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Abstract. In this paper, we study estimates for convolutions on some classes of measurable, positive
and radial symmetrical functions. On this base we prove then order-sharp estimates for decreasing
and symmetrical rearrangements of convolutions and for weighted mean values of rearrangements.
These estimates give, in particular, a reversal of the well-known inequalities for convolutions proved
by R. O’Neil.
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1 Introduction

In this paper, we consider estimates for decreasing rearrangements of convolutions. The books by
S.G. Krein, Yu.l. Petunin and E.M. Semenov [12], C. Bennett and R. Sharpley [3] contain main
definitions and basic facts related to this topic. The properties of the classical Bessel and Riesz
potentials are described in the books by V.G. Maz’ya [13], S.M. Nikol’skii [14], E.M. Stein [17].

In Section 2 of the paper, we obtain two-sided estimates for convolutions for some classes of radial
symmetrical functions. The case of functions that are positive on R™ is considered here. In Section 3
we consider the case, where one of the convolved function has support contained in the finite ball
Br = {x € R" : |z| < R} for some R € (0,00). Such consideration will be useful for application of
these results to generalized Bessel potentials. In that case the kernel of the convolution is splitted
into two parts, and one part is supported in Bg.

We apply these estimates in Section 4 to obtaining two-sided estimates for symmetrical and
decreasing rearrangements of convolutions. These estimates give, in particular, a reversal of the well-
known inequality for convolutions proved by R. O’Neil [I6]. They develop and refine the estimates
obtained in our papers [B]-[6], [8]-[10]. We will use these results to justify pointwise and integral
coverings for cones of decreasing rearrangements for generalized Bessel-Riesz potentials. As a result,
exact descriptions of equivalent cones for cones of decreasing rearrangements of potentials will be
obtained. They develop the results of our works [9], [I0]. Note that E. Nursultanov and S. Tikhonov
[15] obtained some further developments of O’Neil’s results. For researches related to the topic, see
2, @, [T1].

In Section 5 we prove a lemma which may be useful in many considerations related to the subject
of this paper. The proof of this lemma is related to the proofs of Theorems in Sections 2—4.
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2 Two-sided estimates for convolutions. The case R = oo

Let a € (1,00), R € (0, 0].

Definition 1. As J,(0c0) we denote the class of all measurable functions F' : (0,00) — (0, 00), such
that for all £ € (0, 00)

7€ [€,26] implies o 'F(§) < F(r) < aF(§). (2.1)
Remark 1. Let a € (1,00), F' € J,(00), m € N, £ € (0,00). Then, the following estimate holds
n€[§,2"E] = o MF(§) < F(n) < o™ F(E). (2.2)

Proof. Let us use the method of induction.

For m =1 estimate for F' € J,(o0) follows from the definition.

Assumption of induction: assume that estimate holds for all numbers from 1 to m. Step of
induction: let us prove that then it is true for the number m + 1.

For n € [£,2mT¢] = [€,2m¢]J[2m¢, 2m 1] we have on [€,27¢] estimate (2.2), and for n €
[2m¢ 2mT1¢] the estimate holds for F' € J,(00)

a ' F(27€) < F(n) < aF(27¢).
For n = 2™¢, according to (2.2), a ™ F(§) < F(2™¢) < a™F(£), so that we obtain
a”MIPE) < F() <a™IPE), e 27,27,
Recall that o > 1, so that (2.2)) implies, in particular, that
a”MIPE) < P(y) < o™ VF(E), e g 2me.
These estimates give the desired inequality:
a (MIEE) < Fy) < a™EE), e 62,
O

Definition 2. As J,(R) with R € (0, c0) we denote the class of all measurable functions F' : (0, 00) —
[0,00), such that FI(§) >0, ¢ € (0,R], F(§) =0 for { > R and

¢ € (0,R), 7 € [§,min {26, R} = o ' F(§) < F(r) < aF(§).
For a function F € J,(R), R € (0,00) we have an analogue of (2.2)):
€€ (0,R),7 € [¢,min{2™¢ R} = a ™F(§) < F(1) < a™F(§). (2.3)

The following remark shows the link of two-sided estimates for the left and the right ends of the
segment [£, 2"€].

Remark 2. 1. Let a € (1,00). From it follows easily that for 8 = o?
T € [§,27¢] = fTTF(2ME) < F(7) < pTF(279). (2.4)

2. Let 8 € (1,00). From (2.2)) it follows easily that for a = 32

TE[5,27¢ = a7 "F(§) < F(r) < a™F(§). (2.5)
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The next remark shows the link of two-sided estimates for any two points of the segment [¢, 2™¢].

Remark 3. Let a € (1,00), m € N, F' € J,(00), so that estimate (2.2)) holds. Then, it follows easily
that for any two points ¢, 7 € [¢,2™¢] the following estimate holds:

aPME(t) < F(1) < o™ F(t).

Remark 4. Let a € (1,00), m € N, R € (0,00), F' € J,(R), so that estimate (2.3 holds. Then, it
follows easily that for any ¢, 7 € [, min {2™¢, R}] the following estimate holds:

aPME(t) < F(1) < o®™F(t).

Theorem 2.1. Let a, 3 € (1,00); F € Jo(00), G € Js(0), z € R* = {z € R*, z # 0},

f(z) = F(|z]), g(x) = G(|z]); (2.6)
u() = (f % g)(x) = / F )9 — y)dy: 27)
() = / (F(NG (2] + 7) + Flz] + 7)G(r)] 7 dr. (2.8)

0

Then, there exist constants ¢; = ¢;(a, f,n), i = 1,2, such that 0 < ¢; < ¢3 < 00 and
au(z) < a(z) < cou(z), = eR™ (2.9)

Proof. 1. Let S" ! = {w € R" : |w| = 1} be the unit sphere in R", C,, = [ dw = 27"/*T'(n/2)"*
Sn—1
be the integral over all angles in S™~!.

For 2 € R" we introduce the spherical system of coordinates with the center at the point 0 and
the polar axis Ly such that x € Ly. In the spherical coordinates for y € R" we have

y=(r,w), 7=yl >0,we S

and we obtain that

JE(yDG(|2| + |y)dy = fF G(|lz| +7) (Sf dw) ldr

Rn n—1

=C, [ F(1)G(|z| + )" dr. (2.10)

Let Q = B(x,|z|/2) be the ball with the center x and the radius r = |z|/2. Tt follows from

and that

u(z) :/F(\y[)G(\x—y\)dy:h—i-[g, r € R, (2.11)

R~
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where

I = / F(y)G(lx — y))dy, L = / F(ly)) Gl — yl)dy. (2.12)

For y € R™\ Q we have |z| < 2|z — g, so
yl =ly —v+a| <y — [+ [z] <3y -zl
Then,
o =yl < o] + |yl < Bl —yl < Zle —yl, yeR"\Q,
and for G € Jz(o0) it follows from (2.2)) with m = 3, a = [ that

A7 <Gzl + ly))/Gllz —yl) < 8%, yeR"\ Q.

It means that
571 [ PGl + ly)dy < P11 (2.13)
R7\Q

The left-hand-side inequality in (2.13]) shows that

1< g / F(y)G(lx] + lyl)dy.

R~

Therefore, analogously to (2.10) we obtain in the spherical coordinates

I < Bgc’n/F(T)G(]a:\ +7)" T (2.14)

0

Moreover, let Kq be a minimal cone with the cone apex at the origin, such that 2 C Kq.
Denote

Zgz{wesnlzwgéf(g},an:/dw;

Za

AQ:{wES"_lszKQ},én:/dw.
Aq

Our construction is such that the sets Kq, Yq, Aq are the same for all x € Ly, they depend
only on dimension n. Moreover, g N Aq = {0}, Yg U Aq = S* 1. Then, 0 < 0,,0,,
op+ 0, = f dw = C,, so that, in particular, 0 < o, < C,.

Sn—l

Note that Q@ C Kq = R"\ Ko C R™\ Q. Thus, the right-hand-side estimate in (2.13)) implies

L>p" / F(y)G(lz] + ly)dy > 5~ / F(y))G(J] + ly])dy.

Rn\ﬂ R”\KQ

Like in ([2.10]), we obtain in the spherical coordinates that
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| PGl + by = [ F@G(al +7) ( [ do| 7 ar
R™\Kq 0 i
/F G(lz| + )"~ Ldr.
0
As a result,

0
Estimates (2.14]) and (2.15)) give the two-sided inequality:

B30 < /F G(|z|+ )" tdr < BPo;, (2.16)
0

. We move on to the estimates for I, = fF lyG(|z — y|)dy. For y € £ we have

< o .
yeQ— |y|_|w3|+|y frr|,1
Blyl > 5lz| = |x| + 5lz| > [=| + |y — z].

Thus, y € @ = 27%(Ja| + |y — 2[) < |y| <[] + |y — 2.
For F' € J,(00) it follows from here and from Remark [2| (see (2.4))) that

Pz +y —zl) < F(lyl) < o®F(l2[+ ]y —2]), ye.

Therefore,

a?l, < /F(|x! +y —2))G(ly — z|)dy < ®Is.
)

We introduce the spherical system of coordinates with the center at the point x and the spherical
radius A = |y — z|. Then,

yEQyFrey—r=0w),0<A=ly—a| < ol/20e5,

and we obtain the following equality with C,, = [ dw = 27"/?T'(n/2)~"
Sn—1

|=|/2

/ Flz] + |y — 2)G(ly — zl)dy = C, / F(lz] + NG 1A,

[en]

SO
|| /2

020, < / Fllz| + NGO 1dA < 201D, (2.17)

n

[e=]
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3. For the further consideration it is convenient to use the following notation: let
A(x), B(x),C(z), D(x), E(x) > 0, x € R". We write D(z) = E(x) if there exist constants
¢; = ¢i(a, B,n), i =1,2, such that 0 < ¢; < ¢y < 00 and

e D(z) < E(z) < e;D(z), x € R™. (2.18)
Let us note that if .
0 <C(x) < c3A(x),z € R", (2.19)
with 0 < ¢3 = e3(a, B,n) < 00, then
A(x) + B(z) 2 A(z) + B(z) + C(z),2 € R™. (2.20)

Indeed, according to ([2.19))
A(w) + B(z) < A(z) + B(z) + C(x) < (1 + ¢3)(A(x) + B(x)),z € R™.
Let here (see estimates (2.16]), (2.17)

Alx) =1 = /F(T)G(|x| + 1) dr,

Bla) =L = / F(j2] + 7)G(r)rdr,

() = / F(lz] + 7)G(r)r Ydr.
(/2
For 7 > |x|/2 we have |z| < 27, so that

T <|z|+7 <31 = |z|+ 7€ [r,2%7].
Therefore, for F' € J,(00), G € Jg(co) we have estimates like in ([2.2):
F(lz|+7) <a®F(r), G(7) < BG(jz| +7),

so that
0<Cw) < a3 [ F@G(lal + 17 dr < @2 [ F)G(al + )5,
(/2 0
that is |
0 <C(x) < c3A(x),z € R"™. (2.21)

Let us consider

() = / [F(T)G(|z| +7) + F(|z| + 7)G(1)] 7" tdr = A(x) + B(z) + C(x).

Estimates (2.19) -(2.21)) show that here
A(x) + B(z) + C(x) = A(z) + B(x).

Therefore,
u(x) = A(z) + B(x) = 11 + Iy = u(zx).

This completes the proof of estimate ([2.9)).



14 E.G. Bakhtigareeva, M.L. Goldman

Corollary 2.1. Under the assumptions of Theorem [2.1] the following two-sided estimate holds:

|| || 0o

ule) = F(el) [ G tar + Gllal) [ F@yrtdr - [ PG ar

0 0 |z]
with positive constants depending only on o, B,n (as in (2.18])).

Proof. Indeed, for functions F' € J,(o0), G € Jz(00) we have

F(lz[ +7) = F(z]), G(lz]+7) = G([z]), 7€ (0, ]z[];

F(lel+m) = F(r),  G(lz[+7)=G(1), 7> [z,
and estimate (2.9) implies ([2.22)).

(2.22)

O

Remark 5. Under notation (2.6)- (2.8]) let functions F and G' be nonnegative and decreasing. Then,

u(z) > 27 Crii(z),x € R",  Cy = 27"T'(n/2)7".

Proof. For decreasing functions F' and GG we have:

ly— 2| < lz| + |yl = Fly —z) = Flz| + [y]), G(ly —z[) = G(|=] + [y]).

Then,

ulz) = / F(ly)G Jy — )y > / F(lyDG (] + lyl)dy.

Rn R™

Thus, in the spherical coordinates we have
u(z) > C’n/F(T)G(|:L'| + 1) 7" T
0

Butu=f*xg=g¢gxf,so

u(z) = / Flz — y)G(lyl)dy > / Flz] + [5)C(ly))dy.

R™ R7
In the spherical coordinates we have

u(z) > Cn/F(|x| +7)G(T)r" tdr.

0

We add estimates (2.24)), (2.25)) and obtain that

() > C,, / (F(HG (2| + ) + F(la| + 7)G()] 7 'dr = Crii(x).

This implies estimate ([2.23)).

(2.23)

(2.24)

(2.25)

(2.26)
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Corollary 2.2. Under the assumptions of Remark[p| the following estimate holds for the symmetrical
rearrangement of convolution

o

u?(p) > 2_1Cn/ [F(T)G(p+7)+ F(p+71)G(7)] 7" dr, p € (0,00). (2.27)

0
Indeed, estimate ([2.23]) implies the related estimate for symmetrical rearrangements:
u(p) > 271Ca* (p), p € (0, 00).

But, under the assumptions of Remark |5 function @ ([2.8) is nonnegative, radial symmetrical and
decreasing as the function of p = |z|. Therefore, its symmetrical rearrangement u# coincides with

the integral in the right-hand side of (2.27)).

3 Two-sided estimates for convolutions. The case R < oo

First, we formulate a useful technical result.

Lemma 3.1. 1. Let G € Jz(0), € € (0,00). Then,
£/2 ¢ £/2
/G()\))\"_ld)\ < /G()\))\”_ld)\ <(1 +2nﬁs)/G()\))\”_1d)\. (3.1)
0 0 0

2. Let F € J,(R), £ € (0,R]. Then,

£/2 3 £/2
/ F)A" 1l < / FO)N" 1\ < (1 +2"a?) / F(A)A" L. (3.2)
0 0

0

Proof. We will prove (3.1)) (for (3.2)) the proof is analogous). For G € Jg(co) we have

£/2 3
G(\) > 0= /G(/\)A”‘ld)\ < /G(/\))\"_ld/\. (3.3)

0

Thus, the left part in estimate (3.1]) holds. Let us prove the right part in estimate (3.1). Note that
for G € Jg(0), € € (0,00) we have inequalities

BTIG(E/2) < G(N) < BG(E/2), A € [€/2,€].

Therefore,
3 9 9
B_lG(f/Q)/)\"_ld)\ < /G()\))\"_ld)\ < 5G(§/2)/)\”_1d)\,
£/2 £/2 £/2

and we obtain by calculation of integrals

¢
BinTH(1-27ME"G(E/2) < /G(A)X‘_lcﬂ < BT (1 =278 G(E/2). (3.4)
§/2
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Moreover, by application of Remark [3| we have for G € Jz(o0)

BTG(E/2) < G(N) < BG(E/2), A€ [€/4,€/2],

and, therefore,

£/2 £/2
/G()\))\nld)\ 2 572 /)\nld)\ G(5/2) — 672n7127n(1 _ 27n>5nG(£/2)
£/4 §/4
Thus,
£/2 £/2
/ G dA > / GN"HN > 271271 — 27")E"G(£/2).
0 £/4

Together with the right estimate in (3.4) this shows that

3 £/2
/ GOIA1dN < 278 / GOON1d),
£ 0

and we obtain

€ £/2 ¢ £/2
/G()\))\"_ld)\: /G()\))\"_ld)\—{—/G()\)/\”_ld)\ < (1+2”63)/G()\))\n—1d>\‘
0 0 &/2 0
Thus, we arrive at the right estimate in (3.1)). -

Corollary 3.1. Let 0 < p < 1, m € N be such that 27™ < p < 2™ Then, the following estimates
hold.

1. For1 < f < oo, G € Jzg(0), £ € (0,00) we have

pE 9 pE
/G()\))\"ld)\ < /G(A)A”ld)\ <(1+ 2”53)m/G()\))\"1dA. (3.5)
0 0 0

2. Forl<a<oo,0<R<oo, FelJy,(R), €€ (0,R] we have
pE £ P
/ FOOMd\ < / FOON LA < (1 +270%)" / FO)Ad. (3.6)
0 0 0

Proof. We will prove (3.5) (for (3.6) the proof is analogous). The left estimate in (3.5 is evident.
By induction we can easily prove that for m € N the following estimate holds

27me

3
/ G)N"HA < (14 278%)" / G(A)A"HdA. (3.7)
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Indeed, for m = 1 it coincides with . Assumption of induction is that it holds for all numbers
from 1 to m. Then, for the number m + 1 we have by application of with 27™¢ instead of
€ €(0,00):

o—m¢ 2—(m+1)¢

/ G d) < (1 + 2”53) / G(MA" A

0 0
Therefore, application of shows that

13 2—(m+1)§
/ GO 1dA < (14278%)" / G(A)A" L.
0 0
Thus, (3.7) holds for any m € N. Therefore, for 27 < p < 27! we have
9 2mmg 123
/G(A)/\"ld)\ < (142"%)" / G HdA < (142"6%)" / G(A)A" A
0 0

0

This is the right estimate in . O
Theorem 3.1. Let
a,f€(l,00), Re (0,00), F € Ju(R), G € Jz(0); (3.8)
f(x) = F(lz]), 9(x) = G(|z|),z € R, (3.9)
ule) = (£9)() = [ 1o =gy = [ F@)gle~ y)dy, z € B (3.10)
R’!L RTL

For x € R™ we define u(z) by the following formulas:

1. If |z| < 2R/3, then
R—|z| R
ii(z) = / Fllz] + N)GO)A™1dA + / FOVG(|2] + MAm1d), (3.11)
0

0

2. If 2R/3 < |z| <4R/3, then
a(z) = F(R) / GM)A" 1A\ + G(R) / F(A)A" 1. (3.12)

3. IfAR/3 < |z| < oo, then

a(z) = G(lz]) [ FINA" A, (3.13)

St~

Then, there exist constants ¢; = ¢;(a, f,n), 1 =1,2, 0 < ¢; < ¢ < 00, such that

au(z) < a(z) < cou(x), & € R™, (3.14)
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Proof. 1. We_consider the case |z| < 2R/3. In this case the proof is similar to the proof of
Theorem Let Q = B(z, |z[/2) be the ball with the center x € R" and the radius r = |z[/2.
Note that for 0 < |z| < 2R/3 we have 2 C Br = B(0, R). Let Bg = B(0, R) \ {0}.

We will take into account that F'(Jy|) = 0 for |y| > R and obtain

u(z) = /F(|y|)G(|a: Dy = w4 s, x € R, (3.15)
where R
uyp = / F(ly)G(Jx —yl)dy, up = /F(|y|)G(|93 —y|)dy. (3.16)
BRr\Q Q

For y € Bg \ Q we have |z| < 2|z — ], so

yl=ly—z+a| <|y—a|+z] <3y -2l
Then, )

[z —yl < el + [yl <5z —yl, yeBr\,

that is
[z —yl/ (2| +yl) € [57',1] € [27°,1],

and for G € Js(c0), y € Br \ Q we obtain from (2.2) (with m = 3, £ = 27?) that

e =yl (] + ) € [6.2°€] = 67 < Gz — /Gl + W) < B (3.17)
It follows from that
55, < /zwmm¢w+MMysﬁm. (3.18)
Br\Q

The left—-hand-side inequality in (3.18]) shows that

msm/mmmmwwwy

Br

For 2 € R" we introduce the spherical system of coordinates with the center at the point 0 and
the polar axis Ly such that x € Ly. In the spherical coordinates for y € Br we have

y=(r,w),0<7=|y <R wes"

Analogously to (2.10]), we obtain that
R
uy < Bgcn/F(T)Gﬂxl + 1) T (3.19)
0

Here C,, = 27"/2T'(n/2)~'. As in Theorem [2.1, we introduce the minimal cone Kq with the
cone apex at the origin, such that Q C K, and define

EQ:{WGSH_13W¢K9},Jn=/dw; AQ:{wGS"_I:weKQ},én:/dw'

ZQ AQ
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We have y = |y|lw € Br \ Kq for w € ¥ and for any 0 < |y| < R. Note that our construction
is such that the cone K and o, §, do not depend on = € Ly with 0 < |z| < 2R/3,they depend
only on the dimension n. Moreover, g N Aq = {0}, ¥q U Aq = S" L. Then, 0 < o,, dy;

Op + 0, = f dw = C,, so that, in particular, 0 < §,, < C,,. The right—hand-side estimate in
Sn—l

(3.18]) shows that
w > / F(y)G(lz] + lyl)dy.

Br\Kq

As in (2.10]) we obtain in the spherical coordinates that

R
[ FUGel + by = o [ FIG(Gal + 77
Br\Kq 0
As a result,
R
uy > B3Jn/F(7)G(\xl + 7). (3.20)
0
Estimates (3.19)) and (3.20) give the two-sided inequality:
R
B2C Ty < /F(T)G(|x| + )" e < B M. (3.21)

0

We move on to the estimates for uy = [ F(|y|)G(|z — y|)dy. Note that
Q

< —yl < 23lz| < R:
yeQ— |y|_|fr;|+|fc y|_12|x|_ ;
Blyl > 3lz| = [x| + 5lz] > [2| + |z — yl.

Therefore, for y € {2 we have

ly| < |z] + |z — y| < min {2°|y|, R} .

For F' € J,(R) it follows from here and from ({2.3)) with m = 2 that
a?F(lz| + |z —yl) < F(ly]) < ®F(lz| + |z —y]), yeQ

Therefore,
o %uy < /F(|x! + |z — y|)G(|z — y|)dy < ous.
Q

In 2 we introduce the spherical system of coordinates with the center at the point z and the
spherical radius A\ = |y — z|. Then,

yGQ,y#m@)y—x:(A,w),)\:|y—x|:|x—y|E(O,|x|/2],w€5”_1,

and we obtain the equality
|z|/2
[ Fsl +Jo = )G~ wdy = Cu [ Flal + )GOINar
@ 0
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n—1

with C, = ( i dw) = 27"/2T'(n/2)~!. These estimates show that
s

|| /2
a 20ty < / F(lz| + M)GA)N"HdX < o 20 s, (3.22)

0

For the further consideration, let us recall the notation and properties (2.19)—(2.21)).

consider here (see estimates (2.18])— (2.21]))

R
%/F Gllz] + NAm1d), (3.23)
|z] /2
- N/F|m|+/\ ()A1a), (3.24)
0
R—|z|
Clz) = / Flle] + NG)A™dA, (3.25)
/2

For |z|/2 < A < R — |z| we have |z| < 2\, so that
A < |z] + X < min{3X, R} < min {2°), R}.
Now, for F' € J,(R), o € (1,00) we can apply estimate with £ = A, m = 2. Then
F(|lz|+ A\) < a?F()).

For G € Jz(o0), B € (1,00) we will apply analogue of Remark [3[ with £ = A, m = 2 and 3
instead of «, and obtain:
G(A) < B'G(|z] + ).

Therefore,

R—|z|

0<C(z) <a2B' [ FNG(|z| + \)Am1dA
/2
< 2Bt f FONG(|z] + NAN1dA < esA(z). (3.26)

Let us consider @(z) defined in We see from (3.23)) -(3.25) that
t(x) = A(x) + B(z) + C(x).
Estimates (3.20]) —(3.21]), (3.26]) show that here
A(x) + B(z) + C(x) = A(z) + B(x).

Therefore,
u(z) =2 A(z) + B(z) = ug + us = u(x).

This completes the proof of estimate (3.14)) in the case |z| < 2R/3.
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2. Now we consider the case 2R/3 < |z| < 4R/3. Introduce the ball Qy = B(z/2,|x|/4) with the
center x/2 and the radius r = |z|/4. Note that Qy C Br = B(0,R). As in (3.15)), (3.16) we
have

u(r) = /F(|y|)G(!$ —yl)dy = wo(x) +uzo(x), weR, (3.27)

where

wole) = [ PG~ ybdy. wao(w) = [ Fu)Gl — sl

Br\Qo Qo
For y € Bgr \ Qo we have |z| < 4|z —y|, |y| < |z|+ |z — y| < 5|z — y|; so
[z =yl < 2| + |yl < 4z —y[ + 5]z —y| =9z —yl.
For G € Jg(oo) this implies that
Gllz —y) = Gzl +1yl), y € Br\Q,

and, therefore,

wrole) / F(luDC (2] + [ul)dy.

Br\Qo
As in (3.16) - (3.21) we obtain from here that
R
wio = / F(r)G(|z| + 7). (3.28)

0

But, for 2R/3 < |z| <4R/3,0 < 7 < R we have 2R/3 < |z| + 7 < TR/3 < 2%(2R/3), and for
G € Jsz(o0) according to the analogue of Remark [3| with £ = 2R/3, m = 2 and S instead of «
we obtain G(|z| + 7) = G(R). Therefore,

wo(7) = G(R) / F(r)rldr. (3.29)

For y € Qg we have |z/2—y| < r = |z|/4, so that |y| < |z|/2+r = 3|z|/4 < R, |y| > |z|/2—7 =
|z| /4. Thus, we have
|z]/4 < |y| < 3|z[/4; 2R/3 <|[z[ <4R/3.

For F' € J,(R) it implies that
F(ly)) = F(lz|/4) = F(R), y € Qo.
Therefore,
waola) 2 F(R) [ Gl ~ yl)dy

Qo

In Qg we introduce the spherical system of coordinates with the center at the point z/2 and
the spherical radius A = |x — y|. Then,

|| /4
wro(z) = F(R) / GOONLdN, (3.30)



22 E.G. Bakhtigareeva, M.L. Goldman

For 2R/3 < |z| < 4R/3 we apply several times estimate (3.5 with related choose of £ € R,

and obtain that
|| /4

/ G)A 1A\ = / G(M)A™ LA, (3.31)

The constants in estimate (3.31)) depend only on ,n (estimates of such type were proved in
Lemma [3.1)). Together with (3.27) and (3.29) this gives desired estimates (3.12), (3.14).

Remark 6. Under the assumptions of Theorem let 2R/3 < |z| < R. Then, we have the

equivalence
|| ||

u(x) = F(]x\)/G()\))\”ldA—i— G(]yc\)/F()\))\”ld)\. (3.32)

0 0
To show this let us note that for 2R/3 < |x| < R and for functions F' € Jo(R), G € Jz(o0)
we have F(R) = F(|z|), G(R) = G(|z|). Moreover, an application of Corollary of Lemma|3.]]

girves
|| ||

R
/G MAT TN =2 /G M)A, / AN 1d)\%“/F M)A
0

0

This means that estimates (3.12), 4) imply estimate (3.32).
3. Consider the case |z| > 4R/3. We have the equality
ulw) = [ F(u)Ge ~ yl)dy
Br

Note that |y| < R, |z| > 4R/3 = |z|/4 < |z —y| < 7|z|/4, and for G € Jz(o0) we obtain
G(|x —y|) = G(|z]), y € Bgr. Therefore,

R

wwgaww/ mmw—cauy/F )l

Br 0

4 Two—sided estimates for decreasing rearrangements of convolutions

4.1 Estimates for decreasing and symmetrical rearrangements

Here we consider estimates for decreasing and symmetrical rearrangements of convolutions. The
books by S.G. Krein, Yu.l. Petunin and E.M. Semenov [12], C. Bennett and R. Sharpley [3] contain
the main definitions and basic facts related to this topic. We recall some formulas.

Let h: R® — R be a Lebesgue measurable function such that its distribution function

M(y) = i {o € R < h(@)] >y}, € [0,0),

is not identically equal to infinity. Then, 0 < A,(y) | on [0,00). The decreasing rearrangement of
the function A is defined by the formula

h*(t) =inf{y € [0,00) : \p(y) < 7},7 € (0,00). (4.1)
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Note that 0 < h* | on (0,00). The symmetrical rearrangement h¥ is a radially symmetrical
function related to the decreasing rearrangement by the formulas

W (p) = " (Vup™),  1*(1) = ¥ ((r/Va)/"); p,7 € (0, 00). (4.2)

Here V,, is the volume of the unit ball in R™.
Moreover,
h(x) = H(|z]), 0 < H | on (0,00) = h¥(p) = H(p), p € (0,0). (4.3)

Theorem 4.1. Under the assumptions of Theorem [2.1] let additionally F,G be decreasing. Then,
there exist constants ¢; = ¢;(a, B,n), i = 1,2, such that 0 < ¢; < ¢3 < oo and for the symmetrical
rearrangement of convolution (2.7) the following estimates hold

cyu® / (p+7)G(T) + F(1)G(p+ 1) 7" tdr < cou™(p), p € (0,00). (4.4)
Moreover,
>~ F(p) / G(r)™ tdr + G(p) /F(T)T"_ldT + /F(T)G’(T)T"_ldT (4.5)

with understanding = as in (2.18]).
Proof. From ([2.9)) it follows that

cru(p) < @ (p) < cou(p), p € (0,00).

Note that the function @ defined by ({2.8)) is radially symmetrical and decreases as a function of
p = |z|. Thus, according to (4.3) it coincides with its symmetrical rearrangement, and we can apply

definition (2.8]) with p = |z|. By Theorem [2.1] this proves estimate (4.4)).
Let us deduce (4.5)) from (4.4). We have

00 P 0o

/ F(p+7)G(r)r™ dr = / F(p+7)G(r)r™ dr + / Fp + 7)G(r)r" dr.

0 0 p
For 7 € [0, p] we have p+ 7 € [p, 2p], so that for the function F' € J,(0c0) there is the estimate:
a'F(p+71) < Flp) <aF(p+7).

Therefore,

p

! /F(p +7)G(r)m" " dr < Fp) /G(T)Tn_ldT < a/F(p +7)G(r)r" .

0 0

For 7 > p we have p+ 7 € [1,27], so that for the function F' € J,(00) there is the estimate:

a 'F(p+71) < F(r) <aF(p+7).
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Therefore,
ot [ Plo4nGinetar < [ FoGmmtar <a [ Flos 6t
P P p

So, we have the two—sided estimate

[e.9]

/F(p +7)G(T)r" Y = F(p) /p G(r)r" tdr + /F(T)G(T)TnldT.

0

[e.9]

p

Analogously, for G € Jz(00), we obtain

oo

/ F(r)G(p + 7)™ dr = G(p) /p F(r)yrtdr + / F(r)G(r)dr.

0

[e.9]

p

As a result,
ZO[F(p +7)G(r) + F(r)G(p+ 7)) " \dr
~ F(p) Opran—ldT +Gl(p) 0pr<7)¢“—1€1¢ ] F(r)G(r)rtdr.
P
We put this estimate into (4.4) and obtain (4.5). O

Remark 7. Note that the right-hand-side inequality in (4.4) follows immediately from Remark
and Corollary (see estimate ([2.27))) without restrictions F' € J,, G € Js.

Corollary 4.1. Under the assumptions of Theorem [£.1] we define
p(A) = F (MV)Y"), o(A) = G (A Va)"), A € (0, 00). (4.6)

Then, the following estimate holds for the decreasing rearrangement of the convolution w:

t 00

W () = (1) / GOV + (1) / p(N)dA + / S(NE(N)A, £ € (0,00). (4.7)

0 ¢
with understanding = as in (2.18]).
Proof. We introduce the new variable A = V,,7" for integrals in (4.5). Then,

=NV, e = d\/(nVy),
and we obtain from (4.5))—(4.6])

u*(p) = F(p) / B(NAA + G(p) / p(N)dA + / S(\B(A)A.

We put here p = (t/V,,)"/" and take into account notation (4.6) and the equality: u# ((t/V,)"/")
u*(t) (see (4.2))). Thus, we come to (4.7)).

CIol
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Corollary 4.2. Under the assumptions of Theorem[4.1] the following estimate holds for the decreasing
rearrangement of the convolution:

CO=r0 [eWeg 0 [ FRas [ Foeeiee s, @)

with understanding = as in (2.18)).
Proof. Indeed, formula (4.8) follows from (4.7) and from the equalities

flx) = F(lz]), 0 < F U= f#(p) = Flp) = f*(t) = F ((t/Vi)"") = (t),

g(x) = G(jz]), 0 < G L= g7(p) = Gp) = g*(t) = G ((t/Va)'/") = ¥ ().

[l
Remark 8. Note that under the assumptions of Theorem
27" <ty <t = f*(tl) < f*(tg) < (X2f*(t1). (49)

Indeed,

1/n 1/n 1/n
AT
2\ Va “\Wa —\W

and for F' € J,(0c0) we have by application of Remark

e ((@)7) < () ) < (()7)

Moreover, the function F' decreases and for t, < t; in the left-hand—side of this estimate we can
1/n
replace a2 < 1 by 1. Therefore, for the function f*(t) = F ((%ﬂ) ) we obtain (4.9).

Analogously,
27 <ty <t = gt (k) < g7 (t) < BP9 (t). (4.10)

Corollary 4.3. Under the assumptions of Theoremf0r£ € (0,00) the following estimates hold
for the decreasing rearrangement of a function f (see (2.7)):

£<n<26= [1(26) < fH(n) < @ f7(28); (4.11)
§<n <2 = g'(2) < g"(n) < Bg7(26); (4.12)
Proof. Indeed, we put t; = 2¢ in (4.9) and obtain
E<n<2 627 <n<t =27 <<t = (28 < ff(n) < 2 fF(20).
Analogously, we obtain from . m

Corollary 4.4. Under the assumptions of Theorem[4.1]| the following estimate holds for the decreasing
rearrangement of the convolution w:

o0

u(t) = / [+ Ng"(N) + fF(N)g (t+ N)]dA, t € (0,00), (4.13)

0

with understanding = as in (2.18]).
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Proof. We must show that estimate (4.13)) is equivalent to (4.8). We have the equality

t o]

/ “(t+ g )+f*(>\)g*(t+)\)]d/\:/[...]d/\+/[...]d/\.

0 t
Note that, according to (4.11)), (4.12)), the following estimates hold:
O<A<t=t<t+A<2t= f"(t+N)=Zf(t); g"(t+ ) =g (t);
A>t=2A<t+A<2A= 4+ N = FF(N); g7 (t+N) = g"(N).
Therefore,

t t t

[+ 000+ g e+ = 1) g 0ar+ g [

0 0

/ S+ X)g" (A + [F(N)g (E+ M) dr = /f*(A)g*(A)dA-

/g YA+ g*(t / d)\+/f

0
Now, we apply (4.8) and obtain (4.13)).

This shows that

4.2 Estimates for integral mean values of rearrangements

We move on to estimating the integral mean value for the decreasing rearrangement of the convolu-

tion. Let

0<v(r), 7€ (0,00); 0< V(1) : /V(T)dT < 00, t € (0,00);

W) = ﬁ / () (F)dr, ¢ € (0, 50).

Such variant of the mean value for the decreasing rearrangement was introduced in [IJ.

Theorem 4.2. Under the assumptions of Theorem [A.] the following estimate holds

wr(t) = I(t) + I(t) + I5(t), t € (0,00);

n(t) = V(1) / [f*(r) / VAt g*(7) f*(A)dA] y(r)dr;

0

- / NGOV () = / £ (0N)g* (VA

(4.14)

(4.15)

(4.16)

(4.17)
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Proof. By (4.13) we have

W) 2 () + Lo(t) + L(#), t € (0,00); (4.18)

fyt) = V(! / / P+ Mg V) + Vg (- N\ | v(r)dr.

t

Let us recall inequalities (4.11)), (4.12)). Thus, we have estimates
0<A<ST=27<74+A<L2r= f"(7+ )2 [ (1), g"(T+ N) Zg"(1);

A>T ASTEAS 2= T+ = (V)i g7+ 0) =g ().
Therefore, for ¢t € (0, 00)

2y / { /g YA+ g*( )/Tf*(A)d)\] v(r)dr = I (1):
L(t) = V(t)l/t /f A v(r)dr = V(t)1/tf*()\)g*()\)/)\u(r)drd)\ = Iy(t);
I3(t) = V(t)_lj /f M ov(r)dr = V()™ 7f*()\)g*()\)d)\/t1/(7)d7' = I3(t).
Thus, §) implies (4.15)) - ([4.17). O

In some special cases we can simplify the general answer.

Remark 9. Under the assumptions of Theorem we assume additionally that there exists a
constant ¢y € (0, 00), such that

v(T)T > oV (1), 7 € (0,00). (4.19)
Then,
w () =2 L(t) + I3(t), t € (0, 00). (4.20)

Moreover, here

I(t) > 2V (t) /f (7)dr. (4.21)
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Proof. We put estimate (4.19)) into (4.16)) and obtain
t T T

Lo 220V [ |10 [0+ @) [ 0| Vi

0 0 0

Functions f*, g* decrease, so that we have inequalities

1/Tg(A)dA>g /f )X > f5 (7).

T
0

Therefore,
t

Ii(t) > 2cV (1) / [f (1) g* (D) V(1)dT = 2¢015(t).

This means that in the right—hand side of (4.15]) the second term is covered by the first one, and we

come to estimates (4.20)), (4.21)).

Note that inequality (4.19)) holds with the constant ¢y = 1 in the case of the increasing weight
V. 0

Remark 10. The non-weighted case, where v(7) = 1, is of special interest. Thus,

t

v(it)=1= V() =7=u(t) =u™(t) = %/u*(T)dT, t € (0,00). (4.22)
0
In this case we have the estimate
u(t) = tl/f*()\)d)\/g*()\)d)\ + /f*(A)g*(A)dA. (4.23)
0 0 t

Indeed, in the non—-weighted case we have

t T

L(t) =t / £5(7) / g* (N + g*(7) / F* A | dr

_t—l/ /f d)\/g YaX| dr =t /f / A)dA. (4.24)

0

We put this equality into (4.20)), take into account equality (4.17)) for I5(¢) and obtain (4.23]).

5 One useful lemma

The following lemma may be useful in many considerations related to the subject of this paper. The
proof of this lemma is related to the proofs of Theorems in Sections 2—4.
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Lemma 5.1. Let functions F,G > 0 be measurable on (0,00), let
G e Jﬁ(OO),

Re (0,00, F € Jo(R),

Denote

Dm@%=/UWﬂ+ﬂGﬁ%+FUMXﬂ+ﬂH”%hPE(&m%
Dr(p) = / F(p+ T)G(T)T"’ldT + /F(T)G(p + T)T"’ldT, R < o0, p € (0, R];

R
Dg(p) = /F(T)G(,o+ )" ldr, R < o0, p > R.
0

1. Then, for R = oo we have the estimate:

p

Do (p) gF(p)/G(T)Tn_ldT+G(p)/F(T)Tn_ldT+/F(T)G(T>Tn_1d7', p€(0,00).

0

[e.e]

p
2. For R < oo we have the estimates:

(a) if p € (0,R/2], then

R
Da(e) = F(p) [ Gy lar +Glp) [ Fryrtar

(c) if p> R, then

Dmm%am/me*w

29

(5.4)

(5.5)

(5.9)

In these formulas A = B means that for each formula there exist constants 0 < d; < dy < 00,

depending only on «, B, such that di < A/B < d,.

Proof. 1. For R = oo we have
Deo(p) = Ar(p) + Aa(p);

o0

Ai(p) = /F(p+T)G(T)Tn_1dT+/F(p—l—T)G(T)Tn_ldT,

0 p

(5.10)
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F(T)G(p+7)r" dr.

\8

As(p) = / F(r)Glp + r)r"dr +

For 0 <7 <pwehave p+7 € [p,2p] = a 'F(p) < Flp+71) < aF(p).

7) < aF (1), (see (5.2)). Therefore,

+ o=

For p <7 we have p+ 7 € [1,27] = o 'F(7) < F(p

p)/pG(T>Tn1dT+

Analogously, for 0 < 7 < p we have 7'G(p) < G(p + 1) < BG(p); for p < 7 we have

B7'G(1) < G(p+7) < BG(7), (see (5.1)). Thus,

F(r)G(r)m" dr.

b\g

p oo

As(p) = G(p)/F(T)Tn_ldT + /F(T)G(T)Tn_ld’i'.

0 p

As a result, we come to estimate ([5.6)).

. Let R < o0, p€(0,R/2]. Then, p < R— p and

Dr(p) = Bi(p) + Ba2(p);

R—
Bi(p) = /F(p+T)G(T)T"_1dT+ / F(p+7)G(T)r" dr,

/F Glp+ )" 1dT+/F(T)G(,0+T)’7'n_1dT.
0 p

As in Step 1 we have
Flp+71)=F(p), Glp+7)=G(p), 0<7<p;

Fp+r)=F(r)for p<7<R—p, G(p+71)=G(1) for T > p,

so that
Bi(p) = F(p) /G(T)TnldT + / F(r)G(r)r" dr; (5.11)
p R
Bsy(p) = G(p) /F(T)Tn_ldT + /F(T)G(T)Tn_ldT. (5.12)

We take into account that the second term in (5.11f) is majored by the second term in (|5.12))
and obtain

p p R

Da(p)=Balp) + Balp) = F(p) [G(r)r" Y + Glo) [F(r)r Yy + [F(r)G(ryrtar.

0 0 p

It gives estimate (5.7)).
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3. Now, let R € (0,00), p € (R/2,R]. Then, R —p < R/2 < p, and

Dr(p) = Ei(p) + Ex(p),

/F p+17)G(T)T" T, Ey(p) = /RF(T)G(p—l-T)Tn_ldT.

For0<7<R—-—pwehave p<p+7 < R <2p, so that

—p —p

R R
Flp+r)= F(p) = / F(p+r)G(r)r™ dr = F(p) / G(r)rdr.
0 0
ForO<r7<Rwehave p<p+7<p+ R <p+2p=3p,so that
R R
Glp+1)=2G(p) = /F G(p+7)r" tdr = G(p)/F(T)TnldT.
0 0

As a result,

p

R— R
DR</0) = El( ) + E2 / G T ldT + G /F n_ldT.
0 0

4. It remains to consider the case R € (0,00), p > R. Then, G(p+ 1) = G(p) for 0 <7 < R, so

that (see (5.5)))
Dg(p) = /F(T)G(p+ )" ldr & G(p)/F(T)Tn_ldT.

This estimate coincides with (5.9)).
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1 Introduction. Notation. Description of main results

Consider the following system of odd-order quasilinear equations

-1
e — (=1) (a1 02w+ an03u) = (=17 01 [aggin (t, )05+ ag (¢, ) D]
j=0
l

+Z(—1)j0§;[gj(t,x,u,...,8i_1u)} = f(t,z), €N, (1.1)

=0

posed on an interval I = (0, R) (R > 0 is arbitrary). Here u = u(t,z) = (uy,...,u,)’, n € N,

is the unknown vector-function, f = (f1,...,fu)", 95 = (gj1,--.,9in)" are also vector-functions,
agi+1 = diag(aiy1yi), axn = diag(ap), @ = 1,...,n, are constant diagonal n x n matrices, a;(t,x) =
(ajim(t,:p)), t,m=1,...,n,for j=0,...,2] — 1, are n X n matrices.

In a rectangle Qr = (0,T) x I for certain T' > 0 consider an initial-boundary value problem for
system (|1.1) with the initial condition

u(0,z) = up(x), x€][0,R)], (1.2)
and the boundary conditions
Hu(t,0) = pit), j=0,....,l—1, dut,R)=wvt), j=0,...,1, te[0,T], (1.3)

where Ug = <u017 c. ,Uon)T, i = (/le, c. ,/,Ljn)T, vy = (le, . ,l/jn)T.
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Besides this direct problem consider the following inverse problem: let for any ¢« = 1,...,n the
function f; be represented in the form

filt,x) = hoi(t, z) + iFki(t)hki(t, x) (1.4)

for a certain non-negative integer number m; (if m; = 0 then f; = hy;), where the functions hy; are
given and the functions Fy; are unknown. Then problem ([1.1)—(|1.3) is supplemented with overdeter-
mination conditions in an integral form: if m; > 0 for certain ¢, then

/ui(t,x)wki(x) v = ou(t), 0T, k=1, . mi (1.5)
I
for certain given functions wy; and @g;. In particular, for certain ¢ the overdetermination conditions
on u; can be absent, but in the case of the inverse problem we always assume that

M=> m;>0. (1.6)
=1

Then the aim is to find the functions Fy; such that the corresponding solution u to problem —
satisfies conditions ([L.5]).

In the case of a single equation n = 1 equations of type (1.1) were considered in [9] (direct
problem) and [I0] (inverse problems). In particular, in these articles one can found examples of
physical models, which can be described by such equations: the Korteweg—de Vries (KdV) and
Kawahara equations with generalizations, the Kortewes—de Vries-Burgers and Benney-Lin equations,
the Kaup—Kupershmidt equation and others (see also [I], [14]). However, besides the single equations,
systems of odd-order quasilinear evolution equations also arise in real physical situations. Among
such systems on can mention the Majda—Biello system (see [17])

Ut + Uggy + VU = 07
Vg + QUzr + (u0), =0, «a >0,

and more general systems of KdV-type equations with coupled nonlinearities ([5]).
The KdV-type Boussinesq system ([6l 23] 25])

Ut + Uy + Vggr + (UU)I = Oa
Vy + Uy + Ugge + 00, =0

and the coupled system of two KdV equations, derived in [I3] and studied in [3] 4 [7, 15} 18], 19} 20,
211, 22)] (also with more general nonlinearities)

Ut + Uy + Uggr + A3Vgze + A1VV; + C@(UU)x = 07
bivy + 10, + VUL 4 b203Uzrr + Vprr + baaouu, =0, by > 0,0y > 0,

are not directly written in form , but can be transformed to it by a linear change of unknown
functions (see [3] [6], 23]).

In paper [9] initial-boundary value problem f was considered in the scalar case and a
result on global well-posedness in the class of weak solutions under small input data was established.
For simplicity it was assumed there that p;(t) = v;(t) = 0 for j <1 — 1. Note that the general case
of can be reduced to the homogeneous one by the simple substitution v(¢, z) = u(t, ) — (¢, x),
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where the sufficiently smooth function ) satisfies for j <[ —1, while the form of equation ({1.1))
is invariant under the corresponding transformation.

In the present paper a result on global well-posedness of problem — itself is obtained in
the class of weak solutions under small input data. Note that in the aforementioned articles in the
case of systems such a problem was not studied. The assumptions on system are similar to the
ones in [9, [10] in the case of single equations.

The significance of integral overdermination conditions in inverse problems is discussed in [24].
The study of inverse problems for the KdV-type equation with integral overdetermination was started
in [8]. In paper [10] for problem ([L.1))-(1.3)) in the scalar case two inverse problems with one integral
overdetemination condition of type (|1.5)) were considered. In the first one the right-hand side of the
equation of a type similar to (|1.4)) was chosen as the control, in the second one — the boundary data
v;. Results on well-posedness either for small input data or small time interval were established. In
paper [I2] an initial-boundary value problem on a bounded interval for the higher order nonlinear
Schrodinger equation

WUy + Qg + 10UL + TUppy + MulPu + 2/6’(|u|pu)m + i7(|u|p)xu =0

(u is a complex-valued function) with initial and boundary conditions similar to , was con-
sidered and three inverse problems were studied. The first two of them were similar to the problems
considered in [I0] with similar results. In the third problem two overdetermination conditions of
type were introduced and both the right-hand side of the equation and the boundary function
were chosen as controls. The results were similar to the first two cases.

Note that the inverse problem with two integral overdetermination conditions for the Korteweg—
de Vries type equation

Ut + Uy + wtly + (t)u = F(t)g(t)

in the periodic case, where the functions a and F were unknown, was considered in [I6] and the
existence and uniqueness results were obtained for a small time interval.
In paper [2I] an inverse problem on a bounded interval with the terminal overdetermination
condition
u(T,z) = up(z)

for a given function uz (such problems are called controllability ones) was studied for the aforemen-
tioned coupled system of two KdV equations. Results on existence of solutions under small input
data were established.

In the present paper, results on well-posedness of inverse problem f are obtained either
for small input data or small time interval. Note that since the amount of integral overdetermination
conditions is arbitrary, the result is new even in the case of one equation.

Solutions of the considered problems are constructed in the special function space (X (Qr))" of
all vector-functions u = (uy, ..., u,)’ such that such that for every i = 1,...,n

Uz‘(t7x) S X(QT) = C’([O,T]; Lz(”) M L2(07T§ HZ(I))7

endowed with the norm

n

llx@ene = 20 sup it Mlzacn + 105uillaen)-
i—1 te(0,7)

For r > 0 let X,,(Qr) denote the closed ball {u € (X(Qr))" : lull(x@r)» <7}
Introduce the notion of a weak solution of problem (|[L.1))—(1.3]).
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Definition 1. Let ug € (L2(1))", pj,v; € (L2(0,7))" V4, f € (L1(Q7))", a; € (C(@T))"2 Vj
A function u € (X(Qr))" is called a weak solution of problem (LI)-(L.3) if &u(t,0) = p;(t),
du(t,R) = v;(t), j =0,...,1—1, and for all test functions ¢(t, ), such that ¢ € (L»(0,T; H(I)))",
o € (LQ(QT))H, q§|t:T =0, 8£¢’m:0 = 8£¢’x r=0,7=0,...,1-1, ai¢‘x:0 = 0, the functions
(gj(t, T,u,...,05 ), 00 ) € L1(Qr), 7=0,...,1, and the following integral identity holds:

// [(% <Z5t) - (CL21+13§;U> 8i+1¢) + (a213§;u7 af&?)
- l

+ ((a2j+1ag+1u + agjﬁgu), a:%gb) - Z(gj(t, TyUy... ,8i_1u), a% )

J J=0

T
+(f,¢>)} dxdt—i—/l(uo,gb‘to)dx—i—/o (agerv, 0| _ ) dt =0, (1.7)

—_

I
o

where (-, ) denotes the scalar product in R™.

Let f(€) = F[f)(€) and F'[f](€) be the direct and inverse Fourier transforms of a function f,
respectively . In particular, for f € S(R)

fo= [, 7AW =5 [ o

For s € R define the fractional order Sobolev space

= {f: F A+ Q)] € Lo(R)}

and for certain 7" > 0 let H*(0,7T) be the space of restrictions on (0,7") of functions from H*(R). To
describe properties of boundary functions p;, v; we use the following function spaces. Let m = [ —1
or m = [, define

(B™(0,T)) (HH /eh0,1))",

endowed with the natural norm.
The coefficients of the linear part of the system further are always assumed to verify the following
conditions:
ai+1)i > 0, a2y <0, i1=1,...,n, (18)

and forany 0<j7<[l—1,i,m=1,...n

a:fja(Qj—H)im € C(@T)a k= 07 o 7j + 17 a]aja(Qj)im € C(@T)7 k= 07 S >j‘ (19)

Let Ym = (Yms - - -, Ymn) for m =0,...,1—1. The functions g;(¢,z, o, ..., y—1) for any 0 < j <1
are always subjected to the following assumptions: for i =1,...,n

gji»grad,, g;i € C(Qr x R™), j=0,...,1—1, gu(t,z,0,...,0) =0, (1.10)

-1
‘gradykgji(t, T, Yo, - - - ,yl_l)’ <c Z (|ym|b1(j,k,m) + |ym|b2(j,k,m))’ k=0,...,1—1,
m=0

Y(t, 2,90, ..,y-1) € Qp x R, (1.11)
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where 0 < b1 (j, k,m) < ba(4, k,m), [Ym| = Y, ym) />

Regarding the functions wy; we always need the following conditions:
we HHYD, w™0)=0, m=0,....I, w™R) =0, m=0,...,1—1, (1.12)

for all wy; (where here w stands for wy;).
Now we can pass to the main results and begin with the direct problem.

Theorem 1.1. Let the coefficients aj, j = 0,...,2l + 1, satisfy conditions (1.8), (1.9). Let the
functions g; satisfy conditions (|1.10)), , where

, 4l — 25 — 2k
ba(7, k < —

Let ug € (Lo(I))", (po, ..., pu—1) € (B=10,7))", (w,...,1n) € (B(0,T))", f € (L1(0,T; Lo(1)))"
for an arbitrary T > 0. Denote

Y j, k,m. (1.13)

@ = ooy + 1o, - o)l oy + 100 -1 oy
+ | fllzoo.1ip2yyn- (1.14)

Then there exists 0 > 0 such that under the assumption co < § there exists a unique weak solution

u € (X(QT))n of problem (1.1))—(1.3). Moreover, the map
(uo,(uo,...,ul,l),(l/o,...,ul),f) —u (1.15)

s Lipschitz continuous on the closed ball of the radius 0 in the space (LQ(I))NX(Bl_l(O,T))n X
(B1(0,7))" x (L1(0,T; Ly(I)))" into the space (X(Qr))".

Theorem 1.2. Let the hypotheses of Theorem be satisfied except inequalities (L.13]) which are
substituted by the following ones:

4l — 25 — 2k

ba(7, k

Y j, k,m. (1.16)

Let ¢q is given by formula (1.14)).
Then for a fixed arbitrary 6 > 0 there exists Ty > 0 such that if co < § and T € (0,Ty] there exists

a unique weak solution u € (X(QT))n of problem (L.1)—(L.3)). Moreover, the map (L.15|) is Lipschitz
continuous on the closed ball of the radius 6 similarly to Theorem [L.1]

For the inverse problem the results are as follows.

Theorem 1.3. Let the coefficients aj, j = 0,...,2l + 1, satisfy conditions (|1.8]), and the func-
tions g; satisfy conditions (L10), (T.IT), (TI3). Let uo € (L2(1))", (pos-- ., pu—1) € (B=10,7))",
(Yo, ..., 11) € (BH0,T))", ho = (hot, - - ., hon)T € (L1(0,T; Ly(1)))" for an arbitrary T > 0. Assume
that condition holds and for anyi=1,...,n, satisfying m; > 0, for k= 1,...m; the functions
wr; satisfy condition (1.12)); pr; € WH(0,T) and

o0a(0) = /, () () (1.17)

hii € C([0,T]; Lo(1)) fork=1,...,m;. Let

wkji@) = /hjl(t7x)wkl(x) dl’, k?] = 17 <oy My, (118)
I
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and assume that

A;(t) = det(y;s(t)) #0 YV te€[0,T]. (1.19)

Denote

co = [[woll(za(ryn + (10 - - - s =)l 10,0y + (Vo5 - - s )l B0,y

+lhollzr oizamye + > D Ihill ey (1.20)

i:m; >0 k=1

Then there exists § > 0 such that under the assumption cq < § there ezist functions Fy; € L1(0,T),
1:m; >0, k=1,...,m;, and the corresponding weak solution u € (X(QT))n of problem 1}
satisfying , where the function f is given by formula . Moreover, there exists r > 0 such that
this solution u is unique in the ball X ,,(Qr) with the corresponding unique functions Fy; € L1(0,T)
and the map

(wo, (p10s - - -y pu—1), M0, - - -, 1), hoy {0 }) — (u, {Fri}) (1.21)

1s Lipschitz continuous on the closed ball of the radius § in the space ( ))nx(Bl 10, T) )
(B10,T))" x (L1(0,T; Ly(1)))" x (L1 (0, 7)™ into the space (X(Qr))" x (L:(0,T))™.

Theorem 1.4. Let the hypotheses of Theorem be satisfied except inequalities which are
substituted by inequalities . Let ¢q be given by formula . Then two assertions are valid.

1. For a fized arbitrary 6 > 0 there exists Ty > 0 such that if co < 6 and T € (0,Ty], there
exist unique functions Fy; € L1(0,T), i :m; >0, k =1,...,m;, and the corresponding unique weak
solution u € (X(QT))n of problem f satisfying , where the function [ is given by
formula .

2. For a fixed arbitrary T > 0 there exists & > 0 such that under the assumption co < 0 there
exist unique functions Fy; € L1(0,T), i :m; >0, k =1,...,m;, and the corresponding unique weak
solution u € (X(QT))n of problem f satisfying , where the function [ is given by
formula .

Moreover, map (1.21)) is Lipschitz continuous on the closed ball of the radius § similarly to The-
orem [L3]

Remark 1. Theorems and [I.4) are valid for the aforementioned Majda-Biello system. In the case
of such a system with more general nonlinearities

Ut + Uggy + (gl(u U))a: - fla
Ut+avxxx+(92uv) = f2, a>0,

T

Theorems [LL1] and [[.3 are valid if
10095 w2)l < e(lmnl™ + [y2l™ + 1l + [y2l™),  k,j=1,2,
where 0 < by < by < 2, for example, if g1 (y1,y2) = cys, ga(y1,y2) = C1yys + Coy1ya.
The paper is organized as follows. Section 2 contains certain auxiliary results on the corresponding

linear initial-boundary value problem and interpolating inequalities. Section 3 is devoted to the direct
problem, Section 4 — to the inverse one.
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2 Preliminaries

Further we use the following interpolating inequality (see, for example, [2]): there exists a constant
c = c(R,1,p) such that for any ¢ € H'(I), integer m € [0,1) and p € [2, +00]

2m +1 1
m l 1-2s
1" L,y < el 17 ol T ellellm, s=slplm)= 0 a2

(2.1)

On the basis of (2.1) in [10, Lemma 3.3| the following inequality was proved: let j € [0,1],
k,m e [0,l—1], b e (0,(4l —2j — 2k)/(2m + 1)], then for any functions v, w € X(Qr)

100" 0w

||L2[/(2l—j) (0,T;L2(1))

C(T((4l—2j—2k)—(2m+1)b)/(4l) + T(2l_j)/(2l))||U||Z)J((QT)||U)||X(QT)‘ (2.2)

Besides nonlinear system (1.1]) consider its linear analogue

-1
w = (1) (ag 107w+ andiu) = Y (=17 [ag; (t, 2)0 u+ ag(t, ©)0u]

<.
Il
o

l

= f(t,z)+ Y _(—1)9iG,(t,x), (2.3)

J=0

G; = (Gj1,...,Gj,)". The notion of a weak solution to the corresponding initial-boundary value
problem is similar to Definition . In particular, the corresponding integral identity (for the same
test functions as in Definition [1]) is as follows:

// [(ua qbt) - (a21+laalcuv 8i+1¢) + (an@alcuv aigb)
-1

+ Z((agﬁlﬁgﬂu + a;00u), L) + )+ Z (t,z),0 ] dxdt

=0
T

+/<u0’¢‘t:0) daH—/ (angl/l,aquﬁ‘z:R) dt =0. (2.4)
I 0

First consider the case a; = 0 for j < 20 — 1. Then system ([2.3) is obviously splitted into the set
of separate equations and we can use the corresponding results from [I1]| and [9] for single equations.

Lemma 2.1. Let the coefficients a1 and ay satisfy condition (1.8), a; = 0 for j < 21 —1,
uy € (LQ(I))n, (toy -y 1) € (Bl_l(O,T))n, (vo,...,m) € (B(0,T))", f=G;=0Vj.
Then there exists a unique weak solution u € (X(QT))n of problem (2.3)), (1.2)), (1.3) and for any
€ (0, 7]

lelloc@or < o) {lollzamy + 10, Dl 0o + 100 ) @iy |- (25)
Proof. This assertion succeeds from [I1, Lemma 4.3]. O

Lemma 2.2. Let the coefficients ag+1 and ay satisfy condition (L.8)), a; = 0 for j < 21 — 1,
w =0, g = 0 forj =0,...,0—1, v, =0 for j = 0,....0, f € (Li(0,T;Ls(1)))",
G € (Layy—j)(0,T; Lo(1)))", j =0,...,L.
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Then there exists a unique weak solution u € (X(QT))n of problem (2.3)), (1.2)), (1.3) and for any
te0,7)

l
Jull(x @y < e(T) [||f||(L1(o,t;L2(I)))n +> ||Gj||(Lm/(gl,j>(o,t;LQ(I)))n}; (2.6)

J=0

moreover, fori=1,....n and p(x) =1+ x
2 ! 2
/ui (t,x)p(z) dx + // (20 + Va1 — 2a@yip(e)) (Ohwi(r, )" dedr
I t
!
< 2/ fiuip daxdr + 2 Z // G uip + 50 ) dwdr.  (2.7)
Qt j=0 t

Proof. This assertion succeeds from [J, Lemma 4]. O

Theorem 2.1. Let the coefficients a; satisfy conditions (|1.8]), , ug € (LQ([))H, (toy -y p—1) €

(BROD)", () € (BO.D)', S € (MOT D)), G € Lajera O T: D) 5 =

Then there exists a unique weak solution u € (X(QT))n of problem (2.3)), (1.2)), (1.3) and for any
€ (0,T]

[ullx(@oym < e(T )[HUOH Ly + || (ko - - - aﬂl—l)”(Bl—l(O,t))"

(w0, - )l sy + Il ©uzamns + HGjH(Lgl/(gl_ﬁ(o,t;Lg(I)))"]- (2.8)

=0
Proof. Denote by w

(w1 wy,)? the solution of problem (2.3), (1.2), (1.3) constructed in

Lemma [2.1] Let U(¢,z) (t x) — w(t,z). Consider an initial-boundary value problem for the

function U:

~
I
—

U = (=121 077U + a03'U) = > (=1)05 [azj41 (t, 2) 057U + ag;(t, 2)0,U]

<.
Il
o

+Z 1)/ 87G,(t, x), (2.9)

where G; = G, while éj = G, + agj 1107w + ag;09w for j < I, and zero initial and boundary
conditions (|1.2), (1.3). Note that by virtue of (2.1)) form =0orm=1,j<landi=1,...,n

109 ™ wil| ory < ell@bwill ZE il oy ™ + ellwil Lo
Therefore, G; € (Layyai_j)(0, T; Lo(I)))" with

Gl (Lo o1y 0.2 (1)) < NGill (Lo 020y + (D) W] (x Qi) (2.10)

In order to obtain the solution to the initial-value problem for system (2.9) we apply the con-
traction principle and first construct it on a small time interval [0, %] as the fixed point of a map
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U = AV, where for V € (X (Qto))n the function U € (X(Qy,))" is a solution to an initial-boundary
value problem for the system

~
|
—

U — (- ) (aglﬂa HT 4+ ay 821 U)= (—1)j8§; [a2j+1(t,x)8§;+lv+a2j(t,:v)8§V]

<.
Il
=)

l

T)+ > (1) G (t,x), (211)

Jj=0

with zero initial and boundary conditions ([1.2)), (1.3). Note that similarly to (2.10) the hypothesis
of Lemma is verified and such a map is defined for any tq € (0,7]. Moreover, according to (2.6))

l

Ul x (e < c(T) [Hf“(h((),to;/l?(f)))" Y NG Lty 0Ly
=0

-1
+ Z(H&%JAVH(Lzz/(zzfj)(O,to;Lz(I)))" + (||8;V||(L2l/(2l7j)(01t0§L2(I)))n)i|' (2.12)
=0

By virtue of (2.1)) if j+m <2l —1fori=1,...,n

Ha;nvi||Lzz/(2zfj)(0:to;L2(I))

(2l=j)/(21)
2m/ (21— (I—-m)/(21 21/ (21—
< o [ UV VAL + ) ar)

2—j—m)/(20) |11 71 (I=m)/L m/l 21=3)/(2)
< ctff @y e ||3ZV||L2/<Qt + eSOV ool o)

2
< (D)t Vil xa)- (213)
Therefore, it follows from ([2.12]) that

l
||U|| X(Qt))™ n < C(T) [||f||(L1(0,to;L2(I)))” + Z ||Gj||(LQZ/(Qlfj)(OytO;LQ(I)))n

=0

1/(21
+ta PNVl x @iy |- (2:14)

Similarly to (2.14) for V € (X(Qy,))", U = AV
U = Ullx @iy < (Dt NV = Vllix(@ug)e- (2.15)

Inequalities (2:14), (2.15) provide existence of a unique solution U € (X(Qy,))" to the considered

problem if, for example, c(T)t(l)/ 20 < 1/2. Then since the value of ¢, depends only on 7" step by step
this solution can be extended to the whole time segment [0, 7], moreover,

!
1Ull(x @y < e(T) [Hf [ IIGjH(Lu/@l_j)(o,t;Lzuw]- (2.16)
=0

Combining (2.5) (applied to the function w), (2.10) and (2.16)), for v = U 4+ w we complete the
proof. O]
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Introduce certain additional notation. Let
U= S(“’Oa (:u07 s 7/“71)7 (V(]? ce 7Vl)7f7 (G07 s 7Gl))

be a weak solution of problem ([2.3), (1.2f), (1.3)) from the space (X (QT))n under the hypotheses of
Theorem 2.1l Define also
W= <u07 (MO? s 7#171)7 (V07 SRR l/l))>

SW = S(W,0,(0,...,0)), S: (Ly(I) x BH0,T) x B(0,T))" = (X(Qr))",
Sof = 5(0,(0,...,0),(0,...,0), £, (0,...,0)), S0 : (L1(0, T; Lo(I)))" = (X(Qr))",

5.6, = S(0,(0,...,0),(0,...,0),0,(0,...,Gs, ..., 0)),
S] : (LQZ/(Qlfj)(()?T; LQ(I)))n — (X<QT))na j = 07 B l.

Let W2(0,T) = {¢ € W}0,T) : ¢(0) = 0}. Obviously, the equivalent norm in this space is
19'l| 1 0.1- _
Let a function w € C'(I). On the space of functions u(t, ), lying in L, (/) for all ¢ € [0, T, define
a linear operator Q(w) by a formula (Q(w)u)(t) = q(t; u,w), where
q(t;u,w) = /u(t,x)w(x) de, te]0,7T].
I

Lemma 2.3. Let the hypotheses of Theorem be satisfied. Let the function w satisfy condition
[T19).

Then for the function u = (uy...,u,)T = S(uo, (pos .-, pi-1), (Yo, 1), f (Go, ..., Gy)) the
functions q(-;u;,w) = Q(w)u; € WH(0,T), i=1,...,n, and for almost every t € (0,T)
q (t;us,w) = r(t;u,w) = Vli(t)a(ng)iw(l)(R)
+ li(—l)l% [vki(t) (aqrniw™ M (R) — a@yiw® "V (R))
k=0
— pki(t) (a(21+1)iw(2lfk)(0) - a(zmw(zl*k*l)((}))}
+ (1% [ (®) (@50 () — (o) S (R))
— g (1) ((a(2j+1)imw(j))(j’k)(0) _ (a(2j)z’mw(j)>(jik71)<O>)]

I

n -1
+ Z Z(_l)JH /Ium(tax) [(a(zﬂl)imw(ﬁ)(ﬁl) _ (a(Qj)imw(j)>(])j| dr
m=1 j=0

!
+/f¢(t,x)wdw—l—Z/Gji(t,x)w(j) dx, (2.17)
I par it

||q/<';uivw)|lL1(0,T) <c(T) ||U0||(L2(1))" + |I(zeo, - - - >Mz—1)H(Bl—1(o,T))n

l
+ (o, - )l oy + I fll oo + (HGJH(Lm/(gl_]-)(o,T;Lzu»)nﬂ, (2.18)
7=0

where the constant ¢ does not decrease in T'.
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Proof. For an arbitrary function ¢ € C3°(0,7T) let ¢;(t, x) = ¥ (t)w(x) for certain i, ¢p,(z) = 0 when
m # 1. This function ¢ satisfies the assumption on a test function in Definition |1} and then equality
(2.4]) after integration by parts yields that

/0 W (t)q(ts us, w) dt = — /0 D) (E: g, ) dt. (2.19)

Since r € L1(0,T) it follows from (2.19) that there exists the weak derivative ¢'(t; u;, w) = r(t; u;, w) €
L,(0,7T) and

-1

14|z 07) < C[Z 13l Loy + Z 1illoomys + 11l zao,msmam)n
j=0 7=0

+ > Gl + ||u||<L1(0,T;L2(I))>"]-
=0

Since ||u|(, 0,r;L2(n)» < Tlull ez < Tl|ull(x(@r))», application of inequality (2.8]) completes
the proof. [

3 The direct problem

Proof of the existence part of Theorem[L.1 On the space (X(QT))n consider the map ©

I
u:@UEgW—l—Sof—Zgjgj(t,x,v,...,aiflv). (3.1)
=0
Note that according to conditions ((1.10), (L.11]) fori=1,....,n
-1 -1
gsilt, v, O ) < e Y (105l OE (0 PO 7] (3:2)
k=0 m=0

In particular, conditions (1.13) and inequality (2.2) yield that g;(t,z,v,...,0 ) €
L2l/(2lfj)(0a T LQ(I)), moreover,

lgi (82,0, 057 0) Loy 07322 ()
-1 1-1 2
<ec ZZZ T( (41—2§—2k)—(2m+1)b; (]km))/(4l)+T2l —3) 2l)|| Hb)gg(sm)ﬁ (3'3)
k=0 m=0 =1

In particular, Theorem ensures that the map © exists. Let
bl = mln(bl(ja kam))7 b2 = max(b2(j> k:7m))7 0< bl < b27 (34)

Jiskym Jikym

then it follows from ([3.3]) that
gt 2,0, 0 O Loy py0r:zamy < (1) (10l Gmye + 101G Gmy ) (3.5)
)
therefore, inequality (2.8)) implies that

180l cx@ry < (e +e(T) (I + 1oy ) - (36)
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Next, for any functions vy, vy € (X (QT))n

|gji<ta T,V1,y... ,(‘3i 1 ) — gji(tu T,Vg,... ,ai_lvgﬂ
-1 1-1
k=0 m:0

X 0 (vy —va)], (3.7)
therefore, similarly to (3.5
lg(t, @, 01, 0 or) = (82,09, - 0 02) || (L (0. Lo (1))
< (T) (Hvl\l Ym0l omyn + 101G @mn T 102l @ ) o1 — v2llx@ryyn- (3-8)
and similarly to (3.6
[©v1 — Ova|(x (@)
b1
< o) (Ioal ey + 2l + 11l @upn + 1021 iuoye ) I = vallcei@ryy (39)

Now, choose r > 0 such that

1
oy < 1
ot < 1o(T) (3.10)
and then 6 > 0 such that .
0 < . 1

Then it follows from (3.6) and (3.9) that on the ball X,,(Qr) the map © is a contraction. Its unique
fixed point u € (X (QT))n is the desired solution. Moreover,

[ull x@rym < elco)- (3.12)
0

Note that the above argument ensures uniqueness only in a certain ball. In order to establish
uniqueness and continuous dependence in the whole space we apply another approach. Then the rest

part of Theorem succeeds from (3.12)) and the theorem below.

Theorem 3.1. Let the assumptions on the functions a; and g; from the hypotheses of The-
orem . be satisfied.  Let wug,ug € (LQ(I))n, (toy -y pu—1), (Hoy - - - fi—1) € (Bl L0, T))

(Yo, ... 1), (Do, ..., ) € (B(0,T))", f, fe (L1(0,T; Lo(1)))" and let u,@ be two weak solutions
to corresponding problems (LI)-(L.3) in the space (X(Qr))" with ||ull(x@z) @l x@rys < K for

a certain positive K.
Then there ezists a positive constant ¢ = ¢(T, K) such that

lu =@l (x(@mr < c¢(lluo — ol zomyr + 1o — Fos - - -+ -1 — Fu—1) |10,
+ | (vo = Do, - ..o vi = Wl sro.yyn + I = Fllzopamys ). (3.13)

Proof. Let w € (X (QT))n be a solution to the linear problem

wy, — (=1 (ay107 T w + ay0*w) = 0, (3.14)
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w(0, ) = up(x) — up(x), (3.15)

Lemma ensures that such a function exists and according to (2.5))

||w||(X(QT))" < (T )(”UO - u0||(L2(I) + (o = fos - - -5 -1 — ﬁl—l)H(Bl*l(O,T))"
+ ||(V0 — fle; N %)H(BZ(O,T))TL). (317)

Let v(t,z) = u(t,z) — u(t,z) — w(t,z), Then v € (X(Qr))" is a solution to the initial-boundary
problem in Q)7 for the system

v — (=1 (a24102 0 + and®v) = (f — )

-1

+ Y (=108 [agj1 (t, )05 (u — W) + ag; (£, 2) 0 (u — )]
=0
!
= (0¥ gt x,u, .0 ) — gi(t a0 W)] (3.18)
=0

with zero initial and boundary conditions of (1.2), (L.3) type. Similarly to (2.11)-
RI3) asjs(t,2)0  u + agi(t,2)du € (Lay@—j(0,T;Lo(1)))", similarly to (32, (3.3)
g;(t,zu, ..., 0 ) € (LQl/(Ql_j)(O, T, LQ(I)))n. The same properties hold in the case of the function
u. Therefore, the hypothesis of Lemma is satisfied and for ¢ = 1,...,n according to (2.7))

/U?(t, x)pdx + // ((2[ + 1)a(21+1)i — Za(gl)ip) (8537)1-(7', x))2 dxdt
I t

< 2// fZ vip dxdTt

23y // gy 2)0 (0 01,) + 0o 2)0E 0+ 0,))

m=1 j=0

x (Dvip + jOI~ ;) dodr
-2 i // (gji(t, T,u, ..., 0 ) — gji(t,x,u, ... ,8;’117))
— ,
j X (Fvip + jOI ;) dedr.  (3.19)
Note that by virtue of uniformly in ¢ and x
(21 + 1)agit1y — 2a@yip(x) > o > 0. (3.20)

It follows from (2.1)) for p = 2 that if j <[ —1

j j (21— 1 1) 1/1
J[[ 10 vl 0t dndr < [ (100G 0l + ol o

Ss/ 0L v dxd7’+c(5)/ lv*pdzdr, (3.21)
Q¢ Q¢
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where € > 0 can be chosen arbitrarily small;

A , A _ 1/2
/ |07 w,,,| - |000;| dedr < (// (090;)? dadr // (01 w,,)? dxd7'>
Q+ t ¢

< 8/ |8iv|2dxd7+c(€)/ |v|2pdxd7'+c||w||%X(QT))n. (3.22)
Q¢ Q¢
Next, similarly to (3.7))
g;i(t, 2, .. O ) — gt @, 4, ..., 05|
-1 -1
<) D (|ogulOEm 4 g Ok g g0k o]k
k=0 m=0
x |0 (v +w)|. (3.23)
Note that, for example, for j <1, k,m <1 —1if0<b< (4l —25 —2k)/(2m + 1)

: ) 1/2
/|8¥Lu|b|0§v| 02| dx < sup \(9;"11“’(/\8§U\2dx/|8jﬁv\2dx>
I zel I I

(k+4)/(20) (20—j—k)/(21)
< csup |8;”u|b[</|8iv|2dx> </|v|2 dx) %—/|v|2 dx]
zel I

5/|8£;v|2das+c(5) [sup|8mu|2lb/(2l Ik 1 sup |0ml ] /|v|2pd$, (3.24)
I I

zel zel

where

T
/ sup \8;”u]2lb/(21_j_k) dt
0

zel
(21—2m—1)b/(4l—2j—2k) [T (2m+1)b/(41—25—2k)
< sup </|u|2dx> / </|8i.u|2dm> dt
te(0,T) NI 0 T

< (D) |ullfyiomin ™ dt; - (3.25)

also split b into two parts: b = b’ +b", where 0 <V < (21—2j)/(2m+1),0 <V’ (2l—2k)/(2m—|— 1),
then similarly to ((3.24))

- / 1 - 1/2
/|8;”u|b|afw| 09| dx < sup |0 u|" TP (/|8£U|2dx/|8fw|2dx)
T zel 1 I

< 5/|8§v|2dx+c(5) [sup|8;"u|2lb//(l_j)+Sup|8;"u|2b,} /|v|2pdx
I rel 1

zel

+ c/ 0L w|? da + c[sup |02/ =R 4 sup \8?u|2b”} /|w|2 dx, (3.26)
I zel zel I
where similarly to ((3.25|)

T T
/ sup |/ (=9) dt,/ sup [0mu) 2"/ 0 gt < (T, K). (3.27)
0 0

zel zel

Gathering (3.20)—(3.27) we deduce from inequality (3.19) that

/U?(t,x)ﬂd$+040 // (0yv:)* dadr < @/ |0Lv|? dwdr
I . 2n J Jo,

t t
+ / o () / (w2 dudr + 2 / 1 = Fllczaye loillacry d + (T )l (3.28)
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where |||/, 0,r) < ¢(T, K). Summing inequalities (3.28)) with respect to 7, using estimate (3.17) and
applying Gronwall lemma we complete the proof. O]

In this section it remains to prove Theorem

Proof of Theorem[I.2l Overall, the proof repeats the proof of the ex1stence part of Theorem [I.1] The
desired solution is constructed as a fixed point of the map © from . In comparison Wlth .
here we obtain the following estimate: let

min (4l — 25 — 2k — (2m + 1)bs(4, k, m))

j,k,m

2
o= v (3.29)

(note that o > 0 because of ([1.16])), then

-1 -1 2
lg;(t, 2, v, ... 7891;1@) H(LQZ/(QZ—]')(O7T;L2( DS o(T)T° Z Z HU Q1) (3.30)
k=0 m=0 i=1
and similarly to (3.6)), (3.9)
10| x (@ < c(T)co + (T ﬂv@ﬂggﬂ +ng@)> (3.31)

|©v — Ovs||(x
< >TU (1l @y + 102 oy + 1011 iupe + 2l e )
X ||’Ul — UQH(X(QT))n. (332)
Now for a fixed 6 choose T, > 0 such that
4e(To) T ((2¢(T)8)™ + (2¢(Tp)8)™) < 1 (3.33)

(it is possible since ¢(T") does not decrease in T") and then for every 17" € (0, Tp] choose an arbitrary
r such that
r>2c¢(T), 4c(T)T°(r" +r) <1 (3.34)

(this set is not empty because of (3.33)). Then the map © is a contraction on the ball X,.,(Qr).

In order to prove uniqueness in the whole space note that for an arbitrarily large r the value of
Ty can be chosen sufficiently small such that the solution of the considered problem u € (X (Qz,)")
is the unique fixed point of the contraction © in X,,(Qr,). O

4 The inverse problem

We start with the linear case. The following lemma is the crucial part of the study.
Lemma 4.1. Let the assumptions on the functions a; from the hypotheses of Theorem be satisfied.
Let condition be valid and for any i = 1,...,n, satisfying m; > 0, for k =1,...,m; the func-
tions wy; satisfy condition (1.12)), ¢k € WB(O,T), hii € C([0,T]; La(I)) and for the corresponding
functions 1y conditions (1.19)) be satisfied.

Then there exists a unique set of M functions

F={Fut),i:m>0k=1.m}
= D{niri:m; >0,k =1,...,m;} € (L1(0,T))"
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such that for f = (fi,..., fu)t = HF, where for any i = 1,....n the function f;(t,z) is presented
by formula (L.4), where ho; =0 (f; =0 if m; = 0), the corresponding function

u=Syf = (So0 H)F, (4.1)

satisfies all conditions (1.5). Moreover, the linear operator T' : (Wll(O,T))M — (Ll(O,T))M

bounded and its norm does not decrease in T'.

Proof. First of all note that by virtue of (1.18]), (1.19)
[Ai(1)] = Ao > 0, [hia(t)] < vo, t€[0,T]. (4.2)

On the space (Ll(O, T))M introduce M linear operators Ag; = Q(wy;) o Spo H. Let A = {Ay;}.
Then since HF € (L;(0,T; Ly(I)))" by Theorem and Lemma [2.1| the operator A acts from the
space (L1(0, T))M into the space (Wf((), T))M and is bounded.

Note that the set of equalities pp; = A F, @ : m; > 0,k = 1,...,m;, for F € (Ll(O,T))M
obviously means that the set of functions F' is the desired one.

Let for ¢ verifying m; > 0

Tt g, wy) = (1) /Ui(t7$) <a(2l+1)iwl(£l+1) — agzé«);ﬁ”) dx
I

P Yy / (t,2) | (@m0 = (a@ime) D] do, (4.3)

m=1 j=0

where u = (u1,...,u,)" = (So 0 H)F. Then from (2.17) it follows that for q(t; u;, wi;) = (AkF) (t)

q (t; uiy wii) = (L wiy whi) + Z ()i (1), (4.4)

7j=1

where the functions v;; are given by formula (1.18)). Let
Uei(t) = ¢ (B us, wis) — Tt ug, W), k=1,...,m,. (4.5)

and Ay, (t) be the determinant of the m; x m;-matrix, where in comparison with the matrix (Vrji(t))
the k-th column is substituted by the column (y1,(), . .. ,ymii(t))T. Then (4.4) implies

_ M),
Palt) = Fg k=1om: (4.6)
Let
2i(t) = @ri(t) = Tt ug, i), k=1,...,my, (4.7)

and Ag;(t) be the determinant of the m; x m;-matrix, where in comparison with Akz(t) the k-th
column (yy;(t), . . . ,ymii(t))T is substituted by the column (z1;(t),. .. ,zmii(t))T.
Introduce operators Ay; : L1(0,7) — L1(0,T) by

(A F)(t) = (4.8)

and let AF = {A,F}, A: (L(0,7)" — (L,(0,7))"
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Note that ¢g; = A F, for all o : m; > 0,k =1,...,m; if and only if AF = F.

Indeed, if pp; = A F, then ¢}, (t) = ¢'(t; u;, wy;) for the function q(; u;, wi) = (Ale) (t) and
equalities ([4.5)), yield Ay (t) = Api(t). Hence, AF = F.

Vice versa, if AF = F, then A(t) = Agi(t) and the condition A (t) # 0 implies 24 (£) = yri(t)
and so ¢}, (t) = ¢ (t; us, wii). Since g (0) = q(0; u;, wy;) = 0, we have q(t; u;, wi;) = pri(t).

Next, we show that the operator A is a contraction under the choice of a special norm in the
space (Ll(O,T))M.

Let Fy, F, € (Ll(O,T))M, Um = (So 0o H)F,,, m =1, 2, and let A}.(t) be the determinant of the
m; X m;-matrix, where in comparison with the matrix (Q/Jkﬁ(t)) the k-th column is substituted by
the column, where on the j-th line stands the element 7(¢; u1;, wj;) — 7 (t; g, wyi) = 7t w1 — ug;, wji).
Then

AL(t)
(AwiF1) (1) — (AriF2) () D) (4.9)
By ([2.8]) for t € [0, T]
lua(t, ) = ualt, Ml zamyr < () DD Mhjilleqomizam 1 Fiii = Fajill ao- (4.10)
im; >0 j=1

Let v > 0, then by virtue of (4.2)), (4.3, (4.9) and (4.10)

e (AFT — AF)|| (1,0,

c({llwiillazs} o) (T
- ({llew; HAo ) )/ e M ua(t, ) = walt, M (zacryn dt
0

< (T, ({llwjill r2er¢ry b o, {lhilleqotszaay )

T t m;
X / B_Vt/ Z Z|F1ji(7—)_F2ji(7—)|d7_dt
0 0

im;>0 j=1

T my; T
C
— e / S S |Fii(r) — Fo(r)] / e dtdr < S (R~ Pl ayoy (41)
0 T

im; >0 j=1

It remains to choose sufficiently large ~.
As a result, for any set of functions ¢y; € (Wf(O,T))M there exists a unique set of functions
F € (L4(0, T))M satisfying AF = F', that is ¢3; = Ay F'. This means that the operator A is invertible

and so the Banach theorem implies that the inverse operator I' = A~! : (Wf((), T))M — (L1 (0, T))M
is continuous. In particular,

IT{eri}zoompyr < e(T){onit g 0.y (4.12)

For an arbitrary 77 > T extend the functions ¢y, by the constant ¢, (T") to the interval (T, 17).
Then the analogue of inequality (4.12]) on the interval (0,7}) for such a function evidently holds with
¢(T) < ¢(T). This means that the norm of the operator I' is non-decreasing in 7. O

The next result is the solution of the corresponding inverse problem for the full linear problem.

Theorem 4.1. Let the function f be given by formula (1.4) and condition (1.6 be satisfied. Let the
functions a;, uo, (po,--.,i-1), Wo,... 1), ho, Pri, Wki, hii satisfy the hypothesis of Theorem
and the functions G; satisfy the hypothesis of Theorem .
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Then there exists a unique set of M functions
F={Fut),i:m; >0,k=1,....,m;} € (L (0, 7)™

such that the corresponding unique weak solution u € (X(QT))n of problem (2.3)), (1.2), (L.3)) satisfies

all conditions (1.5). Moreover, the functions F' and u are given by formulas

l
F= r{% — Qi) (SW + Soho + Y SjGj)i}, (4.13)
j=0
_ l
u=SW + Soho+ > _ S;G;+ (So 0 H)F. (4.14)
§=0

Proof. Set
~ l ~
v = S(Uo, (,U,o, ce 7/”—1)7 (Vo, ce Vl), ho, (Go, e ,GZ)) = SW + Soh() + Z SjGj.
=0
Lemma implies Q(wy;)v; € W(0,T). Moreover, by virtue of (1.17) Q(wg; ’Uz‘t o = ¢i(0). Set
Ohi = Pri — Q(wki)vi;

then ¢p; € /vall(O, T). In turn, Lemmaimplies that the functions F' = I'{@; } and u = v+(Spo H ) F'
provide the desired result. Uniqueness also follows from Lemma [£.1] O

Now we pass to the nonlinear equation.

Proof of Theorem[[:3] On the space (X (Qr))" consider a map ©

!
u=0v=SW+ Syhy — Z §jgj(t,x, v, ..., 05 ) + (Sp o H)F, (4.15)
=0
~ l ~
F= F{goki — Q(wki) (SW + Sohg — Z S;g;(t, v, ... ,8;‘111)%}. (4.16)
=0

Then estimate (3.5)) and Theorem applied to G;(t, ) = g;(t,z,v,...,0, " v) ensure that the map
O exists.
Apply Lemmas and then the function F' from (4.16)) is estimated as follows:

1 F (i < (T )[HUOH Lo(ryr + (o - -+ =) | =102 + [ (Vo - - )l sr0.2))m
+ ||h0||(L1(0TL2 e+ ki s oanm + 101 Gy + 101G G |3 (417)
therefore, since also
HFNworzamyr < max— ([[illogoryzam) I llz oy

Theorem provides for the map © estimate (3.6)).
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Next, for any functions vy, vy € (X (QT))n since
l ~
Ouv; — Ouy = — Z S; [gj(t, z,01, .., 05 ) — gi(t, T, 0, ,8;’102)}
§=0

+ (SO oHo F){Q(wkl)< gj [gj(t,l', Viy. .. ,853711)1) — gj(t,iC, Vo, ... ,8;’11)2)Di}, (418)

l
J=0

using (3.8) we derive estimate (3.9)).
Now choose > 0 and 6 > 0 as in (3.10), (3.11). Then it follows from (3.6) and (3.9)) that on

the ball X,,(Qr) the map © is a contraction. Its unique fixed point u € (X(Qr))" is the desired
solution. Moreover, Theorem implies that the function F' in (4.16) (for v = u) is determined in
a unique way.

Continuous dependence is obtained similarly to (3.6)), (3.9). ]

Proof of Theorem[1.4] In general, the proof repeats the previous argument. The desired solution is

constructed as a fixed point of the map © from (4.15)), (4.16). In comparison with (3.6)), (3.9 here
(also with the use of (4.18))) we obtain estimates (3.31)) and (3.32]), where o is defined in (3.29)).
The end of the proof is the same as in Theorem (with the corresponding supplements as in

Theorem |1.3]). ]

Acknowledgments

This paper was written under the financial support of the Russian Science Foundation, grant 23-21-
00101.



o2

(1]

2]

13

4]

[5]

(6]

17l

18]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

0.S. Balashov, A.V. Faminskii

References

R.D. Akhmetkaliyeva, T.D. Mukasheva, K.N. Ospanov, Correct and coercive solvability conditions for a degen-
erate high order differential equation. Eurasian Math. J. 14 (2023), no. 4, 9-14.

0.V. Besov, V.P. II'in, S.M. Nikol’skii, Integral representation of functions and embedding theorems. J. Wiley,
1978.

E. Bisognin, V. Bisognin, G.P. Menzala, Asymptotic behavior in time of of the solutions of a coupled system of
KdV equations. Funkcialaj Ekvacioj, 40 (1997), 353-370.

E. Bisognin, V. Bisognin, G.P. Menzala, Fxponential stabilization of a coupled system of Korteweg—de Vries with
localized damping. Adv. Differential Equ., 8 (2003), 443-469.

J.L. Bona, J. Cohen, G. Wang, Global well-posedness for a system of KdV-type equations with coupled quadratic
nonlinearities. Nagoya Math. J., 215 (2014), 67-149.

J.L. Bona, Z. Gruli¢, H. Kalish, A KdV-type Boussinesq system: from the energy level to analytic spaces. Discr.
Cont. Dyn. Syst., 26 (2010), no. 4, 1121-1139.

J. Bona, G. Ponce, J.-C. Saut, M. Tom, A model system for strong interactions between internal solitary waves.
Comm. Math. Phys., 143 (1992), 287-313.

A.V. Faminskii, Controllability problems for the Korteweg—-de Vries equation with integral overdetermination.
Differential Equ., 55 (2019), no. 1, 1-12.

A.V. Faminskii, Odd-order quasilinear evolution equations with general nonlinearity on bounded intervals.
Lobachevskii J. Math., 42 (2021), no. 5, 875-888.

A.V. Faminskii, On inverse problems for odd-order quasilinear evolution equations with general nonlinearity. J.
Math. Sci., 271 (2023), no. 3, 281-299.

A.V. Faminskii, N.A. Larkin, Initial-boundary value problems for quasilinear dispersive equations posed on a
bounded interval. Electron. J. Differential Equ., 2010, no. 1, 1-20.

A.V. Faminskii, E.V. Martynov, Inverse problems for the higher order nonlinear Schrddinger equation. J. Math.
Sci., 274 (2023), no. 4, 475-492.

J.A. Gear, R. Grimshaw, Weak and strong interactions between internal solitary waves. Stud. Appl. Math., 70
(1984), no. 3, 235-238.

U.A. Hoitmetov, Integration of the loaded general Korteweg-de Vries equation in tne class of rapidly decreasing
complez-valued functions. Eurasian Math. J., 13 (2022), no. 2, 43-54.

F. Linares, M. Panthee, On the Cauchy problem for a coupled system of KdV equations. Commun. Pure Appl.
Anal.; 3 (2004), 417-431.

S. Lu, M. Chen, Q. Lui, A nonlinear inverse problem of the Korteweg—de Vries equation. Bull. Math. Sci., 9
(2019), no. 3, 1950014.

A.J. Majda, J.A. Biello, The nonlinear interaction of barotropic and equatorial baroclinic Rossby waves. J.
Atmospheric Sci., 60 (2003), 1809-1821.

J. Marshall, J. Cohen, G. Wang, On strongly interacting integral solitary waves. J. Fourier Anal. Appl., 2 (1996),
507-517.

C.P. Massarolo, A.F. Pazoto, Uniform stabilization of a coupled system of the Kortrweg—de Vries equations as
singular limit of the Kuramoto—Sivashinsky equations. Differential Integral Equ., 22 (2009), 53-68.

C.P. Massarolo, G.P. Menzala, A.F. Pazoto, A coupled system of Korteweg—de Vries equation as singular limit
of the Kuramoto—Sivashinsky equation. Adv. Differential Equ., 12 (2007), 541-572.



On direct and inverse problems for systems of odd-order quasilinear evolution equations 53

[21] S. Micu, J.H. Ortega, A.F. Pazoto, On the controllability of a coupled system of two Korteweg—de Vries equations.
Comm. Contemp. Math., 11 (2009), no. 5, 799-827.

[22] D. Nina, A.F. Pazoto, L. Rosier, Global stabilization of a coupled system of two generalized Korteweg—de Vries
equations posed on a finite domain. Math. Control Relat. Fields, 1 (2011), no. 3, 353-389.

[23] A.F. Pazoto, L. Rosier, Stabilization of a Boussinesq system of KdV-type. Systems Control Lett., 57 (2008),
595-601.

[24] A.L Prilepko, D.G. Orlovsky, I.A. Vasin, Methods for solving inverse problems in mathematical physics., Marcel
Dekker Inc., New York—Basel, 1999.

[25] J.-C. Saut, L. Xu, Long time existence for a strongly dispersive Boussinesq system. SIAM J. Math. Anal., 52
(2020), no. 3, 2803-2848.

Oleg Sergeevich Balashov, Andrei Vadimovich Faminskii
S.M. Nikol’skii Mathematical Institute

RUDN University

6 Miklukho-Maklaya St

117198 Moscow, Russian Federation

E-mails: balashovos@s1238.ru, faminskiy-av@pfur.ru

Received: 20.06.2024



EURASIAN MATHEMATICAL JOURNAL
ISSN 2077-9879
Volume 15, Number 4 (2024), 54 — 65

NEW WEIGHTED HARDY-TYPE INEQUALITIES
FOR MONOTONE FUNCTIONS

A.A. Kalybay, A.M. Temirkhanova

Communicated by Ya.T. Sultanaev

Key words: integral operator, Hardy-type inequality, weight, non-increasing function, non-
decreasing function.

AMS Mathematics Subject Classification: 47G10, 47B38.

Abstract. The famous Hardy inequality was formulated in 1920 and finally proved in 1925. Since
then, this inequality has been greatly developed. The first development was related to the consid-
eration of more general weights. The next step was to use more general operators with different
kernels instead of the Hardy operator. At present, there are many works devoted to Hardy-type
inequalities with iterated operators. Motivated by important applications, all these generalizations
of the Hardy inequality are studied not only on the cone of non-negative functions but also on the
cone of monotone non-negative functions. In this paper, new Hardy-type inequalities are proved
for operators with kernels that satisfy less restrictive conditions than those considered earlier. The
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continue this study but for monotone non-negative functions.
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1 Introduction

o o 1— / o . .
Let [ = (0,00),1 < p,g < ocandp = p%l. Suppose that v, u and v* P are positive functions locally
integrable on I.
We consider the following Hardy-type inequality

/u(m) /K(x,t)f(t)dt ix| <c /v(w)|f(x)|pdx | (L.1)

0 0

for all functions f € L, ,(I), where C' > 0 is independent of f and L, ,(I) is the weighted Lebesgue

o0

space of all functions f, Lebesgue measurable on I, such that || f]|,., = (f v($)|f(x)|pdx) T <
0
Here

Kf(x) = /K(x,t)f(t)dt, x>0, (1.2)

is an integral operator with a non-negative kernel K (z,t).
Inequality (1.1)) has been completely characterized for the kernel K (x,t) = 1 (for more details see
[8,9]) and the kernel K(x,t) = (z —t)*, a > 1 (see [17, [18, 19, 20] and for more details see [6]).
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In works [3] and |7, 10 11, 12], inequality (l.1)) was studied for kernels K(z,t) satisfying the
Oinarov condition stating that there exists a number d > 1 such that

d " (K(z,s)+ K(s,t) < K(z,t) < d(K(z,s)+ K(s,t)) (1.3)

for all x,s,t :x > s >t > 0. A further development of this problem was the introduction of the
classes O, n > 0, which are less restrictive for kernels K (z,t) than the Oinarov condition. We will
refer to OX, n > 0, as the Oinarov classes (the definitions of these classes are given in Section 2).
In paper [I3], inequality was studied in the case 1 < p < ¢ < o0. The case 1 < ¢ < p < oo was
considered in the paper [I], but for kernels belonging to the Oinarov classes OF. In the recent paper
[T4] the case 1 < ¢ < p < oo is also discussed, but now kernels are from O3 . For operators with
kernels from the classes OF in paper [I4] an alternative criterion for the validity of is presented.

If, in addition, f is a monotone function, characterizations of the Hardy-type inequalities help
to find boundedness of certain operators in Lorentz spaces. Moreover, the Hardy-type inequalities
restricted to monotone functions are used for the weighted Marcinkiewicz interpolation results. For
more applications, we refer to monograph [9, Chapter 8| (see also [16]).

Motivated by the applications, in this paper, we find necessary and sufficient conditions for the
validity of inequality for operator with kernels from the Oinarov classes @5 on the cone
of monotone functions in the case 1 < ¢ < p < co. The case 1 < p < g < oo was discussed in
paper [2] for kernels from O;, n > 0. We note that the case when kernels belong to the classes
OF, n > 0, has been left in [2] as an open question. The presented paper covers the class OF. As
soon as inequality is established for kernels from the general classes O, n > 0, on the cone of
non-negative functions in the case 1 < ¢ < p < o0, it can be established on the cone of monotone
functions in the same way as here. Moreover, in paper [2], the authors also considered the conjugate

operator K*f(x) = [ K(t,z)f(t)dt, x > 0, but kernels were from O;, n > 0. Since the conjugate

n

x
operator K* f needs a different approach than operator , so this is one more topic for a separate
paper.

This paper is organized as follows. Section 2 contains all the auxiliary statements required to
prove the main results. In Section 3, the validity of inequality is established on the cone of
non-increasing functions for operator with kernels from the Oinarov class Oy . In Section 4, we
present a similar result but for the operator (1.2)) with kernels from the class O . Section 5 is devoted
to the case 1 < p < ¢ < oo when kernels belong to the class O, which has not been considered in

2].

2 Auxiliary statements

Throughout the paper, the symbol A < B means that A < ¢B with some constant ¢ > 0. The
symbol A ~ B stands for A < B < A. Moreover, f 1 and f | mean non-decreasing or non-
increasing non-negative functions, respectively.

Let us give the definitions of the classes OFf and Oy . Let Q = {(x,t) € I x I : x > t}.

Definition 1. A measurable function K;(-,-) > 0 defined on the set {2 belongs to the class Of | if it
does not decrease in the first argument and there exists a non-negative function K o(-, -) measurable
on €2 and a number d; > 1 such that

dit (K o(,s) + Ki(s,1)) < Ki(2,t) < di (K (z,5) + Ki(s,1)) (2.1)

forall z,s,t:x>s>t>0.
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Definition 2. A measurable function K;(-,-) > 0 defined on the set {2 belongs to the class Oy,
if it does not increase in the second argument and there exists a non-negative function Ko(-,-)
measurable on 2 and a number d; > 1 such that

it (Ki(x,8) + Koa(s, 1) < Ki(2,t) < dy (Ko (2, 8) + Koa(s,1))
forall x,s,t:x>s>t>0.

Definition 3. A measurable function Ks(-,+) > 0 defined on the set 2 belongs to the class O, if
it does not decrease in the first argument and there exist non-negative functions Ko (-, ), Ka1(-, )
and K, (-,-) measurable on © and a number dy > 1 such that K,(-,-) € O and

dyt (Kopo(z,8) + Koy (w, 8)Ki(s,t) + Ko(s, 1)) < Ky(x,t)
<dy (Kao(z,s) + Kon(x,s)Ki(s,t) + Ka(s,t)) (2.2)

forall x,s,t:x>s>t>0.

Definition 4. A measurable function Kj(-,-) > 0 defined on the set {2 belongs to the class O, , if it
does not increase in the second argument and there exist non-negative functions Ko (-, "), Kia(, ")
and K (-,-) measurable on € and a number dy > 1 such that Ki(-,-) € O] and

dyt (Ky(z,8) + Ky (7,8)K12(s,t) + Koa(s, 1)) < Ky(x,t)
< dy (Ka(z,5) + Ky (7, 8) K1 2(s,t) + Koa(s, 1) (2.3)

forall x,s,t:x>s>t>0.

Note that since the classes (92i are wider than the classes of operators satisfying condition (|1.3)),
many recent publications have been devoted to them (see, e.g., |5 [I4]). Examples of kernels that

belong to the classes OF and OF can be found in [14].
To prove our main results we use the following theorems established in [14].

Theorem A. Let 1 < ¢ < p < oo and K(-,-) = Ks(-,-) € OF . Then inequality (1.1]) holds if and
only if By = max{Ba, Ba1, Bao} < 00. Moreover, C ~ By, where C is best constant in inequality

[C1) and

T p(g—1) pq
Byg = / K3 o(x, 2)u(x)dx /vlp/(s)ds v (2)dz :
0 z 0
0 oo % 2 P(lI:U
By, = / /Kgl(x,z)u(x)dx /Kf/(z,s)vlp/(s)ds
0 z 0
«d / KY (2 )0 (t)dt ,
0
_p_ p(g—1) %
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Theorem B. Let 1 < g < p < oo and K(-,-) = Ki(-,-) € O7. Then inequality (1.1) holds if
and only if By = max{By1,B11} < co. Moreover, C ~ By, where where C is the best constant in

inequality (1.1) and

a(p—1) q pq
P—q 00 p—a

00 t
By, = / Kg:l(t,:c)vlfp/(:c)d:c /u(s)ds u(t)dt :
0 \0

p—aq

a(p—1) q pq

P—q

B, = / / o' (z)dx 7Kf(s,t)u(s)ds p

Theorem C. Let 1 < ¢ < p < o0 and K(-,-) = Ks(-,+) € Oy . Then inequality (1.1)) holds if and
only if By = max{By 2, B1a,Ba2} < 00. Moreover, C = By, where C' is the best constant in inequality

1) and

g
|

q d| - ]OKf(s,t)u(s)ds

i
s}

a(p—1) q Pq

Boo = / Ké’:Q(Z, $)0 7 (s)ds /u(s)ds u(z)dz :
0 \0

p(g—1) p Pq
o0 z pP—q [e.o] pP—q

Byy = / / o1 (t)dt / K{(z, 2)u(z)dx V7P (2)dz

0 0 z

In paper [15], there is a formula that gives the equivalence between inequality (1.1]) for all non-
increasing non-negative functions and a certain inequality, but for arbitrary non-negative functions.
This equivalence is now called the Sawyer duality principle and has the form:

1
, 1
p '

[ o) f(2)da o [ottar J o)z
sup —2 & v(z) | L de |+ —° T (2.4)

0<fl (;fov(:c)fp(x)dx) v ) Ofv(t)dt W

Equivalence (2.4)) can be transformed into the following statement (see, e.g., [4]). The inequality

1
o q

P

/ (@) (K f(2)dz | < C / o(2) f () da (2.5)

0
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holds for a non-increasing function f > 0 if and only if the following two inequalities

T A

1

(Jusar) <c(]) -

t
hold for any function A > 0 and V(c0) < oo, where V(¢) := [v(z)dz and 1 is a function identically
0

equal to 1 on /. From (2.4) it is obvious that in the case V(00) = oo for inequality (2.5)) to hold we
need only the validity of inequality ([2.6]).

3 Main result for the class O

Assume that

o x q 7 ] ~3
ME = /u(x) /K(m,t)dt dx /v(x)dx :
0 0 0
o] t T q ﬁ ) 7]}21:;) %
MF = / (/ (/ K(x, z)dz) u(x)dx) (/ Vpl(s)v(s)ds) V_p/(t)v(t)dt ,
0 \o \0 t
- - P . p(q_ 1) %
My = / (/ Kgo(x,z)u(x)dx) ( sprp/(s)v(s)ds) 'V (tyu(t)dt :
0\t 0
v , p(g—1)
o0 [e%e] P—q t s p P—q
M = / /qul(x,z)u(x)d:c / /Kl(t,z)dz V7 (s)u(s)ds
0\t 0o \o
t s 4 %
X d / /Kl(t, 2)dz | V7P (s)u(s)ds )
0 \o
p(g—1)
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MY = max{M;t, My, My, M;", M7} and M+ = max{M;, M3, M, M},
Our main result of this section reads as follows.

Theorem 3.1. Let 1 < ¢ < p < oo and K(-,-) € OF. Then inequality (1.1) holds for any non-
increasing f > 0 if and only if M+ < oo for V(oo) < 0o and M < oo for V(oc0) = 0.

Proof. Since K1 = [ K(z,t)dt, inequality (2.7) has the form
0

1
q a fe'e)

7u(m) ]K(m,t)dt dz | <c /v(x)dm p,

0 0

which is equivalent to the condition M;* < co. As we mentioned above, in the case of V(0o) = oo,
inequality is not required, so the condition M;" < oo is also not required.

Let us turn to inequality for non-negative functions, the validity of which is necessary and
sufficient for the validity of (2.5 for non-increasing functions for the both cases V(c0) < oo and
V(00) = 0. Inequality can be rewritten as follows:

3=

7u(x) / K(z,t) 7h(s)ds dt qu qgc 7vl_p(x)Vp(:v)hp(x)dx . (3.1)

Our aim is to characterize inequality (3.1 for any non-negative function ~ > 0. Let us transform
the left-hand side S of (3.1). We split the inner integral in (3.1)) and get

S ~ 7u(x) jK(m,t) /xh(s)ds dt qu g
+ 7u(a:) /xK(:c,t) 7h(s)ds dt qdaz q. (3.2)

The change of the order of integration in the first term of (3.2)) gives

1
q q

S ~ 7u(x) / / K(z,t)dt | h(s)ds | dx

0 0

1

N ]ou(x) / K(x, t)dt / h(s)ds | dx

0 T

Therefore, the validity of inequality (3.1)) is equivalent to the validity of the following two inequalities:

]ou(a:) /x /SK(x,t)dt h(s)ds qda: QSCI 7U1p(:c)Vp(:c)hp(:1:)da: p, (3.3)

0 0 0
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7u(33) / K(x,t)dt q 7h(s)ds qdaz qg@ 7vl_p(a:)Vp(.9:)hp(x)dx p. (3.4)

The inequality (3.4)) is the standard weighted Hardy inequality, which holds if and only if M3 < oo

(see, e.g., [9]).
Inequality (3.3]) can be rewritten in the form:

1
q q o)

7u(1‘) / Rz, s)sh(s)ds | dz| < / V() VP (2) WP ()

0

where K (z, s) f (z,t)dt with K(z,t) from O . Using relation , for x > 2z >t we get
0

s

K(z,s5) =~ é/(KQy()(ZE, 2) + Koy (z,2)Ky(2,t) + K(z,t))dt

1 1 1
— o) s+ KQ,I(:U,@—/Kl(z,t)dz + —/K(z,t)dt
S S S

= Koo(z,2) + Ko1(z,2)K1(2,8) + K(z, ), (3.5)

where K1(z,5) = 1 [ Ki(z,t)dt. If we prove that Ki(z,s) € Of, we prove that K(z,s) € O5.
0

By the definition K;(z,t) € Of, therefore from (2.1) for = > 7 > ¢ we have that K;(z,t) =~
Kio(2,7) + Ki(7,t). Hence,

S

Ri(z, ) ~ %/(KLO(z,T) + Ky (1)) dt

S

1 1 —
= EKL()(Z,T)S—G— E/Kl(T,t)dt = Kio(z,7) + Kq(T, 5).
0

Then K,(z,s) belongs to the class O; . Consequently, from ([3.5)) we obtain that K (z,s) belongs to
the class OF . Thus, replacing sh(s) by g1(s), by Theorem A inequality (3.3)) holds for g;(s) if and
only if M3" < oo, My < oo and M3 < . O

4 Main result for the class O,

Assume that

a(p—1) q "pq
P—q 00 p—q

My = 70 j K, (t,s) "V (s)o(s)ds / w(z)de | u(t)dt < 00,

t
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o /1t R =
M, = / /Kf:Q(t,s) PV (s)u(s)ds /Kf(m,t)u(x)dw
0 \0 t
X d —/Kf(x,t)u(x)dm < 00,
t
~ . p(::ql) o ﬁ %
M = / /sp’V_p,(s)v(s)ds /Kq(:t,t)u(m)dx PV (t)u(t)dt :
0 \0 t
;o\ =) . ST
oo t s p L 00 P—q
Mg = / /Kg,ll(t,s)V_p,(s)v(s) /KLQ(S,Z)dZ ds /u(x)dx u(t)dt :
0 \D0 0 t
/ a(p—1) .
o0 t S p p—q oo p—q
M: = / /Vp/(s)v(s) /K1’2<S,Z>d2 ds /Kf(x,t)u(:v)d:v
0 \D0 0 f
X d —/Kf(x,t)u(x)dx < 00,
t
, a(p=1) \ o
00 t s p pma oo p—a
Mg = / /V‘p,(s)v(s) /Ko,g(s,z)dz ds /u(a:)dx u(t)dt < 00,
0 \D0 0 t

M~ = max{ M, MF, My, My, My, Mg, M7, Mg },
M~ =max{M;, M5, M; , M, Mg, M:, Mg }.
Our main result of this section reads as follows.

Theorem 4.1. Let 1 < g < p < o0 and K(-,-) € Oy . Then inequality holds for any non-
increasing f > 0 if and only if M~ < oo for V(oc0) < oo and M~ < o0 for V(oo) = 0.

Proof. The beginning of the proof of Theorem is the same as the beginning of the proof of
Theorem i.e., for the validity of we need the condition M < oo for V(co) < oo and the
condition Mj < oo for both V(00) = 0o and V(c0) < oo.

Let us turn to inequality . Using relation (2.3) in inequality , it is equivalent to the
inequality

/u(x) / /(K(x, s)+ Ki(z,s)K12(s,t) + Koa(s,t))dt | h(s)ds | dx

B =

< /vlp(x)vp(ac)hp(x)dx
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Thus, the validity of inequality ([3.3]) is equivalent to the validity of the following three inequalities:

7u(m) / K(z,s)sh(s)ds qdm qgcn 7vl_p(x)\/p(:p)hp(x)dx , (4.1)

0 0

]Ou(x) 7K1(x,s) /sKm(s,t)dt h(s)ds qd:c nglg 7U1p(x)Vp(x)hp(:c)d:c ,

' ' (4.2)

7u(m) /x /SK072(s,t)dt h(s)ds qu qSClg 7U1p(:v)vp(a:)hp(x)dx : (4.3)

0 0 0

If we replace sh(s) by ¢1(s), then by Theorem C inequality (4.1)) holds for g;(s) if and only if
My < oo, My <ooand My < oo.

If we replace (f Km(s,t)dt) h(s) by g2(s), then by Theorem B inequality (4.2]) holds for go(s)
0
if and only if M < oo and M; < oo.
If we replace ( [ Koa(s, t)dt) h(s) by gs(s), then (4.3)) is the standard weighted Hardy inequality
0

for gs(s), which holds if and only if Mg < oo (see, e.g., [9]).
0

Remark 1. Let us note that the proofs of Theorems [3.1 and .1 need different approaches because
the kernel K(z,s) =1 [ K(z,t)dt belongs to the class OF if the kernel K (z,t) belongs to the class
0

OF but it does not belong to the class Oy if the kernel K (x,t) belongs to the class O .

5 Supplementary results

In the paper [13], it was proved that if 1 < p < ¢ < oo and K(-,-) € OF, then inequality (1.1)) holds
for any f > 0 if and only if one of the following conditions

=

q
7

Af = sup /u(a:) /Kp/(x, W' (s)ds | dr| < oo,
0<z<oo
z 0

, 1
2 p’

Ay = sup /vlpl(s) /Kq(x,s)u(x)dx ds < 0o
0 z

0<z<oo

holds, in addition, C' ~ A] ~ AJ, where C is the best constant in inequality .

Using the above result and following the same steps as in the proof of Theorem [3.1] we can present
the statement on the cone of non-increasing functions for the case 1 < p < ¢ < oo when kernels
K(-,) belong to the class O, which was not considered in [2].
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Theorem 5.1. Let 1 < p < ¢ < oo and K(-,-) € OF. Then inequality (1.1) holds for
any non-increasing f > 0 if and only if one of the conditions mar{ M, M3 , MT} < oo and
max{ M, M3, MJ} < oo holds for V(00) < oo and one of the conditions max{M3, M5} < oo
and maz{ M3, M} < oo holds for V(o0) = oo, where

z x q % S ﬁ
M3 = sup / /K(x,t)dt u(z)dz /V_p,(s)v(s)ds :
0<z<o0 . J ]
. 1
0o z s P o !
M3 = sup /u(x) / /K(;E,t)dt V7 (s)u(s)ds | dx | |
0<z<oo ] 9 9
z 0 s q %l v
M7 = sup /V_p/(s)v(s) / /K(:p,t)dt u(z)dxr | ds
0<z<o0 ] ] J
Remark 2. On the basis of the duality principle for a non-decreasing function f > 0:
, 1
00 00 P p’ 00
S g(x)f(z)dz o Jg(t)dt J g(x)dz
0 T 0
sup ~ v(x) dx + ,

3=

0<f1 (:fov(x)fp(x)dx) , ) Tv(t)dt W

r 0

where g > 0 is any function, we can characterize inequality on the cone of non-decreasing
functions for operator with kernels from the Oinarov classes OF and O, . However, we omit
both statements and their proofs here, since they are similar. Let us only present as an example that
the value M turns to

pr(g—1)

P—q t P—q

ME = / / 7K(z,x)dz qu(x)dx / VP (s)o(s)ds Vet |

0 t 0

o0 o

where V,(t) :=

w%g

v(x)dz. All other quantities in M+ and M~ can be rewritten similarly.
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1 Introduction

Transmission lines play the role of interconnections in electrical circuits. Discrete transmission line
models (see an example in Figure [5)) are often used in circuit theory, see, e. g., [0 [7, [T, 22, 25].
Discrete modelling of a transmission line may be more convenient than a more accurate partial
differential equation description because, together with equations of other circuit elements, we obtain
a system of ordinary differential (and possibly algebraic) equations only. Furthermore, approximate
solving of partial differential equations usually also involves passing to a discrete model, which leads
to a similar loss of accuracy.

A linear discrete stationary circuit is described (after eliminating algebraic equations) by an
ordinary differential equation of the form 2/(t) = Axz(t) + f(t) with a matrix coefficient A. Its solving
is reduced to finding the matrix exponential e, see Section 2. In turn, approximate calculation of
e/t is usually based [10] [15], 20, 21] on approximation of the function exp,(\) = e by a polynomial
(or a rational function) p; on the spectrum o(A) of A and subsequent substitution of A into p;.

An approximation of exp, on a set wider than o(A) is not necessary. Moreover, it usually decreases
the accuracy of approximation (by a polynomial of the same degree); an example of this phenomena
is demonstrated in Figures [}l Using the Faber polynomials (see the definition in Section 3) allows
us to restrict the set of approximation to (almost) o(A), i. e., the minimal possible. The idea of
using the Faber polynomials to calculate matrix functions has been employed by many authors, see,
e. g., [3, @, Bl 14, 16, 26l 27, 28, 29, 3T].

We propose to apply the Faber polynomials for approximate solving equations (Section 6) of a
discrete model of a transmission line. In this case, the spectrum o(A) has a cross shape, see Figure
Our numerical experiments (Section 7) demonstrate that using the Faber expansion instead of the
Taylor expansion can increase the accuracy by a factor of 100-1000. The main results of the paper
are the exact formulas for the Faber functions U and @ for the cross (Section 4), and the algorithm
(Section 5) that calculates the coefficients for expansion of the exponential function in the Faber
series.
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For numerical calculations we use ‘Wolfram Mathematica’ [34].

2 Functions of matrices

In this section, we recall the definition of a matrix function and its main application.

Let A be a complex square matrix. The spectrum of A is the set o(A) C C of all its eigenvalues.
Let f be a complex-valued holomorphic function defined in a neighbourhood of o(A). The function
f applied to A is [10] 15, 20, 21] the matrix

F4) = 5= [ F0 (1 =) an

where the contour I' surrounds ¢(A) and 1 is the identity matrix.

The exponential function exp,(\) = e is the most important for applications. It depends on
the parameter ¢t € R. Its importance is explained by the fact that the solution of the initial value
problem

(1) = Ax(t) + f (1),

JZ(to) = X

can be represented in the form

t
z(t) = ety +/ AT F(t) dr.

to

More generally, let the relation between the input vector function u and the output vector function
y be described by the relations

where A, B,C, D — are matrices of compatible sizes. Then the dependence of y on u can [I], p. 65]
be expressed as
t
y(t) = C’(eA(t_tO)xo +/ A1) Bu(r) dr) + Du(t).

to
Usually, the matrix exponential e can be calculated only numerically. There is vast literature
on approximate calculation of e’ see, e. g., [10, 15, 20, 2I]. The main goal is fast and accurate
calculations; it is clear that these two goals are contradictory. Most methods for approximate calcu-
lation of f(A) are based on approximating f by a polynomial or a rational function and substituting
A into it. In this paper, we consider a special case when the differential equation z’(t) = Az(t) + f(t)
describes a discrete model of a transmission line (Section 6). In this case, the set o(A) has the shape
of a cross, see Figure |1l We use the Faber polynomials generated by the cross to reduce the order of
the approximating polynomial.

3 Faber polynomials

A detailed exposition of the theory of Faber series and expansions can be found in [13], 19, 24} 30} 32].
Here we only recall the facts that are necessary for our aims.
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Let K C C be a compact simply connected set containing more than one point. We denote by G
the complement C \ K. Let

D={weC: |w>1}

It is known [24] p. 104] that there exists a unique mapping ® : G — D such that (i) ® is bijective,
(ii) @ has a complex derivative at all points z € G with ®'(z) # 0, and (iii) there exists a number
~v > 0 such that

: . ®(2)

lim ®(oc0) = o0 and lim = 7. (3.1)

Z—00 z—oo 2

The number v is called the capacity of K. Evidently, in a neighborhood of infinity, the function ®
possesses the Laurent expansion

T, 2 3
P(z) = —+ =4+ =+... 3.2
(2) 7z+%+z+22—|—23+ ; (32)

where v > 0 is the same as in (3.1). The general theory of Laurent series states that series (3.2))
converges absolutely for all z such that z € Gy, where GGy is the outer part of the smallest circle with
center at zero containing K:

Go={2z€C: |z]| > (| forall ( € K}.

For z € Gy, we have the representation
O"(2) = <vz+%+£+7—§+7—2+...) :
z oz z

Due to absolute convergence, the Laurent series in the parentheses can be multiplied and summed in
any order. As a result we obtain the Laurent expansion of the function ®”. Removing the parentheses
we see that the Laurent series of ®” has the form

M pm pm

n _ aman (n) _n-1 (n) ) , 01 2 3
CI)(Z)—VZ +an,12 —|—...—|—a1 Z+a0 +7+?+?+.... (33)
The polynomials
O,(2) =7"2" + a2+ a2t + oY (3.4)

containing the terms with nonnegative powers of z in Laurent expansions of @™ are called [24]
p. 105], [32, p. 33| the Faber polynomials generated by K. By definition, ®y(z) = 1.

We denote by ¥ : D — G the inverse of ® : G — D. It is easy to show that ¥ has the Laurent
expansion of the form

@(w):6w+ﬁo+%+%+%+..., (3.5)

with 8 = 1/~. Series (3.5 converges absolutely for all w € D.

Often a holomorphic functions f can be represented as the Faber series

F(2) =) ca®ul2),

and such an expansion is unique. For our aims, it is important that the Faber series converges
faster [13| 19 241 30], B2] than the Taylor series. An accurate formulation of the existence of the
Faber series expansion is presented in the following theorem.
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Theorem 3.1 (|32, Chapter 111, § 2|). Let f be a holomorphic function defined on an open neigh-
bourhood U of K. Let the function U possess a continuous extension to the closure

D={weC: |w >1}.

Then the function f can be expanded into the Faber series

= Z Cnén(Z), (36)
n=0
which uniformly converges on compact subsets of U. The coefficients ¢, can be found by the formula

_ S,
o = /w1 d —0.1,.... (3.7)

2mi wntl ’

It is known [19, § 18.2.V] that the approximation of f by partial sums of series is close to the
best uniform approximation on K by polynomials. This fact explains the efficiency of the transition
from the Taylor approximation to the Faber one.

For our goal, it is important that expansion (3.6)) extends to functions of matrices.

Corollary 3.1 (|16, Theorem 3.1|). Let assumptions of Theorem be satisfied. Let A be a square
complex matriz with o(A) C K. Then

= f: cn®, (A
n=0

4 The functions ¥ and ® for the cross

For some sets K, the Faber polynomials can be calculated explicitly. Examples can be found in [2]
8, O, [17, 241, 32]. In this section, we restrict ourselves to the case, which is related to our problem.
Let a,b > 0 and ¢ € R be some numbers. We consider the set K C C shown in left Figure [l and
having the shape of a cross. It consists of two segments intersecting at the point ¢ on the real axis.
The endpoints of one segment are the points ¢ — a and ¢+ a, the endpoints of the second segment are
the points ¢ —ib and c+ib. In our situation, K contains the spectrum of our matrix A, see Section 7.

Theorem 4.1. For the cross shown in the left Figure[1 with parameters a > 0, b > 0 and ¢ € R, the

function ¥ has the form
a2 + b2 \/ -2 1 1 1
1 —>, 41
\/ a2 + b2 w? 2< +w4 (4.1)

where the square root means the principal value, i. e. \/- takes values in the right complex plane

C,={z€C: Rez>0}U{0}.
The function ¥ is bijective and holomorphic on D, and is continuous on the closure
D={weC: |w >1}.
The conditions
U(w)  VaZ+1?

lim ¥(w) = oo and lim = . (4.2)

w—r00 w—oo W 2

are satisfied.
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by - by
. I T — = T
c—-a C c+a c—-a C c+a
—bl 1 _bt

Figure 1: Left: set K having the cross shape; right: the image of the set 0D = {w € C: |w| =1}
under the action of the function ¥

Proof. The considered principal value of the square root function /- is defined and continuous on
the complement of the open half-line

L={z€eC:zeRandz2<0}
and holomorphic on the complement of the closed half-line
L={zeC:z2e€Rand2<0}.

Therefore, ¥ is (defined and) holomorphic at w € C as long as ((w) ¢ L, where

a’?—b 1 1 1
_ L2 -4 _>
¢w) a? + b? w? * 2( i)
and V is (defined and) continuous at wy € C if w ¢ L for all w in a neighbourhood of wy.
Let us find out when ((w) € L and ((w) € L. For brevity we set g = %; obviously, ¢g can
take any value from (—1,1). We represent w in the form w = r(cost + isint), where r > 0 and
t € (—m/2,7/2], and substitute it into the definition of (:

1 1 1
) =55 +3(1+ )

C 2qw* +wt+1
B 2wt
_ 2gr¥(cost 4 isint)? 4+ r*(cost 4 isint)" 4 1
B 2r4(cost + isint)*

(2gr2(cost + isint)* + r(cost + isint)* + 1)(cost — isint)*

, . 2rt (4.3)

 2gr¥(cost —isint)? +r* 4 (cost — isint)?
B 2r4
_ —2gr¥sin®t 4 2gr? cos®t + r* +sin' ¢t + cos*t — 6sin” t cos? ¢
B 2r4

—4gr?sintcost — 4sintcos®t 4+ 4sin®tcost
+1

2r4

2gr2cos2t + 1t +2cos?2t — 1 (gr? + cos2t) sin 2t

B 2r4 - r '
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We observe that ((w) € L (respectively, ((w) € L) if and only if (i) Im ((w) = 0 and (ii) Re {(w) <0
(respectively, Re ((w) < 0). According to representation (4.3)), conditions (i) and (ii) mean that

(g?“2 + cos 2t) sin 2t = 0,
2gr? cos 2t +r* +2cos?2t —1 <0 (< 0).

The first condition is satisfied if and only if ¢ = 0, +7/2, 7 or cos 2t = —gr? (provided |gr?| < 1).
After substituting ¢t = 0, &7 /2, 7, the second condition turns into

+29r* +rt4+2-1<0 (<0)

or
(=12 +2r%(1+9) <0 (<0),

which is never true, because |g| < 1 and 7 > 0. Thus, in this case ((w) ¢ L and, moreover, ((w) ¢ L.
After substituting cos 2t = —gr?, the second condition turns into

" —1<0 (<0).

Ifwe D,i.e r>1,thenr* —1 >0 and r* — 1 < 0 does not hold; thus ((w) ¢ L for all w € D.
Therefore, the function ( is holomorphic on D.

However, if w € D, i.e. 7 > 1, then r* —1 > 0 and only r* — 1 < 0 does not hold; thus ((w) ¢ L
for all w € D. Therefore, the function ¢ is only continuous on D.

For a curious reader, the entire set of points w at which ((w) € L (not only its intersection with
D) is shown in the left Figure .

S

I/ b2
a%+b?

o1 ZE P2 T ¢332—"¢4

Figure 2: Left: the bold curves constitute the set of points w such that ¢ (w) € L; right: the solutions

¢12.3.4 of the equation cos?t — CLQb—jbg =0 on [0, 27]

Now let us move w along the boundary 0D. From (4.3|) we have

; 1
C(e") = 5 (2g cos 2t + 2 cos? 275) — i sin 2t(g + cos 2t)

= cos 2t(g + cos 2t) — isin 2t(g + cos 2t)
= (g + cos 2t)e "
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Therefore,
‘ Va? 4+ b2 .
Ve =c+ e”% V(g + cos 2t)e—2it
. 2 p2 2 _ 2 ‘
=c+ e”\/a\/g \/<a2 e + coth)e—M
a
, 21 2 2 _ 2 ‘
=c+ e”\/a\/g \/<a2 o + 2cos?t — 1)6—2“S
a
=c+e'"Va2+ b2/ (cos?t — e—2it,
a? 4+ b2
We denote by ¢1234 the solutions of the equation cos’t — % = 0 (here the unknown is t) on

0, 27], see the right Figure [2l Then W(e™) can be represented as

() = c+ eVa? + b2/ (cos? t — cos? oy )e2it,

where

b
Va+ b2
In Figure [3, the real and imaginary parts of the function ¢ — W(e") — ¢ are presented; the main
features are the values (and signs!) at points of extremums.

@1 = arccos

a
b_ ,’-\
I ‘
) \
! \
1
| 1 - 1 | o
¢ = 7T 3L b, 27T
2 v 2
\ ]
\ /
-bt Mo
—a—

Figure 3: The real (solid line) and imaginary (dashed line) parts of the function ¢
e\/a2 + b2/ (cos? t — cos? p;)e2it

Let us describe the curve z(t) = ¥(e'), t € [0,27], see the right Figure[ll When ¢ € [0, ¢4], the
number z(t) is real and moves from ¢ + a to ¢. When ¢ € [p1,7/2], the number z(t) is imaginary
and varies form ¢ to ¢ +ib. When t € [1/2, ¢s], the number z(¢) remains imaginary and varies back
form ¢+ ib to c. When t € [y, 7|, the number z(¢) becomes real and varies form ¢ to ¢ — a. When
t € [m, s3], the number z(t) remains real and varies form ¢ —a to ¢. When ¢ € [¢3, 37/2], the number
z(t) varies form ¢ to ¢ — ib. When t € [37/2, 4], the number z(¢) varies form ¢ — ib to ¢. When
t € [p4, 27, the number z(t) varies form ¢ to ¢ + a and thus returns back.
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The fulfillment of immediately follows from .

It remains to prove that ¥ : D — G is bijective. Let us take an arbitrary z € C\ K and consider
the equation W(w) = z. We have to prove that the equation ¥(w) = z has exactly one solution
w € D for any z € G.

We take an arbitrary point z € G. We denote by Sg the circle {w € C: |w| = R} of large radius
R centered at 0 and oriented counterclockwise, and we denote by —S; the circle {w € C: |w| =1}
of the radius 1 centered at 0 and oriented clockwise, see Figure @l We denote by Sg — Si the
contour consisting of Sk and —S;. It is clear that Sp — 57 is the oriented boundary of the annulus
Arp={weC: 1< |w| <R} From it follows that the point z lies inside the image W(Sg) of
the circle Sg under the action of W if R is large enough.

Figure 4: The circles Sk and S; (right) and their images (left) under the action of W

We make use of the argument principle |23, p. 48, Theorem 2.3|, [I8, p. 278, Theorem 4.10a]:
the number of solutions w of the equation W(w) = z in the annulus Ag is equal to the increment of
the argument of the complex number ¥(w) — z along the oriented boundary Sg — S; divided by 27.
Since z lies outside K = W(S;), the increment of the argument of ¥(w) — z along S, equals zero. On
the other hand, from formula and the Rouche theorem [23 p. 48, Theorem 2.4|, [I8, p. 280,
Theorem 4.10b] (more correctly, from the proof of the Rouche theorem) it is seen that the increment
of the argument of U(w) — z along Sk equals the increment of the argument of W (w) — z along Sk,
where

provided R is large enough. But the increment of the argument of ¥;(w) — z along Sg is obviously
equal to 27r. Thus, for all R large enough, there is exactly one solution w of the equation ¥(w) = z
in the annulus Ar. Hence, there is exactly one solution in D. O]

Corollary 4.1. Let the assumptions of Theorem[4.1] be satisfied. Then for the function ® : G — D,

inverse to VU, conditions (3.1) are satisfied with v = \/ﬁﬂ
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Proof. The Laurent series of W in a neighborhood of infinity has the form (3.5 and converges at all
points of D. Hence, the series

h(w)—ﬂo‘F%—i—%—l—%—i—...

also converges in D and is bounded in Dy = {w € C: |w| > 2}. At the same time, by Theorem
U and, consequently, h are bounded in the annulus Ay = {w € C: 1 < |w| < 2}. Therefore h is
bounded in D. Then from it follows that ¥(w) — oo, w € D, implies that w — co.

Let us calculate lim,_,o, ®(2). We set w = ®(z) or z = ¥(w). By the proved, when z = ¥(w) —
0o, we also have ®(z) = w — oo. This shows that lim, ., ®(z) = occ.

Now, with the same change w = ®(z) or z = ¥(w), we have lim,_,., q)(zz) =

2 O
Va24b?"

Corollary 4.2. Let the assumptions of Theorem [{.1] be satisfied. Then the function ® : G — D,
mverse to W, possesses the representation

<b+> +2\/(1 E i2c>2> <<z i2c>2 “) o

a? 4+ b2

My o0 gy =

Proof. For brevity, we temporary set g = % and h = “Q;bg. To find & we solve the equation

z = U(w) (from Theorem we know that the solution exists and unique):

1 1 1
—c+ — 1+ (1 _)
e w\/ﬁ\/ w? 2( wt/’

zZ—cC 1 1 1
=301 ).

wvh 2

(z —c)? 1 1( 1)
g (1 =

w?h gw2+2 +w4 ’

0— 2+ (o- )L 1L

2 h w2 2wt
1 (Z_C>2) 2 1
0—2w +<g N w +2,

S
) bQ—aQ—l—Q(z—c)Qi\/(62—a2+2(2—c)2>2_1’

w” = @2+ b2 R
b2_a2_'_2(z_c)2 1 . :
2
w- = a2 + b2 ia2+b2\/(b2_a2+2(z_c)2) —(a2+b2)’
PP —a®+2(z—¢? , 2
2 _ N S ___
v a? + b2 a2+bg\/((2 )2 —a?)((z — )2 + b?),

W — V¥ —a?+2(z—0c)?+£2/((z— )2 = a®)((z — ¢)2 + 1?)
a? + b? '
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b2 a2 a2 b2
) JGar + 2% 2\/ (1-25) 1+ 257)
w® = (z —¢) ;

a? + b2
L 2\/ (1-225) (1 + 257)
=4(z — .
v (z=¢) a? + b2
We choose the signs + in the both £ because lim,_, ., @ = ﬁ. O

Now we can easily calculate the Faber polynomials ®,, for the cross. According to definition (3.4
we calculate the initial terms of the Laurent series of the function z — ®"(z) and take its polynomial
part. Since we have an exact representation for ® (Corollary , the calculations can be performed
symbolically and thus ®,, can be found explicitly. For example,

P

—44a® (256" + 500%(2 — ¢)* + 28(2 — ¢)*)

+44a* (250° + 100b* (2 — ¢)* + 1406 (2 — ¢)* + 64(z — ¢)°)
—11a® (56 +200%(z — ¢)> + 16(z — ¢)*)*

+ 116" +2200%(2 — ¢)? + 123205(2 — ¢)* + 2816 b* (2 — ¢)©
281652 (2 — ¢)® + 1024 (2 — c)m).

o) =2 (o] ym@—oﬁﬁwm+%ﬁ®¥+«wwﬂ

5 Calculating the Faber coefficients of the exponential function

We begin with the presentation of a simple algorithm for calculating the Faber coefficients ¢,, in the
expansion

e = i P (2).
m=0

For doing it we use formula ([3.7)):

I A I CU) I S R
Cm /|w|1 dw /0 exp(U(e™))e "™ dt. (5.1)

271 wmtl o7

Since the function ® has breaks at the points (1234 (see Figure |3)), it is reasonable to represent the

integral as the sum of four ones:
s (%251 P2 Y3 P4
Ll
0 —p1 P1 P2 ¥3

and use for each integral the Gauss quadrature rule with the Chebyshev weight. Since we are going
to substitute a matrix A instead of z, a high accuracy in ¢, is desirable. The high accuracy of
integral values can be archived by calculating the integrals with an increased number of significant
digits (this will not lead to the significant loss of time compared to matrix operations to come later).

Remark 1. A useful idea is proposed in paper [12]. According to formula , the numbers ¢, can
be interpreted as the Fourier coefficients of the function w +— exp(\I/(e”)). This observation makes
it possible to use the fast Fourier transform to calculate integrals of kind , which speeds up
calculations.
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The above algorithm for calculating c,, has a drawback: it calculates e4? only at one point ¢ = 1.
Nevertheless, it is often important to have the resulting matrix e4* in the form of an expression
depending on ¢t. Now we present another algorithm that is free from this shortcoming.

By formula , the function ¥ has the expansion

U(w) = ﬁw—l—ﬁo—l-é-l-&—i-&—i-

which converges in the open exterior D of the unit circle. We consider the Laurent expansions for
the powers W™ of W:
Bi, B2, B3 >”
Y

U (w) = (5w+ﬁo+—+—+—+
and in analogy with the Faber polynomials ®,, define ¥,, as the polynomial part of U":

U, (w) = 0w + 6w 4 bt 4 b

The polynomials ¥,, and their coefficients b,i") can be calculated symbolically (and therefore explicitly)
in the same way as was done for ®,,.

We set
M = max W (w)].
Obviously,
U (w)| < M*, fw|=1. (5.2)

From the formula for the Laurent coefficients [23], p. 6, Theorem 1.2] we have

1 U, (w) 1 U (w)
d — ——= dw, 0<k<n.
21 |w|=1 warl v 211 |w|=1 ’Ll)kJrl v o =N

b(”) —

which implies
b | < M (5.3)

We consider the function exp,(z) = e*. For it, expansion ([3.6]) looks like

expt Z Cm

For the coefficients ¢,,(t), from formula (3.7) we have (due to estimates (5.2) and ({5.3), all series
converges absolutely):

expy (W(w) = 3 T,

1 Zoo_o t"\I/TL'(w)
ml(t) = — = 4 d
¢ () 27 |w|=1 wmtl v

dw
n' 27m/ _1 wm+1

" n " n

n=m

3
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The series Y~ %bﬁf) converges quickly. Therefore, we can use the approximate formula

N n
~ 2 pn)
where N is a large number; in our numerical examples we take N = 20. Numerical experiments show
that for ¢ = 1 the both algorithms give practically the same result.

6 A discrete model of a transmission line

We consider the circuit shown in Figure [5| consisting of n = 150 sections. It is a discrete transmission
line model. We take the following parameters: C' = Cy/n, L = Ly/n, R = Ry/n, G = Goy/n
(specific values of the constants Cy, Ly, Ry, G are given in Figures . We use the state variable
formulation [33] of the circuit to derive its equations in the form #(t) = Az(t) + f(¢) with the matrix
A of the size 300 x 300. The chosen directions of voltages and currents are shown in Figure [f

R L R L R L L
+ h A N —_ —_— — —O +
E et G -—C G -—C G — g) G - C Eun
O —_— - O

Figure 5: A discrete model of a transmission line

Let us assume that an independent voltage source Ej(t) is connected to the left side, while
the right side is open (the right contacts are disconnected). We take as unknowns the vector Ugs of
voltages across the inductors and the vector I, of currents through the capacitors. Skipping dull
calculations, we present the final differential equation that describe the considered circuit:

0
() = (e *807) (50) + i Ein) |
0

where the nonzero coordinate —LﬂOEle 7¢(t) in the free term corresponds to the first coordinate of I,
1 is the identity matrix of the size n x n, and

01 ...0
N=10 o 1
0 0 0

ol &y = 1)) . (6.1)
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7 Numerical experiments

Example 1. We compare the approximation of the function z — e* by the 10-th Faber polynomial
generated by the cross with different parameters and the 10-th Taylor polynomial. We take a discrete
model of transmission line (Figure [5)) consisting of 150 sections with parameters Cy, Ly, Ro, and Gy
shown at the tops of Figures . We calculate the spectrum of corresponding matrix and the
parameters a, b, and ¢ of the corresponding cross that contains the spectrum. We graph the level
curves of the functions

F(z) = ‘ez — ijckq)k<z)’7 T(z) =

10 c
_ZH(

k=0

eZ

z— c)k‘ (7.1)

The results are shown in Figures We present two level curves: the inner level curve corresponds
to the minimal value Cr at which the F' level curve surrounds the spectrum o(A); the outer level
curve corresponds to the minimal value Cr at which the T" level curve surrounds the spectrum o(A).
The points of o(A) are shown by dots.

Co= 25x102 ,Lyg= 3.x102 Co= 25x10% ,Lg= 3.x102
_ 2 _ 1 ’ )
_ Ry= 555x10° ,Go= 1.x10_ Ry= 5.55x102 ,Gy= 1.x10'
1.0+
05+ -
0.5+
0.0 T 0.0F -:-
-0.5
-0.5+ -
_1.0_
=25 -2.0 -1.5 -1.0 -0.5 0.0 —2I.O —1I.5 —1I.0 —0I.5 OTO

Figure 6: The eigenvalues of matrix (6.1]) and the level curves of the functions F' (left) and 7" (right)
corresponding to the levels Cr = 2.362 - 10~ and Cp = 2.382 - 1078; C7/CFr = 1008.36

Example 2. We consider the circuit with parameters shown in Figure [6] and the corresponding
matrix A. We substitute A into the 10-th Faber polynomial and the 10-th Taylor polynomial, i. e.
we calculate the matrices

10 10 e

Er = ch‘bk(A), Er = ZE(A_Cl)k-

k=0 k=0
We also calculate the precise matrix e using the MatrixExp command from ‘Wolfram Mathemat-
ica’ [34]. The comparison of accuracy gives

et — Epl| =4.7-1071°,  |e* — Bp|| =2.4-107%.

For matrices, we use the norm induced by the Euclidean norm in C?".
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Co= 2.x10% ,Lo= 2.x10%
Ry= 5.x102 ,Gp= 1.x10"

051

0.0

-0.5F

-2.5 -2.0 -1.5 -1.0 -0.5 0.0

Co= 2.x10% ,Ly= 2.x102
Ro= 5.x10° ,Gy= 1.x10'

' ' L ' '
-2.5 -2.0 -15 -1.0 -0.5 0.0

Figure 7: The eigenvalues of matrix (6.1]) and the level curves of the functions F' (left) and T' (right)
corresponding to the levels Cr = 6.795 - 107!° and Cp = 7.259 - 1078; C7/Cr = 106.8

Co= 3.x10% ,Lp= 3.x10?
Ro= 2.x102 ,Gp= 1.x10"

051

0.0

-0.5F

L L L n L L L -
-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 04

Co= 3.x10% ,Lp= 3.x10?
Roy= 2.x102 ,Gp= 1.x10'

-1.0 -0.5 0.0 0.5

Figure 8: The eigenvalues of matrix (6.1]) and the level curves of the functions F' (left) and T (right)
corresponding to the levels Cr = 2.114 - 107" and Cp = 9.84 - 107%; Cr/Cr = 465.484

So, we have seen that the Faber polynomials can give higher accuracy than the Taylor ones of
the same order. Of course, the calculation of the Faber polynomials takes more time. But this loss
of time is insignificant compared to subsequent matrix operations.
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Abstract. The limit of a locally uniformly converging sequence of analytic functions is an analytic
function. Yu.G. Reshetnyak obtained a natural generalization of that in the theory of mappings
with bounded distortion: the limit of every locally uniformly converging sequence of mappings with
bounded distortion is a mapping with bounded distortion, and established the weak continuity of
the Jacobians.

In this article, similar problems are studied for a sequence of Sobolev-class homeomorphisms
defined on a domain in a two-step Carnot group. We show that if such a sequence converges to some
homeomorphism locally uniformly, the sequence of horizontal differentials of its terms is bounded in
L, )0c, and the Jacobians of the terms of the sequence are nonnegative almost everywhere, then the
sequence of Jacobians converges to the Jacobian of the limit homeomorphism weakly in L jo¢; here v
is the Hausdorff dimension of the group.
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1 Introduction

Consider a mapping f = (f',..., f") of class W}, .(Q;R"), where  is a domain in R". Given two
multi-indices I = (i1,...,%) and J = (j1,...,jx) of length & < n with iy < iy < ... < i} and
J1 < J2 < ...<Jk, denote the (I, J)-minor of the generalized differential Df of f by

N
8_]” = det (8f >

afL’J 81% a,B=1 .

The following nontrivial property holds for the differentials of Sobolev-class mappings: the x-weak
continuity of their minors.

Theorem 1.1. Given a positive integer k < n and some domain 2 C R"™, consider a sequence
{fm : Q@ = R} of mappings of class W, 1,.(S5R™) bounded in W), (Q;R"™), where p > k. If the
sequence {fm} converges in Ly o.(2;R™) to some mapping fo, then for every pair of multi-indices
(1,J) of length k the sequence {%} converges in the sense of distributions to the (I,J)-minor of
the generalized differential of fy, that is

oo o
lim Q/axj(x)g(x)da:—

aﬁJ(a:)Q(x) dx (1.1)

m—r 00

for all functions 8 € C§°(2).
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This property was obtained in the case n = 2 in [2], while in the form presented above it was
established in [I5, Chapter II, Lemma 4.9] and [12]. Note that in [I5] Theorem appears as
a corollary to a claim about the convergence of transported exterior differential k-forms. See [9]
Theorem 8.2.1] as well.

Recall that for 1 < ¢ < oo the dual space to the Lebesgue space L,(D) is the Lebesgue space
Ly (D), where the Holder exponent ¢’ dual to ¢ is determined by the condition & + % = 1, while the
dual space to Ly (D) is the space Ly (D) of essentially bounded functions.

Since the space of C§° functions on a domain D € € is dense in L, (D) for each 1 <r < oo, and
the hypotheses of Theorem imply that the sequence of minors {gf } is bounded in Ly k. 10¢(€2), we
conclude that for p > k it is ot difficult to extend (L.1]) to all functions 0 € Ly (£2) with compact
supports in 2. The latter means that for p > k the sequence of (I, J)-minors of the differentials
of fn converges weakly in the space Ly/k10c(€2) to the (I, J)-minor of the differential of the limit
mapping fo.

At the same time, continuous functions do not constitute a dense subspace in L., (D). Therefore,
for p = k = n the transition in from C§° functions to all functions § € L. (£2) with compact
supports in € is not obvious. However, that turns out feasible if we assume in addition that the Ja-
cobians are nonnegative: det D f,, > 0 almost everywhere. In this case the local uniform integrability
of the sequence {det D f,,} established in [T3] plays a key role.

Note that the conditions imposed on the sequence {f,,} in Theorem are equivalent to the
weak convergence of {f,,} to fo in the space W, (% R").

The main result of this article is the following generalization of Theorem [1.1|to the case of Carnot
groups, where v stands for the homogeneous dimension of the group G; see also [20], where a similar
result on Carnot groups is established for sequences of mappings with bounded distortion.

Theorem 1.2. Consider domains §2, €, ),... in a two-step Carnot group G and a sequence
{or = Q = Q2. of homeomorphisms of class W,,,.(;G).  Suppose that {¢r} converges to
some homeomorphism gy :  — S locally uniformly in ), the sequence {|Dppr|}ee, is bounded
in Ly1oe(2), and det ﬁgpk > 0 almost everywhere, for k =1,2,....

Then the sequence of Jacobians {det lA)gok} converges to det 13900 weakly in Ly 10c(2), that is,

klim 0(x) det Dyy () dv = /9(3:) det Dgo(z) dz
Q

for each function 0 € Lo (Q2) vanishing almost everywhere outside some compact set K C €.

In the case of H-type Carnot groups the local uniform convergence of a sequence {py} of homeo-
morphisms of class W) ,.(€; G), the horizontal differentials of whose terms are bounded in Ly, j(€),
to some mapping ¢ is equivalent to the convergence of {¢r} to ¢o in Lq10c(€2; G) because this
sequence possesses a common local continuity modulus [22].

The weak continuity of minors of the differentials of Sobolev-class mappings is one of the main
arguments when studying the existence of solutions to nonlinear elasticity problems. Namely, it is
related to the possibility of applying Mazur’s lemma to establish the semicontinuity of the functionals
satisfying the polyconvexity condition, which is a generalized convexity condition, see [1|, [4], [13],
and [IT] for instance.

Even though Theorem assumes that the limit mapping ¢q is bijective, this variation of The-
orem turns out suitable for deriving theorems about the existence of solutions to the model
problems of elasticity on Carnot groups which will be considered by the authors in forthcoming
articles.
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2 Preliminaries

CARNOT GROUPS. Recall that a stratified graded nilpotent group or a Carnot group, see |5, Chapter 1]
for instance, is a connected simply-connected Lie group G whose Lie algebra g of left-invariant vector
fields decomposes as a direct sum g = g; ® go D --- D @, of subspaces g; satisfying the conditions
[g1,0:]] =giy1 fori=1,...,m—1and [g1, 8] = {0}. A Carnot group G is called two-step whenever
m = 2.

Fix some inner product in g. The subspace g, C g is called the horizontal space of the algebra g,

and its elements are horizontal vector fields. Put N = dimg and n; = dimg; for 7 =1,...,m. For
convenience also put n = ny. Fix an orthonormal basis Xj;,...,X;,, of g;. Since the exponential
mapping

g = exp (Zm: i%‘Xij> (e),

i=1 j=1

where e is the neutral element of G, is a global diffeomorphism of g onto G [5, Proposition 1.2|, we
can identify the point g € G with the point z = (z;;) € RY. Then e = 0 and ! = —z. The dilation
dx specified as 0y (z;;) = (N'zy;) is an automorphism of the group for all A > 0.

A homogeneous norm on G is a continuous function p : G — [0, +00) of class C*(G \ {0}) such
that

(a) p(z) = 0 if and only if z = 0;

(b) p(z~") = p(x) and p(3xz) = Ap(z).

This definition also implies [B, Proposition 1.6] the following properties:

(c) there exists a number ¢ > 0 such that p(zy) < c(p(x) + p(y)) for all z,y € G;

(d) two arbitrary homogeneous norms are equivalent, that is, given two homogeneous norms p;
and ps, there are numbers 0 < o < < oo such that ap;(z) < po(z) < Bpi(x) for all z € G.

Example 1. Given some point z = (z;;) € G and some index ¢ = 1,...,m, define X0 ¢ g, as
ZZ .CEZ]X” The equality
j=1

pla) = (SO ™, 21

where | X@| is the Euclidean norm in g;, defines a homogeneous norm p : G — [0; +00).

A piecewise smooth curve v : [a;b] — G is called horizontal whenever (t) € g1(7(¢)) for almost
all t. The Carnot—Carathéodory distance d..(x,y) between two points x, y € G is the greatest lower
bound of the lengths fab |7(t)| dt of horizontal curves with endpoints x and y. According to the
Rashevskii-Chow theorem, see [7, §0.4, §1.1] for instance, we can connect two arbitrary points with
a piecewise smooth horizontal curve of finite length. The metric d.. and every homogeneous norm p
are equivalent: there exist positive constants v and 3 such that

adee(z,y) < ply~ ') < Bdee(z,y). (2.2)

The Lebesgue measure dz on RY is a bi-invariant Haar measure on G and d(dy\z) = \"dx, where
v =Y in; is the homogeneous dimension of the group G. The measure is normalized by choosing
i=1
its value on the unit ball: |B(0,1)| = 1. Here B(z,r) = {y € G | dee(z,y) < r} is a ball with respect
to the Carnot—Carathéodory metric. We denote balls and spheres in the homogeneous norm p by
By(z,r) ={y € G| ply~*z) <r} and S,(z,r) ={y € G| p(y~'z) = r} respectively.
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Example 2. The Heisenberg group H* = (R**! %) with the group operation
(2,9,2) % (', 2) = (w+ 2,y + o/, 2+ 2+ Z550) oy, €RF, 2,2/ €R,
is the classical example of a nonabelian Carnot group. Its Lie algebra h* is formed by the vector

fields 9 5 9 P P
Yi i .
X’i:_—_—7 }/Z:— -, :1,...7]{;, Z:_
oxr; 20z y; + 2 0z ! 0z
Here b} = span{X,;,Y; | i = 1,...,k} and b% = span{Z}, while the only nontrivial Lie brackets are
[X;,Y;] = Z for i =1,..., k. The homogeneous dimension of H* equals v = 2k + 2.

SOBOLEV-CLASS MAPPINGS. Consider a domain {2 C G, which is a nonempty connected open
subset of G. The space L,(2), where p € [1;00), consists of all measurable functions u : Q@ — R
integrable to power p. The norm on L,(f2) is defined as

o 2y@)1 = ( [ lutop dx)’l’.

The space Lo, (€2) consists of all measurable essentially bounded functions u : 2 — R. The norm on
L (92) is defined as
| Loo ()] = ess sup fu(z)],
Te

where esssup |u(x)| is the essential supremum of u. A function u belongs to L, 10c(€2), where p €
z€Q
[1; 00|, whenever u € L,(K) for every compact set K C €.

Take some basis X; = X1y, ..., X, = Xy, of the horizontal space g;. Denote by II; the hyperplane
{r € G|xz; =0}, for j =1,...,n, where z; = x; is the horizontal coordinate of the point x = (z;;).
The measure du; = o(X;)dz on II; is determined by the contraction of X; with the volume form.
Associated to each y € II; there is the integral line 7;(t) = exp(tX;)(y). A mapping ¢ : Q@ — M
from some domain €2 C G into some metric space M is absolutely continuous on almost all lines,
briefly ¢ € ACL(€Q; M), if we can modify it on a measure zero set so that for each j = 1,...,n it
becomes absolutely continuous on the integral line {exp(tX;)(y) | t € R} N of the vector field X
for pj-almost all y € II;. Put ACL(§2) = ACL(; R).

The space L,(€2), where p € [1;00], consists of all functions u € Ly .(€2) N ACL(Q) with the
classical derivative&ﬂ X;ulying in L,(2) for all j = 1,...,n. The seminorm of the function u € L})(Q)

equals [Ju | Ly( )l = || [Vaul | L,y(Q)

, where Vyu = (Xqu, ..., X,u) = > (X;u)X; is the horizontal
j=1
gradient of u. Henceforth, instead of || [Vyu| | L,(Q)|| we write |[Vyu | L,(€)]].
An equivalent definition of the space L;(Q) relies on the concept of generalized derivative in the
sense of Sobolev: a locally summable function u; : 2 — R is called the generalized derivative of the

function u € Ly 10.(Q2) along the vector field X;, for j =1,...,n, whenever

/ wy(2)v(z) de = — / (@) X;v(x) dz

Q Q

for every test function v € C§°(Q2). A locally summable function u : © — R belongs to L, () if
and only if its generalized derivatives u; € L,(2) exist for j = 1...,n. Moreover, u; = X;u almost

'More exactly, the derivatives of a representative of the function w which is absolutely continuous on almost all
integral lines of X7,..., X,. The classical derivatives of this representative exist almost everywhere.
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everywhere, where X;u are the classical derivatives of the functionEl u € ACL(2), which exist almost
everywhere.

The Sobolev space W, () consists of all functions u € L,(Q) N L,(Q) and is equipped with the
norm

o | Wy (D = [l | Lp(Q) + [l | Ly ()]

Given two Carnot groups G and G and a domain Q C G, consider ¢ € ACL(Q; @) Then
X;o(x) € g1(p(x)) for almost all x € Q [14, Proposition 4.1]. The matrix Dyp(z) = (X;p;), where
i=1,...,nand j =1,...,n, determines the linear operator Dyp(x) : g; — g1 called the horizontal
dzﬁerentml of . It is known [I8, Theorem 1.2] that for almost all 2 € Q the linear operator D p(z)
is defined and extends to a Lie algebra homomorphlsm Dgo( ) : g — g, which we can also consider
as a linear operator Dgo( ) T,G =T, )G The norms of both operators satisfy

| Dip(x)] < [De(w)| < C|Drp(x)], (2:3)
where C' depends only on the group structures. Here the norm of ﬁgp(x) is defined as

sup {(Dg(z)(X)) | X € g, p(X) < 1}, (2.4)

where we put p(X) = p(exp(X)) and p(X) = p(exp(X)) for X € g and X € § for brevity. Corre-
sponding to Dy(x), there is the group homomorphism

Dpo(x) = &xp o Dp(x) o exp™!

known as the Pansu differential, which is the approximative differential of ¢ with respect to the
group structure [I§].

Definition 1. The class Wpl(Q; @) of Sobolev mappings consists of all measurable mappings ¢ €
ACL(; G) for which

le I W) =llpow | L)l + | 1Dl | Ly()]

is finite. A mapping ¢ belongs to WIIOC(Q; @) whenever ¢ € I/Vp1 (U; @) for every compactly embedded
domain U &€ Q. Henceforth we write ||Dpp | L,(£2)|| instead of || |Drp| | L (€2)]].

Some equivalent descriptions of Sobolev-class mappings of Carnot groups . appeared in |18, Propo-
sition 4.2]. If ¢ € W, (€ G) then all coordinate functions ¢; for i = 1,..., N belong to W, ().

3 Uniform integrability and weak continuity of the determinant of the

Pansu differential

First, we establish the uniform integrability of the Jacobians of a sequence of orientation-preserving
mappings whose horizontal differentials are bounded in L, jo.. In connection with that we generalize
to the case of Carnot groups the results of paper [16], in which the Llog L-norm of an arbitrary
summable function f is estimated via the Li-norm of its maximal function M f, as well as the
results of paper [13], in which the L;-norm of the maximal function of the Jacobian of an arbitrary
orientation-preserving mapping of class W} is estimated.

2Namely, the derivatives of a representative of the function v which is absolutely continuous on almost all lines.
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In order to reproduce the arguments of paper [16], we extend the widely known Calderon—
Zygmund lemma [3, Lemma 1] to Carnot groups by replacing a system of binary cubes with a suitable
system of Borel sets adequate for the geometry of Carnot groups.

Since in a Carnot group equipped with the Carnot—Carathéodory metric each open ball can be
covered with a finite number, independent of the ball, of open balls of half the radius, [8, Theorem
2.2] directly implies the following lemmaﬂ

Lemma 3.1. Given an arbitrary Carnot group G, there exist collections {zy; € G}ien, for k € Z,
of points and {Qr; C G}ien, for k € Z, of Borel sets with the following properties:

(1) for all k € Z the collection {Qg;}ien is disjoint and G = |J Qy.;
iEN

(2) if m > k then either Qum; C Qri 07 Qu; N Qri = 0;

(3) for all k € Z and i € N we have the inclusions

1 1
i B( K2 _>7
)CQk C Bl 024k

B<Ikza 24k

where ¢ = 1 and C = 4.

Proposition 3.1. Given an arbitrary Carnot group G and a nonnegative function f € L1(G), for
every a > 0 the collection {Qy; | i € N, k € Z} of Lemma B.1] includes a disjoint subcollectionf]
Q ={Q;} of Borel sets such that

a < @/f dr < 288"« for all j, (3.1)
j

and f(z) < for almost all x ¢ |J; Q;-

Proof. Put Qk {Qk.i}ien for k € Z. Since f is an integrable function and each @)y ; contains a ball
of radius % . there is kg € Z such that
/ flx)dr <«

ki

for all © € N. Fix such ky € Z and an arbitrary ¢ € N. Add to Q the sets ) € Qk,+1 included into
Qko,i Wlth
7/
— [ f(z)dz > «a.
Q) J

For these @) claim (3) of Lemma [3.1] yields

|Q|/ s < () Qe / flw)dz < 288%a

kg,

24k )

1
‘Qko,i

Repeat this procedure taking instead of Qj,; each set Q) € Q41 Wwith @ C @y, still not in Q
while they exist. Continue this process by induction and take the union of the resulting collections
over ¢ € N.

3In Theorem 2.2 of [8] it suffices to put Ag = 1, ¢ = 1, Cy = 2, and § = 5; and choose the families {zx;}; as
maximal 6*-sparse sets in (G, d..). Each of these collections is obviously countable
4The collection in question can be countable, finite, or empty.
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The construction of the family Q immediately implies that (3.1)) holds. It is clear also that if
some set Q € {Qr; | k € Z, i € N} is disjoint from all sets in Q then Wl\ [ f(x)dx < a.
Q

Assuming now that y ¢ (J Q is a Lebesgue point of the functions fx (o) and x (o), verify that
f(y) < a. Since every point z ¢ |J Q lies in some @y ; for all sufficiently large k, it follows that for
arbitrary r > 0 we can express the complement Q(r) = B(y,r) \ | Q as the union of a countable
collection of disjoint sets Q) ; with

1
m@/ f(z)dx < a.

Their union Q(r) = |J Q. also satisfies
o/
flz)dx < a.
Y ()
Q(r)

el
Since }1_r>n B = 1 and

1 1
[B(y. )l / flw)de = ‘B(y—7r)|3(£) (Fxwee)(@)dr = f(y)

as 7 — 0, we infer that f(y) < a. O

In the following statement we consider the maximal function in the sense of balls B(z,r) = {y €
G | dee(x,y) < r} with respect to the Carnot—Carathéodory metric:

M) =swp e [ 1)y

r>0
B(z,r)

Theorem 3.1. Given an arbitrary Carnot group G, let a function f € Li(G) vanish almost ev-
erywhere outside the ball B = B(0,R). If Mf € Li(2B), then |f|log™ |f| € Li(B). Moreover, we
have

1 10g™ 1711 L1(B)|| < Co - (IMF | Li@B)| + 11f | LB + R IF | L (B)),

where Cp, depends only on the homogeneous dimension v of G.

Proof. We may assume that f > 0. Fix a > 0. Choose {Q);} according to Proposition . Take
z € Q;. By claim (3) of Lemma [3.1] we can choose r > 0 such that the ball B(z,r) includes Q; and
|B(z,7)| < ¢o|Qj|, where the constant ¢y depends only on v. The definition of the maximal function
and the choice of {Q;} show that

Mf(z) > |Bzr /f dx>|Q]|/f Ydz > cyta.

B(z,r)

This means that (J;Q; C {z € G| Mf(2) > ¢; 'a}. Since the collection {Q;} is disjoint, we infer
thatf’]

]{zEG\Mf(z)>c01a}|22|Qj|>288 Z/f ) dz >288 ’ /f

f>a

°If for this a > 0 the collection {Q;} is empty then the required inequality is obvious because in this case f < «
almost everywhere.
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Replacing o with coa, we obtain

{2 € G| Mf(z) > a}| > 20 / fa

f>00a

Integrate this over a € (¢ !:00). Thanks to the Cavalieri-Lebesgue formula, the left-hand side equals
fo> _1 M f(z) dz. Rearranging the integral in the right-hand side,

o0 J(@)
dxdoz—// x)dxdf = // x) dfdx

| ; ;

cg b f>eoa L f>B f>1 1

/ f(2)log f(a / f(2)log* f(x) da
>1

we arrive at the inequality

/m) log™ f(z)dz < ¢, / Mf(z) da

G Mf>ca

-1
where ¢; = 2887¢cy and ¢; = ¢ .

In order to estimate [ M f(z)dx, take z ¢ B; therefore, d..(z,0) > R. For t < (d..(2,0) — R)
Mf>co
the intersection B(z,t) N B is empty. Since the function f vanishes almost everywhere outside B, it
follows that
If | L:(B)]]

(dee(2,0) — R)"

Hence, for de(2,0) > Ry = cs||f | Li(B)||Y/Y+ R, where ¢5 = ¢; "/, the value of the maximal function
Mf at z is at most ¢y, and so the set {z € G | M f(x) > ¢} lies in the ball B(0, Ry). Using (3.2),

we infer that

/Mf dx</Mf )dz + / Mf(z

Mf>co B(0,Ry)\2B

Mf(z) <

(3.2)

S/Mf(x)derllflR( i

/Mf ||f|L1< )H( BHf ‘ Ll(B)Hl/V‘i‘R)V.

Consider the maximal function defined with respect to some homogeneous norm p:

wefe) =swp s [ wldy

Bp(:L',T')

Since the Carnot—Carathéodory metric d.. is equivalent to every homogeneous norm, we have
aM f(z) < MPf(x) <bM f(x) forall x,

where the constants a and b depend only on p. This implies that Theorem remains valid when
we replace M f by M?f.
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Definition 2. A sequence of integrable functions {f;} defined on a measurable space X endowed

with some measure y is called uniformly integrable whenever the sequence of integrals [ |fi|du is
X
bounded and, given a positive number ¢, there is positive § such that

/|fk|d# <e
E

for all k£ and all measurable sets £ C X with u(E) < 6.

By the commensurability of the maximal functions M f and M? f, Theorem[3.1]and the de la Vallée
Poussin theorem directly imply the following corollary.

Corollary 3.1. Given a domain §2 in an arbitrary Carnot group G and an arbitrary homogeneous
norm p on G, if {fx € L110c(2)} is a sequence of functions such that for each compact set K € €2
the sequence {MP(frxk)} is bounded in L 10.(2), then the sequence { fi} is uniformly integrable on
every compact subset of 2.

In the following two statements we denote by p homogeneous norm (2.1]), while H*~! stands for
the spherical Hausdorff measure defined with respect to p. The adjoint operator adjDp(y) : g — ¢
is determined by the condition

De(y) - adjD(y) = det Dip(y) - 1d

provided that the determinant of the N x N matrix ﬁ@(y) is nonzero and extended by continuity
in the topology of RV*YN otherwise. Its norm |adjDy(y)| is defined by analogy with ([2.4)).

Lemma 3.2 (|21, Theorem 3.1]). Given a two-step Carnot group G and a bounded domain Q C G,
consider p € WH(Q;G).
Then for almost all x € Q and almost all r € (0;dist,(x, 02)) we have

v—1

’ / detﬁgo(y)dy T <O / |adjﬁ90(y)|d7'[y_l(y),
Bp(z,r) Sp(z,)

where the constant C is independent of .

Proposition 3.2. Giwen a two-step Carnot group G and a bounded domain Q2 C G, consider ¢ €
WHQ; G) with det Do > 0 almost everywhere. Then for every measurable set K & ) there is
a constant C(K) independent of ¢ such that

1M (xxc det Do) | Li(Q)] < CUK) (I1Dwp | L(@)][75 + 191 - | Dagp | L))

Proof. Fix a measurable set K € ). Put g = yx det lA)go and d = dist, (K, 09), as well as a = o

2¢7
and g = é, where ¢ is the constant involved in the generalized triangle inequality. To estimate
1
mB ( Ik o g(y) dy, make a brute-force search of the cases.
p\T,

If x € Q) is an arbitrary point and R > (d, then

o | swarsaia [aba)a.

B,(z,R) Q
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However, if dist,(z, K) > ad and R < fd, then by the choice of o and (3 the intersection
K N B,(z, R) is empty, and so 7 (i m ) 9 dy=0.
" By (a,R)
Assume now that dist,(z, K) < ad and R < gd. In this case the ball B,(x,2R) lies in 2, and so

for almost all = with dist,(z, K) < ad and almost all » € (R;2R) we have

([ owa)” <( [ abetwyar)” < [ raibewlanw)

BP($7R) Bp(fﬂ") Sp(xvr)

Integrate the last inequality over r € (R;2R), see the coarea formula [I(], Theorem 6.1|, and divide
by |B,(z, R)|. Taking into account the local boundedness of the horizontal gradient of the function p
and making some easy rearrangements, we obtain{|

1 o C R )
<!Bp(x,r)\ /g(y)dy> = 1B,(x.2R)| / ladjDep(y)| dy < CM” f(x),

B,(z,R) B,(z,2R)

where [ = |adle7<,0| € L v (), while C' is a constant independent of ¢, z and r. Adding the resulting

v—1

estimates, we see that

M?g(x) < C(K)((Mf(2))7" + | det Do | Li(Q)]])
for almost all z € ). Integrating this over x € ), we obtain
1MPg | L) < CE)(IMPf | Lo ()77 + (9] - || det Dy | Li()]])-

It remains to observe that the Hardy-Littlewood theorem [I7, Chapter 1.3, Theorem 1|, Holder’s
inequality, and ({2.3]) yield

IMPf | L2 ()] < ClladiDep | Lx ()] < C|Dap | L)

| det Dg | Li(Q)]| < C||Dgp | L ()]

Corollary [3.1 and Proposition [3.2] directly imply the following statement.

Theorem 3.2. Given a domain 2 in a two-step Carnot group G, if {pr: Q — G} is a sequence of
mappings of class W),..(Q; G) such that det Dy, > 0 almost everywhere and the sequence {|Dyypy|}

is bounded in L, 1c(Q2), then the sequence {det ﬁgpk} of Jacobians is uniformly integrable on every
compact set K & ().

Let us use the following particular case of Theorem 1 of [6].

Lemma 3.3. Consider domains Q, 2, ... in RN and a sequence of homeomorphisms {oy : Q2 —
Q152 converging locally uniformly in 2 to some homeomorphism g : £ — €.

Then every compact set K € ) lies in Y, for all sufficiently large k, while the sequence {p;'}
of the inverse homeomorphisms converges to @y locally uniformly on €Y.

6Tn these estimates we use the property that the full-dimensional Hausdorff v-measure and the Hausdorff measure
on the level lines of the function ¢(y) = p(y~'z) considered in [10, Theorem 6.1] are equivalent respectively to the
Lebesgue measure and the Hausdorff measure defined with respect to homogeneous norm (2.1)).
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Recall that the space Cy(2) consists of all continuous functions 6 : 2 — R with compact support
in Q.

Lemma 3.4. Consider domains Q, Q, ), ... in some Carnot group G and a sequence {¢y : 2 —
V152, of homeomorphisms of class W} (Q; G) such that {¢} converges to some homeomorphism

v,loc
wo : 2 — Q locally uniformly in 2, the sequence {|Dppr|}52, is bounded in Ly, 10(S2), and det Doy, >
0 almost everywhere, for k =12,... R

Then the sequence {det Dy} of Jacobians converges x-weakly in Ly 10.(€2) to det Dy, that is

k—o0

lim [ 6(x)det Dyy(x)dx = /Q(x) det Do (x) dx
Q Q

for all functions 6 € Cy().

Proof. Since the sequence {|Dypx|} is bounded in L, 10c(€2), the limit homeomorphism ¢y is also of
class W),,.(€%; G) [22, Proposition 3.3].
For all quasi-monotone mappings ¢ € WVI’IOC(Q;G), in particular for all homeomorphisms, we

have the following change-of-variables formula [19, Theorem 4]:

/ (w0 )(x) det Do) dz = / w(y)uly, o, D) dy, (3.3)

D G

where D € 2 is a compactly embedded subdomain such that |p(0D)| = 0, while u(y, ¢, D) is the
topological degree of the mapping ¢ at y ¢ p(90D) defined with respect to the domain D, while w is
an arbitrary measurable function such that the function y — u(y)u(y, ¢, D) is integrable on G.

According to |19, Theorem 3], all quasi-monotone mappings of class WZ},IOC(Q; G) have Luzin’s N-
property. Hence, for every finite collection of balls B; & ) and arbitrary £ = 0, 1, ... the measure of
the set (9, B;) vanishes. Consequently, we can put D = (J; B; in (3.3).

The degree pu(-, p, D) of each homeomorphism ¢ : D — G is a constant on the image (D) and
equals either 1 or —1. Since det lA)cpk > 0 almost everywhere on €2, for k = 1,2, ..., we find that
applied to the mapping ¢ = ¢} and the functions u = x,,(p) and D = U]. Bj for k =1,2,... implies
that u(y, o, D) =1 for y € pi(D).

Furthermore, the continuity of the degree of a mapping under uniform convergence also implies
that p(y, o, D) = 1 for y € po(D). Now put ¢ = ¢y and u = xy in (3.3), where U C ¢o(D) is
an arbitrary open set. This yields

/ det Dipo(x) da = / (. 00, D) dy = |U] > 0. (3.4)
vy H(U) U

Since g is a homeomorphism, while the open set U C ¢o(D) and the balls B; € €2 which constitute

the subdomain D are arbitrary, (3.4]) implies that det ﬁgpo is nonnegative almost everywhere on (2.
Put 1 = . For 0 € Cy(Q) and k = 0,1,2,... the change-of-variables formula (3.3)) yield

/ () det Doy (x) de = / 6 (y)) dy.

7As D we should consider a finite union of compactly embedded balls in €2 covering the support of the function 6.
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Since {pg}72, converges uniformly to ¢y on the support of 6, according to Lemma the supports
of the functions 60 o ¢y, for all sufficiently large k lie in some compact set K € €),. The uniform
convergence of {1} to ¢y on K implies that

k—o0 k—o0

lim [ 0(x) det Dpi(w) d = Tim [ 0(ux(y)dy = lim / 0(un(y)) dy
Q Q;C K

— [ owato)dy = [ val))dy = [ 6(2) det Dio(a)d
Q

K o
Finally, Theorem and Lemma [3.4] imply Theorem in the standard fashion. O
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