The authors of the article [28] employ the
results from [21].

Unlike [32] and [2I], our approach is elementary and does not require any advanced measure
theory beyond o-additivity. Note that binary partitions were used to prove sufficiency for the Hardy
operator in the one-dimensional case in [3]. Unlike [3], we avoid their auxiliary functions ® and &,
and apply discretization both for the upper and lower bounds in terms of the same functional of the
weights.

Note that we provide two different proofs of the sufficiency of the compactness conditions: in
Sections 3 and 4. Both employ an explicit finite-rank approximation to the Hardy operator.

The study of the approximation numbers (a-numbers) of the Hardy operator in the Lebesgue
spaces on the half-line for parameters satisfying 1 < p < ¢ < oo started with the papers by D.E.
Edmunds, W.D. Evans, D.J. Harris [5], [6]. They found implicit and asymptotic bounds for a-
numbers of the operator T': LP(RT) — LP(R™). Next D.E. Edmunds, V.D. Stepanov [§] obtained
the bounds for singular numbers of the Hardy type operator with a polynomial kernel acting in
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the spaces L?*(R*). Those results were extended by E.N. Lomakina, V.D. Stepanov [19] to the
case 1 < p,q < oo; besides, two-sided bounds for the Schatten—von-Neumann norm were proved.
However, in the case 1 < ¢ < p < oo the upper bound for the a-numbers ay(T) < N9/ was not
informative because of its dependence on N. In this paper for 1 < ¢ < p < oo we derive an upper
bound that does not depend on N. We do not consider the case 0 < ¢ < 1 < p < oo studied by E.N.
Lomakina [I7], nor do we attempt to study the Hardy operator acting from the Lebesgue spaces to
the Lorentz spaces in the spirit of [18§].

2 Hardy operator boundedness

We write A < B to mean that c;A < B < ¢ A with constants ¢, co that do not depend on weights
and measures.

Assumption 1. Let Q be an open subset of a Hausdorff topological space X with o-additive measures
i, v. The measures are defined on a o-algebra M that contains the Borel-measurable sets. The weights
u, v are assumed to be positive and finite almost everywhere.

Assumption 2. a) {Q(t) : t > 0} is a one-parametric family of open subsets of Q which satisfy
monotonicity
for ty < ta, Q(t1) is a proper subset of Q(t3). (2.1)

b) QUt) start at the empty set and eventually cover almost all §2:

Q) =) =2, v <Q \ U@@)) = 0.

t>0 t>0

c¢) Further, denote by w(t) = Q) [ (Q\Q(t)) the boundary of Q(t) in the relative topology. We
require the boundaries to be disjoint and cover almost all ):

wit)) [ wltz) =@, t # ta, v(Q\ [ Jw(t) =0. (2.2)

t>0

d) Passing to a different parametrization, if necessary, we can assume that

v (Q\ U w(t)) >0 for any N < oo. (2.3)

t<N
e) Finally, we assume that boundaries are thin in the sense that

v(w(t)) =0 for all ¢ > 0. (2.4)

This Assumption has simple implications.
1) (2.2) implies that for v-almost each y € €2 there exists a unique 7(y) > 0 such that y € w(7(y)),
which allows us to define

Tf(y) = / fdv, y € Q, (2.5)
Q7 (y)

for any non-negative 9l-measurable f. On the set Qy C Q of those y for which 7(y) is not defined
we can put 7(€y) = &. (A more general definition of a Hardy-type operator is given in [7]. That
definition is more difficult to work with what we call slices.)

2) and the fact that w(t) # @, t > 0, lead to the equality 7(92) = (0, c0).
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3) Because of (2.4) / fdv= [  fdv and up to a set of v-measure zero
Q(t) Q(t)

{xeQ:7(x) >71(y)} = Q\Q7(y)). (2.6)

For 0 < a < b < oo we denote Q([a,b]) = Q(b) \ Q(a).

Since 7(y1) = 7(y2) for any y1,y2 € w(t), the value T'f(y) is the same for all y € w(t) and we can
define Sf(t) = Tf(y) if y € w(t). For a non-negative f, the function Sf is non-decreasing and its
jumps are zero due to . Thus,

for each f > 0, Sf is continuous where it is finite, including ¢ = 0. (2.7)

Let L?

vdv

function and let ||T'|| = ||T||»

1/p
@ = (/ |f\”vdu) where v is a weight
Q
P (@)=L, () be the norm of a linear operator T acting from L?, () to
L34,(2), hence
J

vdy
q 1/q 1/p
[ gaf wauo)| < ([ o)
Q(7(x)) Q

1/q ) 1/p
U(t) = </ udu) (/ v P /pdy) :
Q\Q(t) Q(t)

Theorem 2.1. If 1 < p < ¢ < oo, then 1) is bounded if and only if A < oo, where A = sup V().
t>0
Moreover, A < ||T|| < 4A.

(Q2) denote the space with the norm || f||.»

vdv

Denote

Proof. Lower bound. Let an operator T' : L7, (Q) — L,

constant C' > 0 such that ||TfHLZdH(Q) < ONfller, (@)

vdv

Put f,(z) = Uﬁp,/p(Z)XQ(T(y))(Z), y € ). Then

(Q) be bounded, then there exists a

Tf,(x) :/ v Py :/ v Pdy, for T(x) > T(y)
Q7 (x))N(7(y)) Q(r(y))

and

Cllifyllzz, @ = T fylls, -

Therefore, by applying (2.6) and 7(Q2) = (0, 00) we see that

1/q (f ud )l/qf v P /Pdy
¢ s qupo@h)udn) ™ rwsron 4) - Jowrw)
1/ = 1/
e U fjede) ™ et <fQ(T(y)) ”_p,/pdy) p

1/q / 1/p
— sup (/ ud,u) (/ vP /pd,/) =A
yeQ \Ja\Q(r(y)) Q7 ()

(@1, = nfC = A.

and ||7|| .

vdv
Upper bound. Without loss of generality we suppose that 0 < supT'f(y) < oo. Put ¢ty = oo,
yeN

Q(c0) = Q. By (2.7) Sf(t) — 0, t — 0, so the definition ¢; = sup{t > 0: 25 f(t) < Sf(to)} is correct.
By the continuity of Sf, we have 25f(t1) = Sf(ty) and t; < . By induction, if ¢; has been defined,
we put tp1 = sup{t > 0:25f(t) < Sf(tx)}. Then

QSf(tk+1) = Sf(tk), thr1 < Tk- (28)
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This can be called a sliding property because it allows us to pass from Sf(t;) to Sf(tx+;). Defining
slices

Sk+1 = Q(tk>\Q<tk+1)v k>0,
we have
Sf(tee) = 25f(tegr) — Sf(trs1)
= Sf(tx) — Sf(tks1) = / fdv, k> 0. (2.9)

Sk+1

Let y € sgy1 or, equivalently, tx1 < 7(y) < t. Using (2.8)), (2.9) and Holder’s inequality we have

Tfy) = / fdv < S(t) = 25F(tren) = 4 (trs2)
Q(7(y))

1/p 1/p'
= 4 fdv <4 / fPody / v PP dy : (2.10)
Sk+2 Sk+2 Sk+2
1/q 1/p'
ap = / udp / v PPy .
Sk+1 Sk+2

We can use ([2.10) and the inequality p < ¢ to estimate

([ ryuin) " (Z SHI(Tf)qudu) "

k>0

[ a/p a/p
Z / udp fPudv / v Py
Sk41 Sk+2 Sk+2

k>0
[ q/p] /1 1/p
= 4 Z aj fPodv < 4sup ay, Z fPodv (2.11)
Sk+2 k k>0 Sk+2

_k‘ZO
< 4Afle @ -

Denote

M 1/q

AN
W

The last transition uses the following inclusions
skt = Q) \Qter1) C A\Q(trr1)  and spra = Q1) \Qtrr2) C Qtera).

If supT'f (y) = oo we can choose ¢ < oo such that / fdv < oo, put fi(z) = xou (z) f (z),
Q(t)

yeN
and do all calculations leading to (2.11]) with f; in place of f. Since the constant in (2.11]) does not
depend on ¢, then we can let ¢ — oo thus completing the proof. O

Let ug, vo be non-negative integrable functions such that uy < u, vy < v, We can assume

that 0 < /vodu < oo and by analogy with (2.8)) define the points ¢y = co > t; > ..., where t; =
Q

sup {t > 0:2Svg (t) < Swvg (to)}, ..oy tir1 = sup{t > 0: 2Sv (t) < Svp (tx)} such that Q(c0) = Q and

/ vody = Q_k/vgdy, k> 0. (2.12)
Q(tx) Q
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This implies the following equality (as before, spi1 = Q(tx)\Q(tr11) ):

/ vodv = 2/ vodv.
Sk+1 Sk+2

The partition {¢;} generates non-negative numbers

Vi = / vodv, Uk:/ uodp,
Sk41 Sk41

Tp = / vodl/:ZVj, yk:/ uod,u:ZUj,k:ZO.
Q(tx)

>k O\Q(tg+1) <k

Here {z;} is non-increasing and {y;} is non-decreasing. We need the identities

r T r r r T

——l=— ——1l=—, ——1=-. (2.13)
q p Dg pq p q

The next lemma provides a replacement for the one-dimensional techniques mentioned in the
Introduction.

Lemma 2.1. Let a > 1.
a) We have

z(z w)a_lvng(z v)

Jj=k \izj+1 i>k+1

for any non-negative numbers V; such that the left side is finite.

b) Moreover,
a—1 1 a a
i>k i>k—1 i>k

For this inequality to be true for k =0 we formally put V_1 = 0 so that

96—1:2‘/}:2‘/%:%

i>—1 1>0

k> 1

and the inequality holds trivially.
c¢) For the partition {ty} one has

r/p
T T r
ykfl - yk/q < - / updp / updp.
q N\Q(tg12) Skt2
Proof. Let g(z) = x°.

a) By the mean value theorem with some 6 € (242, 7;41)

a—1

1,

( Z W) Viee = —¢(zj41)(Tj41 — Tjt2)

i>it1 a
1 1

> P (0)(xjp1 — Tj42) = p (9(zj11) — g(z)42)) .
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It follows that

Z < Z V%) Vi 2 %Z (g(ijrl) — 9($j+2))

>k \i>j+1

b) Similarly, with some 6 € (xy, 25_1)

(Z V%) Vier = ég,(ffk)(ffk—l — T)

< g (O)nr — ) =~ (glre) — glaw))

¢) With a = r/q and 6 € (yx, yx11) by the first identity (2.13])

r/q
/ uod L — / upd s
O\Q(tk+2) O\Q(tr+1)

= 9(Wrr1) — 9(uk) = 9O Wrs1 — yr) < 9 (Yrs1) / uodp
Sk+2
r/p
,
= - / upd s / Uod L.
q AN\Q(tg+2) Sk+2

Let0<g<p l<p<ooandputl/r=1/qg—1/p,

1/p , 1/p’
O(y) = (/ udu) (/ v P “”du) :
(7 () Q7 (y)

For 2 = (0, 00) [20], [33] have shown that ¢ [ @] .. o) < [T]| <2 [|®
udp
that depend on p, ¢ and do not depend on the weights and measures.

r/q

: ith constan
L7,.(9) with constants ¢y, co

1 1 1
Theorem 2.2. I[f1 <p<o0,0<g<pand ——— = —, then 1) is bounded if and only if B < oo,
r
1/r ¢ b
where B = (/ @%du) . Moreover,
Q

g ()7 212

1/p
((1 + g) 2r+r/p/>

Proof. Upper bound. As in the proof of Theorem , it suffices to consider the case 0 < supT'f(y) <
yeN

B <||T| < 2*Y4 B.

oo. Begin with applying Holder’s inequality with exponents p/q and r/q in (2.11)):

1/p 1r 1/p
<4 (Z a;> (Z / fpvdy) .

k>0 k>0

q/p
1T Sllzz, (@) <4 2}%(/ f%mj
Sk+2

k>0
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We want to bound

/

r/q r/p
ap = / udp / v Py
Sk41 Sk+2
r/p r/p
= / udp / udp / v Py
Sk41 Sk+1 Sk+2

by an integral. Select ¢} € (tx41,%x) so that

/

/
k+1

/

1
wdp= [ udi = [ udg, where si., = AN, s = AENDAtw).
Sk+1

Skt 2

First, we replace integrals and explicitly write out the domains of integration:

r/p r/p'
ap = / udp / udp / v Py
Sk+1 Sk41 Sk+42
r/p /v
= 2”‘1/ udy / udy / v Py
S S Sk+42

" /
k41 k41

r/p
_ o / u(y)dp(y) ( / u(z)du(z))
tht1 Sﬂ-(y)<t;C t;cgr(z)<tk

/

r/p
X / v P P(2)dy(2) .
te+2<7(2)<tkt+1

Next, we increase the domains of integration in the last two integrals:

r/p
o < 2 utwinto) ( [ (o))
trer1<7(y)<ty, T(y)<7(2) <00

/

) r/p
X (/ vP /p(z)dy(z)> :
T(2)<7(y)

Finally, we increase the domain of integration in the outer integral:

r/p ) r/p'
o < 2 [t ([ ) ([ o)
Skt N\Q(7(y)) Q(1(y))

or/a / S udp.

Sk+1

Thus,

deu(ﬂ) :

1/r
T, o < 27 g, o (Z ‘P’"udu> = fl o 0

k>0 Sk+1

Lower bound. Inspired by [33] we define

r/(pa) r/(p'9)—1
f(t) = (/ uodp) (/ vody) vo(t).
Q\Q(r (1)) Q(r(1))
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r/(pq)
/ fdv > ( / uOdu)
Q(7(x)) Q\Q(7(x))
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r/(p'g)—1
/ </ vodv> vo(t)dv(t) | .
Q(r(z)) \JQ(r(1))

(2.14)

Let k = min{j: t; <7(x)}, for which ¢, < 7(2) < t;_1, and consider the integral in the square

r/(p'9)—1
(/ Uodl/) vo(t)dv(t)
Q(7(¢)

brackets:

v

>

:>\:>\

Q

>k

r/(p'9)—1
(/ vodu> vo(t)dv(t)
te) \JQ(t)

/sm (o

r/(®'q)—1
/ < UOdV> (t)dv(t) = Z ( Z V;) V.
Sj+1 Q(tj4+1) ; i>j

By the sliding property and Lemma a) with a = ;

Ww) ()du(t)

pq

r/(p'q)-1 o r/(r'q)
1222<2v;> sz%(ZVi) .

jzk

i>j+1 i>k+1

(2.14), (2.12)) and this bound give

/ fdv
Q(r(x))

where ¢; =

IN

4 q21 2r/(p/

171

>

v

r/(¥'q)

2 r/(pq)
P ( / uodu) / vodv
r A\Q(7(2)) Qtr+1)

/ r/(pq) r/(P'q)
2p_q4—r/(;n’q) (/ Uod,u> (/ vodu>
r QA7 (2)) Qtr-1)
r/(pq) r/(P'q)
a1 (/ uodu> (/ vodu> = clq)g/q(x),
\Q(7(2)) Q(r(z))

P9 and we have denoted

1/p 1/p
Oy(x) = (/ uodu) (/ vodu) .
A\Q(7(x)) Q(r(z))

Assuming that ||7']| < oo we have

q q/p
et [ apuans [ ([ - pv ) wteute) < |71 ([ yroav )

r/q r/d a/p
/ (/ uodu) </ vody) vo(x)dv(x) :
Q \JNQ(r(2)) Q(r ()

(2.15)
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We have applied the inequality viv < va/(l ) vg*p/p’ = 1vy. Further, we need to bound

/4 r/d
I = /(/ uodp) (/ vody) vo(z)dv(x)
Q \JNQ(r(2)) Q(r ()
r/q r/d
- Z/ (/ uodu> (/ vodu> vo(z)dv(x)
skt1 N\ Q\Q(7(2)) Q(r(2))

k>0

r/q r/q
Z / Uod s (/ 'Uodu> / voduv. (2.16)
k>0 NQ(tr1) Q(tx) Skt+1

Using the third identity in (2.13) and Lemma [2.1) b) with a = r/p’ we can write

r/q r/p'—1 1 r/p'—1
</ vody) / vodv = (Z VJ> Vi == (Z VJ) Vi1
Q(tx) Sk+1 i 2 i>k

IN

j>k
o T/’ T/’
<rl(zv) -(zv)
i>k—1 i>k
I .
- = (a7 =), (2.17)

/

Next combine (| and ( -, denoting ¢y = 2— and keeping in mind that x_; = x¢ :

Ijey < Z yr/q (1?2/_”1 - xZ/p) = Z y/’;/q (qu;/p1 :/p) + yS/q (xor/p/ — xoT/p/)

k>0

= Y +Z(yz:/+q1 r/‘I>:E/p/‘
k>0

By Lemma [2.1] ¢)

r/p r/p’
I/ey < yg/qxor/p’ + r Z / uodp (/ Uodl/) / uodpt. (2.18)
q k>0 N\Q(tt2) Q(tr) Shao

Let t),1 € (trt2, tes1) satisfy the following equality

/ uod,u—/ Upd .
Qth 1)\ Qtk42) Q(tr41)\ Ut

k+1 k+1)

T/p
/ updp / updp
Q\Q(tp42) Sk+2
r/p
= 2 2/ uodu—l—/ uod / updpt
Qte+1)\ 2t 1) NQ(tk41) Q1 )\2(tk+2)

r/p
< oltr/p (/ uodu> / uodp
QL 11) Qty 1)\t +2)
r/p
< 21+T/p/ (/ uod,u> uo(t)du(t).
sk+2 N\ \Q(7 (1))

Then
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/ vodv = 2"“/ vodv = 4 - 2~ (k+2) / vodv = 4/ vodv.
Q(tr) Q Q Qtkt2)

Hence, the big sum in (2.18)) is bounded since

v/ r/p'
Z / updp (/ vody) / updp
N\Q(tg+2) Q(tx) Sk+2

k>0

Besides,

/

r/p r/p
ol4r+r/p Z / vodv / (/ uodu) uo(t)dp(t)
Qth42) sk+2 N\ \Q(7(1))

k>0

/p r/p
< 21+r+7'/p’ Z/ (/ Uodﬁb) (/ UodV> uo(t)du(t)
k>0 7 skt NS Q\Q(7 (1)) Q(r(t))

< A/ / Brugdys. (2.19)
Q

IN

The first term in (2.18)) has to be treated separatel. Note that

) r/p r/p
yo/ LV = (/ uodu) (/ vody) / ugdjt.
O\Q(t1) Q DNQ(t1)

Let t' € [t1, 00) satisfy fQ(t,)\Q(tl) ugdp = fQ\Q(t,) uodu. Then,

) ) r/p r/p'
yg/quT/P — gr/ptr/p'+l (/ uod,u) (/ Uodl/) / uodp
Q) Q(t1) Q)\Q(t1)
r/p r/p
< 21”/ (/ uod,u) </ UodV) uo(t)dpu(t)
QEN\Q(t1) \SAQ(7(1)) Q(r(1))

< oM / Dpugdy. (2.20)
Q

Equations (2.18), (2.19) and (2.20) are summarized to give

/
1<t (1 + f) orir/v! / D ugdp.
r q Q

Recalling also (2.15) we get

1/q o r . 1/p 1/p
oo ([ g ) <z < (B (e D)) ([ agude)

1/p
It remains to divide both sides by ( / @Suodu) . Finally, choose ug, v9 monotonously approaching
Q

to u,v' ", respectively, and apply Fatou’s lemma, which holds on a general measure space (no
topology is needed) [10]. O

With simple changes in the proofs, analogues of Theorems[2.T]and [2.2]hold for the adjoint operator

T Lf))dy(Q) — LZdu(Q)7
rfw)= [ g
2N\Q(y)
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Denote

1/q ) 1/p'
U*(t) = (/ ud,u) </ v /pdu) , >0,
Q) Q\Q(1)

/

1/p ) 1/p
' (y) = (/ ud,u) (/ v P /pdy> , Yy €N,
Q(r(y) AN\Q(7(y))

and consider the inequality

! 1 1/p
{/ / fdv U(x)du(l’)} < [Tl (/ \f!%du) .
Q IJNQ(7(z)) Q

Theorem 2.3. 1) If1 < p < q < oo, then T* is bounded if and only if A* < oo where A* = sup U*(t),
>0
and A* < ||T%|| < 4A*.
2)If0 < ¢ < p, 1 < p < oo, then T* is bounded if and only if B* < oo where B* =

1/r
(/ ()" udu) , 1/r=1/q—1/p. Moreover,
Q

q(p'/r)7 2r-2r/v'a

1/p
()7

Remark 1. Instead of being parameterized by ¢ € (0,00) the family {€(¢)} can be parameterized
by t € [a,b] with —oo < a < b < 0o. The resulting bounds will be applied below.

B* S ||T*|| S 22+1/q B*.

3 Hardy operator compactness

The next subject is the compactness of T. The notation below allows one to trace similarity with
[32]. Denote

a(r) = / udp, b(x) :/ v P Pdy, 0 <z < o0,

I, = limsupa(2)”/7b(2)""", for i = 0,00, | = max {lo, s}
T

Lemma 3.1. Suppose that a (x) < 00, b(z) < oo on (0,00). Ifl > & > 0, then there exists a sequence
{gn} such that HgnHLﬁdu(Q) =1, [Tg, — TgmHLZd#(Q) > €.

Proof. Let f,(2) =b(z)" /" Xa@) (2) v/ (2), z € Q. Then

1/p
Vollpws = b ()" ( /Q o du) 1 (3.1)

and

T (y) = b(z) /

Q7(y)

Case ¢ = 0. Suppose that [ > ¢ > 0. Choose z; > 0 for which

Xa@v P Pdy =b (x)_l/p/ v PPy, (3.2)
Q(min{7(y),x})

a(z)V9b (2)" > €. (3.3)
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Since b(xz) — 0 as © — 0, we can select x5 < 7 so that
a(22) b (1) > ¢ and a (21)"* (b (21)7 — b(./L‘Q)l/p,> > €.
Similarly, we can choose x; > x5 > ... recursively so that for each n
a (2)"9b (2,)" > € and a (z,)"* (b (@) — b (xn+1)1/P’> > e (3.4)
If m > n then z, > x,,1 > x,, and
b(zn) > b(rpe1) > b(x,). (3.5)

If 7 (y) > ,, then by (B.2) and (3.5)
T frn = T o > b(wn) " = b (2) " > 0.

Hence, by (3.4

1/q
udu)
y:7(y)>2n}

> a(en)’* ()" = b(w)?) > e

1T fe,, — TfImHLZdN(Q) > <b (xn)l/p — b(xm)l/p) </{

This and (3.1)) show that the functions g, = f,, possess the required properties.
Case i = c0. Suppose [, > £. Choose z; satisfying (3.3). Obviously, a (z) — 0 as x — oo and,
therefore, b (x) — oco. Using (3.3) we can choose z; > z; such that

(a (1) —a(z20))"9b ()" > e. (3.6)
The inequality /. > ¢ and imply that we can select zp > 2z with a (z2)"9b (22)"? > ¢ and
(a(21) = a(20))" (b (@)"" —b(21)b @;g*“p) > e
Continuing in this way, we obtain points z1 < 21 < 3 < 23 < ... such that for each n
a (2)0 (2)77 > &, (a(zn) — a(z)9b (2) 7 > ¢,

(a(zn) — a(za))" <b (@) = b (2) b (xnﬂ)—l/p) > e (3.7)

If m > n, then z, < 2z, < ,41 < ,,, leading to the inequlities
b(zn) <b(zn) <b(zpi1) <b(xy). (3.8)
Let z,, < 7(y) < z,. Then by
Tfo, (y) = b(@)"", Tha, (1) = b(@n) 7 b(r ().
Because of and this implies

Tfe, (y) =Tt (y)

bwa) " = b(am) (7 (1)
b(z)"" = b(xm) b (2,)
b(z)"" = b (20r1) P b (20) > 0.

AVARLY,
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Now we apply (3.7) to get

1/q
Ito, = Tl = ( (T Far ()= Tl ()"0 )1 ))
e {y:zn<r(y)<zn}
> (a(wn) = a (=) (b@) = b () b)) > e
Denoting g, = f., we see that this bound and (3.1)) complete the proof of the lemma. O

Theorem 3.1. a) If 1 < p < q < o0, then T is compact if and only if L =0.b) If 1 <qg<p and T
18 bounded, then T is compact.

Proof. Approzimation to T. The points t, = k27", k=0, ...,n2", t,9n 1 = 00, lead to two partitions:
one of (0,00), consisting of the intervals

Ak - (tk,tk+1) ; k - O, ,n2n - 17 AnQn - (thn, tn2n+1) - (n, OO) 5
and the another one of €2, consisting of the sets

Qk =0 (tk+l) \Q (tk) y k= 0, ceny n2".

n2m

Define k,, (t) = ZthAk, (t), t > 0. Since = € ), is equivalent to 7 (z) € Ay we have
k=0

R (T(2) = th<7(x) <t +2" forzeQy, k=0,.,n2"—1,

ko (T(2)) = n<71(r) foraze Quon.
Put
n27l
tiw=[ = [ fir=>" [ fane, .
Qkn (%)) QR0 trxa, ) 0 Y Qtx)
Obviously 7, is a finite-rank operator.
For the difference T' — T}, we have the representation
n2"
Tf(y) —Tuf (v) = Y ( / fdv — / fdv) Xe, (v)
k=0 Q7 (y)) Q(tk)
n2m
=3[ e ). (39)
k=0 Y (T (W)\ (k)

Case p < q. Sufficiency. By Theorem

™
Qe 1Q(r(y)\(tk) Q
1/q / 1/p'
ap = sup / udp (/ v P /pdl/) .
t<t<tpi1 Qtr1)\Q(2) QO\Q(tr)

q

)ity " < ([ i vdu)w (3.10)

where
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Since p < ¢ we see by (3.9)-(3.10) that

1/q n2n 1/q
( / Tf — T, f|" udu) = [Z Tf — T, f|" udu]
Q k=0 /%
n2n a/p 1/q
S ¢ [Z GZ( If’”lvdl/) udu] < csupay Ifller @) - (3.11)
k=0 e

Let us prove the compactness of T assuming that [ = 0. For any ¢ > 0 we can choose z; < w9
such that
a ()b (2)" <&, xe (0,31 U[rs,00). (3.12)
Since v?/P and w are positive almost everywhere, this implies that a (z) and b () are positive in
the range in and then a(x) < a(x1) < o0, b(z) < b(x3) < 0o for x € [xq,x]. This justifies
the calculations that yielded .
We want to evaluate the sets

Ql = U Qk; QQ == U Qk7 @3 = U Qk

lg+1<x1 1 <tpy1<2w2 tet1>222

Obviously, Q, CQ (1) . Assuming that 27" < x5 we see that t5,1 > 2xo implies that ¢, > x5 and
Q3 C OQ\Q (x2). Further, provided that 27" < x1/2 from 27 < t3y1 < 29 we have ty > x1/2 and
Qy C Q(222) \Q(21/2). We have shown that

0 CQ(1), QCQQ2x)\Q(21/2), Qs C A (z2). (3.13)
Since ar < sup W (¢), the inclusions in (3.13)) and (3.12)) give
b <t<tpii
sup ap <¢e, sup ai <Ee. (3.14)
try1<T1 tp41>222

For Ay with 1 < ;11 < 2x9 we have

1/q . 1/p'
ax < (/ ud,u) (/ vP /pdu) = (tk,Q’") (3.15)
Q(te+27")\Q(tk) Qtp+27)\2(tk)

where 1 is defined as

/

1/q ) 1/p
v (z,d) = </ udu) (/ v P /pdy> ,
Q(z+0)\Q(z) Q(z+0)\Q(z)

(x,9) € [%,ng} x [0, do]

for some g > 0. This function is continuous on a compact domain and has the property that
(15111(1)77/1 (x,0) =0 for any x € [x1/2,2x5] . Hence, there exists 0, € (0, dp] such that
_)

ap < sup Y (x,0) <e.
(z,0)€lx1/2,222] % (0,01]

If we choose n satisfying the inequalities 27" < 21/2 < x5 and 27" < §; then (3.11)), (3.14)), (3.15))
give the desired bound from above: || T — T,|| < ce and T' is compact.
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Necessity. Suppose that T' is compact, which implies that ||7|| < co and A < oo by Theorem
As above, it follows that a and b are finite on (0, 0o) and we can use Lemma[3.1] Suppose [ > 0. Taking
€ =1/2 in Lemma (3.1 we obtain a sequence {g,} such that [|g.[z» @) =1, [[T'g, — TgmHLZdN(Q) > €.
This shows that 7" cannot be compact and that the condition [ = 0 is necessary.

Case g < p. Let ||T|| < co. By Theorem 2.2, instead of we have

1/q n2" Lr
(/ |Tf—Tnf!qudu) gc(ZbZ) 1z, (3.16)
k=0

where
1/r

/

r/p /p
by, = / / udp ( / v/ pdV) u (y) dp (y)
o\t )\ () QUrmN\At)

1/r "
Also B < oo. Therefore, we can select x; < x5 so that </~ q)rudu) < ¢ for both Q = Q (1) and
Q

Q = Q\Q () . This implies that

Z b, < Z / O udp < / Q" udp < e. (3.17)
ter1<z1 te+1<x1 Q Q
Assuming that 27" < x5 we can use (3.13)) to obtain

Z b, < / Q" udp < e. (3.18)
A\Q(z2)

{k:tk+1 >2xa}

Again using ([3.13]) with 27" < x,/2 we get

ooy < > /Quduw(tk,wy

{k:w1<tp41<2x2} {k:x1 <tpy1<2x2}

§/ udp  sup Y (z,27")". (3.19)
Q(222)\Q(21/2)

z1/2<e<2x9

The function ® is integrable and the choice of 21 can be subject to one more condition: ® (z1/2) < co.
As b(z1/2) > 0, by the inequality

D (2,/2)"
[ s [ e 02
Q(222)\Q(x1/2) 2\Q(a1/2) b(xy/2)P*

we see that the right-hand side in (3.19) tends to zero as n — oco. Bounds (3.16)-(3.19) imply that
T can be approximated arbitrarily well with finite-rank operators and thus is compact. O

4 Bounds for approximation numbers

Our next task is to obtain bounds for the approximation numbers (a-numbers) of operator (2.5)). Let
X,Y be two Banach spaces. For a bounded linear operator T': X — Y its n-th a-number, n € N, is
defined by

a, (T) =inf{||T — P||: P: X — Y is a bounded linear operator and rankP < n}.
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For [a,b] C [0,00) we initially consider the problem of how well the operator x[, 47 is approxi-
mated by averages. To this end, successively define

- 1
fu (2 [a, 0]) = /Q[a,b] udp, Ty f = m/g[a,b}(TﬁUdM’ (4.1)

ﬂa,b}f (l’) =  XQ[a,b] (ZL’) (Tf ($) - j_—’[a:b}f) :

Theorem 4.1. Choose the point ¢ so that

pa () = (e, ) = S ([ B).

a) Let 1 <p<q< o0,

1/q ) 1/p
A*la,c] =  sup (/ ud,u) (/ v P /pdl/) :
a<t(z)<c Qla,7(x)] Q[r(x),q]
1/q ) 1/p
Ale,b) = sup (/ udu) </ vP /pdu)
c<7(x)<b Q[r(z),b] Qle,7(z)]

and Ala,b] = max{A*[a,c|, Alc,b]}. Then
(1—279) Ala,b] < ||Tay]| < 8A[a,b].
b) Let 1 <qg<p<oo, 1/r=1/q—1/p,

1/r

r/p ) r/p
B*la,c] = / (/ ud,u) (/ vP /pdy) u(z)du () ,
Qla,c] Qla,r(z)] Qlr(x),q]

- 1/r

r/p ) r/p
Ble,b] = / (/ udu) (/ vP /pdy> w(x)du ()
Q[e,b] Q[7(z),b] Qle,m(z)]

and Ba,b] = max{B*[a,c], Blc,b]}. Then

a (pl/r)"" 21 (1 - 27Y)

1/p
()7

—/ fdv, a <1 (x) <e,
Qfr(z),c]

fdv, ¢ <71 (x)<b,
Qle,7(z)]
Fonf = iy . (Fanfud
af = ——— o f)udp.
ot Ho (Q [CL, b]) Q[a,b] ]

With this notation, we have the following identity

Bla,b] < [Ty <277 Ba, b).

Proof. Define

Floyf (z) =

Tf ($) — T[a,b]f = F[a’b]f(.%’) — F[a’b]f, a<T (Z‘) <b. (4.2)
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To prove it, we start with adding and subtracting terms in

/Q . (T f)udp

{A[a,c} </Q[0,7—(ac)} fdy) ! (m) dlu (x) " Qlc,b] </§2[0,7—(m)} fdy) ! (x) dlu ($):|
- |:/Q[a,c} </ﬂ[0,c] de) ! <x> dlu <x> " [)[c,b] (/Q[O,c} fdy) ! (w) dlu (x):|
+/Q[a,b] (/Q[o,c] de) u(z)du (x)

(joining similar terms in the square brackets and then using the definition of F')

[/Q[a,c] (_ /Q[T(x),c} fdy) wie)duz) + /ﬂ[c,b] </Q[c,7(x)] fdy) i) dy <x)}

+h (2 [a, D)) fdv
Q[0,c]
/ de+/ fdv, a <7 (x) <c
/ (Flap) f)udp + p, (2 [a, b]) Q[0,7(2)] Qlr(x),d
Qla,b] / fdv — fdv, e<1(x)<b

Q[0,7(2)] Qle,7(2)]

/Q (Floyf)udps + 1o (@0, 8)) [Tf () = Floy f ()]

[a,b]

Rearranging this gives (4.2]).
Upper bound. a) Equation (4.2]) implies

1/q
( / \T[a,b]f!qudu)
Qla,b]

_ 1/q
||F[a7b]f||LZdu(a,b) + |ﬂa,b]f} (/Q[a,b] udu)

1 1/q
Flanfl| +—/ Flanf Ud,u(/ Ud#)
[Fles ”Ludu(“’b) i ($2[a, b]) Q[a,b]l o] Qla,b)
(applying Hoélder’s inequality)

< 2 HF[a,b}fHLgdu(a,b) ’

IN

IN

Next we apply the definition of F,; and Theorems

IN

IN

HT[G’b]fHLZdH(a,b)

2( / / fdv / fdv
Qla,c] 1/ Q[r(z),c] Qle,7(z)]
a/p a/p
(aaioar [ ipoir) o+ (@aeny [ i) ]
Qla,] Qle,b)
1/p
8 Ala, b] (/ lfIP ’Udl/) .
Qla,b]

q q

u(z)dp (x) —i—/

Qlc,b]

u(z) dn <x>)1/q

1/q
2

7
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This proves the upper bound.
The upper bound in the case b) is proved similarly, using Theorems
Lower bound. a) For any f > 0 supported in [a, ¢| we have

. 1/q 1/q
[ ety < ([ (mnton) ([ )
Qfa,b] Qla,b] Qla,b]

1/q ,
= (/Q[ ]\F[a,mf!qudu) (240 (2 [a, )7 .

Therefore, by (4.2))

[Tl 1£1122,, ¢

vdv

_ _ 1/q
= 1S = Pl o 2 WPy o = s ([, )

1 1/q
/ (Flag f )udu' ( / udu)
Qla,b] Qla,c]

fu (€2[a, b))
”F[a,b]fHLq ,(a:€) (1 - mQIMMu (Q2]a, C]))

1
= N Flonf s, 0 (1=277) -

(a,c) Z HT‘[“’b]fHLZdH(ab HTf Tab]fHLq (

ac

- ||F[avb]f||LidM(a,c) o

v

(a c
The conclusion is that

HF[aab}fHLZdH(a c)

Toull > -
[ram| 112 (e

1/q
o o fv | 0 @) dp ()] oo
N ||f||L5dU(a,c)

2—1/q)

for any non-negative f with supp C [a, c] and by Theorem 2.3
[Tl = (1= 2747) A*[a,d]..
Selecting f supported in [c, b] similarly yields
Tl = (1 =277) Afe,8].
b) The lower bound in this case is obtained similarly using Theorems
Obviously, for any 0 < x < co we have
Ala,b] - 0if a,b — x; Afa,b] >0ifa <b.

Everywhere below we assume that 7" is a compact operator.

Lemma 4.1. Let 1 <p < qg < o0 and 0 < ¢ < maxVW. There exist points 0 =ty < t; < ...

tn+1 = 00 such that with the notation Ay = [tg,tgr1), k= 0,..., N one has

sup ¥ (t) = ¢, max A(Ay)=¢, A(Any_1) <eg, sup ¥ (¢) =

teNg k=1,..., -2 tEAN

<ty <

(4.3)
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Proof. Let ty = 0. Since V¥ is continuous and ¥ (¢) — 0 when ¢ — 0 or t — oo, we can define
t'=min{t >0: V() >¢c} and t’ =max{t >0: ¥ (¢) >¢c}. Then

max V¥ (t) = ¢, max VU (t) =&,

t<t! t>t!
d = / udp < oo, " :/ v Pdy < 0. (4.4)
Q[t’ ,00] Q")
and we put t; = t’. On the n-th step, if sup Alt,,t] < e, weset t,y =1t" t,ro = oco. If, on the
other hand, sup A [t,,t] > ¢, then we [ifl[?ttnil =min{t > t, : A[t,,t] > e} so that by continuity

tE[tn,t"]
A [t,, t,+1] = €. Thus, we have disjoint segments [t,,, t,+1] C [t, 00).
We want to show that this process stops in a finite number of steps. Suppose it does not and
tn — t <t”. Then A [t,,t,11] = ¢ for n =1,2,... Obviously,

L 1/q
A ftostos] < (@) ( / udu) |
Qltn,m(zn)]

L 1/q
Alttan] < (&) ( / udu) |
Q[r(xn),tnt1]

Hence,
el = Aty tni1]? < max {(c’)l/p/ , (c")l/p/}q/ udy for all n.
Q[tn7tn+l]
This contradicts the fact that in (4.4) ¢ < oc. O

With Q, = Q(Ag) put for k=1,...,. N —1

_ 1
T f (z) = dv. 1y () = | wdp, Tof = ——— | (Tf)udp,
wf () /Q(T(x))\sz(tk)f v, o (Q) /Qku w, Tif o (20) /ﬂk( fudp

Pof (2) = xou (@) {Tf (&) — [Tof (2) = Tef]} = o (2) { | v ka} S 4s)

(tr)

Pof =0, Puf () = xay (a) [ g

Qtn)

N
Each of P, is one-dimensional, so P = Z has rankP < N.

k=1
We use the approach developed in [5].

Theorem 4.2. Let 1 < p < q < oo and suppose the covering {S : k = 0,..., N} satisfies (4.3). Then

_(21/q _ 1) 1/¢—1/p
(21/a+1) e(N —2) <an-1(T), ans1 (T) < 8e. (4.6)

Proof. Upper bound. By Theorem

1/q 1/p 1/p
( |Tf|qud,u) < 4A0,1] ( |fI? vdu) <4 sup ¥ (t) ( |fI? ?)dl/) ,
Q() QO

Qo teAg
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1/q 1/p
(/ \Tf—PNf\‘Iudu) < AAfty tys] (/ !f|”vdV>
Qn Qn

1/p
< 4sup\I/(t)(/ |f\%dy) |
tEAN QN

By Theorem

1/q ~ 1/q
( / |Tf—Pkf|qudu) - ( / \ka—ka\qudu)
Q Qp

1/p
< 8A () ( \f|pvdy> , k=1,..,N—1.

Qp

Summing these bounds and remembering (4.3) we get

1/q 1/p
(/ Tf— Pf!qudu> < 8¢ (/ ]f]pvdu>
Q Q

which implies the upper bound in (4.6)).
Lower bound. By Theorem we can choose functions f; satisfying supp fi C  and

1/q 1/p
</ }kak—kak}qud,u) > (1—2‘1/‘1)A(Qk)< |f|pvdu) ck=1,.,N—1. (4.7)
Qk

Q

Let P : L, — de# be an arbitrary bounded linear operator, rankP < N — 1. Then because

of the linear independence of Pf,, k = 1,...,N — 1, there are constants «q,...,ay_1 such that

N-1 N-1
P (Z akfk> = 0. Denote f = Zakfk. For 7 (x) € Ay, k=1,..., N — 1, we have
k=1 k=1

Tf(v) :/ de+Oék/ frdv = B + Tk fr,
Q(tx) Q1 (2)\(tr)

where the value of the constant g = fdv does not matter, as we will see shortly. We need a
Q(tk)
well-known property that in L, spaces the average of a function is a good approximation to it in the

sense that
B 1/q 1/q
7% ¢ Q

Now using (4.8) and Theorem we can proceed with the following estimate:

1

q
Bk + Ty fro" udp > (5) / | T fie — T fie|* udp
Qp

(30— a0 o

Qp

v

q/p
| f” vdu) )

Qp
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Therefore, by (4.3)) and discrete Holder’s inequality

)5 IN-2 , ) a/p
) X ([ tarar)
B (21/q 1) c IN-2 ) a/p
e 2 ( o, |ou fi| UdV)
)
)

ol/e _ 1 a/p
=z ( (21/(1-1—1 6) (N —2) talv (/ ‘f‘pvdy) :

In the first line the term with &k = N — 1 was omitted because A (Ay_1) may be less than . The
last inequality proves the lower bound. O

(21/q —1
Lirs=piruin > (S

Remark 2. Obviously, when p = ¢, (4.6) gives a same-order two-sided bound for a-numbers. Besides,
the upper bound on a-numbers gives an upper bound for the Gelfand, Kolmogorov and entropy
numbers because the a-numbers are the largest among s-numbers of linear operators [23].

To consider the case 1 < ¢ < p < oo we assume that ||T']| < oo and therefore B < oo by Theorem

2.2 Denote
1/p ) 1/p
V@) = ([ wa) ([ i)
Qa,7(z)] Q7 (x),b]

1/p ) 1/p
P () = ( / udu) ( / v_p/”dV>
Q[r(x),b] Qla,7(z)]
1/r
®la,b] = [/[ }((I)Fa,c}X[a,c]+q)[c,b]X[c,b]) udu}
Qla,b

where ¢ = ¢ (a,b) is the constant defined in Theorem
Theorem 4.3. Suppose that 1 < g <p <oo, 1/r=1/q—1/p, T is bounded and 0 < ¢ < B. Then
an+1 (T) < 32Y4¢,

Proof. Upper bound. Let 0 < e < B. Select t/,t" to satisfy

1/r 1/r
</ @Tudu) =, (/ @Tudu) =e. (4.9)
Q') Q[t",00]

This implies, in particular, (4.4). Let {Ag : k= 1,..., N} be a uniform (and finite) partition of [t', "]
into segments Ay of length m. From the bound

N
Z ®(Ar)" <max sup (Pj, (z)+ Pa, () / udp
P ko r@en Q[ ]

we see that m can be chosen so that

N 1/r
(Z P (A,J) =¢. (4.10)
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With definitions (4.5) and putting € = Q (Ag) we have for each & by Theorem

1/q 1/p
</ Tf— Pkf|qudu) < oHVag (A) ( Vil vdu) .
Q

By Theorem (4.9) implies

1/q 1/p
([ iesvua) < ([ o)
Q(t) Q(t')
1/q 1/p
(/ ]Tf\qudu) < 2¥lag (/ \fI? vdu> :
Q[t",00] Q[t" ,00]

Qg

N
We use definitions of Fp,..., Py from Theorem Put P = ZPk. The last three estimates and
k=1
(4.10]) give
1/q 1/p
(/ ITf — Pf|qudu> < ott/ag (/ |fy%dy> :
Q Q
Since rankP < N this proves that ay,, (7) < 2414, O

Lower bound. TLet t',t" be chosen as in (4.9) and put ¢, = 0, t; = t’. On the n-th step, if
sup @ (t,,t) > e then we put t,,41 = min{t > ¢, : ®(t,,t) =¢}.If sup<I> (tn,t) < e we put t,1 = o0.

t>tn
This process stops in a finite number of steps. Suppose that it does not and that ¢,, —» t < co. From

(4.4) we conclude that
1/p ) /v
max {@fa 0 (T) s Play ()} (/ udu) (/ P /de/> =c
’ Q[t’ 0] Q)

fort < a<b<t.

IN

Hence, for each k, " = ® (Ay)" < (2¢)" / udju, Z/ udp = oo, which contradicts (4.4)).
Q(A)

Denoting N the total number of segments, for an albltrary bounded linear operator P : L?,  —

LI rankP < N — 1, instead of (4.7) we have

udp?

B 1/q 1/p
( |kak—kak{quM> ch( \f|pvdu>  k=1,.,N—1,
Q Qp

where ¢ is defined in Theorem 4.1 b). Repeating the argument based on (4.8]) we get

/ 1/p 21— 2r/p'q 1—92- 1/q N 2 qa/p
/ Tf—Pf|"udpy > a/r ( ><€ </ | fr|” Udu)
Q T \Ja,

)
2 (( ) or+r/v’ )Up q k=
)

/P 51— 2r/p'q —1/q q/p

q(p/r)'" 2 — 2

a T >€ | fIP vdv
(e )

where the last transition is by Jensen’s inequality with the exponent 0 < ¢/p < 1. Thus, ay_1 (T) > ce
with the partition we have defined here and the constant ¢ that depends only on p and ¢q. We have
proved the following statement.

v
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Theorem 4.4. Suppose that 1 < q < p < oo, T is bounded and 0 < ¢ < B. Then
q (pf/r)!" 2 e (1 —271e)

N /P
((r+3)2

an—1(T) >
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1 Introduction

In the celebrated paper, [9], Godfrey H. Hardy first stated the famous inequality. The result reads
as follows. For any 1 < p < oo and f be a p-integrable function on (0,00), then the function
r— 1 [ f(t)dt is p-integrable over (0,00) and there holds

/Ooo %/Orf(t)dtpdrg <%)p/om|f(r)|pdr. (1.1)

The constant on the right-hand side of is sharp. The development of the famous Hardy inequal-
ity during the period 1906-1928 has its own history and we refer to [12] (also, see the preface of
[22]). Recent progress by Frank-Laptev-Weidl [L0] presents a novel one-dimensional inequality with
the same sharp constant, which improves the classical Hardy inequality .

This new version looks as follows. For any 1 < p < oo and for any f € LP(0, 00), which vanishes

at zero, there holds
o0 P p 00
/ sup 'mln{ }/ f(t)dt dr < ( ) / |f(r)|P dr. (1.2)
0 0O<s<oco P — 1 0
Certainly, (1.2]) gives an improvement of ([l.1). Recently, the multidimensional version in the
supercritical case and the discrete version of (1.2]) have been established in [20] and |[19], respectively.
In the same spirit, one may ask about the possible structure of Hardy—Rellich and Rellich type
inequalities. In this short note, we obtain the possible form of these two types of inequalities.
Let us recall the one-dimensional Hardy-Rellich inequality. For f € C'[0,00) with f(0) = 0,

there holds
liGIS g
/0 dr <4/O |f'(r)|” dr. (1.3)

Starting from it, there have been several articles in which the authors studied many improvements
in inequality (1.3]). Here we mention only a few of them [3] 6, [7, 1T 13} 16, 17, 24], 23] and references
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therein. Now let us write ((1.3) in the integral form. Note that it can be derived from the weighted
one-dimensional classical Hardy inequality. This reads as follows. Let f € C'(0, 00), then there holds

[ Y TR (14)
0 0

T’

Here the constant 4 is sharp. We give an improved version of this inequality in Theorem

Let us briefly mention another important function inequality the so-called Rellich inequality which
was first introduced in [I8]. It is worth recalling the one-dimensional Rellich inequality. The classical
one-dimensional Rellich inequality states that for f € C?[0,00) with f(0) = 0 and f’(0) = 0, there

holds
/ ’f( i dr <C’/Oo|f"(r)|2dr, (1.5)

r4

where C' > 0 is independent of f. Over the past few decades, there has been a constant effort to
improve . Here are some closely related papers |8, 14} [T 15, [4, 21, 5]. In this short contribution,
we also obtain another type of Rellich inequality (see Theorem with p = 2). To the best of our
knowledge, the most recent progress in this direction was made in [4]. However, a one-dimensional
study is still missing. As far as we know, a sharp constant in this inequality was not found. Thus,
trying to fill this gap is another motivation for the present paper. Taking inspiration from there we
obtain the following version of Rellich inequality. For any f € L?*(0,00) there holds

[ 3L [ vonaar) o
<[ e 3} [ o

<o [P (1.6)
0

Moreover, we will show that the constant 16/9 is a sharp constant. Therefore, ([1.6)) can be compared
with (1.5). Note that we have mentioned only the L?(0,00) case but we will discuss the result for
the general L?(0, 00) case.

2 Preliminaries and main results

Let us begin this section with basic facts about a decreasing rearrangement. For more details, we
refer to |2, Section 2.1]. The decreasing rearrangement of f is the function f* defined on [0, 00) by

fH(@) = mf{A (V) <@}, >0,

where ps(A) = [{z € R: |f(x)] > A}, A > 0. Here |J]| is the Lebesgue measure of the set J C R. It
is well known that f* is a nonnegative and nonincreasing function. Irrespective of several properties
of f*, the useful property in our context is the equimeasurability property, i.e.

{|fl > 7} =|{f" > 7} forall 7 >0. (2.1)

By using the layer cake representation and the above property, we have the following helpful identity:

/OO FO dt = /OO P forall p> 1. (2.2)
0 0
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Also, for any s > 0 there holds

/0 A0t < / TP (2.3)

These relations will be valuable in the proofs.
Now, we are ready to state the following important observation.

Lemma 2.1. For any r>0 and f € L*(0,7), the following identity holds:

. r ° * o " *
Ojgfwmln{l,g}/o f (t)dt/o fr(t) de. (2.4)

Proof. We wish to calculate the supremum by using the monotonicity of f*. For any fixed r > 0, we
consider the following two cases:
Case 1. Let 0 < s < r. Then we obtain

min{l,g}/Osf*(t)dt:/osf*(t)dtg/Orf*(t)dt.

Case 2. Let r < s < oo. Then we have by change of variable

min{l,g}/osf*(t)dt:g/osf*(t)dtgg/osf*(tr/s)dt:/orf*(v) do.

In both cases, we get
min{l, f}/ F)dt < / F4(t)dt.
$) Jo 0

Hence, the supremum is attained at s = r and we arrive at

: r ’ * _ " *
Oilfoomln{l,g}/o f (t)dt—/o () dt.

Now, we are ready to present an improvement of ([1.4]). That is, this gives a natural improvement
of the Hardy-Rellich inequality in the integral form. Below we will describe the corresponding
differential form which improves the original Hardy—Rellich inequality (1.3]) in a simple form.

[]

Theorem 2.1. Let f € L?(0,00), then there holds

oo ' 11 s
/0 Oggfoo‘mm{;,g}/of(t)dt

Moreover, the constant 4 in the above inequality is sharp in the sense that no inequality of the form

oo 1 1 S
/ sup ‘min{—,—}/ f(t)dt
0 O<s<oo rSs 0

holds, for f € L*(0,00) such that f # 0 on (0,00), when C < 4.

dr < 4/000 | f(r)|? dr. (2.5)

dr < C/OOO £ dr
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Now, we are going to discuss the second main result of this note. Before presenting the statement
first let us recall the classical one-dimensional LP-Rellich inequality (see, e.g. [I]). This reads as
follows. Let p > 1, f € C?[0,00) with f(0) = 0 and f/(0) = 0 there holds

= )P .
/0 OF ar < (p—l)p(Qp—l)p/o )P dr. (2.6)

Now, we are ready to demonstrate the one-dimensional Rellich-type inequality in the following
integral form.

Theorem 2.2. Let f € LP(0,00), p > 1. Then we have

/ooo@</or/;\f(t)|dtd¢)pdr
< /OOO7%(/0?03350?111{17g}/osmt)'dm)pdr

PP > > dr
S el ANIIG I 2.7

Moreover, the constant ( wn the above inequality turns out to be sharp in the sense that no

p2P
p—1)P(2p—1)»
wnequality of the form

/ rgp(//!f \dtdr) dr<C/ )P dr.

for all f € LP(0,00) such that f % 0 on (0,00), when C <

(p—1)P (2p nr:

3 Proofs of Theorems [2.1| and |2.2

This section is concerned with the proofs of Theorems 2.1 and Before going further let us recall
the following lemma.

Lemma 3.1. |20, Lemma 3.1| Let 1 < p < oco. Let w be any nonnegative measurable function on
(0,00). Assume h is a strictly positive non-decreasing function on (0,00) such that sh(r) < rh(s)
for any r,s € (0,00) withr < s. Let f € L*(0,7) for any r > 0. Then we have

/Omw(r)oggfw'min{ﬁ,%}/Osf(t)dtpdrg/Ooow(r) W/Orf*(t)dtp

Now, as a direct corollary of Lemma we derive the proof of Theorem [2.1]
Proof of Theorem Let us consider w(r) = 1 and h(r) = r to be functions on (0,00) and
substitute these in Lemma with p = 2, then we have

(0.9} oo 1
/ sup ‘mm{ } / f@t)de dr < / —
0 0O<s<oco 0 r

By using the Hardy—Rellich inequality in form (1.4]) for the function f*, we obtain

/ sup ‘mm{ }/ f(t)dt
0 0O<s<oo

dr.

2
dr.

t) dt

dfr<4/ £ ()2 dr

:4/Ooo|f(r)\2dr.
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In the last step, we have used norm preserving property . The sharpness follows from the
optimality of the constant in ([1.4)). This completes the proof.

Proof of Theorem The first inequality follows from the property of the supremum. Now
taking the integral of from 0 to r we have

/OTofgfmmin{lag}/Osf*(t)dtdrz/OT/OTf*(t)dtdr. (3.1)

[ ([ e mindn T} [soraer)
< ip ([ e min 1.2} [ avar) o
./ (/ / fH(t dth) dr

<p—1> <2p—1)/o )P dr

p*P o0 i
B (p—1)P(2p —1)p /0 | f(r)Pdr.

Then

| /\

Optimality. We set

L )| dtd
C, = sup = (o Jo 1f()]dtdr)"d
FELP(0,00)\{0} Jo L f(r)pdr

The validity of (2.7) immediately implies

(3.2)

p*
(p—1p(2p—1)
So, it remains to show the reverse inequality and this will be done by giving a proper minimizing

sequence. We divide the proof into some steps.
Step 1. Let us start with a cut-off function y : [0,00) — R with the following properties:

C, <

1. x(r) € [0,1] for all » € [0,00) and x is smooth;

(1, 0<r<1,
X(r) = 0, 2<r<oo

2. x satisfies the following

3. x is decreasing function, i.e. x/(r) < 0 for all r € (0, 00).

Now for a small € > 0, let us define the minimizing functions { f.} as follows:

e—1
fe(r) :=r7v x(r).
Step 2. In this step we will estimate the right-hand side of (2.7)). The denominator of (3.2)) gives

| wrar= [Tevmar

1 2
:/ r<tdr +/ r P (r) dr
0 1

=~ +0(1). (3.3)



One-dimensional integral Rellich type inequalities 91

Therefore, for a fixed positive €, we have f. € LP(0, 00).
Step 3. In this part we will evaluate the numerator of (3.2). Using the integration by parts, we

have
[ ([ [ naar) o

[ ([ [ o

Tﬂo)/o —U X(7) ”*PdT_// dth} N

) [ e d] o

- %(6 —11)+p) (6 - 1p+ 2p>p+ o). &0

In between, exploiting x’ < 0, we used an obvious inequality (a + b)? > a” twice, for nonnegative
real numbers a and b.

Step 4. Finally, by using (3.3) and (3.4) we estimate the ratio

r2p(f0 fo £ |dtd7—)

Jo L f(r)pdr
%(eflgw)p(e 1+2p) ""O( ) p2p
> T o) —>(p—1)P(2p—1)P for e — 0.

Hence {f.} is a required minimizing sequence and, in turn, we have

p*

Cr= (p—1)P(2p—1)P
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