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YESMUKHANBET SAIDAKHMETOVICH SMAILOV

Doctor of physical and mathematical sciences, Professor Smailov Esmuhan-
bet Saidakhmetovich passed away on May 24, 2024, at the age of 78 years.

Esmuhanbet Saidakhmetovich was well known to the scienti�c community
as a high quali�ed specialist in science and education, and an outstanding
organizer. Fundamental scienti�c articles and textbooks written in various
�elds of the theory of functions of several variables and functional analysis,
the theory of approximation of functions, embedding theorems, and harmonic
analysis are a signi�cant contribution to the development of mathematics.

E.S. Smailov was born on October 18, 1946, in the village of Kyzyl Kesik,
Aksuat district, Semipalatinsk region. In 1963, he graduated from high school
with a silver medal, and in the same year he entered the Faculty of Mechanics

and Mathematics of the Kazakh State University (Almaty) named after Kirov (now named after Al-
Farabi). In 1971 he graduated from graduate school at the Institute of Mathematics and Mechanics.

He defended his PhD thesis in 1973 (supervisor was K.Zh. Nauryzbaev) and defended his doctoral
thesis �Fourier multipliers, embedding theorems and related topics� in 1997. In 1993 he was awarded
the academic title of professor.

E.S. Smailov since 1972 worked at the Karaganda State University named after E.A. Buketov as
an associate professor (1972-1978), the head of the department of mathematical analysis (1978-1986,
1990-2000), the dean of the Faculty of Mathematics (1983-1987) and was the director of the Institute
of Applied Mathematics of the Ministry of Education and Science of the Republic of Kazakhstan in
Karaganda (2004 -2018).

Professor Smailov was one of the leading experts in the theory of functions and functional analysis
and a major organizer of science in the Republic of Kazakhstan. He had a great in�uence on the
formation of the Mathematical Faculty of the Karaganda State University named after E.A. Buketov
and he made a signi�cant contribution to the development of mathematics in Central Kazakhstan.
Due to the e�orts of Y.S. Smailov, in Karaganda an actively operating Mathematical School on the
function theory was established, which is well known in Kazakhstan and abroad.

He published more than 150 scienti�c papers and 2 monographs. Under his scienti�c advice, 4
doctoral and 10 candidate theses were defended.

In 1999 the American Biographical Institute declared professor Smailov �Man of the Year� and
published his biography in the �Biographical encyclopedia of professional leaders of the Millennium�.

For his contribution to science and education, he was awarded the Order of �Kurmet� (=�Honour�).
The Editorial Board of the Eurasian Mathematical Journal expresses deep condolences to the

family, relatives and friends of Esmuhanbet Saidakhmetovich Smailov.
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Abstract. We consider and solve a weakened version of the classical spectral synthesis problem for
di�erentiation operator in non-quasianalytic spaces of ultradi�erentiable functions (UDF). Moreover,
we deal with the widest class of UDF among all known ones. Namely, we study the spaces of Ω-
ultradi�erentiable functions introduced by Alexander Abanin in 2007-08. For subspaces of these
spaces which are invariant under the di�erentiation operator we establish general conditions of weak
spectral synthesis.

DOI: https://doi.org/10.32523/2077-9879-2024-15-3-09-24

1 Introduction

Let X be a locally convex space of in�nitely di�erentiable functions on an interval (a; b) ⊆ R and
X ⊂ C∞(a; b) be a continuous embedding. Set D = d

dt
,

ek,λ(t) = tkeiλt, t ∈ (a; b), k ∈ N
⋃
{0}, λ ∈ C.

We assume that
1) D acts continuously in X;
2) X contains all functions of the form e0,λ, λ ∈ C;
3) X is a non-quasianalytic function class.

Let W ⊂ X be a closed subspace of X which is invariant under the di�erentiation operator:
D(W ) ⊂ W. Brie�y, W is D-invariant subspace. By ExpW we denote the set of all exponential
monomials ek,λ contained in W . Clearly, for any D-invariant subspace W we have the following
implication:

ek,λ ∈ W, k ≥ 1 =⇒ ej,λ ∈ W, j = 0, . . . , k − 1.

A classical spectral synthesis problem for the di�erentiation operator in X is to �nd under what
conditions D-invariant subspaces W ( X are spanned by their sets ExpW :

W = span ExpW? (1.1)

There are well-known results on this topic for D-invariant subspaces of holomorphic functions on
a convex domain in C (see [15]�[17]), and for translation invariant subspaces in C∞(R) (see [21]�[22]).
However, as it has been noticed in [9], generally speaking, the classical spectral synthesis does not
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suit for description of D-invariant subspaces in C∞(a; b). The matter is that there are non-trivial
D-invariant subspaces in C∞(a; b). containing no exponential functions. These are of the form

WI = {f ∈ C∞(a; b) : f = 0 on I}, (1.2)

where I is any non-empty relatively closed subinterval of (a; b).
In [9, Theorem 4.1], the authors also show that any non-trivial D-invariant subspace W ⊂

C∞(a; b) contains maximal "residual subspace" of form (1.2). It implies that W has residual in-
terval IW de�ned as the smallest relatively closed subinterval of (a; b) among all I ⊂ (a; b) with the
property WI ⊂ W . We see that for D-invariant subspaces in C∞(a; b) it is not enough to consider
classical spectral synthesis (1.1). In [9], the authors have proposed another form of spectral synthesis
problem. We call it the problem of weak spectral synthesis. The question is to know which non-trivial
D-invariant subspaces W in C∞(a; b) admit the representation

W = WIW + span ExpW? (1.3)

It is easy to see that the weakened form of spectral synthesis problem contains the classical one as a
particular case. It corresponds to the case IW = (a; b). The problem of weak spectral synthesis (1.3)
in C∞(a; b) has been studied in papers [3]�[7].

Any non-quasianalytic function space X ( C∞(a; b) contains D-invariant subspaces of form (1.2).
For example,

Wc = {f ∈ X : f (k)(c) = 0 : k = 0, 1, 2 . . . }, c ∈ (a; b).

It means that the problem of spectral synthesis in X should also be considered in its weakened
form (1.3). Recently, we have studied this problem in the Beurling space of ultradi�erentiable
functions of normal type (see [8]). The dual approach we applied earlier in [3]�[4] for D-invariant
subspaces in C∞(a; b) turns out to be useful and e�ective in the space of ultradi�erentiable functions.
X ( C∞(a; b).

In this paper, we study weak spectral synthesis problem (1.3) for a wide class of spaces of Ω-
ultradi�erentiable functions (brie�y, Ω-UDF). General theory of Ω-UDF and Ω-ultradistributions is
constructed in [1], [2] by Abanin. In particular, this theory includes all well-known spaces of UDF
(Beurling-B�orck spaces, Roumier-Komatsu ones, etc.) And we obtain new results on weak spectral
synthesis in these general spaces of Ω-UDF.

2 Spectral synthesis

Let X be the space of Ω-UDF on an interval (a; b) of the real line, that is X = UΩ(a; b), where
Ω = {ωn}∞n=1 is a regular increasing (or decreasing) sequence of non-quasianalytic weights. For the
explicit de�nition and main properties of such spaces see [1], [2].

Given a sequence of complex numbers Λ, we denote by expΛ the set of exponential monomials
generated by this sequence. It means that for any λ, contained in Λ with the multiplicity k ∈ N, set
expΛ contains all functions e−iλt, . . . , tk−1e−iλt.

Recall that completeness radius r(Λ) of Λ equals the in�mum of the set of all r > 0 such that the
system expΛ is not complete in C∞(−r; r) (or, equivalently, in each of spaces C(−r; r), L2(−r; r)).

By the well-known Beurling-Malliavin theorems (see, e.g., [13, Chapters X, XI]) Paley-Wiener-
Schwartz-type theorem on strong dual space U ′Ω(a; b) due to Abanin [1, Chapter 5], [2]), taking into
account the property of non-quasianalyticity of weights ωn, we get that the function system expΛ is
not complete in UΩ(a; b) if and only if r(Λ) < b−a

2
.

Let I ⊆ (a; b) be a relatively closed interval, |I| denote its length, and

WI = {f ∈ UΩ(a; b) : f = 0 íà I}. (2.1)
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To apply the dual scheme for studying weak spectral synthesis problem in UΩ(a; b), �rst, we
sholud assure that every non-trivial D-invariant subspace W has a residual interval IW ⊆ (a; b) and
a residual subspace WIW . In fact, we establish more general assertion.

Proposition 2.1. For any closed subspace L ⊂ UΩ(a; b), there exists a relatively closed interval
IL ⊆ (a; b) such that

WIL ⊂ L, WI \ L 6= ∅ ∀ I ( IL.

Proof of this proposition is contained in Remark 3.

Consider a D-invariant subspace W ⊂ UΩ(a; b) with the residual interval IW ⊆ (a; b) and the
supply of exponential monomials ExpW . Let ΛW ⊂ C be the sequence of exponents generating
ExpW , that is ExpW = expΛW .

The spectrum of the restricted operator D : W → W is called a spectrum of W . We denote it by
σW .

Proposition 2.2. 1) For the spectrum of any non-trivial D-invariant subspace W , we have either
σW = C, or σW = (−iΛW ).

2) r(ΛW ) > |IW |
2

implies that W = UΩ(a; b).

Remark 1. 1. It is not di�cult to check that the spectrum of

W̃ = WIW + span ExpW

equals (−iΛW ). Particularly, it means that the relation σW = (−iΛW ) is a necessary condition of the
weak spectral synthesis for W .

2. Let c, d ∈ (a; b), Wc,d = {f ∈ UΩ(a; b) : f (k)(c) = f (k)(d) = 0, k = 0, 1, 2, . . . }, W[c;d] be
de�ned by (2.1) with I = [c; d]. By the argument similar to one used in [9, §2], we get that σWc,d

= C
and σW[c;d]

= ∅. At the same time, ExpWc,d = ExpW[c;d] = ∅. There may also be constructed
generalisations with non-empty ExpW .

Now, we formulate conditions of the weak spectral synthesis in UΩ(a; b).

Theorem 2.1. Let W ( UΩ(a; b) be D-invariant subspace and σW = −iΛW .

If r(ΛW ) < |IW |
2
, then

W = WIW + span expΛW .

Corollary 2.1. Let W ( UΩ(a; b) be D-invariant subspace and σW = −iΛW .

1) If the residual interval IW is not compact in (a; b) then W admits weak spectral synthesis (1.3).

2) W admits classical spectral synthesis (1.1) if and only if IW = (a; b).

Remark 2. It turns out that the su�cient condition in Theorem 2.1 coincides with the condition
of admitting of weak spectral synthesis by D-invariant subspace in C∞(a; b) (see [3, Theorem 2,
Corollaries 2, 3, Remark 3] or [4, Theorem 5, Corollary 2], and [10, Theorems 1.1, 1.3]).
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3 Preliminaries. Dual scheme

3.1 Spaces UΩ(a; b), U ′Ω(a; b) and P
Any Ω-UDF space is de�ned by a weight sequence Ω = {ωn} that may be increasing or decreasing:

ωn ≤ ωn+1 ∀n ∈ N or ωn ≤ ωn+1 ∀n ∈ N.

An element of Ω is a weight function ωn : R → [0;∞), which is Lebesque measurable and locally
bounded in R. Additionally, it must subject the requirements∫

R
eω(t)dt <∞, (3.1)

∫ ∞
1

ω(t)

t2
dt <∞, (3.2)

where ω(t) := sup{ω(s) : |s| ≤ t}.
It should also be assumed that all weights ωn ∈ Ω and the sequence Ω itself satisfy some additional

restrictions in order to guarantee that UΩ(a; b) is continuousy embedded into C∞(a; b) and invariant
under the di�erentiation operator. In this case, UΩ(a; b) is a locally convex space of (M∗)-type if Ω is
increasing or, respectovely is a locally convex space of (LN∗)-type if Ω is decreasing. Particularly, in
both cases, UΩ(a; b) is a complete re�exive Hausdor� space, the open mapping theorem and the closed
graph theorem are true in this space. Moreover, UΩ(a; b) contains all polynomials, all exponential
functions e−itz, z ∈ C, and it is a toplogical module over the ring C[t]. The di�erentiation D = d

dt
is

a continuous operator in UΩ(a; b).

Recall that given a sequence Ω, by DΩ(a; b) we denote the space of all test Ω-UDF, that are
compactly supported in (a; b). Because of (3.2), this space is non-trivial. Ω-ultradistributions are
de�ned to be elements of the strong dual space D′Ω := D′Ω(R) (see [1, Chapter 2,3]). It is known that
any classical distribution also is an Ω-ultradistributions, that is D′ ( DΩ(R).

All basic notions of the classical distribution theory are extended to Ω-ultradistributions. In
particular, it is true for the notion of "support" of an Ω-ultradistribution and the meaning of the
phrase "Ω-ultradistribution equals zero on an open set". If supports of an Ω-ultradistribution S and
a test Ω-UDF f have no common point then S(f) = 0. For S ∈ D′Ω

⋂
D′

Ω̃
, where Ω and Ω̃ are two

di�erent weight sequences, the support of S as an Ω-ultradistribution equals its support if we think
of S as an Ω̃-ultradistribution.

According to Theorem 5.2.2 in [1], the strong dual space U ′Ω(a; b) is formed by all Ω-
ultradistributions that are compactly supported in (a; b).

For the technical convinience, now we consider a symmetric interval (−a; a) instead of an arbitrary
one (a; b).

Given a weight ω, we recall that its continuation to C is de�ned by the formula

Hω(x+ iy) =
1

π

∫
R

ω(x+ ξy)

1 + ξ2
dξ

(see [1, 1.4]). This is a non-negative function in C, Hω(z) = Hω(z̄), z ∈ C. It is also harmonic in the
upper half-plane and in the lower one.

For every ωn ∈ Ω, and every k ∈ N, we set

Pn,k =

{
ϕ ∈ H(C) : ‖ϕ‖n,k := sup

z∈C

|ϕ(z)|
exp (ck|Im z|+Hωn(−z))

<∞
}
, (3.3)
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where 0 < ck ↗ a. Clearly, Pn,k is a Banach space.
Set

P(Ω),a =
∞⋃
k=1

∞⋃
n=1

Pn,k

if Ω is increasing, and

P{Ω},a =
∞⋃
k=1

∞⋂
n=1

Pn,k

if Ω is decreasing.
By P we denote an arbitrary one of these two spaces, P(Ω),a or P{Ω},a. Locally convex space P is

a complete Hausdor� re�exive and bornological. It is also important to notice that P is a topological
module over the ring of all polynomials C[z].

Recall that for every S ∈ U ′Ω(−a; a), its Fourier-Laplace transform is de�ned by formula

S 7→ F(S)(z) := S(e−itz), z ∈ C,

and
F : U ′Ω(−a; a)→ H(C).

Theorem A. Fourier-Laplace transform F is a linear and topological isomorphism between spaces
U ′Ω(−a; a) and P .

For the regular weight sequences Ω, Theorem A was established in [1, Theorem 5.4.2], [2]. The
author also proved in [1] that the norm ‖ϕ‖n,k de�ned by (3.3) may be replaced by the following one:

‖ϕ‖n,k = sup
z∈C

|ϕ(z)|
exp (ck|Im z|+ ωn(−Re z))

.

This change leads to the same locally convex space P .
Notice that all above de�ntions and facts are true for an arbitrary interval (a; b) ⊆ R, not only

for the symmetric one. In further presentation, we denote by P the space F(U ′Ω(a; b)).

For a closed subspace W ⊂ UΩ(a; b), its annihilator subspace W 0 is de�ned to be

W 0 = {S ∈ U ′Ω(a; b) : S(f) = 0 ∀ f ∈ W}.

Because of UΩ(a; b) is re�exive, by Khan-Banach theorem and Theorem A, we obtain

Proposition 3.1. (General duality principle.) There is one-to-one correspondence between the
set {W} of all closed subspaces of UΩ(a; b) and the set {J } of all closed subspaces of P:

W ←→ J ⇐⇒ J = F(W 0).

Now, we list some properties of elements of P .
Because of (3.2), all functions in P belong to the Cartwright class C of entire functions. In

particular, any ϕ ∈ P is an entire function of completely regular growth with respect to the order 1
having exponential type less that b−a

2
. Multiplying ϕ by a suitable function of the form e−tϕz, tϕ ∈ R,

we get an entire function ψ with the indicator function

hψ(θ) = π∆ϕ| sin θ|, ∆ϕ <
b− a

2
,
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where 2∆ϕ denotes the density of zero sequence Zϕ of ϕ. An indicator diagram of ψ equals

i[−hψ(−π/2);hψ(π/2)].

Finally, because of the well-known Beurlig-Malliavin results (cf. [13]), from relation (3.2) we
derive that given a complex sequence Λ, r(Λ) < b−a

2
is equivalent to Λ ⊂ Zϕ for some ϕ ∈ P . In this

case, the inequality r(Λ) ≤ π∆ϕ is also true. And Λ = Zϕ implies r(Λ) = π∆ϕ.

3.2 Dual scheme

According to the general duality principle (Proposition 3.1), there is a one-to-one correspondence
between closed subspaces W ⊂ UΩ(a; b) and closed subspaces J ⊂ P . It is not di�cult to check that
W is D-invariant if and only if zJ ⊂ J , that is J is a closed submodule in P (over the ring C[z]).
In further presentation, we consider only closed submodules in P and write "submodule" instead of
"closed submodule".

For an arbitrary submodule J ⊂ P its zero set ZJ is de�ned by

ZJ =
⋂
ϕ∈J

Zϕ,

where Zϕ is zero set of ϕ.
Indicator segment of J is denoted by

[cJ ; dJ ] ⊂ R, (3.4)

where cJ = − sup
ϕ∈J

hϕ(−π/2), dJ = sup
ϕ∈J

hϕ(π/2) ∈ R, and hϕ is the indicator function of ϕ.

Proposition 3.2. (Special duality principle.) There is one-to-one correspondence between the
set {W} of all D-invariant subspaces in UΩ(a; b) and the set {J } of all submodules in P:

W ←→ J ⇐⇒ J = F(W 0),

where W 0 = {S ∈ U ′Ω(a; b) : S(f) = 0 ∀ f ∈ W}. In addition,

IW = [cJ ; dJ ]
⋂

(a; b), ExpW = ExpZJ . (3.5)

Proof. We need only to check the �rst relation in (3.5).
Set I0 = (a; b)

⋂
[cJ ; dJ ]. Notice that

f 7→ f(·+ y), f 7→ f(· − y), y > 0,

are continuous operators acting in UΩ(a; +∞) and UΩ(−∞; b), respectively.
For a function f ∈ WI0 ⊂ UΩ(a; b), we can write

f = f− + f+, f− ∈ WI− , f+ ∈ WI+ ,

where I− = (−∞; dJ ], I+ = [cJ ; +∞), WI− ⊂ UΩ(a; +∞), WI+ ⊂ UΩ(−∞; b).
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Further, for S ∈ F−1(J ) we have

supp g(· − y)
⋂

suppS = ∅, g ∈ WI− , y > 0,

supp g̃(·+ y)
⋂

suppS = ∅, ∀ g̃ ∈ WI+ , y > 0.

It follows that

S(f) = S(f− + f+) = lim
y→0+

(S(f−(x− y)) + S(f+(x+ y))) = 0

for any Ω-ultradistribution S ∈ F−1(J ). By the general duality principle, we get that WI0 ⊂ W.
Now, let us consider an arbitrary interval I ′ ( I0 respectively closed in (a; b). From the de�nition

of cJ and dJ and general theory of Ω-UDF and Ω-ultradistributions, we derive that for every c′ ∈
(cJ ; dJ ) \ I ′ there exist S ∈ F−1(J ), f ∈ UΩ(a; b) and δ > 0 such that

S(f) 6= 0, supp f ⊂ (c′ − δ; c′ + δ) ⊂ (cJ ; dJ ) \ I ′.

Hence, by the duality principle, f 6∈ W. On the other hand, we have f ∈ WI′ . It means that interval
I0 is the smallest one among all respectively closed in (a; b) intervals I for which WI ⊂ W.

So, we get the relation IW = I0 and �nish the proof.

Remark 3. The notion of the indicator segment may be de�ned for an arbitrary closed subspace
J ⊂ P . Applying the argument used in the proof of the �rst relation in (3.5) to an arbitrary closed
subspace W ⊂ UΩ(a; b) and J = F(W 0), we easily get Proposition 2.1.

We call a submodule J ⊂ P weakly localisable if it contains all functions ϕ ∈ P satisfying the
conditions

ZJ ⊂ Zϕ and [−hϕ(−π/2);hϕ(π/2)] ⊂ [cJ ; dJ ]

Submodule J ⊂ P is called localisable (ample) if it contains all functions ϕ ∈ P with the property
ZJ ⊂ Zϕ. In other words, the localisable submodule is a weakly localisable one with the indicator
segment equaled to [a; b] ⊂ R.

Weakly localisable submodule J is the biggest one among all submodules J̃ such that

ZJ̃ = ZJ and [cJ̃ ; dJ̃ ] = [cJ ; dJ ].

By special duality principle, we obtain

Proposition 3.3. D-invatiant subspace W ⊂ UΩ(a; b) admits weak spectral synthesis if and only if
its annihilator submodule J = F(W 0) is weakly localisable.

Proposition 3.3 is the basis of the dual scheme: it reduces spectral synthesis problem to the
equivalent dual one dealing with the question of local description of submodules of entire functions.
This dual scheme goes back to I.F. Krasichkov-Ternovskii and L. Ehrenpreis.

4 Stability, saturation and weak localisability

As it was shown in [18]�[20] due to Krasichkov-Ternovskii, studying of (weak) localisability of sub-
modules is equivalent to exploring their stability and saturation properties. We use notions and
notations from [18]�[20].
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From the de�nition and topological properties of P , it follows that P is b-stable, that is for any

bounded set B ⊂ P , the set de�ned by

B′ :=

{
ϕ

z − λ
: ϕ ∈ B, λ ∈ C, ϕ(λ) = 0

}
is also bounded in P .

Notice that P is b-stable bornological space. It implies that P is pointwise stable:
for every λ ∈ C and any neighbourhood of zero U ⊂ P , there exists a neighbourhood of zero U ′λ such

that

ϕ ∈ U ′λ, ϕ(λ) = 0 =⇒ ϕ

z − λ
∈ U

(see [19, § 4]).
Submodule J ⊂ P is stable at a point λ ∈ C if for any ϕ ∈ J vanishing at λ with the multiplicity

exceeding the multiplicity of λ as a zero of J implies that ϕ
z−λ ∈ J . Submodule J is stable if it is

stable at every point λ ∈ C.
From Propositions 4.2�4.6 in [19] and pointwise stability of P , it follows that stability of J at

one point implies its stability at all points in C.
Because of pointwise stability of P , a weak localizable submodule is necessarily stable. However,

in general, the inverse is not true (see [18], [19]).
Recall some notions and facts from these papers that will be required in further presentation. We

cite all them for a space of scalar entire functions.
A separable locally convex space P ⊂ H(C) is called b-stable if for any bounded set B ⊂ P , the

set of all entire functions ψ of the form

ψ =
ϕ

z − λ
, λ ∈ C, ϕ ∈ B,

is contained and bounded in P .
The space P is analytically condensed if for any �nite set of functions ϕ1, . . . , ϕm ∈ P , the set

B = {ψ ∈ H(C) : |ψ(z)| ≤ |ϕ1(z)|+ · · ·+ |ϕm(z)|, z ∈ C}

is contained and bounded in P .
A subset J ⊂ P is b-saturated with respect to ϕ ∈ P if there exists a bounded set B ⊂ P for

which the following implication holds: if an entire function ν satis�es the inequality

|ν(z)ψ(z)| ≤ |ψ(z)|+ |ϕ(z)|, z ∈ C,

for every ψ ∈ B
⋂
J , then ν = const.

A closed subspace J ⊂ P is called a submodule in P if the implication

ϕ ∈ J , p ∈ C[z], pϕ ∈ P =⇒ pϕ ∈ J

holds. Notice that in this de�nition the space P must not be a module over C[z]. Stability and zero
set ZJ for J are also de�ned in the same way in this case.

For bornological b-stable spaces, the following assertion holds.

Theorem C. [18] (Bornological version of individual theorem.) Let J be a stable submodule
in a Hausdor� bornological b-stable space P, ψ ∈ P and ZJ ⊂ Zψ.

Then, ψ ∈ J if and only if J be b-saturated with respect to ψ.

Now, we obtain a su�cient condition of b-saturation suitable for applications.



Invariant subspaces in non-quasianalytic spaces of Ω-ultradi�erentiable functions on an interval 17

Proposition 4.1. Let P be an analytically condensed Hausdor� b-stable locally convex space of entire
functions, J ⊂ P , ϕ ∈ P . For a function ψ ∈ J , we set

Bϕ,ψ :=

{
Ψ ∈ P :

Ψ

ψ
∈ H(C), |Ψ(z)| ≤ |ϕ(z)|+ |ψ(z)|, z ∈ C

}
. (4.1)

If Bϕ,ψ ⊂ J , then J is b-saturated with respect to ϕ.

Proof. De�ne
B = {Φ ∈ H(C) : |Φ(z)| ≤ |ϕ(z)|+ |ψ(z)|, z ∈ C}.

This set is bounded in P .
Let ν be an entire function satisfying the inequality

|ν(z)Φ(z)| ≤ |ϕ(z)|+ |Φ(z)|, ∀z ∈ C, (4.2)

with any Φ ∈ B
⋂
J .

Setting Φ = ψ ∈ J
⋂
B, we get

|ν(z)ψ(z)| ≤ |ϕ(z)|+ |ψ(z)|, z ∈ C.

In what folows that
Φ1 = νψ ∈ J

⋂
B,

and
|ν(z)Φ1(z)| ≤ |ϕ(z)|+ |Φ1(z)|, z ∈ C.

This leads us to the inequality∣∣∣1
2
ν2(z)ψ(z)

∣∣∣ ≤ |ϕ(z)|+ |ψ(z)|, z ∈ C,

which means that 1
2
ν2ψ ∈ B

⋂
J .

Continuing to argue in a similar way, we obtain that

1

2k−1
νkψ ∈ B

⋂
J , k = 2, 3, . . .

Hence, we have
|ν(z)|k

2k+1
≤ |ϕ(z)|
|ψ(z)|

+ 1, z ∈ C, k = 2, 3, . . .

These inequalities imply that ν = const. Because ν is an arbitrary entire function satisfying (4.2),
we conclude that J b-saturated with respect to ϕ.

Remark 4. If it is additionaly known that submodule J is stable and ZJ ⊂ Zϕ, then the su�cient
condition in Proposition 4.1 is also necessary one. Indeed, because of Theorem C, we have ϕ ∈ J .
Setting ψ = ϕ, we obtain the required assertion.

Given a function ϕ ∈ P , we denote by J (ϕ) the submodule consisting of all functions ψ ∈ P of
the form ψ = ωϕ, where ω is an entire function of minimal type with respect to the order 1. Clearly,
J (ϕ) is weakly localisable submodule.

Proposition 4.2. Let J ⊂ P be a stable submodule.
If ϕ ∈ Pa satis�es the conditions

ZJ ⊂ Zϕ, [hϕ(−π/2);hϕ(π/2)] ⊂ (cJ ; dJ ),

then J (ϕ) ⊂ J .
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Proof. Consider an arbitrary function ψ ∈ J (ϕ). Because cJ < cϕ and dJ > dϕ, taking into account
the de�nitions of cJ and dJ (see (3.4)), we derive that there exist ϕ1, ϕ2 ∈ J for which

cJ ≤ cϕ1 < cϕ, dϕ < dϕ2 ≤ dJ .

Set ϕB = ϕ1 +ϕ2. This function has completely regular growth with respect to the order 1. Notice
that the indicator diagram of ψ ∈ J (ϕ) equals i[cϕ; dϕ]. Hence, it is a compact subset of the indicaor
diagram of ϕB, that implies

ψ(z)

ϕB(z)
→ 0, z = reiθ (4.3)

as r →∞ outside some subset of (0; +∞) of zero relative measure.
Moreover, relation (4.3) holds unformly with respect to all

θ ∈ {|π/2− θ| < δ}
⋃
{| − π/2− θ| < δ},

where δ > 0 is small enough.
Show that J is b-saturated with respect to ψ. For this purpose, we set B = {ϕB} and consider

an entire function ρ satisfying

|ρ(z)ϕB(z)| ≤ |ψ(z)|+ |ϕB(z)|, z ∈ C. (4.4)

By the theorem on summation of indicator functions, we derive that ρ has minimal type with respect
to the order 1. Moreover, by the maximum modulus principle, from (4.3) we get that ρ is bounded
along the imaginary axis. Hence, ρ = const. So, we conclude that the stable submodule J is b-
saturated with respect to ψ. Finally, by the bornologiacal version of individual theorem (Theorem
C), we obtain that ψ ∈ J .

Now, we can prove the criterion of weak localizability for stable submodules in P .

Theorem 4.1. A stable submodule J ⊂ P is weakly localizable if and only if there exists ϕ ∈ J such
that

J (ϕ) ⊂ J .

Proof. Clearly, we need to prove only the assertion on su�ciency.
1) First, we assume that J (ϕ) ⊂ J and the indicator diagram of ϕ equals i [cJ ; dJ ]. Notice that

the case when cJ = dJ is also non-trivial.
Let ψ ∈ P be such that

Zψ ⊃ ZJ , i [cψ; dψ] ⊂ i [cJ ; dJ ].

For P , all conditions of Proposition 4.1 are satis�ed. From J (ϕ) ⊂ J and conditions on the indicator
diagrams of ϕ and ψ, it follows that the set de�ned by them in (4.1) is a subset of J (it equals J (ϕ)).
By Proposition 4.1, we derive that J is b-saturated with respect to ψ. By Theorem C, it means that
ψ ∈ J . Because ψ is an arbitrary function, we conclude that J is weakly localisable.

2) Now, assume that
J (ϕ) ⊂ J , [cϕ; dϕ] ( [cJ ; dJ ] ⊂ (a; b).

Then, value of at least one of the expressions

δ1 := cϕ − cJ or δ2 := dJ − dϕ

is strictly positive. Consider in detail the case, when δ1 > 0 and δ2 > 0.
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By Proposition 4.2, for all δ′ ∈ [0; δ1) and δ′′ ∈ [0; δ2), we have

J (eiδ
′zϕ) ⊂ J , J (e−iδ

′′zϕ) ⊂ J .

Particularly,
eiδ
′zϕ, e−iδ

′′zϕ ∈ J , δ′ ∈ [0; δ1), δ′′ ∈ [0; δ2). (4.5)

Set Φ = (eiδ1z + e−iδ2z)ϕ. Because the relations

lim
δ′→δ1

eiδ
′zϕ = eiδ1zϕ, lim

δ′′→δ2
e−iδ

′′zϕ = e−iδ2zϕ

hold with respect to the topology of P , taking into account (4.5), we obtain that Φ ∈ J .
Any function Ψ ∈ J (Φ) can be represented as

Ψ = ρΦ = ρ(eiδ1z + e−iδ2z)ϕ,

where ρ is an entire function of zero exponential type.
It is not di�cult to check that ρϕ ∈ P . By Proposition 4.2, we get

ρϕ ∈ J , Ψδ′ = eiδ
′zρϕ ∈ J , ∀ δ′ ∈ (0; δ1),

Ψδ′′ = e−iδ
′′zρϕ ∈ J , ∀ δ′′ ∈ (0; δ2).

From
Ψ = lim (Ψδ′ + Ψδ′′) as δ′ → δ1, δ′′ → δ2,

it follows that Ψ ∈ J . Because Ψ is an arbitrary function in J (Φ), the relation J (Φ) ⊂ J holds.
We have established that our submodule J contains the submodule J (Φ) generated by the

function Φ which indicator diagram equals i[cJ ; dJ ]. Together with the �rst part of the proof, this
leads us to the conclusion that J is a weakly localizable submodule.

3) It remains to consider the case, in which cJ = a or (and) dJ = b.
Let Ψ ∈ Pa and i[cΨ; dΨ] ⊂ i[cJ ; dJ ], ZΨ ⊃ ZJ . To check that Ψ ∈ J we �x a segment [c′; d′]

satisfying the relations

[c′; d′] ⊂ (a; b)
⋂

[cJ ; dJ ], [cΨ; dΨ] ⊂ [c′; d′], [cϕ; dϕ] ⊂ [c′; d′]. (4.6)

Denote by J ′ a weakly localizable submodule with the indicator segment [c′; d′] and ZJ ′ = ZJ . It
is easy to see that J̃ = J

⋂
J ′ is a closed stable submodule with the indicator segment [c′; d′] and

ZJ̃ = ZJ .
By (4.6) it follows that J (ϕ) ⊂ J̃ . Further, by two previous parts of the proof, we get J̃ = J ′.

Taking into account (4.6) one more time, we obtain that

Ψ ∈ J̃ ⊂ J .

By the Beurling-Malliavin radius of completeness and multiplier theorems (see, e.g., [13, X-XI]),
we derive

Proposition 4.3. Submodule J ⊂ P contains non-zero functions if and only if the relation

dJ − cJ ≥ 2(ZJ ) (4.7)

holds.
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By Proposition 4.3, we see that the weak localizability problem is non-trivial only for submodules
satisfying (4.7). It turns out that there may be two essentially di�erent cases:

dJ − cJ = 2r(ZJ )

and
dJ − cJ > 2r(ZJ ). (4.8)

In the �rst case, there exist stable submodules, that are not weakly localizable. There also exist
weakly localizable ones (cf. [4], [6]). And vice versa, any stable submodule satisfying (4.8) is weakly
localizable.

Theorem 4.2. Let J ⊂ P be a stable submodule.
If

dJ − cJ > 2r(ZJ ) (4.9)

then J is non-trivial and weakly localizable.

Proof. By the Beurling-Malliavin theorems and Theorem A, taking into account the properties of
weights in Ω, we obtain that there exists non-zero function ϕ0 ∈ P such that

ZJ ⊂ Zϕ0 , [hϕ0(−π/2);hϕ0(π/2)] ⊂ (cJ ; dJ ).

According to Proposition 4.2, the inclusion J (ϕ0) ⊂ J holds. By Theorem 4.1, we get the required
assertion.

Corollary 4.1. Let J ⊂ P be a stable submodule and its indicator segment be not compact in (a; b).
Then, J is a weakly localizable submodule. In particular, the stable submodule J ⊂ Pa is localizable
if and only if

cJ = −a, dJ = a.

Remark 5. Notice that we work with dual scheme using two famous Beurling-Malliavin theorems.
This is one more example of applying them for solving problems which concern with completeness
of exponential systems and exponential bases (cf. [3], [4], [7], [9],[10], [12]).

5 Solving weak spectral synthesis problem in UΩ(a; b)

5.1 Spectrum of D-invariant subspace

From the previous section, taking into account Proposition 2.1 we see that a necessary condition
of weak spectral synthesis for a D-invariant subspace W ⊂ UΩ(a; b) is the property of stability of
its annihilator submodule. It follows that we need to know an equivalent dual requirement for the
subspace itself.

The �rst step on this way belongs to A. Aleman and B. Korenblum. In [9], the notion of spectrum
of D-invariant subspace in C∞(a; b) was introduced. Namely, the spectrum σW was de�ned as a
complement of C to the set of all regular points of the restricted operator D : W → W. Here, µ ∈ C
is regular if (D − µ id) is a bijective map in W . For any regular point µ ∈ C, there exists a linear
and continuous inverse operator

(D − µ id)−1 : W → W.
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A. Aleman and B. Korenblum proved the following two assertions (see [9, Theorem 2.1, Proposi-
tion 3.1]):
1) the spectrum of D-invariant subspace W ⊂ C∞(a; b) is either equal to the whole complex plane,
or equal to a �nite or denumerable (may be, empty) set of multiple points in C with the unique
possible limit point at in�nity;
2) the relation σW 6= C implies that J = F(W 0) is stable at any point λ 6∈ iσW (hence, as we have
noticed above, the annihilator submodule is stable).

We should mention that the initial form of the second assertion in [9] is a di�erent one, because
its authors used other techniques, not the dual scheme.

Our purposes are to establish the same assertion like the �rst cited one for D-invariant subspaces
W ⊂ UΩ(a; b) and to prove that σW is discrete if and only if the corresponding annihilator submodule
J = F(W 0) is stable.

Proposition 5.1. Let W ⊂ UΩ(a; b) be a D-invariant subspace, J be its annihilator submodule.
A point µ ∈ C is regular for the restricted operator D : W → W if and only if both following

conditions hold: 1) iµ 6∈ ZJ ; 2) submodule J is stable at λ = iµ.

Proof. Necessity. 1) Because µ 6∈ σW implies that eµt 6∈ W, according to the duality principle, we get
iµ 6∈ ZJ .
2) Without loss of generality, assume that µ = 0.

Let ϕ ∈ J be such that ϕ(0) = 0, and set

S = F−1(ϕ), S̃ = iF−1
(ϕ
z

)
.

Denote by D∗ a generalized di�erentiation operator acting in U ′Ω(a; b). This is an adjoint operator
to D. It is not di�cult to check that

F(D∗(S̃)) = ϕ.

This is equivalent to the relation
D∗(S̃) = S.

For any f ∈ W, there exists g ∈ W such that Dg = f. Therefore, it follows that

S̃(f) = S̃(Dg) = D∗(S̃)(g) = S(g) = 0.

Hence, we conclude that

S̃ ∈ W 0,
ϕ

z
∈ J .

Su�ciency. Without loss of generality, we assume that µ = 0.
Let A be an inverse-shift operator acting in P , that is

A(ψ)(z) =
ψ(z)− ψ(0)

z
.

The space UΩ(a; b) may be considered as strong dual space to P ′. Then, we see that the "lifting" Â
of A∗ acts in UΩ(a; b) and satis�es the relation

DÂ(f) = −if, f ∈ UΩ(a; b). (5.1)

Similarly, for the "lifting" D̂ of D∗, we have

AD̂(ϕ) = −iϕ, (5.2)
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and D̂ acts in P .
Let J be a stable submodule, 0 6∈ ZJ .
First, we consider the case J = Jϕ, ϕ(0) = 1. Setting S = F−1(ϕ), we write

W = WS = {f ∈ Ea : S(Dkf) = 0, k = 0, 1, 2, . . . }. (5.3)

For any g ∈ WS, set
f = iÂ(g)− S(iÂ(g)). (5.4)

Clearly, S(f) = 0. Because of (5.1), we have

Df = g,

Hence,
S(Dkf) = 0, k = 0, 1, 2, . . . ,

and f ∈ WS.
We have shown that D : WS → WS is a surjective operator. Further, because of ϕ(0) = 1, the

only solution of equation Df = 0 in WS is zero. It follows that D : WS → WS is a bijection.

Now, consider an arbitrary D-invariant subspace W . Let J be its annihilator submodule. There
exists ϕ ∈ J such that ϕ(0) = 1. For an arbitrary ψ ∈ J , we have

ψ = z
ψ − ψ(0)ϕ

z
+ ψ(0)ϕ.

This relation and the stability of J imply that

J = zJ + Jϕ.

By the duality principle, W = W1

⋂
WS, where W1 is the D-invariant subspace whose annihilator

submodule equals zJ , and WS is de�ned by formula (5.3) for S = F−1(ϕ).
For any g ∈ W , we de�ne function f by formula (5.4). Then, as above, we have f ∈ WS. Taking

into account (5.1) and (5.2), we also get f ∈ W1. Finally, we obtain f ∈ W and conclude that
D : W → W is a surjection. Clearly, this operator is also injective.

Corollary 5.1. For the spectrum of a D-invariant subspace W ⊂ Ea we have either σW = −iZJ ,
where J = F(W 0) if the annihilator submodule is stable,
or σW = C if the annihilator submodule is not stable.

Now we are ready to prove all new propositions formulated in this paper.
Assertions of Proposition 2.2 follow from Proposition 5.1 and Proposition 4.3 by the duality

argument.
Theorem 2.1 and Corollary 2.1 are dual propositions to Theorem 4.2 and Corollary 4.1, respec-

tively.
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1 Introduction

Let Ω be a compact set in Rm (m ≥ 2) (with nonempty interior), F a set (class) of complex�valued
continuous functions with domain Ω. In numerical integration, for the approximation of the integral∫

Ω

f(x)dx, f ∈ F,

expressions of the form (cubature formulas)

Q(f, CN ,ΛN) :=
N∑
k=1

c(k)f(λ(k)), (1.1)

are used; here CN := (c(1), . . . , c(N)) ∈ CN is the collection of weights and ΛN := (λ(1), . . . , λ(N)) ⊂
ΩN is the grid of nodes of the cubature formula, and

R(f,Ω, CN ,ΛN) :=

∫
Ω

f(x)dx−Q(f, CN ,ΛN)

is its error on a function f . Denote

R(F,Ω, CN ,ΛN) := sup{|R(f,Ω, CN ,ΛN)| | f ∈ F}.

The problem of optimal numerical integration under consideration here consists in determining
the exact order (in N) of the quantity

RN(F,Ω) := inf{R(F,Ω, CN ,ΛN) |CN ,ΛN} (1.2)
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(which is N -th optimal error of numerical integration on the class F) and constructing a sequence
(C∗N ,Λ

∗
N | N ∈ N) of weights and nodes such that the errors R(F,Ω, C∗N ,Λ

∗
N) of cubature formulas

(1.1) realize the order of optimal error (1.2). Cubature formulas Q(f, C∗N ,Λ
∗
N) are called optimal in

order.
A lot of works are devoted to the study of di�erent formulations of problems of optimal numerical

integration for various classes of smooth functions in several variables, see, for example, monographs
[17], [19], [20, Chapter 6] and survey [7, Chapter 8] and the bibliographies therein. Comprehensive
survey [7], monograph [20], papers [21], [11], [6], [3] show that the interest to problem of optimal
numerical integration we will study here is unabated; a fairly detailed history of the issue and an
extensive bibliographies can be found there as well.

In this paper, we give exact (in the sense of the order) estimates for quantity (1.2) in the case in
which Ω = Tm is the m-dimensional torus, F is the function class Bs τ

p q(Tm) of Nikol'skii �Besov type
or Ls τp q(Tm) of Lizorkin �Triebel type, for some range of the parameters of these classes.

Let us introduce the notation that we will use throughout this article. Let m ∈ N, m ≥ 2,
zm = {1, . . . , k}, N0 = N ∪ {0}, R+ = (0,+∞). For x = (x1, . . . , xm), y = (y1, . . . , ym) ∈ Rm, put
xy = x1y1 + . . .+xmym, |x| = |x1|+ . . .+ |xm|, |x|∞ = max(|xµ| : µ ∈ zm); x ≤ y (x < y)⇔ xµ ≤ yµ
(xµ < yµ) for all µ ∈ zm. For t ∈ R, t+ := max{0, t}.

Let S := S(Rm) and S ′ = S ′(Rm) be the Schwartz spaces of test functions and tempered distri-

butions, respectively; f̂ ≡ Fm(f) and F−1
m (f) direct and inverse Fourier transforms of f ∈ S ′(Rm);

in particular, for ϕ ∈ S,

ϕ̂(ξ) = Fm(ϕ)(ξ) =

∫
Rm

ϕ(x)e−2πi ξxdx, F−1
m (ϕ)(ξ) =

∫
Rm

ϕ(x)e2πi ξxdx, ξ ∈ Rm,

where ξx = ξ1x1 + ... = ξmxm.
Let Tm = (R/Z)m be the m-dimensional torus; sometimes it will be convenient for us to identify

Tm with the cube Q0 := [0, 1)m in Rm. Further, we denote by S̃ ′ ≡ S ′(Tm) the space of all
distributions f from S ′ which are 1-periodic in each variable (i.e. such that 〈f, ϕ(· + ξ)〉 = 〈f, ϕ〉
for all ϕ ∈ S and any ξ ∈ Zm) and by S̃ := S̃ := S(Tm) the space of all in�nitely continuously
di�erentiable functions on Tm endowed with the topology of uniform convergence of all derivatives
over Tm. Then the space S ′(Tm) is naturally identi�ed with the space that is topologically dual to

S(Tm). It is well known that f ∈ S̃ ′ if and only if supp f̂ ⊂ Zm, i.e. distribution f̂ vanishes on the
open set Rm\Zm.

For 0 < p ≤ ∞ and a measurable set G ⊂ Rm, as usual, let Lp(G) be the space of measurable
functions f : G→ C, which are Lebesgue integrable in p-th power (when p =∞ essentially bounded)
over G, endowed with the standard quasi-norm (norm if p ≥ 1)

‖ f |Lp(G) ‖ =
(∫

G

| f(x) |pdx
) 1
p

(p <∞), ‖ f |L∞(G) ‖ = ess sup(| f(x) | : x ∈ G).

For 0 < q ≤ ∞, let `q := `q(N0) be the space of all (complex) number sequences (cj) = (cj : j ∈
N0) with �nite standard quasi-norm (norm if q ≥ 1) ‖(cj) | `q‖.

Further, let `q(Lp(G)) (respectively, Lp(G; `q)) be the space of all function sequences (gj(x)) =
(gj(x) : k ∈ N0) (x ∈ G) with �nite standard quasi-norm (norm if p, q ≥ 1)

‖ (gj(x)) | `q(Lp(G)) ‖ = ‖ ( ‖ gj |Lp(G)‖) | `q ‖

(respectively,
‖ (gj(x)) |Lp(G; `q) ‖ = ‖ ‖ (gj(·)) | `q ‖ |Lp(G)‖).

In what follows we will often use the abbreviation Lp := Lp(Rm), L̃p := Lp(Tm), `q(Lp) :=

`q(Lp(Rm)), `q(L̃p) := `q(Lp(Tm)), Lp(`q) = Lp(Rm; `q), L̃p(`q) = Lp(Tm; `q).
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Let Q be the set of all half-open dyadic cubes in Rm of the form

Q = Qjξ = {x ∈ Rm : 2jx− ξ ∈ [0, 1)m } (j ∈ Z, ξ ∈ Zm).

For a cube Q = Qjξ, we denote by xQ := 2−j · ξ, l(Q)(= 2−j), j(Q) := j and |Q|(= 2−jm) its "lower
left" corner, side length, level and volume, respectively.

2 De�nition of function spaces B̃s τ
p q and F̃ s τ

p q

First we choose a test function η0 ∈ S such that

0 ≤ η̂0(ξ) ≤ 1, ξ ∈ Rm; η̂0(ξ) = 1 if |ξ|∞ ≤ 1; supp η̂0 = {ξ ∈ Rm | |ξ|∞ ≤ 2}.

Put η̂(ξ) = η̂0(2−1ξ)− η̂0(ξ), η̂j(ξ) := η̂j(ξ) = η̂(21−jξ), j ∈ N. Then

∞∑
j=0

η̂j(ξ) ≡ 1, ξ ∈ Rm,

i.e. {η̂j(ξ) | j ∈ N0} is a resolution of unity (by corridors) on Rm. It is clear that

η(x) = 2mη0(2x)− η0(x), ηj(x) := 2(j−1)mη(2j−1x), j ∈ N. (2.1)

Next we denote by ∆η
j operators on S ′ de�ned as follows: for f ∈ S ′

∆η
j (f, x) = f ∗ ηj(x) = 〈f, ηj(x− ·)〉; (2.2)

for the sake of convenience we put ∆η
j (f, x) ≡ 0 if j < 0.

We recall the de�nitions of two scales of the (inhomogeneous) smoothness spaces (on the whole
Euclidean space) related to Morrey spaces.

De�nition 1. Let s, τ ∈ R, 0 < p, q ≤ ∞. Then
I. the Nikol'skii �Besov type space Bs τ

p q := Bs τ
p q (Rm) consists of all distributions f ∈ S ′, for which

the quasi-norm

‖ f |Bs τ
p q ‖ = sup

Q∈Q

1

|Q|τ
‖(2sj∆η

j (f, x)sign((j + 1− j(Q))+)) | `q(Lp(Q))‖

is �nite,
II. the Lizorkin �Triebel type space F s τ

p q := F s τ
p q (Rm) (p <∞) consists of all distributions f ∈ S ′,

for which the quasi-norm

‖ f |F s τ
p q ‖ = sup

Q∈Q

1

|Q|τ
‖(2sj∆η

j (f, x)sign((j + 1− j(Q))+)) |Lp(Q; `q)‖

is �nite.

Remark 1. The inhomogeneous spaces Bs τ
p q and F s τ

p q are introduced in [24] and thoroughly studied
in [24], [15], [16], [22], [23]. We also note that (local) Morrey spaces and Nikol'skii � Besov � Morrey
and Lizorkin � Triebel � Morrey spaces have been attracted a lot of attention, see, for instance, [24],
[15], [16], [22], [23], [10], [9], [14] and bibliographies therein.
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Let g : Rm → C be an arbitrary function, its periodization g̃ : Tm → C is de�ned as the (formal)
sum of the series

∑
ξ∈Zm

g(x+ ξ).

By the Poisson summation formula (see, for example, [18, Chapter VII, Theorem 2.4]) it is easy

to see that if ϕ ∈ S then ϕ̃ ∈ S̃, and, moreover, ϕ̃(x) =
∑

ξ∈Zm ϕ̂(ξ)e2πiξx.
Let

Q̃ = {Q ∈ Q |Q ⊂ Q0 = [0, 1)m} = {Qjξ | j ∈ N0, ξ ∈ Zm : 0 ≤ ξ < 2j1} (0,1 ∈ Rm).

Next we denote by ∆̃η
j the operators de�ned on S̃ ′ (j ∈ N0), as follows: for f ∈ S̃ ′

∆̃η
j (f, x) = f ∗ η̃j(x) = 〈f, η̃j(x− ·)〉 =

∑
ξ∈Zm

η̂j(ξ)f̂(ξ)e2πi ξx. (2.3)

Again, for the sake of convenience we put ∆̃η
j (f, x) ≡ 0 if j < 0.

In next de�nition we introduce two scales of the smoothness spaces (over m−dimensional torus)
related to Morrey spaces.

De�nition 2. s, τ ∈ R, 0 < p, q ≤ ∞. Then
I. the Nikol'skii �Besov type space B̃s τ

p q := Bs τ
p q (Tm) consists of all distributions f ∈ S̃ ′, for which

the quasi-norm

‖ f | B̃s τ
p q ‖ = sup

Q∈Q̃

1

|Q|τ
‖(2sj∆̃η

j (f, x)sign((j + 1− j(Q))+)) | `q(Lp(Q))‖

is �nite,
II. the Lizorkin �Triebel type space F̃ s τ

p q := F s τ
p q (Tm) (p <∞) consists of all distributions f ∈ S̃ ′,

for which the quasi-norm

‖ f | F̃ s τ
p q ‖ = sup

Q∈Q̃

1

|Q|τ
‖(2sj∆̃η

j (f, x)sign((j + 1− j(Q))+)) |Lp(Q; `q)‖

is �nite.
We will call the unit balls B̃s τ

p q := Bs τ
p q(Tm) and F̃s τp q := Fs τp q(Tm) of those spaces the Nikol'skii-

Besov and Lizorkin-Triebel classes, respectively.

Remark 2. Evidently the spaces B̃s 0
p q and F̃ s 0

p q coincide with the well�known isotropic periodic

Nikol'skii-Besov spaces B̃s
p q and Lizorkin-Triebel spaces F̃ s

p q respectively (see, for instance, [13]).

Furthermore, it is not hard to see that for any τ ≤ 0 B̃s τ
p q = B̃s

p q and F s τ
p q = F̃ s

p q in the sense of
equivalent quasi-norms unlike the spaces Bs τ

p q and F s τ
p q : as well known, B

s τ
p q = {0} and F s τ

p q = {0}
when τ < 0 (see [24, Chapter 2]).

We note that periodic Morrey spaces and Nikol'skii � Besov � Morrey and Lizorkin � Triebel �
Morrey spaces (over Tm) have been attracted increasing attention as well, see, for instance, [1], [12],
[5] and bibliographies therein.

We will need ϕ � transform characterization for the spaces B̃s τ
p q and F̃ s τ

p q .
We choose test functions φ0, φ ∈ S satisfying the following conditions :

supp φ̂0 ⊂ {ξ : |ξ|∞ ≤ 2}, supp φ̂ ⊂ {ξ : 1/2 ≤ |ξ|∞ ≤ 2}, (2.4)

|φ̂0(ξ)| ≥ c > 0 when |ξ|∞ ≤
5

3
, |φ̂(ξ)| ≥ c > 0 when

3

5
≤ |ξ|∞ ≤

5

3
. (2.5)



Optimal cubature formulas for Morrey type function classes on multidimensional torus 29

Next we choose test functions ψ0, ψ ∈ S satisfying conditions (2.4), (2.5) (with ψ instead of φ) and
such that ̂̆ϕ0(ξ)ψ̂0(ξ) +

∑
j∈N

̂̆
φ(2−jξ)ψ̂(2−jξ) = 1, ξ ∈ Rm (2.6)

(ğ(x) ≡ ḡ(−x), z̄ is the number complex conjugate to z ∈ C). For Q = Qjλ ∈ Q̃, we set (functions
φ̃j are de�ned via (2.1) and the periodization)

φ̃Q(x) ≡ |Q|1/2φ̃j(Q)(x− xQ) = 2−jm/2φ̃j(x− 2−jλ),

functions ψ̃Q are de�ned analogously. Then in view of (2.6) it is not hard to show that for any

f ∈ S̃ ′ we have the following decomposition (the convergence in the sense of S̃ ′)

f =
∑
Q∈Q̃

〈f, φ̃Q〉 ψ̃Q =
∑
j∈N0

∑
jQ=j

〈f, φ̃Q〉 ψ̃Q. (2.7)

Let us introduce (direct) ϕ � transform S̃ϕ on S̃ ′ as follows

S̃ϕ : S̃ ′ 3 f 7→ S̃ϕ(f) ≡ (〈f, φ̃Q〉 |Q ∈ Q̃),

and ϕ � transform T̃ψ (formal left inverse to S̃ϕ) as follows

T̃ψ : (cQ) = (cQ |Q ∈ Q̃) 7→ T̃ψ((cQ)) =
∑
Q∈Q̃

cQ ψ̃Q.

Equality (2.7) means that the composition T̃ψ ◦ S̃ϕ is the identity on S̃.

De�nition 3. Let 0 < p, q ≤ ∞; s, τ ∈ R. A number sequence (cQ) = (cQ |Q ∈ Q̃) belongs to the
space Ãs τp q , if ‖(cQ) | Ãs τp q‖ <∞, where A ∈ {B, F} and

‖(cQ) | B̃s τp q‖ = sup
P∈Q̃

1

|P |τ
{ ∞∑
j=j(P )

2j(s+
m
2
−m
p

)q
[ ∑
Q∈Q̃:Q⊂P,j(Q)=j

|cQ|p
]q/p}1/q

,

‖(cQ) | F̃s τp q‖ = sup
P∈Q̃

1

|P |τ
{∫

P

[ ∞∑
j=j(P )

2j(s+
m
2

)q
∑

Q∈Q̃:Q,j(Q)=j

|cQ|qχQ(x)
]p/q}1/p

(p <∞).

(natural modi�cation if p =∞ and/or q =∞)

(Here χQ is the characteristic function of Q.)

Theorem 2.1. Let (A, A) ∈ {(B, B), (F, F)}, 0 < p, q ≤ ∞, (p <∞ if (A, A) = (F, F)), s ∈ R, τ ≥ 0.

Then a distribution f ∈ S̃ ′ belongs to Ãs τp q , if and only if the sequence (〈f, φ̃Q〉 |Q ∈ Q̃) belongs to

Ãs τp q , moreover,

‖ (〈f, φ̃Q〉) | Ãs τp q ‖ ≈ 1 ‖ f | Ãs τp q ‖.

Furthermore, the operators S̃ϕ : Ãs τp q → Ãs τp q and T̃ψ : Ãs τp q → Ãs τp q are bounded and their composition

T̃ψ ◦ S̃ϕ is the identity on Ãs τp q.

1sign "≈" means that there exist positive constants C1, C2 independent of f ∈ Ãs τp q such that C1‖ f | Ãs τp q ‖ ≤
‖ (〈f, φ̃Q〉) | Ãs τp q ‖ ≤ C2‖ f | Ãs τp q ‖.
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Remark 3. The notion of ϕ � transform was invented by M. Frazier and B. Jawerth [8]. This
theorem is the periodic analogue of Theorem 2.1 in [24] for the spaces Bs τ

p q and F
s τ
p q . A special case

of Theorem 2.1 for the isotropic spaces B̃s
p q and F̃

s
p q was established in [4].

Theorem 2.2. Let A ∈ {B,F}, 0 < p, q ≤ ∞, (p < ∞ when A = F ), s ∈ R, τ ≥ 0. Then we have
the following continuous embedding

Ãs τp q ↪→ B̃
s+τm−m

p
∞∞ .

Moreover, if τ > 1
p
, 0 < q <∞ or τ ≥ 1

p
, q =∞ we have

Ãs τp q = B̃
s+τm−m

p
∞∞

in the sense of equivalent quasi-norms.

Remark 4. The �rst statement of this theorem is an analogue of the results on the embedding of
the spaces As τp q(Rm) into the space Cub(Rd) of uniformly continuous and bounded functions, see [24,
Chapter 2, Section 2.2] and [16, Theorem 4.4]. Second statement is a direct periodic analogue of

Theorem 2 in [22]. Note that for s > 0 the space B̃s
∞∞ coincides with the well-known Zygmund

spaces Zs(Tm) (see details in [13, Chapter 3]).

3 Optimal error of numerical integration
on classes B̃s τ

p q and L̃s τp q

In this section, we formulate and discuss the main result of the paper on estimates exact in order
for optimal errors of numerical integration on the Nikol'skii �Besov and Lizorkin �Triebel classes
B̃s τ
p q = Bs τ

p q(Tm) and F̃s τp q = Fs τp q(Tm) under some condition on parameters s, p, q, τ,m (s ∈ R+, 1 ≤
p, q ≤ ∞, τ ∈ [0, 1/p]).

In what follows, we will use the signs� and � of the ordinal inequality and equality: for functions
F : R+ → R+ and H : R+ → R+ we write F (u) � H(u) as u → ∞, if there exists a constant
C = C(F,H) > 0 such that the inequality F (u) ≤ CH(u) holds true for u ≥ u0 > 0; F (u) � H(u)
if F (u)� H(u) and H(u)� F (u) simultaneously.

Main result of the paper is the following

Theorem 3.1. Assume that A ∈ {B,F}, 1 ≤ p, q ≤ ∞, s > 0, τ ≥ 0 (p < ∞ if A = F). Then the
relation

RN(Ãs τ
p q) � N−

s
m
−(τ− 1

p
)+ as N →∞

holds true.

Remark 5. By Theorem 2.2 the hypotheses of Theorem 3.1 guarantee the continuous embedding
Ãs mp q ↪→ C(Tm), which is required in problems of numerical integration (A ∈ {B,F}).

Remark 6. As mentioned in Introduction, there is an extensive literature devoted to optimal cuba-
ture formulas for classes of functions of several variables. Here we discuss results directly related to
Theorem 3.1, namely, results on function classes on the torus included in the Nikol'skii � Besov and
Lizorkin � Triebel scales from De�nition 1.

For s > m/p, 1 ≤ p ≤ ∞, the estimates of RN(F̃), exact in order, for the isotropic Sobolev and

Nikol'skii classes (F̃ = W̃s
p and F̃ = H̃s

p ≡ B̃s
p∞) are given in [20, Chapter 3] (in fact, the anisotropic

case is also considered there):

RN(W̃s
p) � RN(H̃s

p) � N−
s
m as N →∞
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and the simplest sequence of "parallelepipedal" cubature formulas

Q?
N(f) :=

∑
ξ∈Zm:0≤ξµ<M(N),µ∈zm

1

M(N)m
f
( ξ

M(N)

)
,

M(N) ∈ N : M(N)m ≤ N < (M(N) + 1)m,

can be taken as optimal one.
We recall that H̃s

∞ = Zs(Tm) and for 1 < p < ∞ we have W̃ s
p = F̃ s

p2 in the sense of equivalent
norms (see details in [13, Chapter 3]).

Further, in [3] the following sharp estimates are obtained: for A ∈ {B,F}, 1 ≤ p, q ≤ ∞ (p <∞
if A = F ), s > m/p if A = B and s > max{m/p,m/q} if A = F we have

RN(Ãs
pq) � N−

s
m as N →∞.

In [3], to prove upper estimates, the well-known Frolov's cubature formulas are used because there
it is studied general case of the function spaces of product type, in particular, the function spaces
with mixed smoothness. But it is easy to see that for isotropic classes Ãs

pq the sequence of "paral-
lelepipedal" cubature formulas Q?

N(f) can be taken as optimal one as well.
Thus, in view of Theorem 2.2 it remains to prove the theorem for the case 0 < τ ≤ 1/p.

4 Proof of Theorem 3.1

By De�nition 1 it is evident that the quasi-norms of both scales B̃s τ
pq and F̃ s τ

pq are monotonic with

respect to parameter τ : for any τ1 < τ2 we have ‖ · | Ãs τ1pq ‖ ≤ ‖ · | Ãs τ2pq ‖. Hence, the elementary

embedding Ãs τ2pq ↪→ Ãs τ1pq holds (A ∈ {B,F}). From here and Remark 6, it follows that the upper
estimates

RN(Ãs τ
pq )� RN(Ãs

pq) � N−
s
m as N →∞

hold for any τ > 0.
Now we turn to proving the matching lower estimates.
Taking into account the monotonicity of norms ‖ · | Ãs τpq ‖ (with respect to τ) as well as Jensen's

inequality (‖ · | `q1‖ ≥ ‖· | `q2‖ if 1 ≤ q1 < q2 ≤ ∞), we get the following simple inclusions B̃s τ
p q ⊃ B̃

s 1
p

p 1

and F̃s τp q ⊃ F̃
s 1
p

p 1 if 1 ≤ q ≤ ∞ and τ ≤ 1/p.
Since the estimates in Theorem 3.1 do not depend on p, q and τ ≤ 1/p, in view of inclusions

mentioned above, it su�ces to prove the required lower estimates for the classes B̃
s 1
p

p 1 and F̃
s 1
p

p 1 .

Moreover, for B̃
s 1
p

p 1 , we can restrict ourselves to the case 1 ≤ p < ∞ because the required estimate

for B̃s 0
∞ 1 ≡ B̃s

∞ 1 is known (see Remark 6).
To this end, we apply Bakhvalov's method to obtain those lower bounds for optimal error

RN(F,Ω). This method was proposed by N.S. Bakhvalov [2]. Its idea is for a given N and any
cubature formula (1.1) to construct a "bad" function gΛN , ‖gΛN |F‖ = 1, vanishing at all nodes, in
the form of a sum with positive coe�cients of special shifted dilations, a suitable �xed smooth bump
function for which

R(gΛN ,Ω, CN ,ΛN) =

∫
Ω

gΛN (x)dx = ‖gΛN | L̃1‖

has the required order.
To construct those "bad" functions, we will use the so-called atomic decomposition of the spaces

Ãs τpq .
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We need some notions and notation.
For s, t ∈ R, 0 < p, q ≤ ∞, we de�ne the numbers: btc (the integer part of t), t∗ = t − btc,

p∧q = min{p, q}, σp = m(1/p−1)+, σpq = m(1/(p∧q)−1)+. Further, τsp = 1/p+(1−(σp+m−s)∗)/m
if s ≤ σp, and τsp = 1/p+ (s− σp)/m if s > σp, τspq = 1/p+ (1− (σpq +m− s)∗)/m if s ≤ σpq, and
τspq = 1/p+ (s− σpq)/m if s > σp.

Let Q ∈ Q. A function aQ : Tm → C is called a smooth atom ("with a support close to Q") if
the following conditions are satis�ed:

supp (aQ) ⊂ 3̃Q, |∂αaQ(x)| ≤ |Q|−1/2−|α|/m, |α| ≤ max{bs+ τm+ 1c, 0}.

(Here 3Q is the dilation of Q with the same center, D̃ is " the periodic continuation" of a set D ⊂ Q0,
i.e.

D̃ = Zm +D = ∪ξ∈Zm(ξ +D), ξ +D = {ξ + x |x ∈ D}.)

Then we call the sequence (aQ|Q ∈ Q) a family of (smooth) atoms for Ãs,τp,q .

Theorem 4.1. Let (A, A) ∈ {(B, B)(F, F)}, s ∈ R, 0 < p, q ≤ ∞. Assume that 0 ≤ τ < τsp if A = B

and 0 ≤ τ < τspq, p <∞ if A = F . Then f ∈ Ãs τp q if and only if there exist (aQ |Q ∈ Q̃), a family of

atoms for Ãs τp q, and a sequence (cQ |Q ∈ Q̃) ∈ Ãs τp q such that

f =
∑
Q∈Q̃

cQ aQ (convergence in S̃ ′) (4.1)

and
‖ f | Ãs τp q‖ ≈ inf ‖(cQ |Q ∈ Q̃)) | Ãs τp q‖, (4.2)

where inf is taken over all representations (4.1).

Remark 7. This theorem is a direct periodic analog of Theorem 3.3 from [24] for the spaces Ãs τp q .
Notice that in [3] we use an analog of Theorem 4.1 for product spaces, which includes as special case

atomic characterizations for isotropic function spaces B̃s τ
p q and F̃

s τ
p q (with the restriction p <∞ in the

case of F−spaces). Up to now for function spaces F̃ s
∞ q(0 < q <∞), atomic decomposition remained

unproven. Theorem 4.1 completes this gap because we have the coincidence F̃ s
∞ q = F̃

s 1/p
p q (0 < p <

∞, 0 < q ≤ ∞) in the sense of equivalent quasi-norms. In non-trivial case 0 < p, q < ∞, the

coincidence F s
∞ q(Rm) = F

s 1
p

p q (Rm) is shown in [24, Chapter 2], arguing in periodic settings is the
same.

Remark 8. Here we recall a very important (correct and constructive) de�nition of the Lizorkin �
Triebel spaces F s

∞ q(Rm)(0 < q < ∞) invented by M. Frazier and B. Jawerth [8] : for s ∈ R,
0 < q ≤ ∞, the Lizorkin �Triebel space F s

∞ q := F s
∞ q(Rm) consists of all distributions f ∈ S ′, for

which the quasi-norm

‖ f |F s
∞ q ‖ = ‖∆η

0(f) |L∞‖+
(

sup
Q∈Q:j(Q)≥1

1

|Q|

∫
Q

∞∑
j=j(Q)

|2sj∆η
j (f, x)|qdx

)1/q

is �nite.
Moreover, in [8] the following quasi-norm

‖ f |F s
∞ q ‖? =

(
sup

Q∈Q:j(Q)≥0

1

|Q|

∫
Q

∞∑
j=j(Q)

|2sj∆η
j (f, x)|qdx

)1/q
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is de�ned which is equivalent to the original one.
In [4], we studied the spaces (there di�erent notation was used) F̃ s

∞ q which are de�ned as follows

: for s ∈ R, 0 < q < ∞, the Lizorkin �Triebel space F̃ s
∞ q := F s

∞ q(Tm) consists of all distributions

f ∈ S̃ ′, for which the quasi-norm

‖ f | F̃ s
∞ q ‖ =

(
sup

Q∈Q:j(Q)≥0

1

|Q|

∫
Q

∞∑
j=j(Q)

|2sj∆η
j (f, x)|qdx

)1/q

is �nite.

Proof of Theorem 3.1. Now we turn directly to constructing the "bad" functions mentioned
above.

We pick a function h ∈ S such that

supp (h) = [0, 1]m, ĥ(0) > 0, max{|∂αh(x)| : x ∈ [0, 1]m, α ≤ bs+ τm+ 1c} = 1.

For Q ∈ Q̃, we de�ne

hQ(x) := |Q|−1/2h(2j(Q) · (x− xQ)) := 2j(Q)m/2h(2j(Q) · (x− xQ))

and their periodizations h̃Q(x). It is clear that the sequence (h̃Q |Q ∈ Q̃) is a family of atoms for all

Ãs τpq .

For a sequence c := (cQ |Q ∈ Q̃) (which will be speci�ed later), we consider a function

H̃c(x) :=
∑
Q∈Q̃

cQh̃Q(x).

First we evaluate the integral
∫
Q0
H̃c(x)dx :∫

Q0

H̃c(x)dx = ĥ(0)
∑
Q∈Q̃

cQ|Q|1/2. (4.3)

In view of Theorem 4.1 (see (4.2)) we get the inequality

‖H̃c | Ãs τpq ‖ � ‖c | Ãs τpq ‖. (4.4)

Next we write down the norms ‖c | B̃
s 1
p

p1 ‖ and ‖c | F̃s 1
11‖ (in view of Remark 7 and Theorem 2.1 the

last norm is equivalent to ‖c | F̃
s 1
p

p1 ‖) :

‖c | B̃
s 1
p

p1 ‖ = sup
P⊂Q̃

1

|P |1/p
∞∑

j=j(P )

2j(s+
m
2
−m
p

)
( ∑
Q⊂P :j(Q)=j

|cQ|p
)1/p

=: sup
P⊂Q̃

J(P ) (4.5)

and from the coincidence of the spaces B̃s 1
11 and F̃s 1

11 and the equality of their norms ‖· | B̃s 1
11‖ = ‖· | F̃s 1

11‖
we get

‖c | F̃s 1
11‖ = ‖c | B̃s 1

11‖ = sup
P⊂Q̃

1

|P |

∞∑
j=j(P )

2j(s−
m
2

)
∑

Q⊂P :j(Q)=j

|cQ|. (4.6)

Let N ∈ N be an arbitrary number and Q( · , CN ,ΛN) be an arbitrary cubature formula of form
(1.1), ΛN := (λ(1), . . . , λ(N)) ⊂ ΩN its grid of nodes. We choose the natural number jN such that
2(jN−2)m ≤ N < 2(jN−1)m.
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Further, we denote Q̃j := {Q ∈ Q̃ | j(Q) = j}. It is clear that in the collection Q̃jN consisting of
2jNm cubes there exist at least 2(jN−1)m cubes Q(1), . . . , Q(2(jN−1)m) which are free of nodes belonging
to ΛN . We put Q̄(ΛN) = Q(1) ∪ · · · ∪Q(2(jN−1)m).

Now we are in position to de�ne the required sequence of coe�cients c? = (c?Q |Q ∈ Q̃):

c?Q = 0 if Q ∩ Q̄(ΛN) = ∅, c?Q = cj = 2−jt if Q ∈ Q̃j and Q ⊂ Q̄(ΛN),

here the real number t > s + m/2 is �xed. Then, it is not hard to verify that for any λ ∈ ΛN we

have H̃c
?(λ) = 0. Therefore,

Q(H̃c
? , CN ,ΛN) = 0, R(H̃c

? , Q0, CN ,ΛN) =

∫
Q0

H̃c
?(x)dx. (4.7)

From (4.5) and the de�nition of c? it follows that for any P with j(P ) < jN

J(P ) =
1

|P |1/p
∞∑

j=jN

2j(s+
m
2
−m
p

)cj

( ∑
Q⊂P∩Q̄(ΛN ):j(Q)=j

1
)1/p

≤

≤ 2j(P )m
p

∞∑
j=jN

2j(s+
m
2
−m
p

)cj2
(j−j(P ))m

p =
∞∑

j=jN

2j(s+
m
2

)cj � 2jN (s+m
2
−t),

further, for any P with j(P ) ≥ jN such that P ∩ Q̄(ΛN) = ∅ obviously we have J(P ) = 0. Finally,
for any P with j(P ) ≥ jN such that P ⊂ Q̄(ΛN) = ∅ we get

J(P ) =
1

|P |1/p
∞∑

j=j(P )

2j(s+
m
2
−m
p

)cj

( ∑
Q⊂P :j(Q)=j

1
)1/p

=

= 2j(P )m
p

∞∑
j=j(P )

2j(s+
m
2
−m
p

)cj2
(j−j(P ))m

p =
∞∑

j=j(P )

2j(s+
m
2

)cj � 2j(P )(s+m
2
−t) ≤ 2jN (s+m

2
−t),

Hence, taking into account (4.4) we obtain

‖H̃c
? | B̃

s 1
p

p1 ‖ � ‖c? | B̃
s 1
p

p1 ‖ � 2jN (s+m
2
−t),

in particular,
‖H̃c

? | F̃ s 1
11 ‖ � ‖c? | F̃s 1

11‖ � 2jN (s+m
2
−t),

From (4.3) and the de�nition of c? it follows that∫
Q0

H̃c
?(x)dx = ĥ(0)

∑
Q∈Q̃

c?Q|Q|1/2 = ĥ(0)2(jN−1)m
∑

Q∈Q(1)

c?Q|Q|1/2 = ĥ(0)2(jN−1)m×

×
∞∑

j=jN

cj2
−jm/2

∑
Q∈Q(1):j(Q)=j

1 = ĥ(0)2(jN−1)m

∞∑
j=jN

cj2
−jm/22(j−jN )m � 2jN (m/2−t).

Therefore, for an arbitrary cubature formula Q( · , CN ,ΛN) and functions

h̃c
?

:=
H̃c

?

‖H̃c
? | B̃s 1/p

p1 ‖
∈ B̃

s 1/p
p1 , g̃c

?

:=
H̃c

?

‖H̃c
? | F̃ s 1

11 ‖
∈ F̃

s 1/p
p1
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we get

R(B̃
s 1/p
p1 , CN ,ΛN) ≥ R(h̃c

?

, CN ,ΛN)�
∫
Q0

H̃c
?(x)dx/‖c? | B̃

s 1
p

p1 ‖ � 2−sjN � N−
s
m

and

R(F̃
s 1/p
p1 , CN ,ΛN) ≥ R(g̃c

?

, CN ,ΛN)�
∫
Q0

H̃c
?(x)dx/‖c? | F̃s 1

11‖ � 2−sjN � N−
s
m

From the last two inequalities it follows that

RN(F̃
s 1/p
p1 )� N−

s
m , RN(B̃

s 1/p
p1 )� N−

s
m as N →∞.

Thus, the required lower estimates

RN(Ãs τ
pq )� N−

s
m as N →∞.

are established, which completes the proof of Theorem 3.1. �

Remark 9. Here we emphasize the most important special case of Theorem 3.1 (1 ≤ q <∞)

RN(F̃s∞q) � N−
s
m as N →∞,

which completes investigation of optimal numerical integration on isotropic function spaces of both
Nikol'skii �Besov and Lizorkin �Triebel scales.

Remark 10. Proofs of Theorem 2.1, Theorem 2.2 and Theorem 4.1 will be published elsewhere.
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1 Introduction

In the realm of the classical analysis, the utilization of weak Lp spaces in both harmonic analysis and
martingale theory has received signi�cant scholarly attention. These spaces have proven instrumen-
tal in various areas such as interpolation theory, rearrangement-invariant function spaces, weighted
inequalities, singular integral operators, and beyond, playing pivotal roles in advancing theoretical
frameworks and facilitating analytical investigations. For example, using the weak Lp norm, Ledoux
and Talagrand [16] conducted an investigation into the integrability properties and tail probability
behavior of p-stable random variables. Soria [19] delved into the discussion of weak-type Lorentz
space Λp,∞(ω) for 0 < p < ∞. Fe�erman and Soria [11] also addressed various properties of the
weak Hardy space H1. Weisz [23, 24] dedicated his studies to the weak atom decompositions of
martingales and martingale inequalities within weak Hardy spaces. Furthermore, Cwikel and other
scholars extensively examined the dual of weak Lp spaces (cf. [6, 7]).

Liu/Hou/Wang [17] introduced the weak version of Orlicz spaces and proved the Burkholder-
Gundy inequalities for martingales in these weak Orlicz spaces. The noncommutative version of
the weak Orlicz spaces was investigated in [1] and was utilized in the theory of noncommutative
martingales. In [3], Raikhan and the author considered the weak noncommutative Orlicz space cases
associated with arbitrary faithful normal locally �nite weights on a semi-�nite von Neumann algebra
M, and characterized the dual spaces of the noncommutative weak Orlicz-Hardy spaces.

Since the weak versions of Lp spaces and Orlicz spaces have opened new research avenues in
(noncommutative) harmonic analysis and (noncommutative) martingale theory, we are investigating
a weak version of symmetric spaces. We will apply them in the study of (noncommutative) harmonic
analysis and (noncommutative) martingale theory. Notice that for a symmetric (quasi-) Banach
space E, we de�ne the weak version of E as the usual Marcinkiewicz space MϕE associated with the
fundamental function ϕE of E. In the rearrangement-invariant Banach space case, it is the space
M(E) ([4, De�nition 2.5.2]).

The purpose of this paper is to investigate a weak version of symmetric spaces and to study some
properties of noncommutative spaces associated with the weak version of symmetric spaces.
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2 Preliminaries

Let L0(0, 1) be the set of all Lebesgue measurable almost everywhere �nite real-valued functions on
(0, 1). For f ∈ L0(0, 1) we de�ne the distribution function λ(f) of f by

λs(f) = m({ω ∈ (0, 1) : |f(ω)| > s}), s > 0

and its decreasing rearrangement µ(f) by

µt(f) = inf{s > 0 : λs(f) ≤ t}, t > 0.

If f, g ∈ L0(0, 1) and ∫ t

0

µs(f)ds ≤
∫ t

0

µs(g)ds, for all t > 0,

we say f is majorized by g, and write f 4 g.
If E is a (quasi-)Banach lattice of measurable functions on (0, 1) (with the Lebesgue measure)

and satis�es the following properties:
if f ∈ E, g ∈ L0(0, 1) and µ(g) ≤ µ(f) implies that g ∈ E and ‖g‖E ≤ ‖f‖E,

then E is called a symmetric (quasi-)Banach space on (0, 1). E is called fully symmetric if, in
addition,

for x ∈ L0(I) and y ∈ E with x � y it follows that x ∈ E and ‖x‖E ≤ ‖y‖E.
For 0 < p <∞, E(p) will denote the quasi-Banach lattice de�ned by

E(p) = {f : |f |p ∈ E},

equipped with the quasi-norm

‖f‖E(p) = ‖|f |p‖
1
p

E.

Observe that, if 0 < p, q <∞, then (E(p))(q) = E(pq). It is to be noted that, if E is a Banach space
and p > 1, then the space E(p) is a Banach space and is usually called the p-convexi�cation of E.

Let 0 < α, β <∞. If there a constant C > 0 such that for all �nite sequences (fn)n≥1 in E

‖(
∑
|fn|α)

1
α‖E ≤ C(

∑
‖fn‖αE)

1
α

(respectively, ‖(
∑
|fn|β)

1
β ‖E ≥ C−1(

∑
‖fn‖βE)

1
β ),

then E is called α-convex (respectively, β-concave). The least such constant C is called the
α-convexity (respectively, β-concavity) constant of E and is denoted by M (α)(E) (respectively,
M(β)(E)). If E is α-convex and β-concave, then E(p) is pα-convex and pβ-concave withM (pα)(E(p)) =

M (α)(E)
1
p and M(pβ)(E

(p)) = M(β)(E)
1
p (see [9, Proposition 3.1]). Therefore, if E is α-convex then

E( 1
α

) is 1-convex, so it can be renormed as a Banach lattice (see [15, Proposition 1.d.8] and [22, p.
544]).

A symmetric (quasi-)Banach space E on (0, 1) is said to have the Fatou property if for every net
(xi)i∈I in E satisfying 0 ≤ xi ↑ and supi∈I ‖xi‖E < ∞ the supremum x = supi∈I xi exists in E and
‖xi‖E ↑ ‖x‖E; We say that E has order continuous norm, if for every net (fi)i∈I in E such that fi ↓ 0,
‖fi‖E ↓ 0 holds; E is called a rearrangement invariant space if it has order continuous (quasi-)norm
or the Fatou property.

Let Ei be a symmetric (quasi-)Banach space on (0, 1), i = 1, 2. We de�ne the pointwise product
space E1 � E2 as

E1 � E2 = {f : f = f1f2, fi ∈ Ei, i = 1, 2} (2.1)
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with a functional ‖f‖E1�E2 de�ned by

‖f‖E1�E2 = inf{‖f1‖E1‖f2‖E2 : f = f1f2, fi ∈ Ei, i = 1, 2}.

If Ei is a symmetric quasi-Banach space on (0, 1), i = 1, 2, then by [3, Corollary 1], there is an
equivalent quasi-norm ‖ · ‖ such that (E1 � E2, ‖ · ‖) is a symmetric quasi-Banach space on (0, 1).

It is clear that if E is a symmetric (quasi-)Banach space on (0, 1), then for di�erent Lebesgue
measurable subsets A of (0, 1) with the same measure m(A) = t, the value of ‖χA‖ remains constant,
where χA is the characteristic function of A.

De�nition 1. Let E be a symmetric (quasi-)Banach space on (0, 1). The fundamental function ϕE
is de�ned by ϕE(t) = ‖χA‖, where t ∈ [0, 1) and A is a Lebesgue measurable subset of (0, 1) with
m(A) = t.

Note that ϕL1(0,1) = t (see [4, p. 65]). Let 0 < p < ∞. If A ⊂ (0, 1) with m(A) = t (0 ≤ t < 1),
then

ϕLp(0,1)(t) = ‖χA‖p = ‖χA‖
1
p

1 = t
1
p .

Let MϕE(0, 1) be the usual Marcinkiewicz space:

MϕE(0, 1) = {f ∈ L0(0, 1) : ‖f‖MϕE
= sup

t>0

ϕE(t)

t

∫ t

0

µs(f)ds <∞}.

De�nition 2. Let E be a symmetric (quasi-)Banach space on (0, 1). We call MϕE(0, 1) is a weak
version of E and denote it by E∞.

The classical weak Lp space Lp,∞(0, 1) (1 ≤ p < ∞) is de�ned as the set of all measurable
functions f on (0, 1) such that

‖f‖Lp,∞ = sup
t>0

t
1
pµt(f) <∞.

For p > 1, Lp,∞(0, 1) can be renormed into a Banach space. More precisely,

f 7→ sup
t>0

t−1+ 1
p

∫ t

0

µs(f)ds

gives an equivalent norm on Lp,∞(0, 1). We refer to [12] for more information about weak Lp spaces.
If E = Lp(0, 1) (1 < p <∞), then E∞ = Lp,∞(0, 1). But for 0 < p ≤ 1, if f ∈ (Lp(0, 1))∞, then

‖f‖(Lp(0,1))∞ = sup
t>0

t
1
p
−1

∫ t

0

µs(f)ds =

∫ 1

0

µs(f)ds = ‖f‖1.

Hence, (Lp(0, 1))∞ = L1(0, 1) and it is di�erent from the classical weak Lp space.
Let Φ be an N-function, we de�ne

aΦ = inf
t>0

tΦ′(t)

Φ(t)
and bΦ = sup

t>0

tΦ′(t)

Φ(t)
.

If bΦ < ∞, then the fundamental function of Orlicz space LΦ(0, 1) on (0, 1) equipped with the
Luxemburg norm, is the following

ϕLΦ(Ω)(t) = 1/Φ−1(
1

t
), t > 0,
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where the Luxemburg norm is de�ned by

‖x‖Φ = inf{λ > 0 :

∫ 1

0

Φ(
|x|
λ

)dx ≤ 1}.

Hence, if E = LΦ(0, 1) and 1 < aΦ ≤ bΦ <∞, then E∞ = LΦ,∞(0, 1).
For more details on symmetric (quasi-)Banach space and Orlicz spaces we refer to [4, 5, 9, 14,

15, 18, 21, 25].
LetM be a �nite von Neumann algebra with a normal �nite faithful trace τ (τ(1) = 1) and L0(M)

be the topological ∗-algebra of measurable operators with respect to (M, τ). For x ∈ L0(M), we
de�ne the distribution function λ(x) of x as follows:

λt(x) = τ(e(t,∞)(|x|)) for t > 0,

where e(t,∞)(|x|) is the spectral projection of |x| in the interval (t,∞). We also de�ne the generalized
singular numbers µ(x) of x as

µt(x) = inf{s > 0 : λs(x) ≤ t} for t > 0.

Recall that both functions λ(x) and µ(x) are decreasing and continuous from the right on (0,∞) (for
further information, see [10]).

For a symmetric quasi-Banach function space E on (0, 1), set

E(M) = {x ∈ L0(M) : µ(x) ∈ E};

‖x‖E = ‖µ(x)‖E, x ∈ E(M).

Recall that (E(M), ‖.‖E) is a Banach space and we call (E(M), ‖.‖E) a noncommutative symmetric
Banach space (see for reference [8, 20]).

3 Properties

If E1 and E2 are symmetric Banach spaces on (0, 1), then by [13, Theorem 2], we know that

ϕE1�E2(t) = ϕE1(t)ϕE2(t), t ≥ 0. (3.1)

We claim that if E is a symmetric (quasi-)Banach space on (0, 1) and 0 < p <∞, then

ϕE(p)(t) = ϕE(t)
1
p , t ≥ 0. (3.2)

Indeed, if A ⊂ (0, 1) with m(A) = t (0 ≤ t < 1), then

ϕE(p)(t) = ‖|χA|p‖
1
p

E = ‖χA‖
1
p

E = ϕE(t)
1
p .

Proposition 3.1. Let Ei be a symmetric (quasi-)Banach space on (0, 1) which is αi-convex for some
0 < αi <∞ (i = 1, 2). Then E1 and E2 can be equipped with equivalent quasi norms ‖ · ‖1 and ‖ · ‖2,
respectively, so that ϕE1�E2(t) = ϕE1(t)ϕE2(t), for any t ≥ 0.

Proof. Let n ∈ N such that nαi ≥ 1 (i = 1, 2). Then E
(n)
i = (E

α1)
i )(nαi) can be renormed as a

symmetric Banach space (i = 1, 2). In the following, we consider E
(n)
j with this new symmetric

norm (j = 1, 2). Using [13, Theorem 1 (iii)], we get that (E1�E2)(n) = E
(n)
1 �E

(n)
2 . Applying (3.1),

we get ϕ(E1�E2)(n)(t) = ϕ
E

(n)
1

(t)ϕ
E

(n)
2

(t), for each t ≥ 0. Hence, by (3.2), we have that

ϕ
1
n
E1�E2

(t) = ϕ
1
n
E1

(t)ϕ
1
n
E2

(t), t ≥ 0.

Thus, we obtain the desired result.
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In rest of this paper, M will always denote a �nite von Neumann algebra with a normal �nite
faithful trace τ (τ(1) = 1).

Theorem 3.1. Let Ei be a symmetric (quasi-)Banach space on (0, 1) which is αi-convex for some

0 < αi < ∞ (i = 1, 2) and 0 < a < 1. If x ∈ ((E
(a)
1 )∞)( 1

a
)(M) and y ∈ ((E

(1−a)
2 )∞)( 1

1−a )(M), then
xy ∈ (E1 � E2)∞(M) and the following H�older type inequality holds

‖xy‖(E1�E2)∞ ≤ ‖x‖((E
(a)
1 )∞)( 1

a )‖y‖
((E

(1−a)
2 )∞)

( 1
1−a ) .

Proof. Let x ∈ ((E
(a)
1 )∞)( 1

a
)(M) and y ∈ ((E

(1−a)
2 )∞)( 1

1−a )(M). By Proposition 3.1, [10, Theorem
4.2, Lemma 2.3(iv)], classical H�older inequality and (3.2), we have that

‖xy‖(E1�E2)∞ = supt>0
ϕE1�E2

(t)

t

∫ t
0
µs(xy)ds

= supt>0
ϕE1

(t)ϕE2
(t)

t

∫ t
0
µs(xy)ds

≤ supt>0
ϕE1

(t)ϕE2
(t)

t

∫ t
0
µs(x)µs(y)ds

≤ supt>0
ϕE1

(t)ϕE2
(t)

t

( ∫ t
0
µs(x)

1
ads
)a( ∫ t

0
µs(y)

1
1−ads

)1−a

≤ supt>0
ϕE1

(t)ϕE2
(t)

t

( ∫ t
0
µs(|x|

1
a )ds

)a( ∫ t
0
µs(|y|

1
1−a )ds

)1−a

= supt>0

(
ϕE1

(t)
1
a

t

∫ t
0
µs(|x|

1
a )ds

)a(ϕE2
(t)

1
1−a

t

∫ t
0
µs(|y|

1
1−a )ds

)1−a

= supt>0

(ϕ
E

(a)
1

(t)

t

∫ t
0
µs(|x|

1
a )ds

)a(ϕ
E

(1−a)
2

(t)

t

∫ t
0
µs(|y|

1
1−a )ds

)1−a

≤ supt>0

(ϕ
E

(a)
1

(t)

t

∫ t
0
µs(|x|

1
a )ds

)a
supt>0

(ϕ
E

(1−a)
2

(t)

t

∫ t
0
µs(|y|

1
1−a )ds

)1−a

= ‖|x| 1a‖a
(E

(a)
1 )∞
‖|y|

1
1−a‖(1−a)

(E
(1−a)
2 )∞

= ‖x‖
((E

(a)
1 )∞)( 1

a )‖y‖
((E

(1−a)
2 )∞)

( 1
1−a ) .

Proposition 3.2. Let E be a symmetric (quasi-)Banach space on (0, 1).

(i) If 1 ≤ p <∞, then (E∞)(p)(M) ↪→ (E(p))∞(M).

(ii) If 0 < p ≤ 1, then (E(p))∞(M) ↪→ (E∞)(p)(M).

Proof. (i) Let x ∈ (E∞)(p)(M). Using Jensen's inequality and [10, Lemma 2.3(iv)], we obtain that

‖x‖(E(p))∞ = supt>0

ϕ
E(p) (t)

t

∫ t
0
µs(x)ds

= supt>0
ϕE(t)

1
p

t

∫ t
0
µs(x)ds

=
(

supt>0 ϕE(t)(1
t

∫ t
0
µs(x)ds)p

) 1
p

≤
(

supt>0
ϕE(t)
t

∫ t
0
µs(x)pds

) 1
p

=
(

supt>0
ϕE(t)
t

∫ t
0
µs(|x|p)ds

) 1
p

= ‖|x|p‖
1
p

E∞
= ‖x‖(E∞)(p)).

The proof of (ii) is similar to the proof of (i).

In general, (E∞)(p)(M) 6= (E(p))∞(M). For example, let E = L1(M). If 1 < p < ∞, then
(E∞)(p)(M) = Lp(M) and (E(p))∞(M) = Lp,∞(M). If 0 < p < 1, then (E∞)(p)(M) = Lp(M) and
(E(p))∞(M) = L1(M).
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Theorem 3.2. Let E be a symmetric (quasi-)Banach space on (0, 1). Then we have the following
Chebyshev type inequality

tϕE(τ(e(t,∞)(|x|))) ≤ ‖x‖E∞, ∀x ∈ E∞(M).

Proof. It is clear that for s ≥ 0,

µs(e(t,∞)(|x|)) = χ[0,τ(e(t,∞)(|x|)).

Since |x|e(t,∞)(|x|) ≥ te(t,∞)(|x|),

ϕE(τ(e(t,∞)(|x|))) ≤ sups>0
ϕE(s)
s

∫ s
0
µν(e(t,∞)(|x|))dν

= ‖e(t,∞)(|x|)‖E∞ ≤ ‖1
t
|x|e(t,∞)(|x|)‖E∞

= 1
t
‖|x|e(t,∞)(|x|)‖E∞ ≤ 1

t
‖|x|‖E∞ = 1

t
‖x‖E∞ .
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1 Introduction

At a �rst glance the title of the paper is not correct. Pfa�ans usually are connected with determinants
of skew-symmetric matrices. If ai,j = −aj,i, for any 1 ≤ i, j ≤ 2n, then the determinant of a skew-
symmetric matrix A = (ai,j) is a complete square and the square root of the determinant is a pfa�an,
so

detA = (pf2nA)2.

In fact, the pfa�an polynomial is de�ned by using not the whole matrix A. To construct pfa�ans it
su�ces to know the upper triangular part of A.

The connection between determinants of skew-symmetric matrices and pfa�ans was �rst noted
in [2]. For details of pfa�an constructions see also [1] and [3].

Let S2n be set the of all permutations of the set [2n] = {1, 2, . . . , 2n} and S2n,pf its subset of all
permutations called Pfa� permutations,

S2n,pf = {σ = (i1, j1, . . . , in, jn) ∈ S2n|i1 < i2 < · · · < in, is < js, 1 ≤ s ≤ n}.

For any σ ∈ S2n,pf we de�ne Pfa� aggregates aσ by

aσ = ai1,j1 · · · ain,jn .

We see that the Pfa� aggregates are de�ned for any triangular array Ā = (ai,j)1≤i<j≤2n. Then the
pfa�an of order 2n is the polynomial de�ned as the alternating sum of Pfa� aggregates

pfn =
∑

σ∈S2n,pf

sign σ aσ.

Here sign σ is the signature of the permutation σ,

sign σ = (−1)k(σ),

where k(σ) is the number of inversions

k(σ) = |{ (i, j) | σ(i) > σ(j), 1 ≤ i < j ≤ n }|.
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Suppose now that {ai,j, 1 ≤ i, j ≤ 2n} are n2 generators and endow the space of polynomials
K[ai,j|1 ≤ i, j ≤ n] with the structure of S2n-module by the following action on generators

σai,j = aσ−1(i),σ−1(j).

In particular, if A = (ai,j) has a skew-symmetric set of generators, ai,j = −aj,i then this action induces
the structure of S2n-module on the space of polynomials with

(
n
2

)
generators K[ai,j|1 ≤ i < j ≤ n].

Similarly, we obtain one more structure of S2n-module on this space if generators are symmetric,
ai,j = aj,i. In both cases natural questions appear about invariants under these actions of permutation
groups. In particular, we can ask about symmetry and skew-symmetry groups of a given polynomial
f ∈ K[ai,j],

Sym f = {σ ∈ Sn|σ f = f},

SSym f = {σ ∈ Sn|σ f = sign σ f}.

For example, the determinant polynomial detA for A = (aij)1≤i,j≤n is a polynomial of degree n
and its symmetry group is isomorphic to Sn.

Another example: if a matrix A is skew-symmetric, then the pfa�an polynomial pf2n = pf2nA is
a polynomial of degree n and

SSym pf2n
∼= S2n.

Let the characteristic of the main �eld be p 6= 2 and

g2n(x1, . . . , x2n) = (x1 − x2)(x2 − x3) · · · (x2n−1 − x2n)(x2n − x1).

Theorem 1.1. Let Ā = (ai,j)1≤i<j≤2n be the triangular array with components ai,j = (xi − xj)2 for
1 ≤ i < j ≤ 2n. Then

pf2n Ā = −(−2)n−1 g2n.

Theorem 1.2. The symmetry group of the polynomial g2n is isomorphic to the dihedral group D2n.

Based on these two results our main result is as follows.

Theorem 1.3. If generators ai,j are symmetric, ai,j = aj,i, then the symmetry group of the pfa�an
polynomial pf2n = pf2nĀ is isomorphic to the dihedral group

Sym pf2n
∼= D2n.

Recall that the dihedral group Dn is the symmetry group of a regular n-gon. It can be generated
by n rotations and n re�ections,

Dn = 〈a, b | an = e, b2 = e, bab = an−1 〉.

In our paper we use the following notation for permutations. The standard notation for a per-
mutation is a two row notation

σ =

(
1 2 · · · n
i1 i2 · · · in

)
∈ Sn.

The one row notation of σ is i1i2 · · · in. If σ is a cycle on the set i1, i2, . . . , ik, i.e., σ(i1) = i2, σ(i2) =
i3, . . . , σ(ik−1) = ik, σ(ik) = i1, then we will write σ = (i1, i2, . . . , ik). For example,

σ =

(
1 2 3 4 5 6 7 8
3 5 4 1 6 2 8 7

)
∈ S8 ⇒ σ = 35416287 = (1, 3, 4)(2, 5, 6)(7, 8).
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2 Pfa�an of (xi − xj)2

If A = (ai,j) is skew-symmetric, then

detA = (pf2nĀ)2.

If a matrix A is not skew-symmetric, say if A is symmetric, then the determinant polynomial detA
and the pfa�an polynomial pf2n(Ā) have no such connection. For example, if An = ((xi−xj)2)1≤i,j≤n,
then

detAn =


−(x1 − x2)4, if n = 2,
2((x2 − x2)(x2 − x3)(x3 − x1))2, if n = 3,
0, otherwise,

while, by Theorem 1.1, pfa�ans are non-trivial for any even n.

Proof of Theorem 1.1. Let ψ(x, y) = (x − y)2 and ai,j = ψ(xi, xj) = (xi − xj)
2. Note that the

pfa�an pf2nA is a polynomial in the variables x1, . . . , x2n. We have to prove that

pf2n = −(−2)n−1g2n.

Since ψ(x, x) = 0, the polynomial pf2n(x1, . . . , xs, xs+1, . . . , x2n) is divisable by xs− xs+1 for any
1 ≤ s ≤ 2n. Here we set x2n+1 = x1. Note that the degree of the polynomial g2n(x1, . . . , x2n) is 2n
and the degree of pf2n((xi − xj)2) is also 2n. Therefore,

pf2n(x1, x2, . . . , x2n) = c g2n(x1, x2, . . . , x2n),

for some constant c. Take xi = i. It is easy to see that

g2n(1, 2, . . . , 2n) = (1− 2)(2− 3) · · · (2n− 1− 2n)(2n− 1) = −(2n− 1).

It remains to prove that

pf2n(1, 2, . . . , 2n) = (−2)n−1(2n− 1) (2.1)

to obtain that c = −(−2)n−1.
By induction on n we will prove that

pf2n(x1, x2, . . . , x2n) = −(−2)n−1g2n(x1, x2, . . . , x2n).

For n = 1 our statement is evident:

pf2Ā = a1,2 = −(x1 − x2)(x2 − x1).

Suppose that our statement is true for n− 1,

pf2n−2Ā = −(−2)n−2(x1 − x2)(x2 − x3) · · · (x2n−3 − x2n−2)(x2n−2 − x1).

Let us prove it for n.
Let us decompose the pfa�an along the �rst row

pf2nĀ =
2n∑
i=2

(−1)ia1,i pf2n−2A1̂,̂i.

We see that
pf2nĀ = R1 +R2 +R3,
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where

R1 = a1,2 pf2nĀ1̂2̂,

R2 =
2n−1∑
i=3

(−1)ia1,i pf2n−2Ā1̂,̂i,

R3 = a1,2n pf2n−2Ā1̂,2̂n.

By the inductive suggestion

R1 = −(−2)n−2(x1 − x2)2(x3 − x4) · · · (x2n−1 − x2n)(x2n − x3).

Hence,

R1|xi→i = −(−2)n−2(1− 2)2(3− 4) · · · (2n− 1− 2n)(2n− 3) = (−2)n−2(2n− 3),

R3|xi→i = −(−2)n−2(1− 2n)2(2− 3)(3− 4) · · · (2n− 2− 2n+ 1)(2n− 1− 2) =

−(−2)n−2(2n− 1)2(−1)2n−3(2n− 3) = (−2)n−2(2n− 3)(2n− 1)2.

Further, if 2 < i < 2n, then

(−1)ia1,i pf2nĀ1̂,̂i|xj→j =

(−1)i(−(−2)n−2)(x1 − xi)2(x2 − x3)(x3 − x4) · · · (xi−1 − xi+1)(xi+1 − xi+2)× · · ·

×(x2n−1 − x2n)(x2n − x2)|xj→j =

(−1)i(−(−2)n−2)(i− 1)2(−2)(2n− 2) = (−1)i(i− 1)2(−2)n−24(n− 1).

Hence,

R2|xi→i = −(−2)n−2

2n−1∑
i=3

−(−1)i(i− 1)24(n− 1) = (−2)n−24(n− 1)(2n2 − 3n+ 2).

So, we see that (2.1) is true for n,

f2n(1, 2, . . . , 2n) = R1 +R2 +R3 =

(−2)n−2[(2n− 3)− 4(n− 1)(2n2 − 3n+ 2) + (2n− 3)(2n− 1)2] =

−(−2)n−22(2n− 1) = (−2)n−1(2n− 1).
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3 Symmetry group of the polynomial g2n

Proof of Theorem 1.2. First, we check that any dihedral permutation σ ∈ D2n is a symmetry of
the polynomial g2n.

Let us take the realization of a dihedral group as the symmetry group of the regular n-gon whose
vertices are clockwise labelled by 1, 2, . . . , 2n. Elements of a dihedral group might have:

I. one up-run: σ =

(
1 2 · · · 2n
1 2 · · · 2n

)
,

II. one down-run: σ =

(
1 2 · · · 2n

2n 2n− 1 · · · 1

)
,

III. two up-run

σ(1) = s < σ(2) = s+ 1 < · · · < σ(2n− s+ 1) = 2n, σ(2n− s+ 2) = 1 < · · · < σ(2n) = s− 1,

for some 1 < s ≤ 2n,

IV. or two down-run

σ(1) = s > σ(2) = s− 1 > · · · > σ(s) = 1, σ(s+ 1) = 2n > · · · > σ(2n) = s+ 1.

for some 1 ≤ s < 2n.

In cases I and II our statement is evident.
In case III we have

g2n(xσ(1), . . . , xσ(2n)) =

(xs − xs+1)(xs+1 − xs+2) · · · (x2n−1 − x2n)(x2n − x1) (x1 − x2) · · · (xs−2 − xs−1)(xs−1 − xs) =

(x1 − x2) · · · (x2n−1 − x2n)(x2n − x1) = g2n(x1, . . . , x2n).

In case IV
g2n(xσ(1), . . . , xσ(2n)) =

(xs − xs−1)(xs−1 − xs−2) · · · (x2 − x1)(x1 − x2n) (x2n − x2n−1) · · · (xs+1 − xs) =

(−1)s(xs−1 − xs)(xs−2 − xs−1) · · · (x1 − x2)(x2n − x1) (−1)2n−s(x2n−1 − x2n) · · · (xs − xs+1) =

(x1 − x2) · · · (x2n−1 − x2n) = g2n(x1, . . . , x2n).

So,
D2n ⊆ Sym(g2n).

Now we will prove that any σ ∈ Sym(g2n) is a dihedral permutation.
Let M2n = {1, 2, . . . , 2n}. For i, j ∈ M2n we say that they are connected, if |i − j| = 1 or

|i − j| = 2n − 1. So, if i < j < 2n, then i, j are connected i� j = i + 1. If j = 2n, and i, j are
connected, then i = 2n− 1 or i = 1. It is clear that this relation is symmetric: i, j are connected i�
j, i are connected. So, i, j ∈M2n are connected, if |i− j| = 1 or (i, j) = (1, 2n) or (i, j) = (2n, 1).

Note that the polynomial g2n(x1, . . . , x2n) is a product of polynomials xi − xj, i < j, where i and
j are connected. Therefore, any symmetry σ ∈ Sym(g2n) has the following property: if i and j are
connected, then σ(i) and σ(j) are also connected.
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Let σ ∈ Sym(g2n) and σ(1) = i1. The following possibilities may arise.
Case A. Suppose that σ(1) = i1 < σ(2). Take k > 1, such that σ(k − 1) < σ(k) and σ(k + 1) <

σ(k). Since σ(1) and σ(2) are connected and σ(2) > σ(1), then σ(2) = i1 + 1. By similar arguments,

σ(3) = i1 + 2, . . . , σ(k) = i1 + k − 1,

but σ(k+1) 6= i1 +k. Such situation is possible only in one case: i1 = 2n− k+ 1 and σ(k+ 1) = 1.
So,

σ(k + 1) = 1, σ(k + 2) = 2, . . . , σ(2n) = i1 − 1.

In other words,
σ = i1 (i1 + 1) . . . (2n) 1 2 . . . (i1 − 1).

We obtained a permutation σ that has exactly one up-run if i1 = 1, or two up-runs if i1 > 1. So, we
obtain permutations of type I or III. Therefore, σ ∈ D2n.

Case B. Now consider the case σ(1) = i1 > σ(2). Take k > 1, such that σ(k − 1) > σ(k) and
σ(k + 1) > σ(k).

Since σ(1) and σ(2) are connected and σ(2) < σ(1), then σ(2) = i1 − 1. By similar arguments,

σ(3) = i1 − 2, . . . , σ(k) = i1 − k + 1.

but σ(k + 1) 6= i1 − k. Such situation is possible only in one case: i1 = k, σ(k + 1) = 2n. So,

σ(k + 1) = 2n, σ(k + 2) = 2n− 1, . . . , σ(2n) = i1 + 1.

In other words,
σ = i1 (i1 − 1) . . . 1 2n (2n− 1) . . . (i1 + 1).

We obtained a permutation σ that has exactly one down-run if i1 = 2n or two down-runs if i1 < 2n.
In other words we obtained a permutations of type II or IV. Thus, σ ∈ D2n.

4 Proof of Theorem 1.3

First we prove that D2n ⊆ Sym pf2n.

Lemma 4.1. If A = (ai,j) is symmetric, then the pfa�an is invariant under action of the dihedral
group D2n,

µ(pf2n) = pf2n

for any µ ∈ D2n.

Proof. The dihedral group D2n has order 4n and is generated by the cyclic permutation

σ =

(
1 2 3 · · · 2n− 1 2n
2 3 4 · · · 2n 1

)
and re�ection

τ =

(
1 2 3 · · · n n+ 1 n+ 2 · · · 2n− 1 2n
1 2n 2n− 1 · · · n+ 2 n+ 1 n · · · 3 2

)
.

To prove our lemma it su�ces to establish that

σ(pf2n) = pf2n,
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τ(pf2n) = pf2n,

if ai,j = aj,i, for any 1 ≤ i < j ≤ 2n.
Recall that α = (i1, i2, . . . , i2n−1, i2n) is a Pfa� permutation, if

i1 < i3 < i5 < · · · < i2n−1,

i1 < i2, i3 < i4, . . . , i2n−1 < i2n.

Let S2n,pf be set of all Pfa� permutations. Below we use the one-line notation for permutations. We
write α = (i1, i2, . . . , i2n−1, i2n) instead of

α =

(
1 2 · · · 2n− 1 2n
i1 i2 . . . i2n−1 i2n

)
.

Note that

τ(i) + i =

{
2n+ 2, if 1 < i ≤ 2n,
2 if i = 1.

Set
ī = 2n+ 2− i,

if i > 1.
Now we study the action of the generator σ on pfa�an polynomials, when generators are sym-

metric, ai,j = aj,i, for any 1 ≤ i, j ≤ 2n. Let α = (1, i2, i3, . . . , i2n) ∈ S2n,pf , and l = α−1(2n). Then l
is even, l = 2k, and

σ(aα) = σ(ai1,i2 · · · ai2n−1i2n) =

ai1+1,i2+1 · · · ai2k−3+1,i2k−2+1ai2k−1+1,1ai2k+1+1,i2k+2+1 · · · ai2n−1+1,i2n+1 = aα̃,

where
α̃ = (1, i2k−1 + 1, i1 + 1, i2 + 1, . . . , i2k−3 + 1, i2k−2 + 1, i2k+1 + 1, i2k+2 + 1,

. . . , i2n−1 + 1, i2n + 1).

Here we replace ai2k−1+1,1 by a1,i2k−1+1. We see that the map

S2n,pf → S2n,pf , α 7→ α̃

is a bijection and
sign α̃ = sign α.

Hence,

σ(pf2n) =
∑

α∈S2n,pf

signα σ(aα) =
∑

α∈S2n,pf

sign α̃ aα̃ = pf2n.

So, we have estabilshed that the pfa�an is invariant under action σ ∈ D2n.

Let us study the action of the generator τ on pfa�an polynomials.
We have

τ : aα 7→ a1, i2
ai3, i4 · · · ai2n−1, i2n

.

Since
i2k−1 > i2k, 1 < k ≤ n,

we have to replace ai2k−1, i2k
by ai2k, i2k−1

. Further,

i3 > i5 > · · · > i2n−1 > 1.
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Therefore,
τ : aα 7→ aᾱ,

where
aᾱ = a1, i2

ai2n, i2n−1
ai2n−2, i2n−3

· · · ai4, i3 .

We see that
sign α = sign ᾱ.

Note that the map
S2n,pf → S2n,pf , α 7→ ᾱ,

is a bijection. Therefore,

τ(pf2n) =
∑

α∈S2n,pf

signα τ(aα) =
∑

α∈S2n,pf

sign ᾱ aᾱ = pf2n.

So, we have proved that the pfa�an pf2n is invariant under the action of the dihedral group D2n of
order 4n, if the matrix (ai,j)1≤i,j≤2n is symmetric.
Example. Let

τ =

(
1 2 3 4
1 4 3 2

)
, µ =

(
1 2 3 4
4 3 2 1

)
.

Then
τ(pf4) = τ(a1,2a3,4 − a1,3a2,4 + a1,4a2,3) =

a1,4a3,2 − a1,3a4,2 + a1,2a4,3 =

a1,4a2,3 − a1,3a2,4 + a1,2a3,4 = pf4,

µ(pf4) = µ(a1,2a3,4 − a1,3a2,4 + a1,4a2,3) =

a4,3a2,1 − a4,2a3,1 + a4,1a3,2 =

a3,4a1,2 − a2,4a1,3 + a1,4a2,3 = pf4.

Proof of Theorem 1.3. . Let σ ∈ Sympf2n i.e.,

σ (pf2n) = pf2n

for any ai,j, such that ai,j = aj,i. In particular, σ is a symmetry of the pfa�an polynomial pf2n((xi−
xj)

2)1≤i<j≤2n. By Theorems 1.1 and 1.2 and Lemma 4.1 our theorem is valid.
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1 Introduction

In mathematical physics, when we investigate solutions of partial di�erential equations under given
initial and boundary conditions using the Fourier method, we encounter the following types of prob-
lems: to determine the eigenvalues and eigenfunctions of di�erential operators and to expand an
arbitrary function as a series of eigenfunctions. Therefore, since it is interesting to study these types
of problems, many works have been done on such problems and continue to be done. An important
and interesting problem is that of the examination of the spectrum and expanding a given function
via eigenfunctions of a di�erential operator which is not self-adjoint.

In the present paper, we examine the spectrum and the principal functions of a nonself-adjoint
Sturm�Liouville operator with discontinuity conditions on the positive half plane. That is, we deal
with in the following nonself-adjoint problem for the Sturm�Liouville equation

−ω′′ + q(x)ω = µ2ω, x ∈ (0, a) ∪ (a,∞), (1.1)

with the discontinuity conditions

ω(a− 0) = αω(a+ 0), ω′(a− 0) = α−1ω′(a+ 0) (1.2)

and the boundary condition
ω(0) = 0, (1.3)

where a > 0, 0 < α 6= 1, µ is a complex parameter, q(x) is a complex-valued function which satis�es
the condition ∫ ∞

0

x|q(x)|dx <∞. (1.4)
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The spectral theory of nonself-adjoint operator in the classical case (i.e., α = 1) was studied by
Naimark [17, 18], he showed that some poles of the resolvent kernel are not the eigenvalues of the
operator and belong to the continuous spectrum, moreover, these poles are called spectral singularities
and were �rst introduced by Schwartz [22]. In the self-adjoint case (i.e. Imq(x) ≡ 0), the number of
the eigenvalues of the operator is �nite under condition (1.4) (see [15]).

In the nonself-adjoint case, Naimark demonstrated that the number of eigenvalues is �nite under
the condition (see [17, 18]) ∫ ∞

0

exp(εx)|q(x)|dx <∞, ε > 0.

This condition is too strict and Pavlov weakened this condition as follows (see [19]):

sup
0≤x<∞

{
|q(x)| exp(ε

√
x)
}
<∞, ε > 0

and he proved that if q(x) satis�es the above condition, then there is a �nite number of eigenvalues
of the operator.

In the spectral analysis of nonself-adjoint operators, the spectral singularities have an essential
role and the in�uence of the spectral singularities in the spectral expansion with respect to the
principal functions of the operator is investigated by Lyantse [12, 13]. The investigations on the
spectrum, principal functions and the spectral expansion by the principal functions of the nonself-
adjoint operator are very attractive and there are many works on the nonself-adjoint operator under
di�erent boundary conditions (see [2, 4, 5, 6, 8, 10, 11, 14, 16, 20, 23, 24, 25] and the references
therein). Moreover, the nonself-adjoint operator with discontinuous coe�cient is studied in [1], some
spectral properties of the Sturm�Liouville operator with impulsive condition is worked in [3].

The distinction between this work and other studies is that the nonself-adjoint boundary value
problem (1.1)-(1.3) has discontinuity conditions at x = a ∈ (0,∞). The presence of discontinuity
condition (1.2) in problem (1.1)-(1.3) seriously a�ects the structure of a Jost solution to (1.1), i.e., a
Jost solution is not expressed as a transformation operator, it has the integral representation which
is obtained by Huseynov and Osmanova [9] and in this work. It is seen from this representation
that the triangular property of a Jost solution is lost and the kernel function has a discontinuity
along the line s = 2a − x for x ∈ (0, a). In this paper, we will obtain our results using this integral
representation.

The conclusions drawn from this paper are as follows: in Section 2, we give an estimate of the
kernel k(x, s) of a Jost solution to equation (1.1) with discontinuity conditions (1.2) and examine
the spectrum and the resolvent of problem (1.1)-(1.3). Moreover, it is demonstrated that under
additional conditions, the number of the eigenvalues and the spectral singularities of this problem
is �nite. In Section 3, the principal functions are determined and their convergence properties are
examined.

2 The spectrum and resolvent of L
Assume that a function e(x, µ) satis�es equation (1.1), discontinuity conditions (1.2) and the following
condition at in�nity

lim
x→∞

e−iµxe(x, µ) = 1.

Then, the function e(x, µ) is called a Jost solution to equation (1.1). When q(x) ≡ 0 in (1.1), the
Jost solution has the form:

e0(x, µ) =

{
eiµx, x > a
α+eiµx + α−eiµ(2a−x), 0 < x < a

where α± = 1
2

(
α± 1

α

)
.
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Theorem 2.1. [9] Let a complex-valued function q(x) satisfy (1.4). Then for any µ from the closed
upper half-plane, there exists a Jost solution e(x, µ) to equation (1.1) with discontinuity conditions
(1.2), it is unique and representable in the form

e(x, µ) = e0(x, µ) +

∫ ∞
x

k(x, s)eiµsds, (2.1)

where for every �xed x ∈ (0, a) ∪ (a,∞), the kernel k(x, .) ∈ L1(x,∞) and satis�es the inequality∫ ∞
x

|k(x, s)|ds ≤ ecσ1(x) − 1, σ1(x) =

∫ ∞
x

t|q(t)|dt, c = α+ + |α−|.

Moreover, the function k(x, s) is continuous for s 6= 2a− x.

Remark 1. The following estimate holds:

|k(x, s)| ≤ c

2
σ

(
x+ s

2

)
e(c+1)σ1(x) (2.2)

with σ(x) =
∫∞
x
|q(u)|du and c = α+ + |α−|. This estimate is obtained as follows.

The function k(x, s) is of the form for 0 < x < a (see [9]):

k(x, s) = k0(x, s) +
1

2

∫ a

x

q(ζ)

∫ s+ζ−x

s−ζ+x
k(ζ, u)dudζ

+
α+

2

∫ ∞
a

q(ζ)

∫ s+ζ−x

s−ζ+x
k(ζ, u)dudζ

−α
−

2

∫ 2a−x

a

q(ζ)

∫ s−ζ+2a−x

s+ζ−2a+x

k(ζ, u)dudζ

+
α−

2

∫ ∞
2a−x

q(ζ)

∫ s+ζ−2a+x

s−ζ+2a−x
k(ζ, u)dudζ,

where

k0(x, s) =
α+

2

∫ ∞
x+s

2

q(ζ)dζ +
α−

2

∫ a

2a+x−s
2

q(ζ)dζ

−α
−

2

∫ s+2a−x
2

a

q(ζ)dζ, x < s < 2a− x, (2.3)

k0(x, s) =
α+

2

∫ ∞
x+s

2

q(ζ)dζ +
α−

2

∫ ∞
s+2a−x

2

q(ζ)dζ, s > 2a− x (2.4)

and for x > a

k(x, s) = k0(x, s) +
1

2

∫ ∞
x

q(ζ)

∫ s+ζ−x

s−ζ+x
k(ζ, u)dudζ,

where

k0(x, s) =
1

2

∫ ∞
x+s

2

q(ζ)dζ.

When x > a, we face the classical case (see [18]). In this case, we have

|k(x, s)| ≤ 1

2
eσ1(x)σ

(
x+ s

2

)
.
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Now, let us examine the case 0 < x < a. Set, for n ∈ N

kn(x, s) =
1

2

∫ a

x

q(ζ)

∫ s+ζ−x

s−ζ+x
kn−1(ζ, u)dudζ

+
α+

2

∫ ∞
a

q(ζ)

∫ s+ζ−x

s−ζ+x
kn−1(ζ, u)dudζ

−α
−

2

∫ 2a−x

a

q(ζ)

∫ s−ζ+2a−x

s+ζ−2a+x

kn−1(ζ, u)dudζ

+
α−

2

∫ ∞
2a−x

q(ζ)

∫ s+ζ−2a+x

s−ζ+2a−x
kn−1(ζ, u)dudζ

and k0(x, s) is speci�ed by relations (2.3) and (2.4). Then, we obtain

|k0(x, s)| ≤ c

2
σ

(
x+ s

2

)
, |kn(x, s)| ≤ c

2
σ

(
x+ s

2

)
(c+ 1)n(σ1(x))n

n!
.

This implies that the series
∑∞

n=0 kn(x, s) converges and its sum k(x, s) satis�es inequality (2.2).
Consequently, for x ∈ (0, a) ∪ (a,∞) inequality (2.2) is valid.

Now, we de�ne ê(x, µ) as a solution to equation (1.1) with discontinuity conditions (1.2) and the
following condition at in�nity

lim
x→∞

eiµxê(x, µ) = 1.

When q(x) ≡ 0 in equation (1.1), the solution has the form:

ê0(x, µ) =

{
e−iµx, x > a,
α+e−iµx + α−e−iµ(2a−x), 0 < x < a

for Imµ ≥ 0. The Wronskian of the solutions e(x, µ) and ê(x, µ) is

W [e(x, µ), ê(x, µ)] = −2iµ, Imµ ≥ 0.

Now, we consider problem (1.1)-(1.3) as an operator L operating on the Hilbert space L2(0,∞).
The values λ = µ2 for which L has a non-zero solution are called eigenvalues and the corresponding
solutions are called eigenfunctions.

Consider ẽ(x, µ) = e(x,−µ) with Imµ ≤ 0 and the expression of the Wronskian of e(x, µ) and
ẽ(x, µ) is

W [e(x, µ), ẽ(x, µ)] = −2iµ, Imµ = 0. (2.5)

Lemma 2.1. The nonself-adjoint operator L does not have positive eigenvalues.

Proof. It follows from (2.5) that for λ > 0, the general solution to (1.1) is of the form ω = c1e(x, µ)+
c2ẽ(x, µ) and as x → ∞, ω = c1e

iµx + c2e
−iµx + o(1). This function does not belong to L2(0,∞) if

both c1 and c2 are not equal to zero.

Let us de�ne s(x, µ) as a solution to (1.1) under discontinuity conditions (1.2) and the initial
conditions

s(0, µ) = 0, s′(0, µ) = 1.

Now, consider non-positive or complex λ. Since the general solution to (1.1) satisfying the initial
condition ω(0) = 0 has the form ω(x) = cs(x, µ), it follows that λ = µ2 is an eigenvalue of the
operator L if and only if s(., µ) ∈ L2(0,∞). Moreover,

s(x, µ) =
ê(0, µ)e(x, µ)− e(0, µ)ê(x, µ)

2iµ
, Imµ > 0. (2.6)
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Lemma 2.2. The necessary and su�cient conditions for λ 6= 0 to be an eigenvalue of L are

e(0, µ) = 0, λ = µ2, Imµ > 0.

Proof. It follows from the representations of e(x, µ) and ê0(x, µ) that e(., µ) ∈ L2(0,∞) and ê(x, µ) /∈
L2(0,∞.) Then, from (2.6), s(., µ) ∈ L2(0,∞) if and only if e(0, µ) = 0.

Lemma 2.3. The set of eigenvalues of L is bounded, is no more than countable and its limit points
can lie only on the half-axis λ ≥ 0.

Proof. Using the representation of solution e(x, µ) given by (2.1), as |µ| → ∞, we have e(0, µ)→ α+

for Imµ > 0. Therefore, the set of the zeros of e(0, µ) is bounded in the half plane Imµ > 0. Since
e(0, µ) is holomorphic in the half plane Imµ > 0, the set of its zeros is no more than countable and
can have limit points only on the real axis.

All numbers λ of the form λ = µ2, Imµ > 0, e(0, µ) 6= 0 belong to the resolvent set of L. The
resolvent operator Rµ2 = (L− µ2I)

−1
exists and has the following form:

ω(x, µ) =: Rµ2(L)f(x) =

∫ ∞
0

g(x, s;µ2)f(s)ds,

where

g(x, s;µ2) =


ê(0,µ)e(x,µ)e(s,µ)

2iµe(0,µ)
− ê(x,µ)e(s,µ)

2iµ
, x < s <∞,

ê(0,µ)e(x,µ)e(s,µ)
2iµe(0,µ)

− e(x,µ)ê(s,µ)
2iµ

, 0 < s < x

and ω(x, µ) is a solution to the following nonhomogeneous problem:

−ω′′ + q(x)ω = µ2ω + f(x),
ω(a− 0) = αω(a+ 0), ω′(a− 0) = α−1ω′(a+ 0),

ω(0) = 0.

Note that all numbers λ ≥ 0 belong to the continuous spectrum of L (see [18]). Moreover, the
spectral singularities de�ned as the poles of the kernel function of the resolvent operator belong to
the continuous spectrum. The set of spectral singularities of L is closed and its Lebesgue measure is
zero which can be seen from the boundary uniqueness theorem for analytic functions [21] (also, see
[1]).

Now, let us use the notation σd(L) and σss(L) for the eigenvalues and spectral singularities of L,
respectively.

σd(L) =
{
λ : λ = µ2, Imµ > 0, e(0, µ) = 0

}
,

σss(L) =
{
λ : λ = µ2, Imµ = 0, µ 6= 0, e(0, µ) = 0

}
.

Moreover, the multiplicity mk of a root µk of the equation e(0, µ) is called the multiplicity of µk.
Now, we will show that the nonself-adjoint operator L has a �nite number of eigenvalues and

spectral singularities under the following additional restrictions∫ ∞
0

eεx|q(x)|dx <∞, ε > 0, (2.7)

sup
0≤x<∞

{
exp(ε

√
x)|q(x)|

}
<∞, ε > 0. (2.8)
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First, assume that condition (2.7) introduced by M.A. Naimark holds. This condition implies that

σ(x) =

∫ ∞
x

|q(t)|dt ≤ Cεe
−εx,

σ1(x) =

∫ ∞
x

t|q(t)|dt ≤ Cε′e
−ε′x,

where Cε > 0, Cε′ > 0 and 0 < ε′ < ε (see [18]). Using these relations and estimate (2.2), we have

|k(x, s)| ≤ C exp

{
−ε
(
x+ s

2

)}
, (2.9)

where C = ccεe
(c+1)dε , c = α+ + |α−|, cε > 0 and dε > 0.

Theorem 2.2. Suppose that condition (2.7) is valid. Then, the operator L has �nite number of
eigenvalues and spectral singularities with �nite multiplicity.

Proof. It is obtained from (2.9) that the function e(0, µ) has an analytic continuation from the real
axis to the half plane Imµ > − ε

2
. Then, there are no limit points of the sets of eigenvalues σd(L)

and spectral singularities σss(L) on the positive real line. Since σd(L) and σss(L) are bounded and
e(0, µ) is holomorphic in the half plane Imµ > − ε

2
, L has �nite number of eigenvalues and spectral

singularities with �nite multiplicity.

Now, let condition (2.8) be satis�ed. We need to show that the numbers of the spectral singular-
ities and the eigenvalues under condition (2.8) are �nite. First, we de�ne the set of zeros of e(0, µ)
in the closed upper half plane Imµ ≥ 0 :

S1 := {µ : µ ∈ C+, e(0, µ) = 0} , S2 := {µ : µ ∈ R, µ 6= 0, e(0, µ) = 0} .

Moreover, let us take into account that the sets S3 and S4 contain all limit points of S1 and S2

respectively, and the set S5 has all in�nite multiple zeros of e(0, µ). We can write

S1 ∩ S5 = ∅, S3 ⊂ S2, S4 ⊂ S2, S5 ⊂ S2

from the uniqueness theorem of analytic functions (see [7]) and

S3 ⊂ S5, S4 ⊂ S5 (2.10)

from the continuity of all derivatives of e(0, µ) up to the real axis.

Lemma 2.4. Assume that condition (2.8) is satis�ed, then S5 = ∅.

Proof. To prove this lemma, we use the following theorem (see [19], also [1, 2]): Suppose that the
function ϕ is analytic in C+, all of its derivatives are continuous up to the real axis, and there exists
M > 0 such that

|ϕ(υ)(z)| ≤ Kυ, υ = 0, 1, ... z ∈ C+, |z| < 2M, (2.11)

and ∣∣∣∣∫ −M
−∞

ln |ϕ(x)|
1 + x2

dx

∣∣∣∣ <∞, ∣∣∣∣∫ ∞
M

ln |ϕ(x)|
1 + x2

dx

∣∣∣∣ <∞. (2.12)

If the set Q with the one-dimensional Lebesgue measure zero is the set of all zeros of the function ϕ
with in�nite multiplicity and the relation∫ u

0

lnH(s)dµ(Qs) = −∞ (2.13)
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holds, then ϕ(z) ≡ 0, where u is an arbitrary positive constant, H(s) = infυ
Kυsυ

υ!
, υ = 0, 1, ... and

µ(Qs) is the Lebesgue measure of s-neighborhood of Q.
Now, it follows from relation (2.2) and condition (2.8) that

|k(x, s)| ≤ C̃ exp

{
−ε
(
x+ s

2

)δ}
, C̃ = ccεe

(c+1)cε , c = α+ + |α−| > 0.

Then, the function e(0, µ) is analytic in C+, all of its derivatives are continuous up to the real axis
and we have ∣∣∣∣dυe(0, µ)

dµυ

∣∣∣∣ ≤ Kυ, µ ∈ C+, υ = 1, 2, ..., (2.14)

where

Kυ = C̃(2a)υ
(

1 +

∫ ∞
0

sυ exp

{
−ε
(s

2

)δ}
ds

)
, υ = 1, 2, ...

Moreover, since the set of zeros of e(0, µ) is bounded, for su�ciently large M the function e(0, µ)
satis�es condition (2.12). Thus, it follows from this fact and relation (2.14) that e(0, µ) provides
conditions (2.11) and (2.12). Since the function e(0, µ) 6= 0, we have from (2.13)∫ u

0

lnH(s)dµ(S5,s) > −∞, (2.15)

where H(s) = infυ
Kυsυ

υ!
and µ(S5,s) is the Lebesgue measure of the s-neighborhood of S5. The

following estimate holds

Kυ ≤
(
C̃(2a)υ +Ddυ

)
υυυ!, (2.16)

where D = 4 C̃e
δ
ε−

1
δ (υ + 1) and d = 8aε−

1
δ . In fact, we can write

Kυ = C̃(2a)υ
(

1 +

∫ ∞
0

sυ exp

{
−ε
(s

2

)δ}
ds

)
≤ C̃(2a)υ

(
1 +

2(υ+1)

δ
ε−

(υ+1)
δ (2υ + 2)υ+1υ!

)
≤ C̃(2a)υ

(
1 +

22(υ+1)

δ
ε−

(υ+1)
δ

(
1 +

1

υ

)υ
(υ + 1)υυυ!

)
≤

(
C̃(2a)υ +Ddυ

)
υυυ!.

Putting estimate (2.16) into H(s), we get

H(s) ≤ C̃ inf
υ
{(2a)υυυυ!}+D inf

υ
{dυυυsυ}

≤ C̃ exp
{
−(2a)−1s−1e−1

}
+D exp

{
−d−1s−1e−1

}
. (2.17)

Then, taking into account (2.15) and (2.17), we have∫ u

0

1

s
dµ(S5,s) <∞.

This inequality is valid for an arbitrary s if and only if dµ(S5,s) = 0 or S5 = ∅.
Theorem 2.3. If condition (2.8) is satis�ed, then L has �nite number of eigenvalues and spectral
singularities with �nite multiplicity.

Proof. It follows from (2.10) and Lemma 2.4 that S3 = ∅ and S4 = ∅. For this reason, the bounded sets
S1 and S2 do not have limit points. Thus, the �niteness of the sets of σd(L) and σss(L) are established.
Moreover, due to S5 = ∅, the eigenvalues and spectral singularities have �nite multiplicities.
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3 Principal functions
Now, we examine the principal functions of L. Assume that condition (2.8) is satis�ed.

Denote µ1, µ2, ..., µ` by the zeros of e(0, µ) in C+ with multiplicities m1,m2, ...,m` respectively
(note that µ2

1, µ
2
2, ..., µ

2
` are the eigenvalues of L). We can write{

dν

dµν
W [e(x, µ), s(x, µ)]

}
µ=µη

=

{
dν

dµν
e(0, µ)

}
µ=µη

= 0 (3.1)

for ν = 0,mη − 1, η = 1, `. In case of ν = 0, we have

e(x, µη) = κ0(µη)s(x, µη), κ0(µη) 6= 0, η = 1, `. (3.2)

Lemma 3.1. The following relation{
∂ν

∂µν
e(x, µ)

}
µ=µη

=
ν∑
i=0

(
ν
i

)
κν−i

{
∂i

∂µi
s(x, µ)

}
µ=µη

(3.3)

is valid for ν = 0,mη − 1, η = 1, ` and here κ0, κ1..., κν depend on µη.

Proof. To prove of this lemma, we use the mathematical induction. Consider ν = 0. It follows from
relation (3.2) that the proof is trivial. Now, suppose that formula (3.3) is valid for ν0 such that
0 < ν0 ≤ mη − 2. That is,{

∂ν0

∂µν0
e(x, µ)

}
µ=µη

=

ν0∑
i=0

(
ν0

i

)
κν0−i

{
∂i

∂µi
s(x, µ)

}
µ=µη

. (3.4)

Then, we will show that formula (3.3) is satis�ed for ν0 + 1. If ω(x, µ) is a solution to (1.1), then we
�nd {

− d2

dx2
+ q(x)− µ2

}
∂ν

∂µν
ω(x, µ) = 2µν

∂ν−1

∂µν−1
ω(x, µ) + ν(ν − 1)

∂ν−2

∂µν−2
ω(x, µ). (3.5)

Since e(x, µ) and s(x, µ) are solutions to equation (1.1), using (3.4) and (3.5) we calculate{
− d2

dx2
+ q(x)− µ2

η

}
hν0+1(x, µη) = 0,

where

hν0+1(x, µη) =

{
∂ν0+1

∂µν0+1
e(x, µ)

}
µ=µη

−
ν0+1∑
i=0

(
ν0 + 1
i

)
κν0+1−i

{
∂i

∂µi
s(x, µ)

}
µ=µη

.

It follows from (3.1) that

W [hν0+1(x, µη), s(x, µη)] =

{
dν0+1

dµν0+1
W [e(x, µ), s(x, µ)]

}
µ=µη

= 0.

Then, this shows that

hν0+1(x, µη) = κν0+1(µη)s(x, µη), η = 1, `.

Consequently, we obtain that formula (3.3) is satis�ed for ν = ν0 + 1.
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De�ne the functions

ψν(x, λη) =

{
∂ν

∂µν
e(x, µ)

}
µ=µη

=
ν∑
i=0

(
ν
i

)
κν−i

{
∂i

∂µi
s(x, µ)

}
µ=µη

(3.6)

for ν = 0,mη − 1, η = 1, ` and λη = µ2
η.

Theorem 3.1. ψν(x, λη) ∈ L2(0,∞) for ν = 0,mη − 1, η = 1, `.

Proof. Since

|k(x, s)| ≤ C̃ exp

{
−ε
(
x+ s

2

)δ}
, C̃ = ccεe

(c+1)cε , c = α+ + |α−| > 0,

using integral representation (2.1) we have for 0 < x < a∣∣∣∣∣
{
∂ν

∂µν
e(x, µ)

}
µ=µη

∣∣∣∣∣ ≤ xνα+e−Imµηx + (2a− x)ν |α−|e−Imµη(2a−x)

+C̃

∫ ∞
x

sν exp

{
−ε
(
x+ s

2

)δ}
e−Imµηds (3.7)

and for a < x <∞∣∣∣∣∣
{
∂ν

∂µν
e(x, µ)

}
µ=µη

∣∣∣∣∣ ≤ xνe−Imµηx + C̃

∫ ∞
x

sν exp

{
−ε
(
x+ s

2

)δ}
e−Imµηds. (3.8)

Since λη = µ2
η, η = 1, ` are eigenvalues of operator L, it follows from (3.7) and (3.8) for Imµη > 0

that {
∂ν

∂µν
e(x, µ)

}
µ=µη

∈ L2(0,∞), ν = 0,mη − 1, η = 1, `.

Consequently, from (3.6) we have ψν(x, λη) ∈ L2(0,∞), ν = 0,mη − 1, η = 1, `.

De�nition 1. Functions ψ0(x, λη), ψ1(x, λη),...,ψmη−1(x, λη) are called principle functions associated

with the eigenvalues λη = µ2
η, η = 1, ` of L. The function ψ0(x, λη) is the eigenfunction, ψ1(x, λη),

ψ2(x, λη),..., ψmη−1(x, λη) are the associated functions of ψ0(x, λη) corresponding to the eigenvalue
λη.

Now, we de�ne the spectral singularities of L: µ`+1, µ`+2, ..., µβ are the zeros of e(0, µ) in R−{0}
with multiplicities m`+1,m`+2, ...,mβ, respectively. Then, similarly to the proof of Lemma 3.1, we
obtain {

∂v

∂µv
e(x, µ)

}
µ=µγ

=
v∑
j=0

(
v
j

)
τv−j(µγ)

{
∂j

∂µj
s(x, µ)

}
µ=µγ

for v = 0,mγ − 1, γ = `+ 1, `+ 2, ..., β. Consider the functions

ψv(x, λγ) =

{
∂v

∂µv
e(x, µ)

}
µ=µγ

=
v∑
j=0

(
v
j

)
τv−j(µγ)

{
∂j

∂µj
s(x, µ)

}
µ=µγ

(3.9)

for v = 0,mγ − 1, γ = `+ 1, `+ 2, ..., β and λj = µ2
j .
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Theorem 3.2. The functions ψv(x, λγ) do not belong to L2(0,∞) for v = 0,mγ − 1, γ = ` + 1, ` +
2, ..., β.

Proof. Take into account relations (3.7) and (3.8) for µ = µγ, γ = `+1, `+2, ..., β and since Imµγ = 0
for the spectral singularities, we have{

∂v

∂µv
e(x, µ)

}
µ=µγ

/∈ L2(0,∞), v = 0,mγ − 1, γ = `+ 1, β.

As a result, from the de�nition of functions (3.9), we �nd ψv(x, λγ) /∈ L2(0,∞) for v = 0,mγ − 1,
γ = `+ 1, `+ 2, ..., β.

Now, we introduce the Hilbert spaces

Hρ =
{
f : ‖f‖ρ <∞

}
, H−ρ =

{
f : ‖f‖−ρ <∞

}
, ρ = 1, 2, ...

with the norms

‖f‖2
ρ =

∫ ∞
0

(1 + s)2ρ|f(s)|2ds, ‖f‖2
−ρ =

∫ ∞
0

(1 + s)−2ρ|f(s)|2ds

respectively and evidently, H0 = L2(0,∞).
Let m0 denote the greatest of the multiplicities of the spectral singularities of L:

m0 = max {m`+1,m`+2, ...,mβ} .

We put
H+ = Hm0+1, H− = H−(m0+1)

Then, we have
H+ ⊂ L2(0,∞) ⊂ H−

and for all f ∈ H+, ‖f‖+ ≥ ‖f‖ ≥ ‖f‖−, where ‖.‖± = ‖.‖±(m0+1) , ‖.‖ = ‖.‖0 (see [18]). We are
particularly interested in the space H− because the space H− contains the principal functions for the
spectral singularities. Now, we will prove the above claim by using the following lemma.

Lemma 3.2. The following relations hold:

sup
0≤x<∞

∣∣e(m)(x, µ)
∣∣

(1 + x)m
<∞, e(m) =

(
d

dµ

)m
e, Imµ = 0, m = 0, 1, 2, ... (3.10)

Proof. Using integral representation (2.1), we obtain for Imµ = 0∣∣e(m)(x, µ)
∣∣ ≤ xmα+ + (2a− x)m|α−|

+C̃

∫ ∞
x

sm exp

{
−ε
(
x+ s

2

)δ}
ds, 0 < x < a (3.11)

and ∣∣e(m)(x, µ)
∣∣ ≤ xm + C̃

∫ ∞
x

sm exp

{
−ε
(
x+ s

2

)δ}
ds, a < x <∞. (3.12)

Then, taking into account (3.11) and (3.12), we �nd sup0≤x<∞
|e(m)(x,µ)|

(1+x)m
<∞.
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Theorem 3.3. ψv(x, λγ) ∈ H−(v+1) for v = 0, 1, ...,mγ − 1, γ = `+ 1, `+ 2, ..., β.

Proof. Using relation (3.10), we have

∥∥e(v)(x, µ)
∥∥2

−(v+1)
=

∫ ∞
0

∣∣∣∣ e(v)(x, µ)

(1 + x)v+1

∣∣∣∣2 dx <∞.
That is, the functions e(v)(x, µ) = ∂v

∂µv
e(x, µ) ∈ H−(v+1) for Imµ = 0 and v = 0, 1, 2, .... Then, we get{
∂v

∂µv
e(x, µ)

}
µ=µγ

∈ H−(v+1)

for Imµγ = 0, v = 0, 1, ...,mγ − 1 and γ = ` + 1, ` + 2, ..., β. Consequently, it follows from formula
(3.9) that ψv(x, λγ) ∈ H−(v+1) for v = 0, 1, ...,mγ − 1, γ = `+ 1, `+ 2, ..., β.

De�nition 2. The functions ψ0(x, λγ), ψ1(x, λγ), ..., ψmγ−1(x, λγ) are called the principal functions
associated with the spectral singularities λγ = µ2

γ, γ = `+ 1, `+ 2, ..., β of operator L. The function
ψ0(x, λγ) is the generalized eigenfunction, ψ1(x, λγ), ..., ψmγ−1(x, λγ) are the generalized associated
functions of ψ0(x, λγ) corresponding to the spectral singularity λγ.

4 Conclusion

In this paper, we examine the spectrum and principal functions of a nonself-adjoint Sturm-Liouville
operator with discontinuity conditions at the point x = a ∈ (0,∞). When examining the spectrum
of problem (1.1)-(1.3), we use the Jost solution to equation (1.1) with discontinuity condition (1.2)
which is obtained by Huseynov and Osmanova [9] and in this work. The triangular property of the
Jost solution is lost and the kernel function has a discontinuity along the line s = 2a−x for x ∈ (0, a).
Under two di�erent additional conditions, it is proved that problem (1.1)-(1.3) has �nite number of
eigenvalues and spectral singularities with �nite multiplicity. Finally, since restriction (2.8) is weaker
than restriction (2.7), we determine the principal functions corresponding to the eigenvalues and
spectral singularities of problem (1.1)-(1.3) under additional restriction (2.8).
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Abstract. We consider the Laplace operator with the Neumann boundary condition in a two-
dimensional domain divided by a barrier composed of many small Helmholtz resonators coupled
with the both parts of the domain through small windows of diameter 2a. The main terms of the
asymptotic expansions in a of the eigenvalues and eigenfunctions are considered in the case in which
the number of the Helmholtz resonators tends to in�nity. It is shown that such a homogenization
procedure leads to some energy-dependent boundary condition in the limit. We use the method of
matching the asymptotic expansions of boundary value problem solutions.
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1 Introduction

Construction of unusual boundary conditions, particularly, energy-dependent (see, e.g., [2]), is im-
portant for many physical applications. A possible way for doing this is as follows. Let us take a
resonator with the boundary composed of many small resonators coupling to the main cavity. After
performing the limiting procedure when the number of these small resonators tends to in�nity one ob-
tains the system with a boundary condition as a result of homogenization. The problem of such type
was considered in [7]. Later it was investigated in the framework of the model of point-like windows
[16]. A number of works were devoted to the problem of homogenization [3, 4, 5, 6, 11, 20, 23]. As for
physical applications, the additional interest was recently excited by the problem of metamaterials
creation [13, 20, 12, 15].

In the present paper, we consider the two-dimensional system of two resonators Ω+ and Ω−

separated by a barrier composed of N identical small resonators ΩN coupled to each big resonator
through small windows of width 2a. The geometry of the domain is shown in Fig. 1a.

We consider the asymptotics of an eigenvalue and an eigenfunction close to some eigenvalue of Ω−.
We use the method of matching the asymptotic expansions of boundary value problems [10, 9, 14, 22,
18, 8]. Brie�y speaking, the scheme is as follows. We construct to circles of radii

√
a,
√

2a centered
at the center of each window (see Fig. 1b). One constructs the external asymptotic expansion in the
exterior of each small circle and the internal asymptotic expansion in the interior of each larger circle.
In the domain between the two circles we make matching of the asymptotic expansions. We obtain
the main terms of the asymptotic expansion of the eigenvalue and the corresponding eigenfunction.
We construct formal asymptotic expansion. The justi�cation of the matching method is, e.g., in [9].

The next step is performing the limiting procedure as N → ∞. We show that the limit of
the eigenfunction satis�es the integral equation at the boundary which corresponds to some energy-
dependent boundary condition analogous to delta-potential supported by line in R.
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a b

Figure 1: The geometry of the system: a � the whole system; b � construction of the domains for
matching the asymptotic expansions. The Green function (G+, GN or G−) which is used in the
corresponding domain is indicated.

2 Matching of asymptotic expansions

First, let us consider the spectral problem for the Neumann Laplacian in Ω = Ω+ ∪ΩN ∪Ω−, i.e. we
deal with the following boundary problem

∆u+ k2u = 0,
∂u

∂n
|∂Ω = 0, (2.1)

where ∂Ω is the domain boundary.

The Green functions for the upper (G+), intermediate (GN) and the lower (G−) resonators with
the Neumann boundary condition can be expressed using the corresponding eigenfunctions:

G+(X,X ′, k) =
∞∑
n=0

∞∑
m=0

4

ld+

cos(πnx
l

) cos(πnx
′

l
) cos(πmy

d+
) cos(πmy

′

d+
)(

k2 − π2n2

l2
− π2m2

d2
+

)
(δnm + 1)

, (2.2)

GN(X,X ′, k) =
∞∑
n=0

∞∑
m=0

4N2

l2
cos(πnNx

l
) cos(πnNx

′

l
) cos(πmNy

l
) cos(πmNy

′

l
)(

k2 − π2N2

l2
(n2 +m2)

)
(δnm + 1)

, (2.3)

G−(X,X ′, k) =
∞∑
n=0

∞∑
m=0

4

ld−

cos(πnx
l

) cos(πnx
′

l
) cos(πmy

d−
) cos(πmy

′

d−
)(

k2 − π2n2

l2
− π2m2

d2
−

)
(δnm + 1)

, (2.4)

where X = (x, y), X ′ = (x′, y′), δnm is the Kronecker symbol, (δnm = 1 for n2 +m2 = 0, otherwise
δnm = 0).

We will investigate the asymptotics in the small parameter a of the eigenvalues of the correspond-
ing operator in the case in which there are small coupling windows (of width 2a) connecting ΩN with
Ω− and Ω+. Naturally, we pose the Meixner condition at the windows edges. Let the considered
eigenvalue k2 be close to the following eigenvalue (λ11) of the lower resonator: k

2 ≈ λ11 = π2

l2
+ π2

d2
−
.
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We assume the following ansatz for the asymptotics:

γa := k2
a −

π2

l2
− π2

d2
−

= τ1 ln−1 a+ τ2 ln−2 a+ o(ln−2 a), a→ 0 + . (2.5)

In such a case, the term n = m = 1 in (2.4) has a singularity.
To �nd the coe�cients of asymptotic expansion (2.5), we use the conventional scheme of matching

the asymptotic expansions of boundary value problems (see, e.g., [10, 9, 14, 22, 18, 8, 17]. Brie�y
speaking, it is as follows. Let the coupling windows be centered at points (2jl+1

2N
, 0), (2jl+1

2N
, l
N

), j =

0, ...N − 1. For each point, let us form two circles of radii
√
a and

√
2a centered at these points (see

Fig. 1b). One constructs the internal asymptotic expansion of the solution inside the larger circle
and the external asymptotic expansion of the solution outside the smaller circle. Correspondingly,
in the ring between the two circles one has two asymptotic expansions. The proper expansion is
obtained by matching of these two expansions in each ring.

We search a solution to (2.1) near the i-th coupling window in the following form:
Near the line y = l/N we have ψ2(x):

ψ+
2 (x, l

N
) = −γa

∑N
j=1 βjG

+((x, l
N

), (xj,
l
N

), k); x ∈ Ω+,

ψ̃2(x), matching domain,

ψN2 = γa

[
αiG

N((x, l
N

), (xi, 0), k) + βiG
N((x, l

N
), (xi,

l
N

), k)
]
, x ∈ ΩN ;

(2.6)

near the line y = 0, ψ1(x):
ψN1 = γa

[
αiG

N((x, 0), (xi, 0), k) + βiG
N((x, 0), (xi,

l
N

), k)
]
, x ∈ ΩN ,

ψ̃1(x) matching domain,

ψ+
1 (x, 0) = −γa

∑N
j=1 αjG

−((x, 0), (xj, 0), k); x ∈ Ω−.

(2.7)

The asymptotics of the Green functions near the coupling windows are as follows (here ξ = x−xi
a
).

We have two small parameters: the width of window a and the distance between the neighbor
windows centers ε. Correspondingly, one has the following asymptotics.

Near the line y = l/N :

G+
(

(x,
l

N
), (xi,

l

N
), ka

)
= − 1

π
ln a+ g+

1 (x)− 1

π
ln |ξ|, a→ 0; (2.8)

G+
(

(x,
l

N
), (xi,

l

N
), ka

)
= − 1

π
ln ε+ h+(x)− 1

π
ln |ξ|, ε→ 0; (2.9)

GN
(

(x,
l

N
), (xi,

l

N
), ka

)
= − 1

π
ln a+ gN2 (x)− 1

π
ln |ξ|, a→ 0; (2.10)

GN
(

(x,
l

N
), (xi, 0), ka

)
= − 1

π
ln ε+ gN3 (x)− 1

π
ln |ξ|, ε→ 0; (2.11)

near the line y = 0:

G−
(

(x, 0), (xi, 0), ka

)
= − 1

π
ln a+

4

ld−

cos(πx
l

) cos(πxi
l

)

k2 − π2

l2
− π2

d2
−

+ g−4 (x)− 1

π
ln |ξ|, a→ 0; (2.12)

G−
(

(x, 0), (xi, 0), ka

)
= − 1

π
ln ε+

4

ld−

cos(πx
l

) cos(πxi
l

)

k2 − π2

l2
− π2

d2
−

+ h−(x)− 1

π
ln |ξ|, ε→ 0; (2.13)
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GN
(

(x, 0), (xi, 0), ka

)
= − 1

π
ln a+ gN5 (x)− 1

π
ln |ξ|, a→ 0; (2.14)

GN
(

(x, 0), (xi,
l

N
), ka

)
= − 1

π
ln ε+ gN6 (x)− 1

π
ln |ξ|, ε→ 0. (2.15)

Here g+
1 , h

+, gN2,3, g
−
4 , h

−, gN5,6 are regular functions in the corresponding domains.
Let us assume that there is a relation between the small parameters:

ε = maδ, ln ε = δ ln a+ const, δ ∈ (0, 1). (2.16)

Taking equal terms of zero order of ψ2(x) on the line y = l/N near the i-th window, one obtains
the following relation

−
[
βi
(
− τ1

π

)
+
∑
j 6=i

βj
(
− δτ1

π

)]
= αi

(
− δτ1

π

)
+ βi

(
− τ1

π

)
, (2.17)

or
δαi + 2βi + δ

∑
j 6=i

βj = 0. (2.18)

The analogous operation with zero order terms of ψ1(x) on the line y = 0 gives one the relation:

αi
(
− τ1

π

)
+ βi

(
− δτ1

π

)
= −αi

[
− τ1

π
+ 4

ld−
cos2(πxi

l
)
]
−∑

j 6=i αj

[
− δτ1

π
+ 4

ld−
cos(

πxj
l

) cos(πxi
l

)
] (2.19)

or
αi

[
cos2(πxi

l
)− τ1ld−

2π

]
+∑

j 6=i αj

[
cos(πxi

l
) cos(

πxj
l

)− δτ1ld−
4π

]
− βi · τ1ld−4π

= 0.
(2.20)

Let us denote for brevity

b =
τ1ld−

4π
, x̃i =

πxi
l
. (2.21)

Then
αi

[
cos2(x̃i)− 2b] +

∑
j 6=i

αj

[
cos(x̃i) cos(x̃j)− δb

]
− δbβi = 0. (2.22)

Incorporating (2.18) and (2.22), we come to the following theorem.

Theorem 2.1. If ε = maδ, δ ∈ (0, 1), then matching of terms of zero order in asymptotic ex-
pansion of a solution to (2.1) leads to the following system of equations for the coe�cients αi, βi of
representations (2.7), (2.6):



cos2 x̃1 − 2b cos x̃1 cos x̃2 − δb ... cos x̃1 cos x̃N − δb −δb 0 ... 0
cos x̃2 cos x̃1 − δb cos2 x̃2 − 2b ... cos x̃2 cos x̃N − δb 0 −δb ... 0

... ... ... ... 0 ... ... 0
cos x̃N cos x̃1 − δb cos x̃N cos x̃2 − δb ... cos2 x̃N − 2b 0 0 ... −δb

δ 0 ... 0 2 δ ... δ
0 δ ... 0 δ 2 ... δ
... ... ... ... δ δ ... δ
0 0 ... δ δ δ ... 2





α1

α2
...
αN
β1

β2
...
βN


= 0.

(2.23)
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A necessary and su�cient condition for the existence of non-trivial solutions to (2.23) is vanishing
of the system determinant. The determinant can be exactly calculated [19]. This gives one the
expression for b:

b =
N

8
· 2− δ

1− δ
. (2.24)

Taking into account (2.21), one obtains the expression for τ1. This is resulted in the following
theorem.

Theorem 2.2. If ε = maδ, δ ∈ (0, 1), then the coe�cient τ1 of the main term of asymptotic
expansion (2.5) of the eigenvalue close to π2

l2
+ π2

d2
−
is as follows:

τ1 =
πN

2ld−
· 2− δ

1− δ
. (2.25)

3 Integral equation

Let us consider the limiting case N → ∞. Our goal is obtaining the integral equation for the limit
of the eigenfunction corresponding to eigenvalue k2

a.
Using asymptotics of the Green functions (2.8), (2.9), (2.12), (2.13) and expansion (2.5), one can

obtain the asymptotic expansion for the eigenfunction at the upper and lower sides of the barrier:

ψ−1 (xi, 0) = αi

(τ1

π
− 4

ld−
cos2 xi

)
+
∑
j 6=i

αj

(τ1

π
δ − 4

ld−
cosxi cosxj

)
+ o(1), (3.1)

ψ+
2 (xi,

l

N
) =

τ1

π
βi +

τ1

π
δ
∑
j 6=i

βj + o(1). (3.2)

It is convenient to return from τ1 to b: τ1 = 4π
ld−
b. Then, one rewrites the equations:

− ld−
4
ψ−1 (xi, 0) = αi(cos2 xi − b) +

∑
j 6=i

αj(cosxi cosxj − δb) + o(1), (3.3)

ld−
4b
ψ+

2 (xi,
l

N
) = βi + δ

∑
j 6=i

βj + o(1). (3.4)

Let us join (2.18), (2.22), (3.3) and (3.4) into the system:
δαi + 2βi + δ

∑
j 6=i βj = 0,

αi(cos2(xi)− 2b)− δbβi +
∑

j 6=i αj(cosxi cosxj − δb) = 0,

αi(cos2 xi − b) +
∑

j 6=i αj(cosxi cosxj − δb) = − ld−
4
ψ−1 (xi, 0),

βi + δ
∑

j 6=i βj = ld−
4b
ψ+

2 (xi,
l
N

).

(3.5)

Solving (3.5) with respect to αi and βi, one obtains:

αi =
ld−

4(1− δ2)b

[
δψ+

2 (xi,
l

N
)− ψ−1 (xi, 0)

]
, (3.6)

βi =
ld−

4(1− δ2)b

[
δψ−1 (xi, 0)− ψ+

2 (xi,
l

N
)
]
. (3.7)

Note that if one poses ψ−1 (xi, 0) = ψ+
2 (xi,

l
N

) then αi = βi.
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Let us substitute the obtained expressions in (2.6) and (2.7), summarize them and use expression
(2.24) for b. Then one obtains

ψ−1 (x, 0) + ψ+
2 (x,

l

N
) =

2d−
(1 + δ)(2− δ)

γa×

N∑
i=1

l

N

[
G−(x, xi)ψ

−
1 (xi, 0) +G+(x, xi)ψ

+
2 (xi,

l

N
)
]
+

l

N
δ
[
G−(x, xi)ψ

+
2 (xi,

l

N
) +G+(x, xi)ψ

−
1 (xi, 0)

]
. (3.8)

We assume that ψ−1 (x, 0) = ψ+
2 (x, l

N
) = ψ(x). It leads to simplifying the expression:

2ψ(x) =
2d−(1− δ)

(1 + δ)(2− δ)
γa

N∑
i=1

l

N

(
G−(x, xi) +G+(x, xi)

)
ψ(xi). (3.9)

One can see that the sum in the right hand side is the integral sum which turns in the integral over
Γ, i.e. over segment [0, l] in our case. Correspondingly, we come to the integral equation. As a result,
we obtain the following theorem.

Theorem 3.1. If ε = maδ, δ ∈ (0, 1), then the eigenfunction corresponding to the eigenvalue close
to π2

l2
+ π2

d2
−
tends as N →∞ to the function satisfying the following integral equation:

ψ(x) =
d−(1− δ)

(1 + δ)(2− δ)
γa

l∫
0

(
G−(x, x′, ka) +G+(x, x′, ka)

)
ψ(x′)dx′. (3.10)

4 Boundary condition and integral equation

After performing the limiting procedure N →∞, one comes to a rectangle Ω+ ∪ Ω− divided by line
Γ = {(x, y), y = 0}. Let us consider the following boundary problem for u = u(x, y):

∆u+ k2u = 0, (x, y) ∈ Ω+ ∪ Ω−,
∂u
∂n

∣∣∣
+

= α
2
u
∣∣∣
Γ
, ∂u

∂n

∣∣∣
−

= α
2
u
∣∣∣
Γ
, ∂u

∂n

∣∣∣
∂Ω±\Γ

= 0,

u(x, 0+) = u(x, 0−).

(4.1)

Here n is the inward normal for the corresponding domain.
Remark. Note that boundary conditions (4.1) on Γ correspond to the jump of the derivative at Γ:

∂u

∂y

∣∣∣
+
− ∂u

∂y

∣∣∣
−

= αu
∣∣∣
Γ
,

i.e. to 1D delta-potential at y = 0 in the transverse direction.

Theorem 4.1. A solution u to boundary problem (4.1) satis�es the following integral equation:

u(x) =
α

2

∫
Γ

(
G−(x, x′, ka) +G+(x, x′, ka)

)
u(x′)dx′, x′ ∈ Γ. (4.2)
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Proof. Let us multiply the normal derivative of u by the Green function for the Neumann Laplacian
G±((x, y), (x′, y′), k) in Ω± and integrate over the boundary of ∂Ω− ∪ ∂Ω+. Due to the properties of
the Green function, one obtains the value of u in Ω±

u(x) =

∫
∂Ω±

G±(x, x′, ka)
∂u

∂n
(x′)dx′, x ∈ Ω±. (4.3)

Note that ∂u
∂n

∣∣∣
∂Ω±\Γ

= 0. Correspondingly, only the integral over Γ is non-zero in the right hand side

of (4.3). Considering the limiting value of u at ∂Ω± and taking into account boundary conditions
(4.1), one comes to the following integral equation:

u(x) =
α

2

∫
Γ

(
G−(x, x′, ka) +G+(x, x′, ka)

)
u(x′)dx′, x′ ∈ Γ. (4.4)

One can see that equation (4.4) coincides with equation (3.10) if

α = 2
d−(1− δ)

(1 + δ)(2− δ)
γa.

Remark. Numerical results for resonator with a boundary composed of many Helmholtz resonators
[1] show that the ratio of the eigenfunction normal derivative and the eigenfunction value stabilizes
near a value depending on energy but independent of the point position at the boundary. It is in
agreement with the results obtained above.
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Abstract. Weaving frames have been introduced to deal with some problems in signal processing and
wireless sensor networks. More recently, the notion of fractal operator and fractal convolutions have
been linked with perturbation theory of Schauder bases and frames. However, the existing literature
has established limited connections between the theory of fractals and frame expansions. In this
paper we de�ne weaving frames generated via fractal operators combined with fractal convolutions.
The aim is to demonstrate how partial fractal convolutions are associated to Riesz bases, frames and
the concept of weaving frames in a Hilbert space. The context deals with ones-sided convolutions
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Some applications using partial fractal convolutions with null function have been obtained for the
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1 Introduction

Transmission of signals using frames, a redundant set of vectors in a Hilbert space are preferred
over orthonormal or Reisz basis as they minimize the chance of losses and errors in the process of
signal transmission. Due to the useful applications in the characterization of function spaces, signal
processing, and many other �elds of applications, the theory of frames has developed rather rapidly
in recent years. One amongst many recent generalisation of frames given by Bemrose et al. in [2]
is introduction of a new concept of weaving frames in separable Hilbert spaces. Because of some
potential applications such as in wireless sensor networks and distributed signal processing, frames
and weaving frames have attracted many researchers attention [1, 4, 9, 11]. Furthermore, some
variations of woven frames were also considered [10, 12, 25, 26].

This paper highlights the connection of weaving frames with fractal interpolation functions. Many
authors have studies that the framework of fractal interpolation which makes it possible to enlarge
and improve the classical methods of approximation theory. In previous papers, the authors de�ned
fractal functions constructed by means of iterated function systems, see, e.g, [3, 19]. These maps are
fractal perturbations of arbitrary continuous functions de�ned on compact intervals. Recently, in [18]
the fractal convolution, an internal binary operation, has been treated as an operation between two
functions, namely the germ function f and the base function b (aside from other elements such as
partition and scale factors). Navascues [19, 20, 21] introduced fractal versions of functions, in spaces
associated fractal operator and some related notions. The current literature [23, 24] contains some
interesting developments in which new bases and frames are obtained from the old ones by using
the algebraic operation of fractal convolution allowing construction of frames and bases consisting of
self-referential functions.
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In this piece of research, an interested reader will further notice the properties of a fractal operator
and its relationship with perturbation of woven frames. The motivation is derived from an exami-
nation of one-sided fractal convolutions, which we call the left and right partial fractal convolutions,
with a di�erent perspective. To be particular, the objective is to extend the link between fractal
convolutions with the perturbation theory of bases and frames for Lebesgue space Lp (1 ≤ p ≤ ∞)
encouraged by developments in [21, 28]. The current source of information is a sequel to study frames
linked to fractal convolutions. Not only this, weaving properties of frames lay the primary foundation
of the extension.

In Section 2, we collect some de�nitions, and recall known results that are available in the theory
of frames [5, 6, 8] and for the concept of fractal interpolation functions [3, 18, 19], which will be
used in following sections. Main results are contained in Section 3 and Section 4. Future plans are
discussed in Section 5.

2 Background on frames and fractals

2.1 Preliminaries for frames

In this section, we provide an overview of the technical background on frames and related work
relevant to our research.

De�nition 1. Let H be a real (or complex) separable Hilbert space with inner product 〈., 〉. A
countable sequence {fk} ⊂ H is called a frame (or Hilbert frame) for H, if there exist numbers
A, B > 0 such that,

A‖f‖2 ≤ ‖{〈f, fk〉}‖2
`2 ≤ B‖f‖2 ∀ f ∈ H.

The inequality is called the frame inequality of the frame.

The operator V : `2 → H de�ned as

V ({ck}) =
∞∑
k=1

ckfk, {ck} ∈ `2,

is called the pre-frame operator (or synthesis operator) and its adjoint operator V ∗ : H → `2, which
is called the analysis operator is given by

V ∗(f) = {〈f, fk〉} ∀ f ∈ H.

By composing V and V ∗ we obtain the frame operator S = V V ∗ : H → H de�ned by

S(f) =
∞∑
k=1

〈f, fk〉fk, ∀ f ∈ H.

The frame operator S is a positive, self-adjoint and invertible operator on H. This gives the recon-
struction formula [6] for all f ∈ H:

f = SS−1f =
∞∑
k=1

〈S−1f, fk〉fk

(
=
∞∑
k=1

〈f, S−1fk〉fk

)
.

The scalars {〈S−1f, fk〉} are called frame coe�cients of the vector f ∈ H.
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De�nition 2 (Bessel sequence). A family {φm} ⊂ H is a Bessel sequence for H if there exist a
positive constant K such that,

∞∑
m=0

|〈f, φm〉|2 ≤ K‖f‖2, ∀ f ∈ H.

De�nition 3 (Riesz sequence). [5] A family {φm} in a separable Hilbert space H is a Riesz sequence
for H if for all {cm} ∈ l2(N0), there exists constants 0 < A ≤ B <∞ such that,

A
∞∑
m=0

|cm|2 ≤
∞∑
m=0

‖cmφm‖2 ≤ B
∞∑
m=0

|cm|2.

De�nition 4 (Riesz basis). [5] A collection of vectors {φm} in a Hilbert space H is a Riesz basis
for H if it is the image of an orthonormal basis for H under an invertible linear transformation. In
other words, if there is an orthonormal basis {ek} for H and an invertible transformation T such
that T ek = φk.

Let Ξ be a �nite or countable index set.

De�nition 5 (Weaving frames). [2] Two frames {φi}i∈Ξ and {ψi}i∈Ξ in a separable Hilbert space H
are said to be woven, if there are universal positive constants A and B such that for every subset
σ ⊂ Ξ, the family {φi}i∈σ ∪ {ψi}i∈σc is a frame for H with lower and upper frame bounds A and B,
respectively.

De�nition 6. [2] A family of frames {φij}Mj=1,i∈Ξ in H is said to be woven if there are universal
constants A and B so that for every partition {σj}Mj=1 of Ξ, the family {φij}Mj=1,i∈σj is a frame for H
with lower and upper frame bounds A and B, respectively. Each such family {φij}Mj=1,i∈σj is called
a weaving.

Remark 1. If a family of frames {φij}Mj=1,i∈Ξ is a Bessel sequence for H with bound Bj, then every

weaving is a Bessel sequence with the Bessel bound
∑M

j=1Bj.

Remark 2. If {φi}i∈Ξ is a Riesz basis with Riesz bounds A, B and π is a permutation of Ξ, then for
every σ ⊂ Ξ, the family {φi}i∈σ

⋃
{φπ(i)}i∈σc is a frame sequence with bounds A and 2B. However,

{φi}i∈Ξ and {φπ(i)}i∈Ξ are woven if and only if π = Ξd.

2.2 Preliminaries for fractal functions

In this section, we provide an overview of the technical background and related work relevant to
fractal interpolation functions (FIFs). The notion of FIF can be used to associate a parameterized
family of fractal functions with a prescribed function that belongs to a standard function space.
We observe that the Read-Bajraktarevi�c operator leads the way to address the technical details
concerning this in the setting of Lp-spaces, see [18, 20, 28].

Let ∆ := {x0, x1, . . . , xT}, where T ∈ N, T > 1, x0 < x1 . . . , xT and I = [x0, xT ]. We denote by
Lp(I), the Banach space of all real-valued Lebesgue integrable functions de�ned on I, equipped with
Lp-norm ‖.‖ for 1 ≤ p < ∞. The germ function will be denoted by f . It is a prescribed function
belonging to Lp(I). Next we shall de�ne a family of fractal functions which are self-referential
functions associated to f .

For T ∈ N denote by NT the subset of N consisting of the �rst T natural numbers. For t ∈ NT−1,
let It = [xt−1, xt) and IT = [xT−1, xT ]. Note that I = ∪t∈NtIt and each point in the partition is
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exactly in one of the subintervals It. For t ∈ NT , suppose that Lt : [x0, xT ] → [xt−1, xt] are a�ne
maps of the form Lt(x) = atx + bt, where at and bt are determined such that Lt(x0) = xt−1 and
Lt(xT ) = xt.

For a �xed base function β ∈ Lp(I), we pick a scale factor and scale vec-
tor (or a scaling vector) respectively, de�ned as αt ∈ (−1, 1) for t ∈ NT , and
α = (α1, α2, . . . , αT ) ∈ (−1, 1)T .

To each ρ ∈ Lp(I), we associate a Read-Bajraktarevi�c type operator Bα,β
f,∆ : Lp(I) → Lp(I) in

contrast with the germ function f and the parameters ∆, β and α, and is as follows,

Bα,β
f,∆ρ(x) = f(x) + αt(ρ− β) ◦ L−1

t (x)

for x ∈ It, t ∈ NT .
The steps to show that Bα,β

f,∆ is a contraction map are fairly direct and, hence, by the Banach

�xed point theorem, Bα,β
f,∆ admits a unique �xed point fα,β∆ . Correspondingly, we have: fα,β∆ satis�es

the self-referential equation:

fα,β∆ = f(x) + αt(f
α,β
∆ − β) ◦ L−1

t (x). (2.1)

Let us de�ne

Λ = max{|αt| : t ∈ NT < 1}

The following inequality can be easily obtained using equation (2.1):

‖fα,β∆ − f‖ ≤ Λ

1− Λ
‖f − β‖. (2.2)

Remark 3. Note that, in particular, fα,β∆ = f , at α = 0. It is clear that
fα,β∆ may agree with f in speci�ed subintervals, taking the corresponding zero scale factors.

We call, fα,β∆ an α-fractal function or "fractalization" of f . In fact, with di�erent choices of the
parameters as speci�ed above, we obtain a family of fractal functions {fα,β∆ } corresponding to f .

In the remaining part of the work, for any ρ ∈ Lp(I) and a sequence (am) ∈ Lp(I), the existence
of k :=

∑∞
m=0‖ρ− am‖ < +∞ , will be termed as that the sequence (ρ, am) satis�es the k-condition.

2.3 Fractal convolutions

Navascues and Massopust have de�ned and studied the fractal convolution operator in detail for
Lp spaces in [18, 22]. More recently, an extensive study of perturbation of bases and frames have
been presented via fractal convolution in [24]. The underlying rule considers "fractalization" of f as
convolution. The fractal convolution associated with an Read-Bajraktarevi�c operator B acting on
the Lebesgue spaces Lp(I). With respect to a given partition ∆, and a �xed scaling vector α, it is
simply a binary operation on Lp(I)× Lp(I) given by

De�nition 7 (fractal convolution). For a germ f and a base β in Lp(I)

z∆,α : Lp(I) −→ Lp(I)

z∆,α(f, β) = f ∗∆,α β

where f ∗∆,α β is the α-fractal function fα,β∆ .
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For the rest of the paper, for brevity, let us denote

z∆,α = z
f ∗∆,α β = f ∗ β

It is easy to check that for any f, β ∈ Lp(I), the fractal convolution operator z is linear and bounded.
The goal of the paper is to link weaving frames and fractal convolutions. The conceptual ap-

proach focuses on the core of convolutions but in a one-sided way. We shall now look at the partial
convolution or one-sided convolutions via left or via right as de�ned with the help of operator z.

De�nition 8 (left partial fractal convolution). For a �xed f in Lp(I),

zl
f (β) = f ∗ β, β ∈ Lp(I)

This is called f -left partial fractal convolution.

De�nition 9 (right partial fractal convolution). For a �xed β,

zr
β(f) = f ∗ β, f ∈ Lp(I)

This is called β-right partial fractal convolution.

The authors in [24] listed several straight forward properties of fractal convolution operator z
and the partial fractal convolutions zl

f , zr
β respectively. Let us now review these properties for our

later use in woven.

1. The fractal convolution f ∗ β satis�es a �xed point equation analogous to equation (2.1)

(f ∗ b)(x) = f(x) + αn((f ∗ b)− b) ◦ L−1
n (x), ∀ x ∈ In, (2.3)

where fα,β∆ has been replaced by f ∗ β.

2. The following inequalities are direct corollaries of above equation (2.3), algebraically observed
in [22]

‖f ∗ β − f ∗ β′‖ = ‖zl
f (β)−zl

f (β
′)‖ ≤ Λ

1− Λ
‖β − β′‖, (2.4)

‖f ∗ β − f ′ ∗ β‖ = ‖zr
β(f)−zr

β(f ′)‖ ≤ 1

1− Λ
‖f − f ′‖. (2.5)

3. The f-left partial convolution zl
f is nonlinear and Lipschitz continuous. Furthermore, if Λ < 1

2
,

then it is a contraction whose unique �xed point is f . Similarly, the operator zr
b is nonlinear

and Lipschitz continuous

4. The closeness of f ∗ β to f and β are transferred in the form of in-
equalities as a result of the above �rst two items in this list in conjunc-
tion with (a): the uniqueness of the �xed point of the operator Bα,β

f,∆ and
(b): establishing that the operator z is idempotent, that is, b ∗ b = b, for any b. Therefore,

‖f ∗ β − f‖ = ‖zl
f (β)−zl

f (f)‖ ≤ Λ

1− Λ
‖f − β‖, (2.6)

‖f ∗ β − β‖ = ‖zr
β(f)−zr

β(β)‖ ≤ 1

1− Λ
‖f − β‖. (2.7)

In the current work, we start by linking weaving frames with left partial fractal convolutions.
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3 Background on frames and fractals

3 Main results

So far, we have not seen a mechanism to construct weaving frames linked to fractal convolutions.
The results presented in the mentioned literature in Section 2.3 are a stepping stone to derive links
between fractal convolutions and perturbation theory of bases and frames for Banach spaces and
Hilbert spaces. The primary objective in this section is to provide interesting connections between
fractal convolutions and cases in which weaving frames can be obtained. In the presence of left-
partial fractal convolutions, our approach is well aligned to prove the following theorems on obtaining
su�cient conditions for existence of weaving frames. Note that these characterisations of weaving of
left convolved frames is studied in a Hilbert space setting.

Theorem 3.1. In a Hilbert space H = L2(I), where (δm) is an orthonormal basis, and a given
convolved Riesz basis (ρ ∗ {δm}m∈I) with bounds Ml and Mu respectively, where,

Ml =
1− λ− k

1− λ
& Mu =

1− λ+ k

1− λ

• λ is as de�ned in Section 2.2.

• (ρ, δm) satis�es the k-condition which is bounded by (1− λ).

then for every σ ⊂ I, the family (ρ ∗ {δm}m∈σ)
⋃

(ρ ∗ {δπ(m)}m∈σc) is a frame sequence with bounds
Ml and 2Mu.

Moreover, (ρ ∗ {δm}m∈I) and (ρ ∗ {δπ(m)}m∈I) are woven if and only if π = Id, π is a permutation
of I.

We shall present the proof of Theorem 3.1 a little later after we have discussed the existence of
the frame (ρ ∗ φm) as a frame for H = L2(I) (left convolved fractal frame), for any given frame (φm),
see Proposition 2. But even before that, let us observe some su�cient conditions for the existence of
a Schauder basis (ρ ∗ βm) for Lp(I) (left convolved fractal basis) for any given Schauder basis (βm)
for Lp(I).

For a given Banach space Lp(I), we begin by considering a Schauder basis (βm) of Lp(I), (1 ≤ p <
∞,m = 0, 1, . . .), and a �xed ρ ∈ Lp(I). It is obvious that, for any f , we have f =

∑∞
m=0 cm(f)βm,

where for M th partial sum operator RM , the coe�cients cm(f) satisfy

RM(f) =
M∑
m=0

cm(f)βm,

Let us write, < = supM ‖ RM ‖

Proposition 3.1. For an arbitrary ρ ∈ Lp(I) and a normalised Scahuder basis (βm) of Lp(I), (1 ≤
p <∞,m = 0, 1, . . .), if (ρ, δm) satis�es the k-condition, then the operator

Θρ
l(f) =

∞∑
m=0

cm(f)(ρ ∗ βm)

is well de�ned, linear and bounded, where cm(f) are the coe�cients of the expansion of f along the
basis (βm) as before.
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A related phenomenon is that of obtaining left convolved Schauder basis of type (ρ ∗ βm) for
Lp(I), where it is mathematically observed that the process demands to drop the condition of
normality in the given Schauder basis (βm).

It is also worth noticing that in a Hilbert space L2(I), for any given orthonormal basis (δm),
(ρ ∗ δm), ρ ∈ L2(I) is a Bessel sequence, provided (ρ, δm) satis�es the k-condition.

We now provide a proof of Theorem 3.1 in which the approach encompasses the use of Propo-
sition 1 and the boundedness property of the Schauder basis (βm) plus the norm of cm, given in
[24].

Proof of Theorem 3.1. Since any subsequence of a Reisz basis is a Reisz sequence with the same
bounds, for every σ ⊂ I, we have that for any f ∈ span(ρ ∗ {δm}m∈σ)

⋃
(ρ ∗ {δπ(m)}m∈σc),

∑
m∈σ

|〈f, ρ ∗ {δm}〉|2 +
∑
m∈σc

|〈f, ρ ∗ {δπ(m)}〉|2

≥
∑

σ∪(σc∩π(σc))

|〈f, ρ ∗ {δm}〉|2 ≥Ml‖ f ‖2.

Clearly, we note that the upper bound is 2 ∗Mu. Let us prove the woven part. If we assume that
π 6= Id, π is a permutation of I, which implies that π(m0) = r0 6= s0 for some r0, s0 ∈ I (ρ∗{δm}m∈I)
and (ρ ∗ {δπ(m)}m∈I). Excluding s0 from I, we can obtain a set in which δr0 appears twice and δs0 is
absent. This is a contradiction to the fact that the closure of the span is the entire space.

Theorem 3.2. If a family {φm} is a frame for H with bounds T,D > 0, and ρ ∈ L2(I) is such that

∞∑
m=0

‖ (ρ− φm) ‖2≤ T (1− λ)2, (3.1)

0 < λ < 1, then γ =
∑∞

m=0 ‖ (ρ ∗ φm − φm) ‖2 < T and (ρ ∗ φm) constitutes a frame with the
following frame bounds,

T

(
1−

√
γ

T

)2

& D

(
1 +

√
γ

D

)2

Proof. Using equation (2.7) and equation (3.1), it is an easy algebra to drive that,

γ =
∞∑
m=0

‖ (ρ ∗ φm − φm) ‖2<
1

(1− λ)2

∞∑
m=0

‖ (ρ− φm) ‖2< T.

The remaining algebra is given by the authors in Theorem 1 of [8].

Corollary 3.1. Let families {φm} and {ψm} be frames with bounds T,D > 0, and T ∗, D∗ > 0
respectively. Let ρ ∈ L2(I), be such that

∞∑
m=0

‖ (ρ− φm) ‖2≤ T1(1− λ)2 &
∞∑
m=0

‖ (ρ− ψm) ‖2≤ T2(1− λ)2.
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Then for γ1 =
∑∞

m=0 ‖ (ρ ∗ φm − φm) ‖2, (ρ ∗ φm) and (ρ ∗ ψm) constitute frames for H with the
bounds

P1 = T

(
1−

√
γ1

T

)2

& Q1 = D

(
1 +

√
γ1

D

)2

.

Analogously for γ2 =
∑∞

m=0 ‖ (ρ ∗ ψm − ψm) ‖2

P2 = T ∗
(

1−
√
γ2

T ∗

)2

& Q2 = D∗
(

1 +

√
γ2

D∗

)2

.

Corollary 1 enables the interest in studying the perturbation of woven family of frames in a
Hilbert space.

4 Perturbation of woven frames linked with fractal convolutions

We are interested to explore the connections of weaving frames linked with fractal convolutions with
the classical perturbation result by Paley and Wiener [7], stating that a sequence that is su�ciently
close to an (orthonormal) basis in a Hilbert space automatically forms a basis. Some basic results in
perturbation of frames are provided in [5, 15, 16, 17].

The following theorem tells us that perturbations can be linked with woven convoluted frames by
considering the closeness property of a family of frames in a special manner as you will see.

Theorem 4.1. Let (ρ ∗ {φm}m∈Ξ) and (ρ ∗ {ψm}m∈Ξ) be frames for H with the bounds P1, Q1, and
P2, Q2 respectively. Suppose that there exists µ ∈ (0, 1) such that

µ
(√

Q1 +
√
Q2

)
≤ P1

2
. (4.1)

Then, for all sequences {ξm}m∈Ξ, we have

‖
∑
m∈Ξ

ξm(ρ ∗ φm − ρ ∗ ψm)‖ ≤ µ‖{ξm}m∈Ξ‖. (4.2)

Moreover, for every σ ⊂ Ξ, the family (ρ ∗ {φm}m∈σc)
⋃

(ρ ∗ {ψm}m∈σ) is a frame for H with frame
bounds P1

2
, Q1 +Q2.

Proof. The goal is to obtain the lower and upper frame bounds of the weaving frame which are
worked out separately below. The upper frame bound of the weaving can be obtained by the claim
that for Bessel sequence (ρ ∗ {φm}m∈Ξ) and (ρ ∗ {ψm}m∈Ξ), every weaving is bounded above by sum
of their respective upper bounds, i.e Q1 +Q2 in this proof, see [2].

The algebra for calculating lower frame bound is more complex and we shall begin by introducing
synthesis operator given by χ and ω respectively for the two frames linked with fractal convolutions
(ρ ∗ {φm}m∈Ξ) and (ρ ∗ {ψm}m∈Ξ). For any σ ⊂ Ξ and any given orthogonal projection Ṕ onto span
of standard orthonormal basis of l2 (Ξ ), let

χσ({ξm}m∈Ξ) = χṔσ({ξm}m∈Ξ) =
∑
m∈σ

ξmρ ∗ φm (4.3)

Combining equation (4.3) with its analogous equation using ω and Ṕ , we obtain a restatement
of inequality (4.2) to be written as ‖ χ− ω ‖< µ.
Now for any f ∈ H, consider
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‖
∑
m∈σ

〈f, ρ ∗ ψm〉ρ ∗ ψm +
∑
m∈σc
〈f, ρ ∗ φm〉ρ ∗ φm ‖ . (4.4)

Taking into account that σc = Ξ− σ, we can obtain

‖
∑
m∈σ

〈f, ρ ∗ ψm〉ρ ∗ ψm +
∑
m∈σc
〈f, ρ ∗ φm〉ρ ∗ φm ‖

≥‖
∑
m∈Ξ

〈f, ρ ∗ φm〉ρ ∗ φm +

(∑
m∈σ

〈f, ρ ∗ ψm〉ρ ∗ ψm −
∑
m∈σ

〈f, ρ ∗ φm〉ρ ∗ φm

)
‖

≥ P1 ‖ f ‖ − ‖
∑
m∈σ

〈f, ρ ∗ ψm〉ρ ∗ ψm −
∑
m∈σ

〈f, ρ ∗ φm〉ρ ∗ φm ‖ .

Applying the fact that synthesis operator for the two frames linked with fractal convolutions (ρ ∗
{φm}m∈Ξ) and (ρ ∗ {ψm}m∈Ξ), are given by χ and ω respectively, combining equation (4.1) and
equation (4.2), with the help of basic algebra over properties of norms, we can compute,

‖
∑
m∈σ

〈f, ρ ∗ ψm〉ρ ∗ ψm −
∑
m∈σ

〈f, ρ ∗ φm〉ρ ∗ φm ‖

=‖ χσχσ∗f − ωσωσ∗f ‖

≤ P1

2
‖ f ‖ .

This leads us to prove that expression (4.4) ≥ P1

2
‖ f ‖.

In Remark 4, we observe the perturbation of weaving frames linked with fractal convolutions as
image of bounded invertible operator for a given frame.

Remark 4. Let (ρ∗{φm}m∈Ξ) be a frame for H with bounds P and Q respectively. For any bounded
operator τ , such that

‖Id − τ‖2 <
P

Q
,

we have (ρ ∗ {φm}m∈Ξ) and (ρ ∗ {τφm}m∈Ξ) are woven.

The famous Minkowski's inequality implies that τ is invertible, and the fact that (ρ ∗
{τφm},m ∈ Ξ) is automatically a frame underpin the remark.

5 Conclusion and future plan

To conclude, we remind that in this article, we developed weaving properties of frames linked with
fractal convolutions. One of the many problems concerned with diagnosis of woven frames, which
are actually Reisz bases for Hilbert spaces have been studied. The �nding in this paper have created
broader impact in planning the future work in the direction of obtaining links of fractal convolutions
and a variety of other frames. Not only this, there is an ample scope of solving problems that connect
fractals with frames and bases.
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Let 1 ≤ p1, . . . , pd ≤ ∞, p = (p1, . . . , pd), T = [0, 2π]. The anisotropic norm ‖ · ‖Lp(Td) is de�ned
by

‖f‖Lp(Td) =
(∫
T

. . .
(∫
T

(∫
T

|f(x1, x2, . . . , xd)|p1 dx1

)p2/p1

dx2

)p3/p2

. . . dxd

)1/pd

for �nite pj; if pj = ∞ for some j, the corresponding jth integral norm is replaced by an essential
supremum.

The space Lp(Td) consists of the equivalence classes of measurable functions satisfying ‖f‖Lp(Td) <
∞.

We de�ne the anisotropic Sobolev and Nikol'skii classes as in [30]. For di�erent de�nitions of
generalized smoothness, see, e.g., [4].

Given r > 0, α ∈ R, we set

Fr(x, α) = 1 + 2
∞∑
k=1

k−r cos(kx− απ/2), x ∈ R.

Let r = (r1, . . . , rd), α = (α1, . . . , αd), p = (p1, . . . , pd), rj > 0, αj ∈ R, 1 ≤ pj ≤ ∞,
j = 1, . . . , d.

De�nition 1. The Sobolev class W r
p,α(Td) consists of functions f on Td such that for all j ∈

{1, . . . , d} the integral representation

f(x1, . . . , xd) =
1

2π

∫
T

ϕj(x1, . . . , xj−1, y, xj+1, . . . , xd)Frj(xj − y, αj) dy

holds with ‖ϕj‖Lp(Td) ≤ 1.
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Let h ∈ R, f ∈ Lp(Td). We continue f periodically to Rd and set

∆1,j
h f(x1, . . . , xd) = f(x1, . . . , xj−1, xj + h, xj+1, . . . , xd)−

−f(x1, . . . , xj−1, xj, xj+1, . . . , xd).

For l ∈ N, l ≥ 2, the operator ∆l,j
h is de�ned by the equality ∆l,j

h = ∆1,j
h ◦∆l−1,j

h .

De�nition 2. The Nikol'skii class Hr
p(Td) consists of all functions f ∈ Lp(Td) such that

‖f‖Lp(Td) ≤ 1, ‖∆lj ,j
h f‖Lp(Td) ≤ |h|rj , h ∈ R, 1 ≤ j ≤ d,

where lj = brjc+ 1.

It is well-known [30, Theorem 3.4.6] that W r
p,α(Td) ⊂ C(r)Hr

p(Td), where C(r) is a positive
number depending only on r.

De�nition 3. Let X be a normed space, M ⊂ X, n ∈ Z+. The Kolmogorov n-width of M in X is
de�ned by

dn(M, X) = inf
L∈Ln(X)

sup
x∈M

inf
y∈L
‖x− y‖;

here, Ln(X) is the family of all subspaces in X of dimension at most n.

Estimates for the widths of Sobolev classes in Lq on one-dimensional domains were obtained in
[19, 15, 20, 21, 5]. In [25, 26, 27, 28], the problem of estimating the widths of Sobolev and Nikol'skii
classes in Lq(Td) was studied (see De�nitions 1 and 2 for p1 = · · · = pd = p); in [7, 8, 29], a
similar problem was considered for periodic Sobolev and Nikol'skii classes with dominating mixed
smoothness. For details, see [11, 31, 30]. In [7], the anisotropic norms were also considered, but
only for the following cases: 1) 1 < qj ≤ pj < ∞, 1 ≤ j ≤ d, 2) 1 < pj ≤ qj ≤ 2, 1 ≤ j ≤ d, 3)
2 ≤ pj ≤ qj <∞, 1 ≤ j ≤ d, 4) 1 < pj ≤ 2 ≤ qj <∞, 1 ≤ j ≤ d, p1 = · · · = pd. (Actually, from the
proof we can see that p1 = · · · = pd, q1 = · · · = qd in case 3).) Moreover, in cases 3), 4), estimates
of the widths were obtained only for the �large smoothness�. The case of �small smoothness� was
considered in [8] for multivariate functions and isotropic norms. In [9, 33, 34], estimates for the
widths of intersections of Sobolev classes were obtained.

In [1, 2], estimates for the widths of Nikol'skii�Besov�Amanov classes in Lorentz spaces with
anisotropic norms were obtained; the parameters pj, qj satis�ed the above conditions 1)�4) (see also
[3]).

In the present paper, we obtain order estimates for the Kolmogorov widths of W r
p,α(Td) and

Hr
p(Td) in Lq(Td) for 2 ≤ qj < ∞, j = 1, . . . , d. The parameters pj ∈ [1, +∞] are arbitrary,

except some limit cases (see the condition θj∗ < minj∈J\{j∗} θj in Theorem 1 below). In addition, the
estimate for the widths is obtained in the case 1 ≤ pj ≤ qj ≤ 2 for 1 ≤ j ≤ ν, 1 ≤ qj ≤ pj ≤ ∞ for
ν + 1 ≤ j ≤ d (see Theorem 2).

For 2 ≤ q <∞, 1 ≤ p ≤ ∞, we set

ωp,q =


0 for p > q,
1/p−1/q
1/2−1/q

for 2 < p ≤ q,

1 for 1 ≤ p ≤ 2.

(1)

Let I ⊂ {1, . . . , d} be a nonempty set, p = (p1, . . . , pd). We de�ne the number 〈p〉I by the
equation 1

〈p〉I
= 1
|I|
∑
j∈I

1
pj
. We also write 〈p〉 := 〈p〉{1, ..., d}. For I = ∅, we set 〈p〉I = 1.
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Let σ be a permutation of d elements such that

ωpσ(1),qσ(1)
≤ ωpσ(2),qσ(2)

≤ · · · ≤ ωpσ(d),qσ(d)
. (2)

The numbers µ, ν ∈ {0, . . . , d} are de�ned by the equations

{1, . . . , µ} = {j : ωpσ(j),qσ(j)
= 0}, {1, . . . , ν} = {j : ωpσ(j),qσ(j)

< 1}. (3)

By (5), the condition j ∈ {1, . . . , µ} is equivalent to the equation pσ(j) ≥ qσ(j) for qσ(j) > 2, and to
pσ(j) > qσ(j), for qσ(j) = 2; the condition j ∈ {1, . . . , ν} is equivalent to the equation pσ(j) > 2.

Let

I(t, s) = {σ(t), σ(t+ 1), . . . , σ(s− 1), σ(s)}, 1 ≤ t ≤ s ≤ d.

For a = (a1, . . . , ad), b = (b1, . . . , bd), we set a ◦ b = (a1b1, . . . , adbd).

Now we give notation for order equalities. Let X, Y be sets, f1, f2 : X × Y → R+. We write
f1(x, y) �

y
f2(x, y) if, for each y ∈ Y , there is c(y) ≥ 1 such that [c(y)]−1f2(x, y) ≤ f1(x, y) ≤

c(y)f2(x, y) for all x ∈ X.

Theorem 1. Let d ∈ N, rj > 0, αj ∈ R, 1 ≤ pj ≤ ∞, 2 ≤ qj <∞, j = 1, . . . , d. Suppose that

1 +
d− µ

〈r ◦ q〉I(µ+1, d)

− d− µ
〈r ◦ p〉I(µ+1, d)

> 0.

We set

θt =
1

t
〈r〉I(1, t)

+ 2(d−t)
〈r◦q〉I(t+1, d)

(
1 + (d− t)

(
1

〈r ◦ q〉I(t+1, d)

− 1

〈r ◦ p〉I(t+1, d)

))
,

µ ≤ t ≤ ν; if ν < d and there is j ∈ {ν + 1, . . . , d} such that qσ(j) > 2, we also write

θd =
〈r〉
d

(
1 +

d− ν
2〈r〉I(ν+1, d)

− d− ν
〈r ◦ p〉I(ν+1, d)

)
.

Let J = {µ, µ+1, . . . , ν}∪{d} if ν < d and there is j ∈ {ν+1, . . . , d} such that qσ(j) > 2; otherwise,
we set J = {µ, µ+ 1, . . . , ν}. Suppose that there is j∗ ∈ J such that

θj∗ < min
j∈J\{j∗}

θj.

Then

dn(W r
p,α(Td), Lq(Td)) �

p,q,r,d
dn(Hr

p(Td), Lq(Td)) �
p,q,r,d

n−θj∗ .

Theorem 2. Let rj > 0, αj ∈ R, 1 ≤ j ≤ d, ν ∈ {0, . . . , d}, 1 ≤ pj ≤ qj ≤ 2 for 1 ≤ j ≤ ν,
1 ≤ qj ≤ pj ≤ ∞ for ν + 1 ≤ j ≤ d. Suppose that

θ :=
〈r〉
d

(
1 +

ν

〈r ◦ q〉{1, ..., ν}
− ν

〈r ◦ p〉{1, ..., ν}

)
> 0.

Then

dn(W r
p,α(Td), Lq(Td)) �

p,q,r,d
dn(Hr

p(Td), Lq(Td)) �
p,q,r,d

n−θ.
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In order to prove Theorems 1, 2, we obtain order estimates for the widths of �nite-dimensional
balls (see Theorem 3 and Proposition 1 below). After that we apply the standard discretization
method following [30].

Given N ∈ N, 1 ≤ s ≤ ∞, (xi)
N
i=1 ∈ RN , we set ‖(xi)Ni=1‖lNs =

(
N∑
i=1

|xi|s
)1/s

for s < ∞,

‖(xi)Ni=1‖lNs = max1≤i≤N |xi| for s =∞.
Let k1, . . . , kd ∈ N, 1 ≤ p1, . . . , pd ≤ ∞. By lk1,...,kd

p1,..., pd
we denote the space Rk1...kd =

{(xj1,...,jd)1≤js≤ks, 1≤s≤d : xj1,...,jd ∈ R} with norm de�ned by induction: for d = 1 it is ‖ · ‖
l
k1
p1

;

for d ≥ 2,

‖(xj1,...,jd)1≤js≤ks, 1≤s≤d‖lk1,...,kd
p1,...,pd

=

∥∥∥∥(‖(xj1,..., jd−1, jd)1≤js≤ks, 1≤s≤d−1‖lk1,..., kd−1
p1,..., pd−1

)kd
jd=1

∥∥∥∥
l
kd
pd

.

By Bk1,...,kd
p1,..., pd

we denote the unit ball of the space lk1,...,kd
p1,...,pd

.
For d = 1, estimates for the widths of these balls were obtained in [23, 24, 18, 19, 13, 14, 12].

The case d = 2 was studied in [9, 10, 16, 17, 22, 32, 6]; for details, see, e.g., [35].

Theorem 3. Let d ∈ N, k1, . . . , kd ∈ N, n ∈ Z+, n ≤ k1...kd
2

, 2 ≤ qj < ∞, 1 ≤ pj ≤ ∞,

j = 1, . . . , d. Let σ be a permutation of {1, . . . , d} such that (5) holds. The numbers µ ∈ {0, . . . , d}
and ν ∈ {0, . . . , d} are de�ned by (5). We denote p∗j = max{pj, 2}, 1 ≤ j ≤ d. Then

dn(Bk1,...,kd
p1,...,pd

, lk1,...,kd
q1,...,qd

) �
q

Φ(k1, . . . , kd, n) :=

:=

µ∏
j=1

k
1/qσ(j)−1/pσ(j)

σ(j) ·min
{

1, min
µ+1≤t≤d

t−1∏
j=µ+1

k
1/qσ(j)−1/p∗

σ(j)

σ(j) ×

×(n−1/2k
1/2
σ(1) . . . k

1/2
σ(t−1)k

1/qσ(t)

σ(t) . . . k
1/qσ(d)

σ(d) )
ωpσ(t),qσ(t)

}
;

in addition, for ν < d,

Φ(k1, . . . , kd, n) =

µ∏
j=1

k
1/qσ(j)−1/pσ(j)

σ(j) ·min
{

1, min
µ+1≤t≤ν

t−1∏
j=µ+1

k
1/qσ(j)−1/pσ(j)

σ(j) ×

×(n−1/2k
1/2
σ(1) . . . k

1/2
σ(t−1)k

1/qσ(t)

σ(t) . . . k
1/qσ(d)

σ(d) )
ωpσ(t),qσ(t) ,

ν∏
j=µ+1

k
1/qσ(j)−1/pσ(j)

σ(j) · n−1/2k
1/2
σ(1) . . . k

1/2
σ(ν)k

1/qσ(ν+1)

σ(ν+1) . . . k
1/qσ(d)

σ(d)

}
.

The proof generalizes the arguments from [13, 32].

Proposition 1. Let ν ∈ {0, . . . , d}, 1 ≤ pj ≤ qj ≤ 2 for 1 ≤ j ≤ ν, 1 ≤ qj ≤ pj ≤ ∞ for
ν + 1 ≤ j ≤ d, n ≤ k1...kd

2
. Then

dn(Bk1,...,kd
p1,...,pd

, lk1,...,kd
q1,...,qd

) � k
1/qν+1−1/pν+1

ν+1 . . . k
1/qd−1/pd
d .

This estimate is a simple corollary of Malykhin's and Rjutin's result [22, Theorem 1] on estimates
of the widths of a product of multi-dimensional octahedra.
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