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Abstract. In the paper, the Lorentz space Lq,τ (Tm) of periodic functions of several variables,
the Nikol’skii–Besov class Srq,τ,θB and the associated class W a,b,r

q,τ for 1 < q, τ < ∞, 1 6 θ 6 ∞ are
considered. Estimates are established for the bestM -term trigonometric approximations of functions
of the classes W a,b,r

q,τ1
and Srq,τ1,θB in the norm of the space Lp,τ2(Tm) for different relations between

the parameters q, τ1, p, τ2, a, θ. The proofs of the theorems are based on the constructive method
developed by V.N. Temlyakov.
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1 Introduction

Let N, Z, R– be the sets of all natural, integer, real numbers, respectively, and Z+ = N ∪ {0},
Rm—m-dimensional Euclidean point space x = (x1, . . . , xm) with real coordinates; Tm = [0, 2π)m

and Im = [0, 1)m — m-dimensional cube.
Lp,τ (Tm) will denote the Lorentz space of all real-valued Lebesgue-measurable functions f that

have a 2π-period in each variable and for which the quantity

‖f‖p,τ =

τp
1∫

0

(
f ∗(t)

)τ
t
τ
p
−1dt


1
τ

, 1 < p <∞, 1 6 τ <∞,

is finite, where f ∗(t) is the non-increasing rearrangement of the function |f(2πx)|, x ∈ Im (see [34],
pp. 213–216).

In the case τ = p, the Lorentz space Lp,τ (Tm) coincides with the Lebesgue space Lp(Tm) with
the norm (see for example, [26, Chapter 1, Section 1.1, p. 11])

‖f‖p =

[∫ 2π

0

...

∫ 2π

0

|f(x1, ..., xm)|pdx1...dxm

] 1
p

, 1 ≤ p <∞.

We will introduce the notation an(f)-Fourier coefficients of the function f ∈ L1 (Tm) by system

{ei〈n,x〉}n∈Zm and 〈y, x〉 =
m∑
j=1

yjxj;

δs(f, x) =
∑
n∈ρ(s)

an (f) ei〈n,x〉,
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where
ρ(s) =

{
k = (k1, ..., km) ∈ Zm : [2sj−1] ≤ |kj| < 2sj , j = 1, ...,m

}
,

[a] is the integer part of a real number a, s = (s1, ..., sm), sj ∈ Z+.
For a given p ∈ [1,∞), a numerical sequence {an}n∈Zm belongs to the space lp if

∥∥{an}n∈Zm∥∥lp =

[∑
n̄∈Zm

|an|p
] 1
p

<∞.

Further, for a vector r = (r1, ..., rm) and the zero vector 0 = (0, ..., 0), the inequality r > 0
means that rj > 0 for all j = 1, 2, ...,m. Let 1 6 θ 6 ∞. We will consider an analogue of the
Nikol’skii-Besov class

Srp,τ,θB =

{
f ∈ L̊p,τ (Tm) :

∥∥∥∥{2〈s,r〉 ‖δs(f)‖p,τ
}
s̄∈Zm+

∥∥∥∥
lθ

6 1

}
.

In the case τ = p, the class Srp,τ,θB coincides with the well-known Nikol’skii-Besov class Srp,θB in
the space Lp(Tm) (see for example [8], [23]). Currently, there are various generalizations of the
Nikol’skii–Besov spaces and their further applications in the theory of approximation of functions,
harmonic analysis and in other branches of mathematics (see, for example, [9], [15], [16], [18], [36],
[40]).

For a given vector r = (r1, ..., rm) > 0 = (0, . . . , 0) put γ = r
r1

and

Q(γ)
n = ∪〈s,γ〉<nρ(s),

S
(γ)
Qn,γ̄

(f, x) =
∑

k∈Q(γ)
n
ak(f)ei〈k,x〉 will denote a partial sum of the Fourier series of a function f .

Let k̄(j) ∈ Zm. The quantity

eM(f)p,τ = inf
k

(j)
,bj

∥∥∥f − M∑
j=1

bje
〈ik(j)

,x〉
∥∥∥
p,τ

is called the bestM–term trigonometric approximation of a function f ∈ Lp,τ (Tm),M ∈ N, k(j) ∈ Zm.
If F ⊂ Lp,τ (Tm) is some functional class, then we put

eM(F )p,τ = sup
f∈F

eM(f)p,τ .

In the case τ = p instead of eM(F )p,τ we will write eM(F )p.
The best M–term approximation of a function f ∈ L2[0, 1] by polynomials via an orthonormal

system was first defined by S.B. Stechkin [33] who established a criterion for the absolute convergence
of the Fourier series via this system. Further, important results on estimatingM -term approximations
of functions for various classes of Sobolev, Nikol’skii–Besov, Lizorkin–Triebel were obtained by R.S.
Ismagilov [21], Yu. Makovoz [25], V.E. Mayorov [24], E.S. Belinsky [12] – [14], B.S. Kashin [22], R.
DeVore [16], V. N. Temlyakov [35] – [39], A.S. Romanyuk [27], [28], Dinh Dung [17], Wang Heping
and Sun Yongsheng [41], M. Hansen and W.Sickel [19], [20] , S.A. Stasyuk [30] – [32], A.L. Shidlich
[29].

To estimate M–term approximations of functions of the Nikol’skii–Besov class Srp,θB in the space
Lq(Tm) two methods were used: non-constructive and constructive. The first method is based on
Lemma 2.3 [14] (also see [25], [24]) which is proved by probabilistic reasoning. The second method was
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developed by V.N. Temlyakov [37], [38] and is based on greedy algorithms (see [36], [39]). Further, a
constructive method of n–term approximations for the trigonometric system was developed by D.B.
Bazarkhanov and V.N. Temlyakov in [10] and in [11]. A survey of the results on this theory can be
found in [18]. Estimates for n–term approximations of functions of the Nikol’skii–Besov class in the
Lorentz space are investigated in [1] – [3].

For a constructive method for estimating n - term approximations of functions of the Nikol’skii–
Besov class Srp,θB V.N. Temlyakov [37], [38] introduced the class W a,b,r

q . In this article, we will
consider an analogue of this class in the Lorentz space.

For a function f ∈ L1(Tm) put

fl,r(x) =
∑

l6〈s,γ〉<l+1

δs(f, x), l ∈ Z+,

where γ = (γ1, . . . , γm), γ1 = . . . = γν < γν+1 ≤ . . . ≤ γm, γj =
rj
r1
, rj > 0, j = 1, . . . ,m.

We will consider the following class defined in [37], [38]

W a,b,r
A = {f ∈ L1(Tm) : ‖fl,r‖A 6 2−lal

(ν−1)b
0 },

where l0 = max{1, l}, l ∈ Z+ and

‖fl,r‖A =
∑

l6〈s,γ〉<l+1

∑
n∈ρ(s)

|an(f)|.

We also define the class

W a,b,r
q,τ = {f ∈ L1(Tm) : ‖fl,r‖q,τ 6 2−lal

(ν−1)b
0 },

where a > 0, b ∈ R, l0 = max{1, l}.
We will introduce the following notation

‖f‖Wa,b,r
q,τ

= sup
l∈Z+

‖fl,r‖q,τ2lal−(ν−1)b
0 , 1 < q, τ <∞.

In the case τ = q, the class W a,b,r
q,τ is defined by V.N. Temlyakov [37], [38] and in this case, instead of

W a,b,r
q,q we will write W a,b,r

q .
For the class W a,b,r

q,τ1
we put

en(W a,b,r
q,τ1

)p,τ2 = sup
f∈Wa,b,r

q,τ1

en(f)p,τ2 , 1 < q, p, τ1, τ2 <∞.

In the case τ = q, the order-sharp estimates for the best n-th trigonometric approximations of
functions belonging to the class W a,b,r

q in the space Lp(Tm), 1 < q 6 p <∞ were established by V.N.
Temlyakov [37], [38]. In particular, he proved
Theorem 1.1 ([38, Theorem 3.2]). Let 1 < q ≤ 2 < p <∞ and (1

q
− 1

p
)p
′
< a < 1

q
, p′ = p

p−1
, then

en(W a,b,r
q )p � n−

p
2

(a+ 1
p
− 1
q

)(log2 n)(ν−1)(b+a(p−1)−( 1
q
− 1
p

)p).

Here and in what follows, the notation An � Bn means that there exist positive numbers C1, C2

independent of n ∈ N such that C1An 6 Bn 6 C2An for n ∈ N.
In [38], the problem of finding order-sharp estimates for en(W a,b,r

q )p by the constructive method,
in the case of 1

q
− 1

p
< a < (1

q
− 1

p
)p
′ , 1 < q 6 2 < p <∞ remains open.

We will consider the problem of estimating the best M–term trigonometric approximations for
the Lorentz space. The main results of the article are formulated and proved in the third section
(see Theorem 3.1 and Theorem 3.2). In the second section, we formulate some auxiliary assertions
required for proving the main results. In the fourth section, as an application of Theorem 3.1, we
establish an upper bound for the best M - term approximations of functions of the Nikol’skii-Besov
class in the Lorentz space (see Theorem 4.1).
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2 Auxiliary statements

Theorem 2.1. (see [5]). Let 1 < q < λ <∞, 1 < τ, θ <∞. If a function f ∈ Lq,τ (Tm), then

‖f‖q,τ > C
(∑
s∈Zm+

m∏
l=1

2sl(1/λ−1/q)τ‖δs(f)‖τλ,θ
)1/τ

,

where C > 0 is independent of f .

Theorem 2.2. (see [5]). Let 1 < p < q <∞, 1 < τ1, τ2 <∞. If the function f ∈ Lp,τ1(Tm) satisfies
the condition ∑

s∈Zm+

m∏
j=1

2sjτ2(1/p−1/q)‖δs(f)‖τ2p,τ1 <∞,

then f ∈ Lq,τ2(Tm) and the following inequality holds

‖f‖q,τ2 6 C

(∑
s∈Zm+

m∏
j=1

2sjτ2(1/p−1/q)‖δs(f)‖τ2p,τ1

)1/τ2

,

where C > 0 is independent of f .

Let A(Tm) be the space f ∈ L(Tm) with absolutely converging Fourier series with the norm (see
[11], [37], [38])

‖f‖A =
∑
k∈Zm

|ak(f)|.

As a corollary of Theorem 1.1 [38], the following statement is true, which we will often use in the
proofs of theorems.

Lemma 2.1. Let 2 6 p < ∞ and 1 < τ < ∞. There exist constructive approximation methods
GM(f) based on greedy-type algorithms that lead to M–term polynomials with respect the system
{ei〈k,x〉}k∈Zm with the following property:

‖f −GM(f)‖p,τ ≤ CM− 1
2p

1
2‖f‖A,

for all f ∈ A(Tm), where C > 0 is independent of M ∈ N and of f .

Proof. . We will choose a number p0 ∈ (p,∞). It is known that Lp0(Tm) ⊂ Lp,τ (Tm) and ‖g‖p,τ 6
C‖g‖p0 for a function g ∈ Lp0(Tm) (see [34, Theorem 3.11]). Now, according to Theorem 1.1 [38] or
Theorem 2.6 [37], it is easy to verify that the assertion of Lemma 2.1 is true.

3 Main results

Theorem 3.1. Let 0 < r1 = . . . = rν < rν+1 ≤ . . . rm, 1 < q < 2 < p < ∞, 1 < τ1, τ2 < ∞,
1
q
− 1

p
< a < (1

q
− 1

p
+ 1

pτ1
− 1

qτ2
)τ
′
2, τ

′
2 = τ2

τ2−1
and b ∈ R.

If 1
q
− 1

p
< a < (1

q
− 1

p
+ 1

pτ1
− 1

qτ2
)τ
′
2, τ

′
2 = τ2

τ2−1
, then

eM(W a,b,r
q,τ1

)p,τ2 �M− p
2

(a+ 1
p
− 1
q

)(log2M)(ν−1)b, M > 1.
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If a = (1
q
− 1

p
+ 1

pτ1
− 1

qτ2
)τ
′
2, then

eM(W a,b,r
q,τ1

)p,τ2 6 C

 M
− τ
′
2
2

( 1
τ1
− 1
τ2

)
(log2M)(ν−1)b(log2 log2M)1/τ2 , if (ν − 1)bτ2 + 1 6= 0,

M
− τ
′
2
2

( 1
τ1
− 1
τ2

)
, if (ν − 1)bτ2 + 1 = 0

for M > 4, where C > 0 is independent of M and f .

Proof. For a natural number M , there is a number n ∈ N such that M � 2nnν−1.
Let ν > 2 be a natural number. We put

n1 =
p

2
n− p

(1

2
− 1

τ2

)
(ν − 1) log n,

n2 =
p

2
n+

p

2
(ν − 1) log n.

We will introduce the notation

Sl =
(

2laτ1 l̄−(ν−1)bτ1
∑

l≤〈s̄,γ̄〉<l+1

2〈s̄,1̄〉(
1
2
− 1
q

)τ1‖δs(f)‖τ12

)1/τ1

and

ml =
[
2−l

τ
′
2
p Sτ1l 2n

τ
′
2
2 n(ν−1)

τ
′
2
2

]
+ 1, l ∈ Z+,

where 〈s̄, 1̄〉 =
m∑
j=1

sj, p
′
= p

p−1
and [y] is an integer part of the number y.

By G(l) we denote the set of indices s, l ≤ 〈s̄, γ̄〉 < l+1, with the largest ‖δs(f)‖2 and ml = |G(l)|
is the number of elements in the set G(l).

Let us consider the functions
F1(x) =

∑
n6l<n1

fl(x),

F2(x) =
∑

n16l<n2

∑
s̄ /∈G(l)

δs(f, x),

F3(x) =
∑

n16l<n2

∑
s̄∈G(l)

δs(f, x).

We will estimate ‖F1‖A. Applying Hölder’s inequality for the sum and Parseval’s equality, we have

‖F1‖A =

n1−1∑
l=n

∑
l≤〈s̄,γ̄〉<l+1

∑
k∈ρ(s)

|ak(f)| 6

2−
m
2

n1−1∑
l=n

∑
l≤〈s̄,γ̄〉<l+1

2〈s̄,1̄〉
1
2‖δs(f)‖2

= 2−
m
2

n1−1∑
l=n

∑
l≤〈s̄,γ̄〉<l+1

2〈s̄,1̄〉(
1
2
− 1
q

)‖δs(f)‖22〈s̄,1̄〉
1
q . (3.1)
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Now, to the inner sum on the right side of inequality (3.1), applying Hölder’s inequality to the inner
sum for 1

τ1
+ 1

τ
′
1

= 1 and 1 < τ1 <∞, we get

‖F1‖A 6 2−
m
2

n1−1∑
l=n

( ∑
l≤〈s̄,γ̄〉<l+1

2〈s̄,1̄〉(
1
2
− 1
q

)τ1‖δs(f)‖τ12

)1/τ1( ∑
l≤〈s̄,γ̄〉<l+1

2〈s̄,1̄〉
τ
′
1
q

)1/τ
′
1

. (3.2)

We will choose numbers δj such that δj = γj for j = 1, . . . , ν and 1 < δj < γj for j = ν + 1, . . . ,m.
Then, by Lemma G [35], we have

( ∑
l≤〈s̄,γ̄〉<l+1

2〈s̄,1̄〉
τ
′
1
q

)1/τ
′
1

6 C2
l
q l

ν−1

τ
′
1 , (3.3)

where C > 0 is independent of l. According to Theorem 2.1, for 1 < q < 2 and λ = θ = 2, we have

( ∑
l≤〈s̄,γ̄〉<l+1

2〈s̄,1̄〉(
1
2
− 1
q

)τ1‖δs(f)‖τ12

)1/τ1
6 C

∥∥∥ ∑
l≤〈s̄,γ̄〉<l+1

δs(f)
∥∥∥
q,τ1
, (3.4)

where here and in the rest of the proof C denotes a positive number which depends only on numerical
parameters, and may be different on different occurrences.

Now, taking into account that the function f ∈ W a,b,r
q,τ1

, 1
q
− a > 0, from inequalities (3.2), (3.3)

and (3.4), we obtain

‖F1‖A 6 C

n1−1∑
l=n

2
l
q l(ν−1)/τ

′
1

( ∑
l≤〈s̄,γ̄〉<l+1

2〈s̄,1̄〉(
1
2
− 1
q

)τ1‖δs(f)‖τ12

) 1
τ1

6 C

n1−1∑
l=n

2
l
q l(ν−1)/τ

′
1

∥∥∥ ∑
l≤〈s̄,γ̄〉<l+1

δs(f)
∥∥∥
q,τ1

6 C

n1−1∑
l=n

2l(
1
q
−a)l

(ν−1)(b+ 1

τ
′
1 6 C2n1( 1

q
−a)n

(ν−1)(b+ 1

τ
′
1

)

1 .

Thus,

‖F1‖A 6 C2n1( 1
q
−a)n

(ν−1)(b+ 1

τ
′
1

)

1 (3.5)

for a function f ∈ W a,b,r
q,τ1

and 1
q
− a > 0, 1 < q < 2 and 1 < τ1 <∞. By Lemma 2.1 for the function

F1, using a constructive method, one can find an M–term trigonometric polynomial GM(F1, x) such
that

‖F1 −GM(F1)‖p,τ2 6 CM−1/2‖F1‖A, 2 < p <∞. (3.6)

Now, taking into account the definition of the number n1 and the condition a < (1
q
− 1

p
+ 1

pτ1
− 1

qτ2
)τ
′
2
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from estimates (3.5) and (3.6) we obtain

‖F1 −GM(F1)‖p,τ2 6 CM−1/22n1( 1
q
−a)n

(ν−1)(b+ 1

τ
′
1

)

1

= CM−1/22n
p
2

( 1
q
−a)n

−(ν−1)p( 1
2
−1)( 1

τ1
−a)
n

(ν−1)(b+ 1

τ
′
1

)

1

6 CM−1/2(2nnν−1)
p
2

( 1
q
−a)n

(ν−1)p(1− 1
τ2

)(a− 1
q

)
n

(ν−1)(b+ 1

τ
′
1

)

= CM−1/2(2nnν−1)
p
2

( 1
q
−a)n

(ν−1)( p
τ
′
2

(a− 1
q

)+ 1

τ
′
1

)
n(ν−1)b

= CM−1/2(2nnν−1)
p
2

( 1
q
−a)n

(ν−1)( p
τ
′
2

(a−τ ′2( 1
q
− 1
p

+ 1
pτ1
− 1
qτ2

))
n(ν−1)b

6 CM− p
2

(a+ 1
p
− 1
q

)(logM)(ν−1)b, (3.7)

in the case a 6 (1
q
− 1

p
+ 1

pτ1
− 1

qτ2
)τ
′
2, 1 < q < 2 < p <∞, 1 < τ1, τ2 <∞.

Let us estimate ‖F2‖p,τ2 . By Theorem 2.2, for p = τ1 = 2 and replacing q by p, taking into
account that

‖δs(f)‖2 6 m
− 1
τ1

l 2−lal(ν−1)b2−l(
1
2
− 1
q

)Sl,

for s /∈ G(l), for τ2 − τ1 > 0 we have

‖F2‖p,τ2 6 C
(n2−1∑
l=n1

∑
l≤〈s̄,γ̄〉<l+1,s̄/∈G(l)

2〈s̄,1̄〉(
1
2
− 1
p

)τ2‖δs(f)‖τ22

)1/τ2

= C
(n2−1∑
l=n1

∑
l≤〈s̄,γ̄〉<l+1,s̄/∈G(l)

2〈s̄,1̄〉(
1
2
− 1
p

)τ2‖δs(f)‖τ2−τ12 ‖δs(f)‖τ12

)1/τ2

6 C
(n2−1∑
l=n1

∑
l≤〈s̄,γ̄〉<l+1,s̄/∈G(l)

2〈s̄,1̄〉(
1
2
− 1
p

)τ2‖δs(f)‖τ12

(
m
− 1
τ1

l 2−lal(ν−1)b2−l(
1
2
− 1
q

)Sl

)τ2−τ1)1/τ2

= C
(n2−1∑
l=n1

(
2−lal(ν−1)b2−l(

1
2
− 1
q

)
)τ2−τ1

m
− τ2−τ1

τ1
l Sτ2−τ1l

×
∑

l≤〈s̄,γ̄〉<l+1,s̄/∈G(l)

2〈s̄,1̄〉(
1
2
− 1
p

)τ2‖δs(f)‖τ12

)1/τ2
. (3.8)

Since 1 < q < 2 < p, then (1
2
− 1

p
)τ2− (1

2
− 1

q
)τ1 > 0. Therefore, taking into account that 1 6 γj, j =

1, ...,m, it is easy to verify that∑
l≤〈s̄,γ̄〉<l+1,s̄/∈G(l)

2〈s̄,1̄〉(
1
2
− 1
p

)τ2‖δs(f)‖τ12 6 2(l+1)( 1
2
− 1
p

)τ2−( 1
2
− 1
q

)τ1

×
∑

l≤〈s̄,γ̄〉<l+1,s̄/∈G(l)

2〈s̄,1̄〉(
1
2
− 1
q

)τ1‖δs(f)‖τ12 6 2(l+1)( 1
2
− 1
p

)τ2−( 1
2
− 1
q

)τ1
(

2−lal(ν−1)b
)τ1

Sτ1l .

Therefore,

Sτ2−τ1l

∑
l≤〈s̄,γ̄〉<l+1,s̄/∈G(l)

2〈s̄,1̄〉(
1
2
− 1
p

)τ2‖δs(f)‖τ12 6 2(l+1)( 1
2
− 1
p

)τ2−( 1
2
− 1
q

)τ1
(

2−lal(ν−1)b
)τ1

Sτ2l .
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Hence, from inequality (3.8) we obtain

‖F2‖p,τ2 6 C
(n2−1∑
l=n1

(
2−lal(ν−1)b2−l(

1
2
− 1
q

)
)τ2−τ1

m
− τ2−τ1

τ1
l 2(l+1)(( 1

2
− 1
p

)τ2−( 1
2
− 1
q

)τ1)

×
(

2−lal(ν−1)b
)τ1

Sτ2l

)1/τ2
= C

(n2−1∑
l=n1

(
2−lal(ν−1)b

)τ2
m
− τ2−τ1

τ1
l 2

l( 1
τ1
− 1
τ2

)τ2Sτ2l

)1/τ2
.

Now, substituting the values of the numbers ml, from here we get

‖F2‖p,τ2 6 C
(n2−1∑
l=n1

2−l(a+ 1
p
− 1
q

)τ2l(ν−1)bτ2
(

2−l
τ
′
2
p Sτ1l 2n

τ
′
2
2 n(ν−1)

τ
′
2
2

)− τ2−τ1
τ1 Sτ2l

)1/τ2

= C
(

2n
τ
′
2
2 n(ν−1)

τ
′
2
2

)− τ2−τ1
τ1τ2

(n2−1∑
l=n1

2
−l(a−( 1

q
− 1
p

+ 1
pτ1
− 1
qτ2

)τ
′
2)τ2l(ν−1)bτ2Sτ1l

)1/τ2
. (3.9)

Further, using inequality (3.4) and taking into account that the function f ∈ W a,b,r
q,τ1

and a < (1
q
−

1
p

+ 1
pτ1
− 1

qτ2
)τ
′
2 we have

n2−1∑
l=n1

2
−l(a−( 1

q
− 1
p

+ 1
pτ1
− 1
qτ2

)τ
′
2)τ2l(ν−1)bτ2Sτ1l

6 C

n2−1∑
l=n1

2
−l(a−( 1

q
− 1
p

+ 1
pτ1
− 1
qτ2

)τ
′
2)τ2l(ν−1)bτ2

(
2lal−(ν−1)b

∥∥∥ ∑
l≤〈s̄,γ̄〉<l+1

δs(f)
∥∥∥
q,τ1

)τ1
6 C

n2−1∑
l=n1

2
−l(a−( 1

q
− 1
p

+ 1
pτ1
− 1
qτ2

)τ
′
2)τ2l(ν−1)bτ2 6 C2

−n2(a−( 1
q
− 1
p

+ 1
pτ1
− 1
qτ2

)τ
′
2)τ2n

(ν−1)bτ2
2 . (3.10)

It is easy to verify that if a = (1
q
− 1

p
+ 1

pτ1
− 1

qτ2
)τ
′
2, then

n2−1∑
l=n1

2
−l(a−( 1

q
− 1
p

+ 1
pτ1
− 1
qτ2

)τ
′
2)τ2l(ν−1)bτ26 C

{
n(ν−1)bτ2 log n, if (ν − 1)bτ2 + 1 6= 0,

1, if (ν − 1)bτ2 + 1 = 0.
(3.11)

If a < (1
q
− 1

p
+ 1

pτ1
− 1

qτ2
)τ
′
2, then from (3.9) and (3.10) we obtain

‖F2‖p,τ2 6 C
(

2n
τ
′
2
2 n(ν−1)

τ
′
2
2

)− τ2−τ1
τ1τ2 2

−n2(a−( 1
q
− 1
p

+ 1
pτ1
− 1
qτ2

)τ
′
2)
n

(ν−1)b
2 .

Now, by the definition of the number n2 and taking into account that M � 2nnν−1, from this
formula, we obtain that

‖F2‖p,τ2 6 C
(

2n
τ
′
2
2 n(ν−1)

τ
′
2
2

)− τ2−τ1
τ1τ2 (2nn(ν−1))

− p
2

(a−( 1
q
− 1
p

+ 1
pτ1
− 1
qτ2

)τ
′
2))
n(ν−1)b

= C(2nn(ν−1))−
p
2

(a+ 1
p
− 1
q

)n(ν−1)b 6 CM− p
2

(a+ 1
p
− 1
q

)(logM)(ν−1)b (3.12)

for the function f ∈ W a,b,r
q,τ1

in the case of a < (1
q
− 1

p
+ 1

pτ1
− 1

qτ2
)τ
′
2, 1 < q < 2 < p < ∞,

1 < τ1 6 τ2 <∞.
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If a = (1
q
− 1

p
+ 1

pτ1
− 1

qτ2
)τ
′
2, then from (3.9) and (3.11) we obtain that

‖F2‖p,τ2 6 C
(

2nn(ν−1)
)− τ ′2

2
τ2−τ1
τ1τ2

{
n(ν−1)b(log n)

1
τ2 , if (ν − 1)bτ2 + 1 6= 0,
1, if (ν − 1)bτ2 + 1 = 0.

(3.13)

Next, we estimate ‖F3‖A. By applying Hölder’s inequality for the sum and Parseval’s equality,
we have

‖F3‖A =

n2−1∑
l=n1

∑
l6〈s,γ〉<l+1,s∈G(l)

∑
k∈ρ(s)

|ak(f)|

6 2−
m
2

n2−1∑
l=n1

∑
l≤〈s̄,γ̄〉<l+1,s∈G(l)

2〈s̄,1̄〉
1
2‖δs(f)‖2

6 2−
m
2

n2−1∑
l=n1

2
l+1
q

∑
l≤〈s̄,γ̄〉<l+1,s∈G(l)

2〈s̄,1̄〉(
1
2
− 1
q

)‖δs(f)‖2. (3.14)

Now, to the inner sum on the right side of inequality (3.14) applying Hölder’s inequality for 1
τ1

+ 1

τ
′
1

= 1

and 1 < τ1 <∞, we get

n2−1∑
l=n1

2
l+1
q

∑
l≤〈s̄,γ̄〉<l+1,s∈G(l)

2〈s̄,1̄〉(
1
2
− 1
q

)‖δs(f)‖2

6
n2−1∑
l=n1

2
l+1
q

( ∑
l≤〈s̄,γ̄〉<l+1,s∈G(l)

2
〈s̄,1̄〉( 1

2
− 1
τ1

)τ1‖δs(f)‖τ12

)1/τ1( ∑
l≤〈s̄,γ̄〉<l+1,s∈G(l)

1
)1/τ

′
1

6
n2−1∑
l=n1

2
l+1
q

( ∑
l≤〈s̄,γ̄〉<l+1,s∈G(l)

2〈s̄,1̄〉(
1
2
− 1
q

)τ1‖δs(f)‖τ12

)1/τ1
m

1/τ
′
1

l .

Further, substituting the values of the numbers ml, from this formula, we obtain that

n2−1∑
l=n1

2
l+1
q

∑
l≤〈s̄,γ̄〉<l+1,s∈G(l)

2〈s̄,1̄〉(
1
2
− 1
q

)‖δs(f)‖2

6
n2−1∑
l=n1

2
l+1
q

( ∑
l≤〈s̄,γ̄〉<l+1,s∈G(l)

2〈s̄,1̄〉(
1
2
− 1
q

)τ1‖δs(f)‖τ12

)1/τ1(
2−l

τ
′
2
p Sτ1l 2n

τ
′
2
2 n(ν−1)

τ
′
2
2 + 1

)1/τ
′
1

= C

n2−1∑
l=n1

2−l(a−
1
q

)l(ν−1)bSl

(
2−l

τ
′
2
p Sτ1l 2n

τ
′
2
2 n(ν−1)

τ
′
2
2 + 1

)1/τ
′
1

6 C
{n2−1∑
l=n1

2−l(a−
1
q

)l(ν−1)bSl

(
2−l

τ
′
2
p Sτ1l 2n

τ
′
2
2 n(ν−1)

τ
′
2
2

)1/τ
′
1

+

n2−1∑
l=n1

2−l(a−
1
q

)l(ν−1)bSl

}

= C
{

2
n
τ
′
2

2τ
′
1 n

(ν−1)
τ
′
2

2τ
′
1

n2−1∑
l=n1

2
−l(a− 1

q
+
τ
′
2

pτ
′
1

)
l(ν−1)bSlS

τ1

τ
′
1
l +

n2−1∑
l=n1

2−l(a−
1
q

)l(ν−1)bSl

}
. (3.15)

Since
τ
′
2

pτ
′
1

− 1

q
= τ

′

2(
1

pτ
′
1

− 1

qτ
′
2

), SlS

τ1

τ
′
1
l = Sτ1l ,
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then
n2−1∑
l=n1

2
−l(a− 1

q
+
τ
′
2

pτ
′
1

)
l(ν−1)bSlS

τ1

τ
′
1
l =

n2−1∑
l=n1

2
−l(a−τ ′2( 1

qτ
′
2

− 1

pτ
′
1

))
l(ν−1)bSτ1l . (3.16)

Now, by using inequality (3.4) and taking into account that the function f ∈ W a,b,r
q in the case

a− τ ′2( 1

qτ
′
2

− 1

pτ
′
1

) < 0 from equality (3.16), we obtain

n2−1∑
l=n1

2
−l(a− 1

q
+
τ
′
2

pτ
′
1

)
l(ν−1)bSlS

τ1

τ
′
1
l

6 C

n2−1∑
l=n1

2
−l(a−τ ′2( 1

qτ
′
2

− 1

pτ
′
1

))
l(ν−1)b

(
2lal−(ν−1)b

∥∥∥ ∑
l≤〈s̄,γ̄〉<l+1

δs(f)
∥∥∥
q,τ1

)τ1
6 C

n2−1∑
l=n1

2
−l(a−τ ′2( 1

qτ
′
2

− 1

pτ
′
1

))
l(ν−1)b 6 C2

−n2(a−τ ′2( 1

qτ
′
2

− 1

pτ
′
1

))
n

(ν−1)b
2 . (3.17)

and if a− τ ′2( 1

qτ
′
2

− 1

pτ
′
1

) = 0, then according to (3.11)

n2−1∑
l=n1

2
−l(a− 1

q
+
τ
′
2

pτ
′
1

)
l(ν−1)bSlS

τ1

τ
′
1
l 6 C

{
n(ν−1)b log n, if (ν − 1)b+ 1 6= 0,

1, if (ν − 1)b+ 1 = 0.
(3.18)

Since a − 1
q
< 0, then again using Theorem 2. 1 for λ = θ = 2 and taking into account that the

function f ∈ W a,b,r
q,τ1

, we get

n2−1∑
l=n1

2−l(a−
1
q

)l(ν−1)bSl 6 C

n2−1∑
l=n1

2−l(a−
1
q

)l(ν−1)b
(

2lal−(ν−1)b
∥∥∥ ∑
l≤〈s̄,γ̄〉<l+1

δs(f)
∥∥∥
q,τ1

)

6 C

n2−1∑
l=n1

2−l(a−
1
q

)l(ν−1)b 6 C2−n2(a− 1
q

)n
(ν−1)b
2 . (3.19)

Now from inequalities (3.15), (3.17) and (3.19), it follows that

n2−1∑
l=n1

2
l+1
q

∑
l≤〈s̄,γ̄〉<l+1,s∈G(l)

2〈s̄,1̄〉(
1
2
− 1
q

)‖δs(f)‖2

6 C
{

2
n
τ
′
2

2τ
′
1 n

(ν−1)
τ
′
2

2τ
′
1 2
−n2(a−τ ′2( 1

qτ
′
2

− 1

pτ
′
1

))
n

(ν−1)b
2 + 2−n2(a− 1

q
)n

(ν−1)b
2

}
, (3.20)

in the case a− τ ′2( 1

qτ
′
2

− 1

pτ
′
1

) < 0. By the definition of the number n2, we have

2−n2(a− 1
q

)n
(ν−1)b
2 = (2n

p
2n(ν−1) p

2 )−(a− 1
q

)n
(ν−1)b
2 6 C(2nnν−1)−

p
2

(a− 1
q

)n(ν−1)b

and

(2nnν−1)
τ
′
2

2τ
′
1 2
−n2(a−τ ′2( 1

qτ
′
2

− 1

pτ
′
1

))
= (2nnν−1)

τ
′
2

2τ
′
1 (2nn(ν−1))

− p
2

(a−τ ′2( 1

qτ
′
2

− 1

pτ
′
1

))

= (2nnν−1)−
p
2

(a− 1
q

)(2nnν−1)
−( p

2
( 1
q
−p′ ( 1

q
− 1
p

))− p
′

2q
′ ).



18 G. Akishev

Now, taking into account that p
2
(a− τ ′2( 1

qτ
′
2

− 1

pτ
′
1

))− τ
′
2

2τ
′
1

= p
2
(a− 1

q
) according to these relations from

formula (3.20), we obtain

n2−1∑
l=n1

2
l+1
q

∑
l≤〈s̄,γ̄〉<l+1,s∈G(l)

2〈s̄,1̄〉(
1
2
− 1
q

)‖δs(f)‖2

6 C(2nnν−1)−
p
2

(a− 1
q

)n(ν−1)b,

for a < (1
q
− 1

p
+ 1

pτ1
− 1

qτ2
)τ
′
2 = τ

′
2( 1

qτ
′
2

− 1

pτ
′
1

), b ∈ R. Therefore, inequality (3.14) implies that

‖F3‖A 6 C(2nnν−1)−
p
2

(a− 1
q

)n(ν−1)b (3.21)

for a < (1
q
− 1

p
+ 1

pτ1
− 1

qτ2
)τ
′
2, b ∈ R.

Since a− 1
q
< 0, then from inequalities (3.13), (3.18) and (3.19) it follows that inequality (3.21)

is also true in the case a = (1
q
− 1

p
+ 1

pτ1
− 1

qτ2
)τ
′
2.

By Lemma 2.1 for the function F3 there exists an M -term polynomial GM(F3, x) such that

‖F3 −GM(F3)‖p,τ2 6 CM−1/2‖F3‖A.

Therefore, according to inequality (3.21) from this formula, we obtain that

‖F3 −GM(F3)‖p,τ2 6 CM−1/2(2nnν−1)−
p
2

(a− 1
q

)n(ν−1)b 6 CM− p
2

(a+ 1
p
− 1
q

)(logM)(ν−1)b (3.22)

in the case a 6 (1
q
− 1

p
+ 1

pτ1
− 1

qτ2
)τ
′
2.

We represent the function f ∈ W a,b,r
q,τ1

as a sum

f(x) = SQn,γ̄ (f, x) + F1(x) + F2(x) + F3(x) +
∑
〈s̄,γ̄〉>n2

δs̄(f, x̄).

Therefore, from estimates (3.7), (3.12), (3.22), it follows that

‖f − (SQn,γ̄ (f) +GM(F1) +GM(F3))‖p,τ2
6 ‖F1 −GM(F1)‖p,τ2 + ‖F3 −GM(F3)‖p,τ2 + ‖F2‖p,τ2

+
∥∥∥ ∑
〈s̄,γ̄〉>n2

δs̄(f)
∥∥∥
p,τ2

6 CM− p
2

(a+ 1
p
− 1
q

)(logM)(ν−1)b +
∥∥∥ ∑
〈s̄,γ̄〉>n2

δs̄(f)
∥∥∥
p,τ2
, (3.23)

in the case a < (1
q
− 1

p
+ 1

pτ1
− 1

qτ2
)τ
′
2, b ∈ R. Since 1 < q < p <∞, then by Theorem 2.2, inequality

(3.4) and the definition of the class W a,b,r
q,τ1

and taking into account such that a + 1
p
− 1

q
> 0 and

1 < τ1 6 τ2 <∞, we have

∥∥∥ ∑
〈s̄,γ̄〉>n2

δs̄(f)
∥∥∥
p,τ2

=
∥∥∥ ∞∑
l=n2

∑
l6〈s̄,γ̄〉<l+1

δs̄(f)
∥∥∥
p,τ2

6 C
( ∞∑
l=n2

2l(
1
q
− 1
p

)τ2
∥∥∥ ∑
l6〈s̄,γ̄〉<l+1

δs̄(f)
∥∥∥τ2
q,τ1

) 1
τ2 6 C

( ∞∑
l=n2

2−l(a+ 1
p
− 1
q

)pl(ν−1)bp
) 1
p

6 C2−n2(a+ 1
p
− 1
q

)n
(ν−1)b
2 6 CM− p

2
(a+ 1

p
− 1
q

)(logM)(ν−1)b. (3.24)



Estimstes of M-term approximations in the Lorentz space 19

Now from inequalities (3.23) and (3.24), it follows that

eM(f)p,τ2 6 ‖f − (SQn,γ̄ (f) +GM(F1) +GM(F3))‖p,τ2 6 CM− p
2

(a+ 1
p
− 1
q

)(logM)(ν−1)b

for a function f ∈ W a,b,r
q,τ1

for 1
q
− 1

p
< a < (1

q
− 1

p
+ 1

pτ1
− 1

qτ2
)τ
′
2, b ∈ R and 1 < q < 2 < p < ∞ and

ν > 2.
If a = (1

q
− 1

p
+ 1

pτ1
− 1

qτ2
)τ
′
2, then

p

2

(
a+

1

p
− 1

q

)
=
τ
′
2

2

( 1

τ1

− 1

τ2

)
.

Therefore, in the case a = (1
q
− 1

p
+ 1

pτ1
− 1

qτ2
)τ
′
2 and (ν− 1)bτ2 + 1 6= 0 from inequalities (3.13), (3.22)

and (3.7), we obtain

‖f − (SQn,γ̄ (f) +GM(F1) +GM(F3))‖p,τ2 6 CM
− τ
′
2
2

( 1
τ1
− 1
τ2

)
(logM)(ν−1)b(log logM)1/τ2 .

Hence

eM(f)p,τ2 6 CM
− τ
′
2
2

( 1
τ1
− 1
τ2

)
(logM)(ν−1)b(log logM)1/τ2

for the function f ∈ W a,b,r
q,τ1

, 1 < q < 2 < p < ∞, a = (1
q
− 1

p
+ 1

pτ1
− 1

qτ2
)τ
′
2 and (ν − 1)bτ2 + 1 6= 0,

ν > 2.
If a = (1

q
− 1

p
+ 1

pτ1
− 1

qτ2
)τ
′
2 and (ν − 1)bτ2 + 1 = 0, then from inequalities (3.7), (3.13) and (3.21),

it follows that

eM(f)p,τ2 6 CM
− τ
′
2
2

( 1
τ1
− 1
τ2

)

for a function f ∈ W a,b,r
q,τ1

, 1 < q < 2 < p <∞.
Let ν = 1 i.e. r1 < rν+1 6 ... 6 rm. For M � 2n, there is a natural number n such that M � 2n.

In this case, put n1 = np
2
and consider the function

F1(x) =

n1−1∑
l=n

fl(x).

Now, repeating the arguments in the proof of inequality (3.5) for the function f ∈ W a,b,r
q,τ1

, we obtain

‖F1‖A 6 C2n1( 1
q
−a), (3.25)

in the case 1
q
− a > 0, for a function f ∈ W a,b,r

q,τ1
. Hence, from inequalities (3.25) and (3.6), we obtain

‖F1 −GM(F1)‖p,τ2 6 CM−1/2‖F1‖A 6 CM−1/22n1( 1
q
−a) 6 CM− p

2
(a+ 1

p
− 1
q

) (3.26)

for a function f ∈ W a,b,r
q,τ1

, in the case of 1
q
− a > 0. By the property of the norm and according to

(3.26), we have

‖f − (SQn,γ̄ (f) +GM(F1))‖p,τ2 6 ‖F1 −GM(F1)‖p,τ2 +
∥∥∥ ∑
〈s̄,γ̄〉>n1

δs̄(f)
∥∥∥
p,τ2

6 CM− p
2

(a+ 1
p
− 1
q

) +
∥∥∥ ∑
〈s̄,γ̄〉>n1

δs̄(f)
∥∥∥
p,τ2
, (3.27)
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for a function f ∈ W a,b,r
q,τ1

, in the case of a < 1
q
. Further, repeating the proof of inequality (3.24) with

n2 replaced by n1, we have∥∥∥ ∑
〈s̄,γ̄〉>n1

δs̄(f)
∥∥∥
p,τ2

6 C2−n1(a+ 1
p
− 1
q

) 6 CM− p
2

(a+ 1
p
− 1
q

), (3.28)

for a function f ∈ W a,b,r
q,τ1

, in the case of 1
p
− 1

q
< a, 1 < q < p <∞, 1 < τ1 6 τ2 <∞.

Now from inequalities (3.27) and (3.28), it follows that

‖f − (SQn,γ̄ (f) +GM(F1))‖p,τ2 6 CM− p
2

(a+ 1
p
− 1
q

),

for a function f ∈ W a,b,r
q,τ1

, in the case 1
p
− 1

q
< a < 1

q
, 1 < q < 2 < p <∞, 1 < τ1 6 τ2 <∞. Hence

eM(W a,b,r
q,τ1

)p,τ2 6 CM− p
2

(a+ 1
p
− 1
q

),

in the case ν = 1 and 1
p
− 1

q
< a < 1

q
, 1 < q < 2 < p <∞, 1 < τ1 6 τ2 <∞.

Lower bound for eM(W a,b,r
q,τ1

)p,τ2 . Let M ∈ N and N = [p
2

log2M ] is an integer part of the number
p
2

log2M .
Let s = (s1, . . . , sm) ∈ Zm+ such that

∏m
j=1 2sj = 2N . Consider the function

f0(x) = 2−N(1− 1
q

)2−NaN (ν−1)b
∑
k∈ρ(s)

e〈k,x〉.

Then
‖f0,l‖q,τ1 =

∥∥∥ ∑
l6〈s̄,γ̄〉<l+1

δs̄(f0)
∥∥∥
q,τ1

= 0

for l 6= N . If l = N , then by virtue of the estimate for the norm of the Dirichlet kernel in the Lorentz
space (see [5, p. 13]), we have

‖f0,l‖q,τ1 = ‖f0‖q,τ1 6 C2−NaN (ν−1)b.

Thus, the function f0 ∈ W a,b,r
q,τ1

, 1 < q <∞, 1 < τ1, τ2 <∞, a > 0, b ∈ R.
Let KM be an arbitrary set of M harmonics k = (k1, . . . , km) ∈ Zm+ and T(KM) is the set of

trigonometric polynomials with harmonics from KM . Consider an additional function

h(x) =
∑

k∈ρ(s)\KM

e〈k,x〉.

Then, by the property of the norm, the estimate for the norm of the Dirichlet kernel, and Parseval’s
equality, we have

‖h‖p′ ,τ ′2 6 ‖g0‖p′ ,τ ′2 + ‖g0 − h‖p′ ,τ ′2 6 ‖g0‖p′ ,τ ′2 + C‖g0 − h‖2 6 C{2
N
p +
√
M} 6 C0

√
M,

where g0(x) =
∑

k∈ρ(s)

e〈k,x〉, 2 < p < ∞, 1 < τ2 < ∞, β ′ = β
β−1

. Therefore, for any polynomial

T ∈ T(KM), due to Hölder’s inequality in the Lorentz space, we have∫
Tm

(f0(x)− T (x))h(x)dx 6 ‖f0 − T‖p,τ2‖h‖p′ ,τ ′2 6 C
√
M‖f0 − T‖p,τ2 , (3.29)
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for 2 < p <∞, 1 < τ2 <∞.
On the other hand, taking into account the orthogonality of the trigonometric system, we have∫

Tm

(f0(x)− T (x))h(x)dx =

∫
Tm

f0(x)h(x)dx = 2−N(1− 1
q

)2−NaN (ν−1)b
∑
k∈ρ(s)

1

= 2−N(1− 1
q

)2−NaN (ν−1)b(|ρ(s) \KM | −M) > 2−N(a+1− 1
q

)N (ν−1)b(2M −M)

= 2−N(a+1− 1
q

)N (ν−1)b2N .

Therefore, from inequality (3.29), we obtain

‖f0 − T‖p,τ2 > C2−N(a− 1
q

)N (ν−1)b2NM− 1
2 > CM− p

2
(a+ 1

p
− 1
q

)(logM)(ν−1)b,

for any polynomial T ∈ T(KM), 2 < p <∞, 1 < τ2 <∞. Hence

eM(W a,b,r
q,τ1

)p,τ2 > CM− p
2

(a+ 1
p
− 1
q

)(logM)(ν−1)b,

in the case 1
q
− 1

p
< a < (1

q
− 1

p
+ 1

pτ1
− 1

qτ2
)τ
′
2, 1 < q < 2 < p <∞, 1 < τ2 <∞.

Theorem 3.2. Let 0 < r1 = . . . = rν < rν+1 ≤ . . . rm, 2 < p < ∞, 1 < max{τ1, 2} 6 τ2 < ∞,
1
2
− 1

p
< a < (1

2
− 1

p
+ 1

pτ1
− 1

2τ2
)τ
′
2, τ

′
2 = τ2

τ2−1
and b ∈ R, then

eM(W a,b,r
2,τ1

)p,τ2 6 CM− p
2

(a+ 1
p
− 1

2
)(log2M)

(ν−1)b+ 1
2
− 1
τ1 ,

where C > 0 is independent of M > 1.

Proof. As in the proof of Theorem 3.1, consider the functions Fj, j = 1, 2, 3. By formula(3.1), we
have

‖F1‖A =

n1−1∑
l=n

∑
l≤〈s̄,γ̄〉<l+1

∑
k∈ρ(s)

|ak(f)| 6 2−
m
2

n1−1∑
l=n

∑
l≤〈s̄,γ̄〉<l+1

2〈s̄,1̄〉
1
2‖δs(f)‖2. (3.30)

If 2 < τ1 <∞, then according to the inequality of different metrics for trigonometric polynomials in
the Lorentz space [4] we have

‖δs(f)‖2 6 C
( m∑
j=1

(sj + 1)
) 1

2
− 1
τ1 ‖δs(f)‖2,τ1 ,

where here and in the rest of the proof C denotes a positive number which depends only on numerical
parameters, and may be different on different occurrences.
Therefore, from Lemma 1.6 [5] for p = 2 and 2 < τ1 <∞ we obtain(∑

s∈Z+

( m∑
j=1

(sj + 1)
)( 1

τ1
− 1

2
)τ1
‖δs(f)‖τ12

) 1
τ1

6 C

(∑
s∈Z+

‖δs(f)‖τ12,τ1

) 1
τ1

6 C‖f‖2,τ1 . (3.31)

According to inequality (3.31) and Hölder’s inequality, we obtain

∑
l≤〈s̄,γ̄〉<l+1

2〈s̄,1̄〉
1
2‖δs(f)‖2 6

 ∑
l≤〈s̄,γ̄〉<l+1

( m∑
j=1

(sj + 1)
)( 1

τ1
− 1

2
)τ1
‖δs(f)‖τ12

 1
τ1
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×

 ∑
l≤〈s̄,γ̄〉<l+1

2〈s̄,1̄〉
τ
′
1
2

( m∑
j=1

(sj + 1)
)( 1

2
− 1
τ1

)τ
′
1

 1

τ
′
1

6 C
∥∥∥ ∑
l≤〈s̄,γ̄〉<l+1

δs(f)
∥∥∥

2,τ1

 ∑
l≤〈s̄,γ̄〉<l+1

2〈s̄,1̄〉
τ
′
1
2

( m∑
j=1

(sj + 1)
)( 1

2
− 1
τ1

)τ
′
1

 1

τ
′
1

, (3.32)

where τ ′1 = τ1
τ1−1

, 1 < τ1 < ∞. We will choose numbers δj such that δj = γj for j = 1, . . . , ν and
1 < δj < γj for j = ν + 1, . . . ,m. Then, by Lemma G [35], from inequality (3.32) we have∑

l≤〈s̄,γ̄〉<l+1

2〈s̄,1̄〉
1
2‖δs(f)‖2

6 C
∥∥∥ ∑
l≤〈s̄,γ̄〉<l+1

δs(f)
∥∥∥

2,τ1

 ∑
l≤〈s̄,γ̄〉<l+1

2〈s̄,δ̄〉
τ
′
1
2

( m∑
j=1

(sj + 1)
)( 1

2
− 1
τ1

)τ
′
1

 1

τ
′
1

,

6 C
∥∥∥ ∑
l≤〈s̄,γ̄〉<l+1

δs(f)
∥∥∥

2,τ1
2
l
2 l

(ν−1) 1

τ
′
1 l

1
2
− 1
τ1 , (3.33)

in the case 2 < τ1 <∞. Therefore, taking into account that the function f ∈ W a,b,r
2,τ1

and a < 1
2
from

(3.30) and (3.33) we get

‖F1‖A 6 C

n1−1∑
l=n

2
l
2 l

(ν−1) 1

τ
′
1 l

1
2
− 1
τ1 2−lal(ν−1)b 6 C2−n1(a− l

2
)n

(ν−1)(b+ 1

τ
′
1

)

1 n
1
2
− 1
τ1

1 , (3.34)

in the case q = 2 < p < ∞, 2 < τ1 < ∞, a < 1
2
. Since 2 < p < ∞, then by Lemma 2.1 for the

function F1 there exists a M -term polynomial GM(F1, x) such that

‖F1 −GM(F1)‖p,τ2 6 CM− 1
2‖F1‖A.

Therefore, according to inequality (3.34) and taking into account the definition of the number n1

and the relation M � 2nnν−1 from this formula, we obtain that

‖F1 −GM(F1)‖p,τ2 6 CM− p
2

(a+ 1
p
− 1
q

)(logM)(ν−1)b(logM)
l
2
− 1
τ1 , (3.35)

in the case q = 2 < p <∞, 2 < τ1 <∞, 1 < τ2 <∞, a < 1
2
.

For the estimate ‖F3‖A by applying Hölder’s inequality for the sum and Parseval’s equality, we
obtain

‖F3‖A =

n2−1∑
l=n1

∑
l≤〈s̄,γ̄〉<l+1,s∈G(l)

∑
k∈ρ(s)

|ak(f)| 6 2−
m
2

n2−1∑
l=n1

∑
l≤〈s̄,γ̄〉<l+1,s∈G(l)

2〈s̄,1̄〉
1
2‖δs(f)‖2

6 C

n2−1∑
l=n1

2
l
2 (l + 1)

1
2
− 1
τ1

∑
l≤〈s̄,γ̄〉<l+1,s∈G(l)

( m∑
j=1

(sj + 1)
)( 1

τ1
− 1

2
)

‖δs(f)‖2. (3.36)

Now, to the inner sum on the right side of inequality (3.36), by applying Hölder’s inequality for
1
τ1

+ 1

τ
′
1

= 1 and 1 < τ1 <∞ we will have

‖F3‖A 6 C

n2−1∑
l=n1

2
l
2 (l + 1)

1
2
− 1
τ1

( ∑
l≤〈s̄,γ̄〉<l+1,s∈G(l)

( m∑
j=1

(sj + 1)
)( 1

τ1
− 1

2
)τ1
‖δs(f)‖τ12

) 1
τ1 |G(l)|

1

τ
′
1 . (3.37)
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We will put

S̃l =
(

2laτ1l−(ν−1)bτ1
∑

l≤〈s̄,γ̄〉<l+1

( m∑
j=1

(sj + 1)
)( 1

τ1
− 1

2
)τ1
‖δs(f)‖τ12

)1/τ1

and

ml := |G(l)| :=
[
2−l

τ
′
2
p S̃τ1l 2n

τ
′
2
2 n(ν−1)

τ
′
2
2

]
+ 1.

Then from (3.37), it follows that

‖F3‖A 6 C

n2−1∑
l=n1

2−l(a−
1
2

)l
(ν−1)b+ 1

2
− 1
τ1 S̃lm

1

τ
′
1
l

6 C

n2−1∑
l=n1

2−l(a−
1
2

)l
(ν−1)b+ 1

2
− 1
τ1 S̃l

{
2−l

τ
′
2
p S̃τ1l 2n

τ
′
2
2 n(ν−1)

τ
′
2
2 + 1

} 1

τ
′
1

6 C
{(

2nnν−1
) τ
′
2

2τ
′
1

n2−1∑
l=n1

2
−l(a− 1

2
+
τ
′
2

pτ
′
1

)
l
(ν−1)b+ 1

2
− 1
τ1 S̃

1+
τ1

τ
′
1

l +

n2−1∑
l=n1

2−l(a−
1
2

)l
(ν−1)b+ 1

2
− 1
τ1 S̃l

}
. (3.38)

Since S̃
1+

τ1

τ
′
1

l = S̃τ1l and −1
2

+
τ
′
2

pτ
′
1

= τ
′
2(−1

2
+ 1

p
− 1

pτ1
+ 1

2τ2
), then according to (3.31), we have

n2−1∑
l=n1

2
−l(a− 1

2
+
τ
′
2

pτ
′
1

)
l
(ν−1)b+ 1

2
− 1
τ1 S̃

1+
τ1

τ
′
1

l =

n2−1∑
l=n1

2
−l(a−τ ′2( 1

2
− 1
p

+ 1
pτ1
− 1

2τ2
))
l
(ν−1)b+ 1

2
− 1
τ1 S̃τ1l

6 C

n2−1∑
l=n1

2
−l(a−τ ′2( 1

2
− 1
p

+ 1
pτ1
− 1

2τ2
))
l
(ν−1)b+ 1

2
− 1
τ1

(
2laτ1l−(ν−1)bτ1

∥∥∥ ∑
l≤〈s̄,γ̄〉<l+1

δs(f)
∥∥∥

2,τ1

)τ1
6 C

n2−1∑
l=n1

2
−l(a−τ ′2( 1

2
− 1
p

+ 1
pτ1
− 1

2τ2
))
l
(ν−1)b+ 1

2
− 1
τ1 .

for a function f ∈ W a,b,r
2,τ1

. Since a− τ ′2(1
2
− 1

p
+ 1

pτ1
− 1

2τ2
) < 0, then taking into account the definition

of the number n2 from this formula, we obtain that
n2−1∑
l=n1

2
−l(a− 1

2
+
τ
′
2

pτ
′
1

)
l
(ν−1)b+ 1

2
− 1
τ1 S̃

1+
τ1

τ
′
1

l 6 C2
−n2(a−τ ′2( 1

2
− 1
p

+ 1
pτ1
− 1

2τ2
))
n

(ν−1)b+ 1
2
− 1
τ1

2

6 C2
−n p

2
(a−τ ′2( 1

2
− 1
p

+ 1
pτ1
− 1

2τ2
))
n
−(ν−1) p

2
(a−τ ′2( 1

2
− 1
p

+ 1
pτ1
− 1

2τ2
))
n

(ν−1)b+ 1
2
− 1
τ1 , (3.39)

for a function f ∈ W a,b,r
2,τ1

, 2 < τ1 <∞.
Further, according to inequality (3.31), taking into account the function f ∈ W a,b,r

2,τ1
and a− 1

2
< 0

we have
n2−1∑
l=n1

2−l(a−
1
2

)l
(ν−1)b+ 1

2
− 1
τ1 S̃l 6 C

n2−1∑
l=n1

2−l(a−
1
2

)l
(ν−1)b+ 1

2
− 1
τ1

×
(

2laτ1l−(ν−1)bτ1
∥∥∥ ∑
l≤〈s̄,γ̄〉<l+1

δs(f)
∥∥∥

2,τ1

)

6 C

n2−1∑
l=n1

2−l(a−
1
2

)l
(ν−1)b+ 1

2
− 1
τ1 6 C2−n2(a− 1

2
)n

(ν−1)b+ 1
2
− 1
τ1

2

6 C2−n
p
2

(a− 1
2

)n−(ν−1) p
2

(a− 1
2

)n
(ν−1)b+ 1

2
− 1
τ1 . (3.40)
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Now from inequalities (3.38), (3.39) and (3.40), it follows that

‖F3‖A 6 C
{(

2nnν−1
) τ
′
2

2τ
′
1 2
−n p

2
(a−τ ′2( 1

2
− 1
p

+ 1
pτ1
− 1

2τ2
))
n
−(ν−1) p

2
(a−τ ′2( 1

2
− 1
p

+ 1
pτ1
− 1

2τ2
))
n

(ν−1)b+ 1
2
− 1
τ1

+ (2nnν−1)−
p
2

(a− 1
2

)n
(ν−1)b+ 1

2
− 1
τ1

}
for a function f ∈ W a,b,r

q,τ1
, 2 < τ1 <∞, 1 < τ2 <∞, a− τ ′2(1

2
− 1

p
+ 1

pτ1
− 1

2τ2
) < 0.

Since p
2
(a− τ ′2(1

2
− 1

p
+ 1

pτ1
− 1

2τ2
))− τ

′
2

2τ
′
1

= p
2
(a− 1

2
), then it follows that

‖F3‖A 6 C(2nnν−1)−
p
2

(a− 1
2

)n
(ν−1)b+ 1

2
− 1
τ1 . (3.41)

Since 2 < p <∞, then by Lemma 2.1 for the function F3 by a constructive method there is aM–term
polynomial GM(F3, x) such that

‖F3 −GM(F3)‖p,τ2 6 CM− l
2‖F3‖A.

Therefore, according to (3.41), we have

‖F3 −GM(F3)‖p,τ2 6 CM− l
2 (2nnν−1)−

p
2

(a− 1
2

)n
(ν−1)b+ 1

2
− 1
τ1

6 CM− p
2

(a+ 1
p
− 1

2
)(logM)

(ν−1)b+ 1
2
− 1
τ1 , (3.42)

for a function f ∈ W a,b,r
2,τ1

, 2 < p <∞, 2 < τ1 <∞, 1 < τ2 <∞, a < τ
′
2(1

2
− 1

p
+ 1

pτ1
− 1

2τ2
) .

Let us estimate ‖F2‖p,τ2 . In formula (3.8), the inequality is proved

‖F2‖p,τ2 6 C
(n2−1∑
l=n1

∑
l≤〈s̄,γ̄〉<l+1,s̄/∈G(l)

2〈s̄,1̄〉(
1
2
− 1
p

)τ2‖δs(f)‖τ2−τ12 ‖δs(f)‖τ12

)1/τ2
.

Now, taking into account that

‖δs(f)‖2 6 m
− 1
τ1

l 2−lal(ν−1)bl
1
2
− 1
τ1 S̃l

for s /∈ G(l) and substituting the values of the numbers ml, for τ2 − τ1 > 0, hence we have

‖F2‖p,τ2

6 C
(n2−1∑
l=n1

∑
l≤〈s̄,γ̄〉<l+1,s̄/∈G(l)

2〈s̄,1̄〉(
1
2
− 1
p

)τ2‖δs(f)‖τ12

(
m
− 1
τ1

l 2−lal(ν−1)bl
1
2
− 1
τ1 S̃l

)τ2−τ1)1/τ2

= C
(n2−1∑
l=n1

((
2−l

τ
′
2
p S̃τ1l 2n

τ
′
2
2 n(ν−1)

τ
′
2
2

)− 1
τ1 2−lal(ν−1)bS̃ll

1
2
− 1
τ1

)τ2−τ1
×

∑
l≤〈s̄,γ̄〉<l+1,s̄/∈G(l)

2〈s̄,1̄〉(
1
2
− 1
p

)τ2‖δs(f)‖τ12

)1/τ2

= C(2nnν−1)
− τ
′
2
2
τ2−τ1
τ1τ2

(n2−1∑
l=n1

2
−l(a− τ

′
2

pτ1
)(τ2−τ1)

l(ν−1)b(τ2−τ1)l
( 1

2
− 1
τ1

)(τ2−τ1)

×
∑

l≤〈s̄,γ̄〉<l+1,s̄/∈G(l)

2〈s̄,1̄〉(
1
2
− 1
p

)τ2‖δs(f)‖τ12

)1/τ2
. (3.43)
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Further, taking into account that 1 6 γj, j = 1, ...,m and using inequality (3.31), it is easy to verify
that ∑

l≤〈s̄,γ̄〉<l+1,s̄/∈G(l)

2〈s̄,1̄〉(
1
2
− 1
p

)τ2‖δs(f)‖τ12

6 2(l+1)( 1
2
− 1
p

)τ2l
−( 1

2
− 1
τ1

)τ1
∑

l≤〈s̄,γ̄〉<l+1

(
m∑
j=1

(sj + 1))
( 1

2
− 1
τ1

)τ1‖δs(f)‖τ12

6 C2(l+1)( 1
2
− 1
p

)τ2l
−( 1

2
− 1
τ1

)τ1
∥∥∥ ∑
l≤〈s̄,γ̄〉<l+1

δs(f)
∥∥∥τ1

2,τ1

6 C2(l+1)( 1
2
− 1
p

)τ2l
−( 1

2
− 1
τ1

)τ1
(

2−lal(ν−1)b
)τ1

(3.44)

for a function f ∈ W a,b,r
2,τ1

, 2 < τ1 6 τ2 <∞.
Now from inequalities (3.43) and (3.44), it follows that

‖F2‖p,τ2 6 C(2nnν−1)
− τ
′
2
2
τ2−τ1
τ1τ2

×
(n2−1∑
l=n1

2
−l(a− τ

′
2

pτ1
)(τ2−τ1)

l(ν−1)b(τ2−τ1)l
( 1

2
− 1
τ1

)(τ2−τ1)
2(l+1)( 1

2
− 1
p

)τ2l
−( 1

2
− 1
τ1

)τ1
(

2−lal(ν−1)b
)τ1)1/τ2

= C(2nnν−1)
− τ
′
2
2
τ2−τ1
τ1τ2

(n2−1∑
l=n1

2
−lτ2(a− τ

′
2

pτ1τ2
(τ2−τ1)−( 1

2
− 1
p

))
l(ν−1)bτ2l

( 1
2
− 1
τ1

)τ2
)1/τ2

.

Since

a− τ
′
2

pτ1τ2

(τ2 − τ1)− (
1

2
− 1

p
) = a− τ ′2(

1

2
− 1

p
+

1

pτ1

− 1

2τ2

),

then taking into account the definition of the number n2, from this formula, we get

‖F2‖p,τ2 6 C(2nnν−1)
− τ
′
2
2
τ2−τ1
τ1τ2 2

−n2(a−τ ′2( 1
2
− 1
p

+ 1
pτ1
− 1

2τ2
))
n

(ν−1)b+ 1
2
− 1
τ1

2

6 C2−n
p
2

(a− 1
p
− 1

2
)n

(ν−1)b+ 1
2
− 1
τ1 , (3.45)

for a function f ∈ W a,b,r
2,τ1

for 2 < p <∞, 2 < τ1 6 τ2 <∞, a < τ
′
2(1

2
− 1

p
+ 1

pτ1
− 1

2τ2
).

Now from inequalities (3.35), (3.42) and (3.45), it follows that

‖f − (SQn,γ̄ (f) +GM(F1) +GM(F3))‖p,τ2
6 ‖F1 −GM(F1)‖p,τ2 + ‖F3 −GM(F3)‖p,τ2 + ‖F2‖p,τ2

+
∥∥∥ ∑
〈s̄,γ̄〉>n2

δs̄(f, x̄)
∥∥∥
p,τ2

6 CM− p
2

(a+ 1
p
− 1

2
)(logM)

(ν−1)b+ 1
2
− 1
τ1 +

∥∥∥ ∑
〈s̄,γ̄〉>n2

δs̄(f, x̄)
∥∥∥
p,τ2

for a function f ∈ W a,b,r
2,τ1

for 2 < p <∞, 2 < τ1 6 τ2 <∞, a < τ
′
2(1

2
− 1

p
+ 1

pτ1
− 1

2τ2
).

Further, using inequality (3.24) for q = 2 and taking into account that 1
2
− 1

τ1
> 0 from this

formula, we obtain

eM(f)p,τ2 6 ‖f − (SQn,γ̄ (f) +GM(F1) +GM(F3))‖p,τ2 6 CM− p
2

(a+ 1
p
− 1

2
)(logM)

(ν−1)b+ 1
2
− 1
τ1 ,

for a function f ∈ W a,b,r
2,τ1

for 2 < p <∞, 2 < τ1 6 τ2 <∞, a < τ
′
2(1

2
− 1

p
+ 1

pτ1
− 1

2τ2
), b ∈ R .
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Let 1 < τ1 6 2. Then, by Lemma 1.5 [5], the following inequality holds( ∑
l≤〈s̄,γ̄〉<l+1

‖δs(f)‖2
2,τ1

)1/2

6 C
∥∥∥ ∑
l≤〈s̄,γ̄〉<l+1

δs(f)
∥∥∥

2,τ1
. (3.46)

Since 1 < τ1 6 2, then (see [34, p. 217, Theorem 3.11])

‖δs(f)‖2 6 C‖δs(f)‖2,τ1 . (3.47)

From inequalities (3.30), (3.47) and (3.46), it follows that

‖F1‖A 6 C

n1−1∑
l=n

2l/2
∥∥∥ ∑
l≤〈s̄,γ̄〉<l+1

δs(f)
∥∥∥

2,τ1
.

Now taking into account that the function f ∈ W a,b,r
2,τ1

and the choice of the number n1 from this
formula, we get that

‖F1‖A 6 CM− p
2

(a− 1
2

)(logM)
(ν−1)(b+ p

τ
′
2

(a− 1
2

)
, (3.48)

for a < 1/2. Further, arguing as in the proof of inequality (3.35), we obtain

‖F1 −GM(F1)‖p,τ2 �M− p
2

(a+ 1
p
− 1

2
)(logM)(ν−1)b(logM)

l
2
− 1
τ1 �M− p

2
(a+ 1

p
− 1

2
)(logM)(ν−1)b, (3.49)

in the case q = 2 < p <∞, 1 < τ1 6 2, 1 < τ2 <∞, a < 1
2
.

In order to estimate ‖F3‖A, we put

S̃l =
(

2laτ1l−(ν−1)bτ1
∑

l≤〈s̄,γ̄〉<l+1

‖δs(f)‖2
2

)1/2

and

m̃l := |G(l)| :=
[
2−l

τ
′
2
p S̃2

l 2
n
τ
′
2
2 n(ν−1)

τ
′
2
2

]
+ 1.

In inequality (3.36), it was proved that

‖F3‖A 6 2−
m
2

n2−1∑
l=n1

∑
l≤〈s̄,γ̄〉<l+1,s∈G(l)

2〈s̄,1̄〉
1
2‖δs(f)‖2

6 2−
m
2

n2−1∑
l=n1

2(l+1)/2
∑

l≤〈s̄,γ̄〉<l+1,s∈G(l)

‖δs(f)‖2. (3.50)

By to the inner sum on the right side of inequality (3.50) applying Hölder’s inequality and substituting
the value of the number m̃l := |G(l)| from (3.50), we obtain

‖F3‖A 6 2−
m
2

n2−1∑
l=n1

2(l+1)/2
( ∑
l≤〈s̄,γ̄〉<l+1,s∈G(l)

‖δs(f)‖2
2

)1/2

|G(l)|1/2

� 2−
m−1

2

{n2−1∑
l=n1

2l(
1
2
−a)l(ν−1)b2−l

τ
′
2

2p S̃2
l (2

nn(ν−1))
τ
′
2
4 +

n2−1∑
l=n1

2l(
1
2
−a)l(ν−1)bS̃l

}
. (3.51)
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Now, using inequalities (3.46) and (3.47) and taking into account the value of the numbers S̃l, we
obtain

n2−1∑
l=n1

2−l(a−
1
2

+
τ
′
2

2p
)l(ν−1)bS̃2

l 6
n2−1∑
l=n1

2−l(a−
1
2

+
τ
′
2

2p
)l(ν−1)b

(
2lal−(ν−1)b

∥∥∥ ∑
l≤〈s̄,γ̄〉<l+1

δs(f)
∥∥∥

2,τ1

)
. (3.52)

Since the function f ∈ W a,b,r
2,τ1

and

a− 1

2
+
τ
′
2

2p
= a− τ ′2(

1

2
− 1

p
+

1

2p
− 1

2τ2

) 6 a− τ ′2(
1

2
− 1

p
+

1

pτ1

− 1

2τ2

) < 0,

then from inequality (3.52) we have

n2−1∑
l=n1

2−l(a−
1
2

+
τ
′
2

2p
)l(ν−1)bS̃2

l 6 C

n2−1∑
l=n1

2
−l(a−τ ′2( 1

2
− 1
p

+ 1
2p
− 1

2τ2
))
l(ν−1)b

6 C2
−n2(a−τ ′2( 1

2
− 1
p

+ 1
2p
− 1

2τ2
))
n

(ν−1)b
2 . (3.53)

Since the function f ∈ W a,b,r
2,τ1

and a− 1
2
< 0, then arguing similarly we can prove that

n2−1∑
l=n1

2l(
1
2
−a)l(ν−1)bS̃l 6 C2n2( 1

2
−a)n

(ν−1)b
2 . (3.54)

Now from inequalities (3.51), (3.53) and (3.54), it follows that

‖F3‖A 6 C
{

(2nn(ν−1))
τ
′
2
4 2
−n2(a−τ ′2( 1

2
− 1
p

+ 1
2p
− 1

2τ2
))
n

(ν−1)b
2 + 2n2( 1

2
−a)n

(ν−1)b
2

}
6 C(2nn(ν−1))−

p
2

(a− 1
2

)n(ν−1)b, (3.55)

for a function f ∈ W a,b,r
2,τ1

for 2 < p <∞, 1 < τ1 6 2 and 1 < τ2 <∞, a < τ
′
2(1

2
− 1

p
+ 1

2p
− 1

2τ2
), b ∈ R.

Therefore, according to Lemma 2.1 for the function F3, by a constructive method there is a
M–term polynomial GM(F3, x) such that

‖F3 −GM(F3)‖p,τ2 6 CM− l
2‖F3‖A. 6 CM− p

2
(a+ 1

p
− 1

2
)(logM)(ν−1)b, (3.56)

for a function f ∈ W a,b,r
2,τ1

for 2 < p <∞, 1 < τ1 6 2, 1 < τ2 <∞, a < τ
′
2(1

2
− 1

p
+ 1

pτ1
− 1

2τ2
), b ∈ R .

Let us estimate ‖F2‖p,τ2 . To do this, note that if s /∈ G(l), then

‖δs(f)‖2 6 m̃
− 1

2
l 2−lal(ν−1)bS̃l (3.57)

and (see formula (3.8))

‖F2‖p,τ2 6 C
(n2−1∑
l=n1

∑
l≤〈s̄,γ̄〉<l+1,s̄/∈G(l)

2〈s̄,1̄〉(
1
2
− 1
p

)τ2‖δs(f)‖τ22

)1/τ2

= C
(n2−1∑
l=n1

∑
l≤〈s̄,γ̄〉<l+1,s̄/∈G(l)

2〈s̄,1̄〉(
1
2
− 1
p

)τ2‖δs(f)‖τ2−2
2 ‖δs(f)‖2

2

)1/τ2
. (3.58)
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Further, if τ2 − 2 > 0, then using inequality (3.57) and repeating the reasoning in the proof (3.45),
we obtain

‖F2‖p,τ2 6 C(2nnν−1)−
p
2

(a+ 1
p
− 1

2
)n(ν−1)b 6 CM− p

2
(a+ 1

p
− 1

2
)(logM)(ν−1)b, (3.59)

for a function f ∈ W a,b,r
2,τ1

for q = 2 < p <∞, 1 < τ1 6 2 6 τ2 <∞, a < τ
′
2(1

2
− 1

p
+ 1

2p
− 1

2τ2
), b ∈ R.

Now from inequalities (3.49), (3.56), (3.59), it follows that

eM(f)p,τ2 6 ‖f − (SQn,γ̄ (f) +Gp
M(F1) +Gp

M(F3))‖p,τ2 6 CM− p
2

(a+ 1
p
− 1
q

)(logM)
(ν−1)b+ 1

2
− 1
τ1 ,

for a function f ∈ W a,b,r
2,τ1

for 2 < p <∞, 1 < τ1 6 2 6 τ2 <∞, a < τ
′
2(1

2
− 1

p
+ 1

2p
− 1

2τ2
), b ∈ R.

Remark 1. In the case τ1 = q and τ2 = p Theorem 3.1 and Theorem 3.2 complement Theorem 3.2
[38].

Remark 2. Estimates for the quantity eM(W a,b,r
q,τ1

)p,τ2 for other values of the parameters q, p, τ1, τ2,
a are announced in [6].

4 Conclusion

Now, using Theorem 3.1, we can obtain estimates for M–term approximations of a function in the
Nikol’skii–Besov class.

Theorem 4.1. Let 1 < q < 2 < p <∞, 1 < τ1 6 2 6 τ2 <∞ and 1
q
− 1

p
< r1 = ... = rν−1 < rν+1 6

rm.
1. If 1 6 θ 6 τ1 and 1

q
− 1

p
< r1 < τ

′
2(1
q
− 1

p
+ 1

pτ1
− 1

qτ2
), then

eM(Srq,τ1,θB)p,τ2 6 CM− p
2

(r1+ 1
p
− 1
q

),

where C > 0 is independent of M .

Proof. Let f ∈ Srq,τ1,θB. Since 1 < τ1 ≤ 2 and 1 < q <∞, then

‖fl
∥∥∥
q,τ1

=
∥∥∥ ∑
l≤〈s̄,γ̄〉<l+1

δs(f)
∥∥∥
q,τ1

6 C

( ∑
l≤〈s̄,γ̄〉<l+1

‖δs(f)‖τ1q,τ1

)1/τ1

,

where C > 0 is independent of l and f . If 1 6 θ 6 τ1, then according to Jensen’s inequality [26,
Lemma 3.3.3] from this formula, we obtain

‖fl
∥∥∥
q,τ1

6 C

( ∑
l≤〈s̄,γ̄〉<l+1

‖δs(f)‖θq,τ1

)1/θ

6 C2−lr1

( ∑
l≤〈s̄,γ̄〉<l+1

2〈s,r〉θ‖δs(f)‖θq,τ1

)1/θ

6 C2−lr1

(∑
s̄∈Z+

2〈s,r〉θ‖δs(f)‖θq,τ1

)1/θ

.

Hence Srq,τ1,θB ⊂ W r1,0,r
q,τ1

in the case 1 6 θ 6 τ1 6 2 and 1 < q < ∞. Therefore, according to
Theorem 3.1, for a = r1 and b = 0, we have the estimate

eM(Srq,τ1,θB)p,τ2 6 CM− p
2

(r1+ 1
p
− 1
q

),

in the case 1
q
− 1

p
< r1 < τ

′
2(1
q
− 1

p
+ 1

pτ1
− 1

qτ2
), where C > 0 is independent of M .

Note that if 1 6 θ 6 τ1, then τ
′
2(1
q
− 1

p
+ 1

pτ1
− 1

qτ2
) 6 1

q
− τ

′
2

pθ′
.

Remark 3. If 1 < τ1 < θ 6 τ2 <∞, then 1
q
− τ

′
2

pθ′
< τ

′
2(1
q
− 1

p
+ 1

pτ1
− 1

qτ2
). In this case, estimates of

the quantity eM(Srq,τ1,θB)p,τ2 are given in [7].
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Abstract. In this paper, we study the interpolation properties of anisotropic net spaces Np̄,q̄(M),
where p̄ = (p1, ..., pn), q̄ = (q1, ..., qn). It is shown that, with respect to the multidimensional
interpolation method, the following equality holds

(Np̄0,q̄0(M), Np̄1,q̄1(M))θ̄,q̄ = Np̄,q̄(M),
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p̄
=

1− θ̄
p̄0

+
θ̄

p̄1
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1 Introduction

LetM be the set of all segments from R. For a function f(x), defined and integrable on each segment
Q of M , we define the function

f̄(t,M) = sup
Q∈M
|Q|>t

1

|Q|

∣∣∣∣∫
Q

f(x)dx

∣∣∣∣ , t > 0,

where the supremum is taken over all segments Q ∈ M , whose length is |Q| > t. The function
f̄(t,M) is called the averaging of the function f over the net M .

We define the net spaces Np,q(M), 0 < p, q ≤ ∞ as the set of all functions f , such that for q <∞

‖f‖Np,q(M) =

(∫ ∞
0

(
t

1
p f̄(t,M)

)q
dt

t

) 1
q

<∞,

and for q =∞
‖f‖Np,∞(M) = sup

t>0
t

1
p f̄(t,M) <∞.

These spaces were introduced in work [18]. Net spaces are an important research tool in the
theory of Fourier series, in operator theory and in other areas [1]-[3], [19]-[23], [24], [28], [29].

It was shown in [17] that the scale of spaces Np,q(M) is closed under the real interpolation method,
i.e. for p0 6= p1 holds

(Np0,q0(M), Np1,q1(M))θ,q = Np,q(M).

If in the definition of the space Np,q(M) instead of f̄(t,M) we consider the function

sup
Q∈M
|Q|>t

1

|Q|

∫
Q

|f(x)|dx,
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then the corresponding space, as can be seen from [9], coincides with the Morrey space Mα
p,q, where

α = 1
p
− 1

q
, but for the scale of these spaces it is known that it is not closed under the real interpolation

method (see [7], [25], [26]).
We consider the following generalization of the space Np,q(M) in the n-dimensional case.
Let τ ∈ Z, by Gτ we denote the set of all segments of the form [0, 2τ}+ kτ , k ∈ Z. Let G =

⋃
Gτ

be the set of all dyadic segments. Let M be a set of all parallelipeds of the form

Q = Q1 × · · · ×Qn

where Qi ∈ G, i = 1, . . . , n. We will call M dyadic net.
For the function f(x) = f(x1, ..., xn) integrable on every set Q ∈M we define

f̄(t;M) = f̄(t1, ..., tn;M) = sup
|Qi|≥ti

1

|Qn|

∣∣∣∣∫
Q

f(x1, ..., xn)dx1...dxn

∣∣∣∣ , ti > 0,

where |Qi| is the length of the segment Qi.
Let 0 < p̄ = (p1, ..., pn) <∞, 0 < q̄ = (q1, ..., qn) ≤ ∞. Denote by Np̄,q̄(M) the set of all functions

f(x) = f(x1, ..., xn), for which

‖f‖Np̄,q̄(M) =

(∫ ∞
0

. . .

(∫ ∞
0

(
t

1
p1
1 ...t

1
pn
n f̄(t1, ..., tn;M)

)q1 dt1
t1

) q2
q1

. . .
dtn
tn

) 1
qn

<∞,

here and below, when q =∞, the expression
(∫∞

0
(ϕ(t))q dt

t

) 1
q is understood as supt>0 ϕ(t).

As can be seen from the definition of the space Np̄,q̄(M), this is the space of functions that have
different characteristics for each variable. These spaces are called anisotropic net spaces.

For spaces with a mixed metric, anisotropic spaces, the real interpolation method does not work.
For the interpolation of mixed metric spaces, the interpolation method was introduced by D.L. Fer-
nandez [11]-[13] and modified in [14], [17], [20], [21]. An interpolation theorem regarding this method
for Lebesgue spaces Lp̄ with a mixed metric was obtained in [22]: let 0 < p̄i <∞ and pi0 6= pi1, i = 0, 1,
0 < q̄ ≤ ∞, 0 < θ̄ < 1, then

(Lp̄0 , Lp̄1)θ̄,q̄ = Lp̄,q̄,
1

p̄
=

1− θ̄
p̄0

+
θ̄

p̄1

,

where Lp̄,q̄ is the anisotropic Lorentz space. (see [8])
Other applications of this method can be found in [6], [22].
The purpose of this paper is to obtain an interpolation theorem for anisotropic net spaces.
Given functions F and G, in this paper F � G means that F ≤ CG and G ≤ CF , where C

is a positive number, depending only on numerical parameters, that may be different on different
occasions.

2 Lemmas

Let τ = (τ1, ..., τn). The system of all sets Gτ = Gτ1×· · ·×Gτn =
{
Ik = I1

k1
× · · · × Inkn : I iki ∈ Gτi

}
defines the partition of Rn into parallelepipeds, i.e. Rn =

⋃
k∈Z

Ik.

Let E = {ε = (ε1, ..., εn) : εi ∈ {0, 1}} be the vertices of the unit cube in Rn. For a locally
integrable function f(x1, ..., xn) and a set Gτ we define the functions fε(x), ε ∈ E as follows:

fε(x) =
1

n∏
i=1

|I iki |

∫
Inkn

. . .

∫
I1
k1

∆ε
xf(x′1, ..., x

′
n)dx1

′...dxn
′ x ∈ I1

k1
× · · · × Inkn , (2.1)
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where
∆ε
xf(x′) = ∆εn

xn . . .∆
ε1
x1
f(x′),

∆εi
xi
φ(x′i) =

{
φ(x′i), for ε = 0,

φ(xi)− φ(x′i), for ε = 1.

Note that f(x) =
∑

ε∈E fε(x). These functions {fε}ε∈E will be called the expansion of the function
f(x), corresponding to the partition Gτ .

Lemma 2.1. Let τ = (τ1, ..., τn) ∈ Zn, Gτ be the partition of Rn into rectangles, f(x1, ..., xn) be
locally integrable on Rn. f =

∑
ε∈E fε(x) be the decomposition corresponding to the partition Gτ .

Then for εi = 1

1

|I ik|

∫
Iik

fε(x1, ..., xn)dxi =

{
0, εi = 1

fε(x1, ..., xn), εi = 0
, k ∈ Z.

The proof follows from the definitions of the functions fε.

Lemma 2.2. Let τ = (τ1, ..., τn) ∈ Zn, τi > 0, Gτ be a partition of Rn into rectangles, f(x1, ..., xn)
be locally integrable on Rn and {fε}ε∈E be the decomposition of the function f(x), corresponding to
the partition Gτ . Then for an arbitrary t ∈ Zn

f̄ε(2
t1 , ..., 2tn ;M)

≤

2|ε|
n∏
i=1

min{2τi−ti , 1}f̄(2t1ε1+τ1(1−ε1), ..., 2tnεn+τn(1−εn);M), for tiεi < τi, i = 0, n,

0, otherwise,
(2.2)

where |ε| = ε1 + ...+ εn.

Proof. Let Q = Q1 × · · · ×Qn ∈M , |Qi| = 2si . Let us prove the following equality

1

|Q|

∣∣∣∣∫
Q

fε(x)dx

∣∣∣∣ =
1

|Qn|

∣∣∣∣∫
Qn

∆εn
xn

1

|Qn−1|

∫
Qn−1

∆εn−1
xn−1

. . .
1

|Q1|

∫
Q1

∆ε1
x1
f(x′1, ..., x

′
n)dx′1 . . . dx

′
n

∣∣∣∣ . (2.3)

Since for si ≥ τi the segment Qi splits into segments from Gτ , then if for some index i, si ≥ τi
and εi = 1 are satisfied, then

1

|Q|

∣∣∣∣∫
Q

fε(x)dx

∣∣∣∣ = 0.

Therefore, we assume that if εi = 1, then si < τi. Further, in the case when εi = 0 and si < τi we
have

1

|Qi|

∫
Qi

∆εi
xi

1

|Qi−1|

∫
Qi−1

∆εi−1
xi−1

. . .
1

|Q1|

∫
Q1

∆ε1
x1
f(x′1, ..., x

′
n)dx′1 . . . dx

′
i

= ∆εi
xi

1

|Qi−1|

∫
Qi−1

∆εi−1
xi−1

. . .
1

|Q1|

∫
Q1

∆ε1
x1
f(x′1, ..., x

′
n)dx′1 . . . dx

′
i−1.

And in the case when ε = 0 and si ≥ τi

1

|Qi|

∫
Qi

∆εi
xi

1

|Qi−1|

∫
Qi−1

∆εi−1
xi−1

. . .
1

|Q1|

∫
Q1

∆ε1
x1
f(x′1, ..., x

′
n)dx′1 . . . dx

′
i
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=
∑
Iik⊂Qi

1

|Qi|

∫
Iik

∆εi
xi

1

|Qi−1|

∫
Qi−1

∆εi−1
xi−1

. . .
1

|Q1|

∫
Q1

∆ε1
x1
f(x′1, ..., x

′
n)dx′1 . . . dx

′
i.

By the above equalities, we have

1

|Q|

∣∣∣∣∫
Q

fε(x)dx

∣∣∣∣ ≤ 2|ε|
n∏
i=1

min{2τi−si , 1}f̄(2s1ε1+τ1(1−ε1), ..., 2snεn+τn(1−εn);M).

Taking into account that si ≥ ti we get

1

|Q|

∣∣∣∣∫
Q

fε(x)dx

∣∣∣∣ ≤ 2|ε|
n∏
i=1

min{2τi−ti , 1}f̄(2t1ε1+τ1(1−ε1), ..., 2tnεn+τn(1−εn);M).

We will use the classical Hardy inequalities. Let us formulate them as a lemma.

Lemma 2.3 (Hardy’s inequality). Let 1 ≤ q <∞, α > 0, then the inequalities hold(∫ ∞
0

(
tα
∫ ∞
t

ϕ(s)ds

)q
dt

t

) 1
q

≤ α−1

(∫ ∞
0

(
t1+αϕ(t)

)q dt
t

) 1
q

,

(∫ ∞
0

(
t−α
∫ t

0

ϕ(s)ds

)q
dt

t

) 1
q

≤ α−1

(∫ ∞
0

(
t1−αϕ(t)

)q dt
t

) 1
q

.

3 Main result

Let us consider the interpolation method for anisotropic spaces proposed by Nursultanov E.D. [20].
This method is based on the ideas of G. Sparr [27] , D.L. Fernandez [11]-[13] and others [10], [15],
[16]. Some results related to the interpolation of anisotropic net spaces were obtained in papers [4],
[5].

Let A0 = (A0
1, ..., A

0
n), A1 = (A1

1, ..., A
1
n) be two anisotropic spaces, E = {ε = (ε1, ..., εn) : εi = 0,

or εi = 1, i = 1, ..., n}. For arbitrary ε ∈ E we define the space Aε = (Aε11 , ..., A
εn
n ) with the norm

‖f‖Aε = ‖ . . . ‖f‖Aε11
. . . ‖Aεnn .

Let 0 < θ̄ = (θ1, ..., θn) < 1, 0 < q̄ = (q1, ..., qn) ≤ ∞. Via Aθ̄,q̄ = (A0,A1)θ̄,q̄ denote the linear
subset

∑
ε∈E Aε, of all elements, for which

‖f‖Aθ̄,q̄
=

(∫ ∞
0

. . .

(∫ ∞
0

(
t−θ11 . . . t−θnn K(t1, ..., tn; f)

)q1 dt1
t1

) q2
q1

. . .
dtn
tn

) 1
qn

<∞,

where

K(t, f ;A0,A1) = inf

{∑
ε∈E

tε‖fε‖Aε : f =
∑
ε∈E

fε, fε ∈ Aε

}
,

where tε = tε11 ...t
εn
n .

Lemma 3.1. Let ai > 1, i = 1, ..., n 0 < θ̄ = (θ1, ..., θn) < 1, 0 < q̄ = (q1, ..., qn) ≤ ∞. Then

‖f‖Aθ̄,q̄
�

∑
kn∈Z

. . .

(∑
k1∈Z

(
a−θ1k1

1 . . . a−θnknn K(ak1
1 , ..., a

kn
n ; f)

)q1) q2
q1

. . .

 1
qn

= Jθ̄,q̄(f).
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Proof. From the definition of the space Aθ̄,q̄ we have

‖f‖Aθ̄,q̄
=

(∫ ∞
0

. . .

(∫ ∞
0

(
t−θ11 . . . t−θnn K(t1, ..., tn; f)

)q1 dt1
t1

) q2
q1

. . .
dtn
tn

) 1
qn

=

∑
kn∈Z

∫ akn+1
n

aknn

. . .

(∑
kn∈Z

∫ a
k1+1
1

a
k1
1

(
t−θ11 . . . t−θnn K(t1, ..., tn; f)

)q1 dt1
t1

) q2
q1

. . .
dtn
tn


1
qn

.

If the function Φ(ti) is monotonically non-decreasing in the variable ti then we get

(
a
−θi(ki+1)
i Φ(a−θikii )

)qi
ln ai ≤

∫ a
k1+1
i

a
k1
i

(
t−θii Φ(ti)

)qi dti
ti
≤
(
a−θ1k1
i Φ(a

−θ1(k1+1)
i )

)qi
ln ai.

Applying this relation and taking into account that K(t1, ..., tn; f) is non-decreasing in each
variable, we obtain

C1Jθ̄,q̄(f) ≤ ‖f‖Aθ̄,q̄
≤ C2Jθ̄,q̄(f),

where

C1 =
n∏
i=1

a−θii (ln ai)
1
qi ,

and

C2 =
n∏
i=1

aθii (ln ai)
1
qi .

Theorem 3.1. Let M be the dyadic net in Rn, 0 < p̄1 = (p1
1, ..., p

1
n) < p̄0 = (p0

1, ..., p
0
n) < ∞,

0 < q̄0, q̄, q̄1 ≤ ∞, 0 < θ̄ = (θ1, ..., θn) < 1, then

(Np̄0,q̄0(M), Np̄1,q̄1(M))θ̄,q̄ = Np̄,q̄(M), (3.1)

where 1
p̄

= 1−θ̄
p̄0

+ θ̄
p̄1
.

Proof. Let us prove the continuous embedding

Np̄,q̄(M) ↪→ (Np̄0,v̄(M), Np̄1,v̄(M))θ̄,q̄ , (3.2)

where v̄ = (v, ..., v), v = min1≤i≤n qi.
Let τ = (τ1, ..., τn) ∈ Zn, Gτ be a partition of Rn, f ∈ Np̄,q̄(M), f =

∑
ε∈E fε(x) be the decompo-

sition corresponding to the partition Gτ (fε is defined by the formula (2.1)).
Using Lemma 2.2, we get

‖fε‖Np̄ε,v̄ �

(∑
tn∈Z

. . .
∑
t1∈Z

(
2
t1

p
ε1
1 . . . 2

tn
p
εn
n f̄ε(2

t1 , ..., 2tn ;M)

)v) 1
v

≤ 2|ε|

( ∑
εiti<τi

(
n∏
i=1

2
ti

p
εi
i min{2τi−ti , 1}f̄(2t1ε1+τ1(1−ε1), ..., 2tnεn+τn(1−εn);M)

)v) 1
v

.
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Hence for ai > 1, i = 1, n, we have

K(aτ11 , .., a
τn
n , f ;Np̄ε,v̄, ε ∈ E) =

∑
ε∈E

aε1τ11 . . . aεnτnn ‖fε‖Np̄ε,v̄

≤ 2n
∑
ε∈E

aε1τ11 . . . aεnτnn

( ∑
εiti<τi

(
n∏
i=1

2
ti

p
εi
i min{2τi−ti , 1}f̄(2t1ε1+τ1(1−ε1), ..., 2tnεn+τn(1−εn);M)

)v) 1
v

,

and

‖f‖(Np̄0,v̄(M),Np̄1,v̄(M))θ̄,q̄
�

∑
τn∈Z

. . .

(∑
τ1∈Z

(
a−θ1τ11 . . . a−θnτnn K(aτ11 , ..., a

τn
n , f)

)q1) q2
q1

. . .

 1
qn

≤ C
∑
ε∈E

(∑
τn∈Z

. . .

(∑
τ1∈Z

(
a

(ε1−θ1)τ1
1 . . . a(εn−θn)τn

n ×

×

( ∑
εiti<τi

(
n∏
i=1

2
ti

p
εi
i min{2τi−ti , 1}f̄(2t1ε1+τ1(1−ε1), ..., 2tnεn+τn(1−εn);M)

)v) 1
v

q1
q2
q1

. . .


1
qn

, (3.3)

where C = 2n2
∑n
i=1(1− 1

q1
)+ .

Let ε ∈ E, using the definition of v and the generalized Minkowski inequality, we obtain(∑
τn∈Z

. . .

(∑
τ1∈Z

(
a

(ε1−θ1)τ1
1 . . . a(εn−θn)τn

n ×

×

( ∑
εiti<τi

(
n∏
i=1

2
ti

p
εi
i min{2τi−ti , 1}f̄(2t1ε1+τ1(1−ε1), ..., 2tnεn+τn(1−εn);M)

)v) 1
v

q1
q2
q1

. . .


1
qn

,

≤

∑
τn∈Z

a(εn−θn)τn
n

( ∑
εntn<τn

(
2
tn
p
εn
n min{2τn−tn , 1}Fn−1(2tnεn+τn(1−εn))

)v) 1
v

qn
1
qn

,

where

Fn−1(y) =

 ∑
τn−1∈Z

. . .

(∑
τ1∈Z

(
a

(ε1−θ1)τ1
1 . . . a(εn−θn)τn

n ×

×

( ∑
εiti<τi

(
n−1∏
i=1

2
ti

p
εi
i min{2τi−ti , 1}f̄(2t1ε1+τ1(1−ε1), ..., y;M)

)v) 1
v

q1
q2
q1

. . .


1
qn

.

Let an = 2
1

p0n
− 1

p1n . If εn = 0, then we have∑
τn∈Z

a(εn−θn)τn
n

( ∑
εntn<τn

(
2
tn
p
εn
n min{2τn−tn , 1}Fn−1(2tnεn+τn(1−εn))

)v) 1
v

qn
1
qn
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=

∑
τn∈Z

2
−θnτn( 1

p0n
− 1

p1n
)

(∑
tn∈Z

(
2
tn
p0n min{2τn−tn , 1}Fn−1(2τn)

)v) 1
v

qn
1
qn

=

∑
τn∈Z

2
−θnτn( 1

p0n
− 1

p1n
)
Fn−1(2τn)

(
τn∑

tn=−∞

(
2
tn
p0n

)v
+

∞∑
tn=τn+1

(
2
tn
p0n 2τn−tn

)v) 1
v

qn
1
qn

�

(∑
τn∈Z

(
2
−θnτn( 1

p0n
− 1

p1n
)
Fn−1(2τn)2

τn
p0n

)qn) 1
qn

=

(∑
τn∈Z

(
2
τn
pnFn−1(2τn)

)qn) 1
qn

.

In the last relation, we used the equality 1
pn

= 1−θn
p0
n

+ θ
p1
n
.

If εn = 1, then we get∑
τn∈Z

a(εn−θn)τn
n

( ∑
εntn<τn

(
2
tn
p
εn
n min{2τn−tn , 1}Fn−1(2tnεn+τn(1−εn))

)v) 1
v

qn
1
qn

=

∑
τn∈Z

2
(1−θ)nτn( 1

p0n
− 1

p1n
)

(
τn−1∑
tn=−∞

(
2
tn
p1nFn−1(2tn)

)v) 1
v

qn
1
qn

≤ C

(∑
τn∈Z

(
2
τn
pnFn−1(2τn)

)qn) 1
qn

.

where C>0 is independent of f . Here we have used Hardy’s inequality and the equality 1
pn

= 1−θn
p0
n

+ θ
p1
n
.

Further, applying to Fn−1(2τn) the same procedure as above, after n − 1 steps we obtain the
estimate of the form

∑
τn∈Z

a(εn−θn)τn
n

( ∑
εntn<τn

(
min{2τn−tn(1− 1

p
εn
n

)
, 2

tn
p
εn
n }Fn−1(2tnεn+τn(1−εn))

)v) 1
v

qn
1
qn

≤ C

∑
τn∈Z

. . .

(∑
τ1∈Z

(
2
τn
pn . . . 2

τ1
p1 f̄n−1(2τ1 , ..., 2τn ;M)

)q1) q2
q1

. . .

 1
qn

� ‖f‖Np̄,q̄(M).

where C>0 is independent of f.
Substituting the resulting relation into (3.3) we get (3.2). Thus, taking into account that v =

min1≤i≤n qi, we get the continuous embedding

Np̄,q̄(M) ↪→ (Np̄0,v̄(M), Np̄1,v̄(M))θ̄,q̄ ↪→ (Np̄0,q̄0(M), Np̄1,q̄1(M))θ̄,q̄.

The reverse continuous embedding (Np̄0,q̄0(M), Np̄1,q̄1(M))θ̄,q̄ ↪→ Np̄,q̄(M) was proved in [20] (see
Theorem 1).
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Abstract. This paper studies the weighted inequality of Hardy-type in discrete form for matrix op-
erators satisfying the Oinarov condition. Necessary and sufficient conditions on the weight sequences
under which the Hardy-type inequality holds were found in [13] for the case 1 < p ≤ q <∞, in [14]
for the case 1 < q < p < ∞, and in [15] for the case 0 < p ≤ q < ∞, 0 < p ≤ 1. In this paper, we
extend the result of [13] with a two-sided estimate of the inequality constant.
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1 Introduction

For arbitrary non-negative sequences f = {fi}∞i=1 the modern form of the discrete Hardy-type in-
equality can be written as follows:(

∞∑
i=1

uqi

(
i∑

j=1

ai,jfj

)q) 1
q

≤ C

(
∞∑
i=1

vpi fi
p

) 1
p

, (1.1)

where u = {ui}∞i=1 and v = {vi}∞i=1 are weight sequences of positive real numbers, and

(Af)i =
i∑

j=1

ai,jfj (1.2)

is a matrix operator with the kernel a := {ai,j}∞i,j=1, i ≥ j, such that ai,j ≥ 0 for i ≥ j ≥ 1 and C > 0
depends only on p, q, u, v, and a.

In the case ai,j ≡ 1, the problem of finding necessary and sufficient conditions on the weight
sequences u = {ui}∞i=1 and v = {vi}∞i=1 such that inequality (1.1) holds for any non-negative sequences
f = {fi}∞i=1 has been solved for all possible relations between the parameters 0 < p < ∞ and
0 < q <∞ (see [1, 2, 3, 4, 6, 8]).

Suppose that ai,j ≥ 0 for i ≥ j ≥ 1 and there exists a number d > 1 such that

1

d
(ai,k + ak,j) ≤ ai,j ≤ d(ai,k + ak,j), ∀ i ≥ k ≥ j ≥ 1. (1.3)

This condition is an analogue of the Oinarov condition for kernels of integral operators introduced
in [5] and [12]. Characterizations of the validity of inequality (1.1) for the operators satisfying
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discrete Oinarov condition (1.3) were found in [13] for the case 1 < p ≤ q < ∞, in [14] for the case
1 < q < p <∞ and in [15] for the case 0 < p ≤ q <∞, 0 < p ≤ 1.

In [12], the integral weighted Hardy-type inequality for the operator satisfying the Oinarov condi-
tion was characterized in the case 1 < p ≤ q <∞. In 2021, in paper [9] this result was extended with
a two-sided estimate of the inequality constant. Since estimates of the best constants of Hardy-type
inequalities have important applications in the oscillation theory of differential inequalities, paper
[9] has got many citations over the past two years. In this paper, motivated by the development in
the continuous case, we aim to find a two-sided estimate of the best constant C > 0 in inequality
(1.1) also in the case 1 < p ≤ q < ∞. The obtained result will be used to establish the oscillatory
properties of difference equations.

Let lp,v denote the space of all sequences f = {fi}∞i=1 of real numbers whose norm ‖f‖p,v ≡ ‖vf‖p =(
∞∑
i=1

|vifi|p
) 1

p

is finite. Then inequality (1.1) can be rewritten in the form: ‖Af‖q,u ≤ C‖f‖p,v. The

validity of this inequality is equivalent to the boundedness of matrix operator (1.2) from lp,v into lq,u,
while for the best constant C > 0 we have that C = ‖A‖p,v→q,u, where ‖A‖p,v→q,u denotes the norm
of operator (1.2) from lp,v to lq,u.

Let p′ = p
p−1

. To prove the main result we need the following theorem proved in [4].
Theorem A. Let 1 < p ≤ q <∞. Then for any non-negative f ∈ lp,v the inequality(

∞∑
i=1

uqi

(
i∑

j=1

fj

)q) 1
q

≤ C

(
∞∑
i=1

vpi fi
p

) 1
p

, (1.4)

holds if and only if

A = sup
k≥1

(
∞∑
n=k

uqn

) 1
q
(

k∑
j=1

v−p
′

j

) 1
p′

<∞.

Moreover, A ≤ C ≤ C̃A, where C̃ =
(

1 + q
p′

) 1
q
(

1 + p′

q

) 1
p′ and C is the best constant in (1.4).

Remark 1. In the case p = q = 2, we have that C̃ =
(
1 + 2

2

) 1
2
(
1 + 2

2

) 1
2 = 2.

Note that the Hardy inequality has a long history (see [10]), and its various generalizations and
applications have grown into a separate field called the “theory of Hardy-type inequalities”, with
many papers published every year (see, e.g., most recent publications [7], [11] and [16]).

2 Main result

Theorem 2.1. Let 1 < p ≤ q < ∞ and a matrix (ai,j) satisfy condition (1.3). Then for any
non-negative f ∈ lp,v inequality (1.1) holds if and only if B = max {B1, B2} <∞, where

B1 = sup
k≥1

(
∞∑
n=k

aqn,ku
q
n

) 1
q
(

k∑
j=1

v−p
′

j

) 1
p′

,

B2 = sup
k≥1

(
∞∑
n=k

uqn

) 1
q
(

k∑
j=1

ap
′

k,j v
−p′
j

) 1
p′

.

Moreover, B ≤ C ≤ CB, where C =
(

2(d+ 1)q + (d+ 1)2q(1 + d C̃q)
) 1
q and C is the best constant

in (1.1).
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Proof. Necessity. Let inequality (1.1) hold. To estimate C from below, we follow the same steps as

in paper [13]. Putting the test sequence g = {gj}∞j=1 such that gj =

{
v−p

′

j , 1 ≤ j ≤ k,
0, j > k,

for k ≥ 1,

into the right-hand side and then into the left-hand side of inequality (1.1), we get B1 ≤ C. Putting

one more test sequence h = {hj}∞j=1 such that hj =

{
ap
′−1
k,j v−p

′

j , 1 ≤ j ≤ k,

0, j > k,
for k ≥ 1 into the both

sides of inequality (1.1), we have B2 ≤ C. Combining the obtained estimates, we find that

B ≤ C. (2.1)

Sufficiency. Let B < ∞. For any i ≥ 1 the set of positive numbers Si is defined as follows:
Si = {k ∈ Z : (d+ 1)k ≤ (Af)i}, where d is the number from (1.3). If k(i) = maxSi, then

(d+ 1)k(i) ≤ (Af)i ≤ (d+ 1)k(i)+1. (2.2)

Let m1 = 1 and M1 = {i ∈ N : k(i) = k(1) = k(m1)}. We define m2 as m2 = supM1 + 1. It
is obvious that m2 > m1. Moreover, if the set M1 is bounded from above, then m2 < ∞ and
m2 − 1 = maxM1 = supM1. Suppose that for s ≥ 1 the numbers 1 = m1 < m2 < ... < ms <∞ are
defined. We define the next number ms+1 as ms+1 = supMs+1, whereMs = {i ∈ N : k(i) = k(ms)}.

Let N = {s ∈ N : ms <∞}. For s ∈ N the definition of ms and (2.2) give that

(d+ 1)k(ms) ≤ (Af)i ≤ (d+ 1)k(ms)+1, ms ≤ i ≤ ms+1 − 1, (2.3)

and N =
⋃
s∈N [ms,ms+1). Hence,

‖Af‖qq,u =
∑
s∈N

ms+1−1∑
j=ms

uqj(Af)qj .

We assume that
ms+1−1∑
j=ms

uqj(Af)qj = 0 if ms =∞. Then ‖Af‖qq,u can be presented as follows:

‖Af‖qq,u =

m2−1∑
j=m1

uqj(Af)qj +

m3−1∑
j=m2

uqj(Af)qj +
∑
s≥3

ms+1−1∑
j=ms

uqj(Af)qj . (2.4)

Since m1 = 1 <∞, it belongs to N . Thus, from (2.3) we have

m2−1∑
j=m1

uqj(Af)qj ≤
m2−1∑
j=1

uqj(d+ 1)(k(m1)+1)q ≤ (d+ 1)q(d+ 1)k(m1)q

∞∑
j=1

uqj

≤ (d+ 1)q(Af)q1

∞∑
j=1

uqj ≤ (d+ 1)q

(
1∑
s=1

ap
′

1,sv
−p′
s

) q
p′ ∞∑

j=1

uqj ‖f‖qp,v ≤ (d+ 1)qBq
2 ‖f‖qp,v. (2.5)

If m2 =∞, then ms =∞ for all s ≥ 2. Therefore, arguing as above, we get

‖Af‖qq,u ≤ (d+ 1)qBq
2‖f‖qp,v.

If m2 <∞, then s = 2 belongs to N . Thus, from (2.3) we have

m3−1∑
j=m2

uqj(Af)qj ≤ (d+ 1)q(d+ 1)k(m2)q

∞∑
j=m2

uqj ≤ (d+ 1)q(Af)qm2

∞∑
j=m2

uqj
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= (d+ 1)q

(
m2∑
i=1

am2,ifi

)q ∞∑
j=m2

uqj ≤ (d+ 1)q

(
m2∑
i=1

ap
′

m2,i
v−p

′

i

) q
p′ ∞∑
j=m2

uqj

(
m2∑
i=1

vpi f
p
i

) q
p

≤ (d+ 1)q

( m2∑
i=1

ap
′

m2,i
v−p

′

i

) 1
p′
(
∞∑

j=m2

uqj

) 1
q

q

‖f‖qp,v ≤ (d+ 1)qBq
2 ‖f‖qp,v. (2.6)

If m3 =∞, then from (2.4), (2.5) and (2.6) we get

‖Af‖qq,u ≤ 2(d+ 1)qBq
2‖f‖qp,v.

Let us consider s ≥ 3 such that s belongs to N . Since k(ms−2) < k(ms−1) < k(ms), we have that
k(ms−2) + 1 ≤ k(ms)− 1. Therefore, using (2.3) and (1.3), we obtain

(d+ 1)k(ms)−1 = (d+ 1)k(ms) − d(d+ 1)k(ms)−1 ≤ (d+ 1)k(ms) − d(d+ 1)k(ms−2)+1

< (Af)ms − d(Af)ms−1−1 =
ms∑
i=1

ams,ifi − d
ms−1−1∑
i=1

ams−1−1,ifi

=
ms∑

i=ms−1

ams,ifi +

ms−1−1∑
i=1

[
ams,i − dams−1−1,i

]
fi

≤
ms∑

i=ms−1

ams,ifi +

ms−1−1∑
i=1

[
d(ams,ms−1−1 + ams−1−1,i)− dams−1−1,i

]
fi

=
ms∑

i=ms−1

ams,ifi + d

ms−1−1∑
i=1

ams,ms−1−1fi.

The latter, together with (2.3), for s ≥ 3 gives that

∑
s≥3

ms+1−1∑
j=ms

uqj(Af)qj <
∑
s≥3

ms+1−1∑
j=ms

uqj(d+ 1)(k(ms)+1)q = (d+ 1)2q
∑
s≥3

(d+ 1)(k(ms)−1)q

ms+1−1∑
j=ms

uqj

≤ (d+ 1)2q
∑
s≥3

 ms∑
i=ms−1

ams,ifi + d

ms−1−1∑
i=1

ams,ms−1−1fi

q
ms+1−1∑
j=ms

uqj

≤ (d+ 1)2q

∑
s≥3

 ms∑
i=ms−1

ams,ifi

q
ms+1−1∑
j=ms

uqj

+d
∑
s≥3

(
ms−1−1∑
i=1

ams,ms−1−1fi

)q ms+1−1∑
j=ms

uqj

]
= (d+ 1)2q(I1 + d I2). (2.7)

We estimate I1 and I2 separately. Using the Hölder and Jensen inequalities, we obtain

I1 =
∑
s≥3

 ms∑
i=ms−1

ams,ifi

q
ms+1−1∑
j=ms

uqj ≤
∑
s≥3

 ms∑
i=ms−1

ap
′

ms,i
v−p

′

i


q
p′
 ms∑
i=ms−1

vpi f
p
i


q
p
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×
ms+1−1∑
j=ms

uqj ≤

sup
k≥1

(
k∑
i=1

ap
′

k,iv
−p′
i

) 1
p′
(
∞∑
j=k

uqj

) 1
q

q∑
s≥3

 ms∑
i=ms−1

vpi f
p
i


q
p

≤ Bq
2

∑
s≥3

ms∑
i=ms−1

vpi f
p
i


q
p

≤ Bq
2‖f‖qp,v. (2.8)

Let us turn to the estimate of I2. By Theorem A, we have

I2 =
∑
s≥3

aqms,ms−1−1

ms+1−1∑
j=ms

uqj

(
ms−1−1∑
i=1

fi

)q

≤ C̃q

sup
k≥1

 ∑
ms−1−1≥k

aqms,ms−1−1

ms+1−1∑
j=ms

uqj

 1
q ( k∑

j=1

v−p
′

j

) 1
p′


q

‖f‖qp,v. (2.9)

Since ai,j is non-decreasing in i and non-increasing in j, we deduce that

∑
ms−1−1≥k

aqms,ms−1−1

ms+1−1∑
j=ms

uqj ≤
∑

ms−1−1≥k

ms+1−1∑
j=ms

aqj,ku
q
j ≤

∞∑
j=k

aqj,ku
q
j .

Using the latter, from (2.9) we find
I2 ≤ C̃qBq

1‖f‖qp,v. (2.10)

Combining (2.4), (2.5), (2.6), (2.7), (2.8), and (2.10), we get

‖Af‖qq,u ≤ (d+ 1)qBq
2 ‖f‖qp,v + (d+ 1)qBq

2 ‖f‖qp,v + (d+ 1)2q(Bq
2 ‖f‖qp,v + d C̃qBq

1‖f‖qp,v)

≤
(

2(d+ 1)q + (d+ 1)2q(1 + d C̃q)
)
Bq ‖f‖qp,v. (2.11)

Therefore, from (2.11) we obtain

C ≤
(

2(d+ 1)q + (d+ 1)2q(1 + d C̃q)
) 1
q
B,

which, together with (2.1), gives that B ≤ C ≤ CB.

Remark 2. Taking into account Remark 1, in the case p = q = 2 and d = 1, we have that
C = (2(1 + 1)2 + (1 + 1)4(1 + 1 · 22))

1
2 = 88

1
2 ≈ 9.38.
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Abstract. We consider a system of ordinary differential equations with a relay hysteresis and a
harmonic perturbation. We propose an approach that allows one to decompose an n-dimensional
system into one- and two-dimensional subsystems. The approach is illustrated by a numerical exam-
ple for the system of dimension 3. As a result of the decomposition, a two-dimensional subsystem
with non-trivial Jordan block in right-hand side is studied. For this subsystem we prove a theorem
on the existence and uniqueness of an asymptotically stable solution with a period being multiple to
period of the perturbation. Moreover, we show how to obtain this solution by tuning the parameters
defining the relay. We also provide a supporting example in this regard.
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1 Introduction

It is well known in oscillation theory [1] that many results obtained for linear systems and nonlinear
systems with continuous right-hand sides are impossible to use for systems with the nonlinearities
being nonlinearized. Such nonlinearities are called “essential” ones (see [23]). In practice, by essen-
tially nonlinear systems including relay systems with hysteresis, one describes numerous automatic
control devices [32], in particular, devices with non-ideal relays, which are installed, for instance,
on water crafts [7], [30]. Moreover, the mathematical models of these devices are multidimensional.
Influence of hysteresis becomes actually important when the devices are utilized in high-precision
engineering systems [33]. The readers are referred to monographs [4], [6], [24], [28], and [34] for
general information about systems with hysteresis and their applications.

It is clear that, for specific parameters, one can first study these mathematical models by numerical
methods, using a powerful computing technique and then perform simulations to support numerical
results. At the same time, analytical results provide a basis for examining the multidimensional
and essentially nonlinear automatic control systems. Even if the results are obtained for bounded
domains in the system parameter space, they might be considered as a scientific background in
numerical experiments. It is beyond any doubt that both theoretical and numerical investigations of
the models with hysteresis provide more adequate results for applications.

Models with hysteresis were already surveyed in a number of works (see, e.g., [2], [5], [8], [17],
[26], [27], [31], and [35]–[37]). From the latest papers, we draw attention to [13], [19], [20], [29],
[40], and [41]. Notice that classical methods including methods of fitting, fixed points, and point
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mappings are still actively employed to investigate piecewise integrable systems, in particular, relay
systems [9], [12], [21], [38], and [39].

Definitely, the use of analytical methods in research of n-dimensional nonlinear systems (n > 2)
yields challenges. As is known, classical methods are usually based on a local approach to the research
of system phase space. But even in this case, some numerical calculations are to be carried out. On
the other hand, there is an opportunity to study the phase portraits of lower-dimensional systems
for n ≤ 2 in large, non-locally (see, e.g., [18]).

We consider a multidimensional system of ordinary differential equations with a non-ideal relay
and a harmonic pertubation. The present study develops the results of the authors obtained, in
particular, in [17], [18], [20], [21], and [37]–[39].

The aim of the paper is to propose a new approach for the research of the system under consider-
ation by analytical methods. The approach involves a decomposition of the system into subsystems
and the study of these subsystems. The decomposition allows to overcome difficulties related to
higher dimensions and investigate multidimensional systems analytically, precisely and so fully as we
can do it for systems of lower dimensions using phase planes [18].

The main idea of the approach is the following. For a system of dimension n, we select some
domains in its parameter space. Then, in these domains, we reduce the system to subsystems of
dimensions 1 and 2, using a nonsingular linear transformation. These subsystems are connected in
such a way that one can integrate them consistently, one behind another, if consider some of them
as inhomogeneous ones (see [22]), and therefore study them by well-known methods. As a result of
the reduction, the system parameter space is decomposed into the direct sum of subspaces, and a
number of dynamic behaviour types in these subspaces is put into a dynamic behaviour in the space.
Thus, by investigating the subsystems, it is possible to obtain a certain knowledge not only about
the dynamics of the system but about the structure of its parameter space, since the points in this
space are associated with the various topological phase portraits.

Different approaches with the reduction of matrices to diagonal or Jordan forms are proposed in
a number of publications, in particular in [14] for a delayed differential system. For systems with
constant matrices in the linear part and relay hysteresis, nonsingular transformations that reduce
matrices to the same forms were applied in the papers of authors as well (see, e.g., [38]). The novelty
of the present study is the usage of a transformation matrix as the product of two matrices, one
of which is parametric. Parameters in the transformation matrix give an opportunity to choose
such system parameters to investigate multidimensional relay systems up to the end analytically. In
contrast to the earlier works of authors, in this paper the form of the feedback vector depends on
the eigenvalues of the system matrix as well as the form of the parametric matrix does.

The decomposition of the system into subsystems is presented in Section 3 and illustrated by
Example 1 in Section 6. In Sections 4 and 5, we consider one of subsystems, namely, a system
of dimension 2 with non-trivial Jordan block, called basic system. Section 5 is concerned with the
existence and stability of periodic solutions to the basic system. We prove a theorem on the existence
and uniqueness of an asymptotically stable periodic solution (Theorem 5.1). Example 2 in Section 6
shows that periodic oscillations take place in the dynamics of relay systems owing to the periodic
perturbation. Interesting results concerning relay systems and perturbations, in particular influence
of perturbations, can be found in [9]–[11]. These studies are dedicated to a new type of oscillation, the
so-called unpredictable. Their results manifest that the main source for the unpredictable controllable
behaviour in the dynamics is the relay perturbations.
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2 Statement of the problem

We study a complicated automatic control system the dynamics of which can be governed by the
following n-dimensional system of ordinary differential equations

Ẋ = A0X +B0(F (σ) + ψ(t)), σ(t) = C0X(t). (2.1)

Here A0, B0, and C0 are (n× n), (n×m), and (m× n) matrices, respectively (n ≥ m); Ẋ(t), X(t),
and σ(t) are (n× 1), (n× 1), and (m× 1) vectors. The nonlinear part of the system is described by
the (m× 1) vector F (σ); ψ(t) is a (m× 1) vector of perturbations.

We also study the two-dimensional system, named basic system, of the form

Ẋ = AX +B(F (σ) + ψ(t)). (2.2)

Here X is the vector of system state such that X = (x1, x2)T ∈ R2, where the symbol T means the

transposition operation, A =

(
λ 0
1 λ

)
, where λ ∈ R\{0}; B = (1, 0)T or B = (−1, 0)T; F (σ) is a

scalar function and σ = γ1x1 + γ2x2, where γ1, γ2 are real constants; Γ = (γ1, γ2)T ∈ R2 is a nonzero
vector; the scalar function ψ(t) stands for a perturbation.

We consider systems (2.1) and (2.2) as models of automatic control systems in which F (σ) is a
relay-type control, and Γ is a feedback vector. We define F (σ) as follows [20]: F (σ) = m1 if σ < l2,
and F (σ) = m2 if σ > l1, where m1,m2, l1, l2 ∈ R, m1 < m2, l1 < l2. If σ(0) ≤ l1 or σ(0) ≥ l2, then
F (σ(t)) is single-valued. If σ(0) ∈ (l1, l2), then F (σ(t)) is two-valued, therefore we need to specify
either F (σ(0)) = m1 or F (σ(0)) = m2 and follow the positive spin in the plane (σ, F ), namely, the
value of F (σ(t)) is kept constant for all t > 0 until σ(t) crosses the value l2 from below or the value
l1 from above, respectively. At these instants (when σ(t) = li, i = 1, 2) the value of F (σ(t)) is
changed to m1 or m2, respectively. Thus, F (σ) describes the relay hysteresis with counterclockwise
orientation in the plane (σ, F ), its figure one can see, for example, in [26].

Notice that the research of systems with relay feedback is quite a task (see [3], [15], and [42]).
The general problem is to investigate system (2.1) completely analytically. The aim of this paper

is to show how this problem can be studied by a decomposition of system (2.1) into subsystems of
lower dimensions one of which is system (2.2). Also, we pose the problem about sufficient conditions
under which system (2.2) has a unique periodic solution. To solve this problem we study system (2.2)
in the particular case when γ2 = 0, ψ(t) = F0 + k sin(ωt+ ϕ), where F0, ϕ ∈ R and k, ω ∈ R+.

On the one hand, if x1 = x, x2 = ẋ, then system (2.2) can result from a transformation of the
second-order equation in x. On the other hand, system (2.2) is a subsystem of system (2.1) for n > 2
after its decomposition. In view of that, we call system (2.2) basic system.

3 Decomposition of the n-dimensional system

System (2.1) with arbitrary F (σ) and ψ(t) cannot be fully investigated by qualitative methods of the
theory of differential equations even for n = 2 (see [1]). That is why researchers often use a linear
transformation of system (2.1) that reduces the matrix A0 to diagonal or Jordan form.

It is known [25] that a nonsingular matrix of the transformation is not uniquely determined.
Therefore, we look for the transformation X(t) = MX(t) with the matrix M being in the form
M = SQ. Here Q is a nonsingular parametric matrix such thatM−1A0M = Aj, where Aj has Jordan
form (see [16]). Besides, S and Q are nonsingular matrices such that S−1A0S = Aj, Aj = Q−1AjQ.
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Next, we show how to find the matrices Q and Q−1 if

Aj =


Λ1 0 . . . 0
0 Λ2 . . . 0
. . . . . . . . . . . .
0 0 . . . Λk

 .

Here Λi are the ri-order block diagonal matrix with the Jordan block Kij corresponding to the

eigenvalue λi (i = 1, k),
k∑
i=1

ri = n (ri is the multiplicity of λi). Then

Q =


Q1 0 . . . 0
0 Q2 . . . 0
. . . . . . . . . . . .
0 0 . . . Qk

 ,

where Qi are also block diagonal matrix with the block Qij having the same dimension as Kij has.
To establish the form of Qij, we consider Kij of order q corresponding to λi, i.e.

Kij =


λi 0 . . . 0 0
1 λi . . . 0 0
0 1 . . . 0 0
. . . . . . . . . . . . . . .
0 0 . . . 1 λi

 .

Note that Kij can be written down as follows: Kij = λiI + H, where I is the identity matrix, the
matrix H is of the form

H =


0 0 . . . 0 0
1 0 . . . 0 0
0 1 . . . 0 0
. . . . . . . . . . . . . . .
0 0 . . . 1 0

 .

The block Qij has the form Qij = α0I + α1H + α2H
2 + . . . + αq−1H

q−1, where α0, α1, α2, . . . ,
αq−1 are nonzero real numbers. The blocks Kij and Qij are commutative. Therefore Λi and Qi are
commutative and QAj = AjQ.

To find out Q−1, it suffices to find Q−1
ij . Note that

Q−1
ij = β0I + β1H + β2H

2 + . . .+ βq−1H
q−1,

where β0, β1, β2, . . . , βq−1 are the solution to the system that follows from the equality QijQ
−1
ij = I

taking into account that Hq is a zero matrix.
Thus, after the transformation, system (2.1) acquires the form

Ẋ(t) = AjX(t) +BM(F (σ) + ψ(t)), σ(t) = CMX(t), (3.1)

where BM = Q−1S−1B0, CM = C0SQ.
If we consider the elements of B0 and C0 as the parameters of system (2.1) for tuning, then Q in

the relation M = SQ allows one to simplify and expand the choice of these elements for system (2.1)
to be investigated up to the end analytically.



52 A.M. Kamachkin, D.K. Potapov, V.V. Yevstafyeva

4 Study of the two-dimensional subsystem

Consider system (2.2) with B = (−1, 0)T, namely,{
ẋ1 = λx1 − (F (σ) + ψ(t)),
ẋ2 = x1 + λx2,

(4.1)

where σ = γ1x1.
Remark 1. If n is even and n > 3, then the subsystems in the form (4.1) can also be obtained by
the transformation of the initial system with the result that

Aj =


λ1 0
1 λ1

. . .
λi 0
1 λi

 ,

where i = n/2.
Next we examine system (4.1) analytically for the purpose of obtaining the conditions on the

system parameters such that there exist solutions with periods being other than period of the per-
turbation and studying the properties of these solutions.

To analyse the solutions to system (4.1) and its phase space, we use Cauchy’s form for the solution
representation. Thus, for the first equation of (4.1), we have

x1(t) = eλtx0
1 −

t∫
0

e−λ(τ−t)(F (σ) + ψ(τ))dτ,

where x0
1 = x1(0).

Multiplying the latter equation by γ1 and taking into account F (σ) = mi (i = 1, 2), ψ(τ) =
F0 + k sin(ωτ + ϕ), we come to the expression

σ(t) = γ1x1(t) = eλtγ1x
0
1 − γ1

t∫
0

e−λ(τ−t)(mi + F0 + k sin(ωτ + ϕ))dτ.

Note that
t∫

0

e−λ(τ−t)(mi + F0 + k sin(ωτ + ϕ))dτ

= eλt
(

(mi + F0)

(
−e
−λτ

λ

)
− λ sin(ωτ + ϕ) + ω cos(ωτ + ϕ)

λ2 + ω2
ke−λτ

) ∣∣∣∣t
0

.

After integrating, we have

σ(t) =

(
σ0 −

γ1mi

λ
− γ1k√

λ2 + ω2
sin(ϕ+ δ)

)
eλt +

γ1mi

λ
+

γ1k√
λ2 + ω2

sin(ωt+ ϕ+ δ).

Here σ0 = σ(0), mi = mi + F0 (i = 1, 2), and δ = arctan(ω/λ) + πq (q = 0 if λ > 0 and q = 1
if λ < 0). Consequently, x1(t) = σ(t)/γ1 and x0

1 = σ0/γ1. Integrating the second equation in (4.1)
provided that x1 is known, we have

x2(t) = x0
2e
λt +

(
σ0

γ1

− mi

λ
− k√

λ2 + ω2
sin(ϕ+ δ)

)
teλt
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−mi

λ2
(1− eλt) +

keλt

λ2 + ω2
sin(ϕ+ 2δ) +

1

λ2 + ω2
sin(ωt+ ϕ+ 2δ), (4.2)

where x0
2 = x2(0).

Put

Φ(σ0,mi, t) =

(
σ0

γ1

− mi

λ
− k√

λ2 + ω2
sin(ϕ+ δ)

)
teλt

−mi

λ2
(1− eλt) +

keλt

λ2 + ω2
sin(ϕ+ 2δ) +

1

λ2 + ω2
sin(ωt+ ϕ+ 2δ). (4.3)

Let τ1 be the time for moving of representative point from the switching line H2 (γ1x1 = l2) to
H1 (γ1x1 = l1) and τ2 transition time from H1 to H2. Further we seek for τ1, τ2, using the following
initial and boundary conditions for σ(t):
if t ∈ [0, τ1], then σ0 = l2, mi = m2, σ(τ1) = l1;
if t ∈ [0, τ2], then σ0 = l1, mi = m1, σ(τ2) = l2.

Hence, we come to the transcendental equations with respect to τ1, τ2

l1 −
γ1m2

λ
− γ1k√

λ2 + ω2
sin(ωτ1 + ϕ+ δ)

=

(
l2 −

γ1m2

λ
− γ1k√

λ2 + ω2
sin(ϕ+ δ)

)
eλτ1 , (4.4)

l2 −
γ1m1

λ
− γ1k√

λ2 + ω2
sin(ωτ2 + ϕ+ δ)

=

(
l1 −

γ1m1

λ
− γ1k√

λ2 + ω2
sin(ϕ+ δ)

)
eλτ2 . (4.5)

Now we write out the sufficient conditions for the existence of positive roots τ1, τ2. Equations (4.4),
(4.5) have solutions τ1 > 0, τ2 > 0 if the following inequalities hold:

λ < 0, γ1 > 0, m1 < 0, m2 > 0, l1 < 0, l2 > 0,

l2 −
γ1m2

λ
− γ1k√

λ2 + ω2
sin(ϕ+ δ) > 0, l1 −

γ1m2

λ
> − γ1k√

λ2 + ω2
,

l1 −
γ1m1

λ
− γ1k√

λ2 + ω2
sin(ϕ+ δ) < 0, l2 −

γ1m1

λ
<

γ1k√
λ2 + ω2

. (4.6)

Equations (4.4), (4.5) have also solutions τ1 > 0, τ2 > 0 under the conditions below

λ < 0, γ1 < 0, m1 < 0, m2 > 0, l1 < 0, l2 > 0,

l2 −
γ1m2

λ
− γ1k√

λ2 + ω2
sin(ϕ+ δ) > 0, l1 −

γ1m2

λ
>

γ1k√
λ2 + ω2

,

l1 −
γ1m1

λ
− γ1k√

λ2 + ω2
sin(ϕ+ δ) < 0, l2 −

γ1m1

λ
< − γ1k√

λ2 + ω2
. (4.7)
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5 Existence of asymptotically stable periodic solutions

The existence and uniqueness of a solution are established by the the following theorem.
Theorem 5.1. Let inequalities (4.6) or (4.7) be true, equation (4.4) have the least solution (or a
unique one) τ1 such that τ1 = 2πν1/ω, ν1 ∈ N, and equation (4.5) the least solution (or a unique one)
τ2 such that τ2 = 2πν2/ω, ν2 ∈ N. Then system (4.1) has a unique asymptotically stable Tf -periodic
solution with Tf = τ1 + τ2.

Proof. If inequalities (4.6) or (4.7) are satisfied, then equations (4.4), (4.5) have solutions τ1 > 0 and
τ2 > 0, respectively. But equation (4.4) as well as equation (4.5) can have more than one solution.
By τi, i = 1, 2, we denote transition time from one switching line to the other one. From this, it
follows that τi is the least solution (or a unique one).

By assumption, γ2 = 0. That is why the switching lines H1 and H2 are orthogonal to the Ox1-axis
on the plane (x1Ox2). By construction of equations (4.4), (4.5), transition time τi depends on x1(0)
but does not depend on x2(0). This implies that the value τi is independent of the initial state of
representative point on Hi.

Next, we set the initial and boundary conditions for x2(t) in the case when representative point
goes from the point (l2/γ1, x

0
2)T ∈ H2 to the point (l1/γ1, x

1
2)T ∈ H1

x0
2 = x2(0), mi = m2, σ0 = l2, x

1
2 = x2(τ1)

and from the point (l1/γ1, x
1
2)T ∈ H1 to the point (l2/γ1, x

2
2)T ∈ H2

x1
2 = x2(0), mi = m1, σ0 = l1, x

2
2 = x2(τ2).

Using (4.2), we obtain
x2(τ1) = x0

2e
λτ1 + Φ(l2,m2, τ1),

x2(τ2) = x1
2e
λτ2 + Φ(l1,m1, τ2),

where Φ is defined by (4.3).
Now we write out the point map of the line H2 into itself in the form

x2
1 = l2/γ1, x

2
2 = x0

2e
λ(τ1+τ2) + Θ(τ1, τ2), (5.1)

where Θ(τ1, τ2) = eλτ2Φ(l2,m2, τ1) + Φ(l1,m1, τ2).
By (5.1), we mean the point map such that representative point goes from any initial point

(l2/γ1, x
0
2)T ∈ H2 to any point (l1/γ1, x

1
2)T ∈ H1 in τ1 and from the latter point to the point

(l2/γ1, x
2
2)T ∈ H2 in τ2. Therefore, we consider a set of the points (l2/γ1, x

0
2)T ∈ H2 that are

mapped into the line H2 in Tf , where Tf = τ1 + τ2, by virtue of the solution to system (4.1). Note
that (5.1) gives the first return map to the layer between the two hysteretic regimes. Clearly, for
obtained τ1 and τ2, the value Θ(τ1, τ2) is constant.

Consider the second return map and so on. Since τi = 2πνi/ω, we have sin(η) = sin(ω(τ1 +τ2)+η)
and sin(ωτi+η) = sin(ω(τi+τ1 +τ2)+η), where η = ϕ+δ or η = ϕ+2δ. Hence, equations (4.4), (4.5)
are kept their forms. It means that τi and hence Θ(τ1, τ2) are kept constant. Therefore relations (5.1)
are met for the following return maps. Under conditions above, there exists a fixed point (xfix

1 , x
fix
2 )T

of the map defined by (5.1) such that (xfix
1 , x

fix
2 )T = (l2/γ1, x

2
2)T = (l2/γ1, x

0
2)T. From (5.1), we obtain

xfix
2 = Θ(τ1, τ2)/(1 − eλ(τ1+τ2)). Moreover, if Θ > 0, then xfix

2 is positive, but if Θ < 0, then it is
negative.

According to (4.6) or (4.7), we have λ < 0. Then the fixed point is asymptotically stable.
Indeed, we have x2(t) = x0

2e
λt + Θ(τ1, τ2) for t ≥ 0. For any δ > 0, take any point x̃0

2 such that
0 < |x0

2 − x̃0
2| < δ. Then x̃2(t) = x̃0

2e
λt + Θ(τ1, τ2) and hence

|x2(t)− x̃2(t)| =
∣∣x0

2 − x̃0
2

∣∣ eλt < δeλt → 0 as t→∞.
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The fixed point corresponds to a closed trajectory on the plane (x1Ox2). Thus, the representative
point of the solution attains the switching lineHi every time in the same transition time τi and returns
to the same fixed point in phase space along the same trajectory. This means that system (4.1) has
an asymptotically stable Tf -periodic solution with Tf = τ1 + τ2. In view of the compressed map, this
solution is unique.

Theorem 5.1 gives the condition Tf = nT , where n = ν1 +ν2, T = 2π/ω, under which system (4.1)
has a Tf -periodic solution.

Now we show consideration of how to obtain the parameters of F (σ) satisfying (4.4), (4.5) such
that system (4.1) has a periodic solution with period Tf being multiple to period T of the perturba-
tion.

Let the parameters F0, k, ω, and ϕ of the function ψ(t) be given. Let a system of automatic
control possess a periodic mode, for example, with τi = 2πνi/ω for some νi ∈ N. Then from (4.5) we
obtain

l2 − l1e2πν2λ/ω = γ1

(
m1 + F0

λ
+
k sin(ϕ+ δ)√

λ2 + ω2

)(
1− e2πν2λ/ω

)
. (5.2)

Relation (5.2) associates the parameters l1, l2, m1 and can be used for their tuning. From (4.4) we
express

m2 =
λ
(
l1 − l2e2πν1λ/ω

)
γ1 (1− e2πν1λ/ω)

− λk sin(ϕ+ δ)√
λ2 + ω2

− F0. (5.3)

The parameter m2 is defined by (5.3) under the proper choice of the parameters l1, m1, and l2
according to (5.2) for some νi determining τi.
Corollary. Let the characteristic equation of system (4.1) have the root λ < 0 corresponding to
Jordan block, F0, k, ω, and ϕ be given, τi = 2πνi/ω, i = 1, 2, νi ∈ N. Also, let (5.2), (5.3)
defining the parameters γ1, li, mi, i = 1, 2, of the function F (σ) be fulfilled for some ν1, ν2 such
that τ1 + τ2 = nT , n ∈ N, T = 2π/ω. Besides, let these parameters satisfy (4.6) or (4.7). Then
system (4.1) has a unique asymptotically stable Tf -periodic solution with Tf = nT , n ≥ 2, provided
that τ1 is the least solution (or a unique one) of equation (4.4) and τ2 is the least solution (or a
unique one) of equation (4.5) for chosen parameters.

Stability or unstability of periodic solutions depends on the type of the iterative process that is
defined by formula (5.1) containing the multiplier eλ(τ1+τ2) with λ < 0 or λ > 0.
Remark 2. If λ = 0 in case of the considered Jordan block, then it is necessary to explore the
system {

ẋ1 = F (σ) + ψ(t),
ẋ2 = x1 + F (σ) + ψ(t),

which can be successfully integrated when γ1 6= 0, γ2 = 0.

6 Examples

To illustrate the decomposition approach given in Section 3, we provide the following example for
system (2.1) with B0 being a (3× 1) matrix, C0 being a (1× 3) matrix, and F (σ), ψ(t) being scalar.
Example 1. Consider the system with the parameters

ẋ1 = −6x1 + 2x2 + 2x3 + b11(F (σ) + ψ(t)),
ẋ2 = −2x1 − 2x2 + b21(F (σ) + ψ(t)),
ẋ3 = −2x3 + b31(F (σ) + ψ(t)),
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where σ = c11x1 + c12x2 + c13x3. Here A0 =

−6 2 2
−2 −2 0
0 0 −2

. The eigenvalues of A0 are λ1,2 = −4,

λ3 = −2. The excess of the matrix (−4I−A0) is equal to 1, i.e. the (2×2) Jordan block corresponds

to the eigenvalues λ1,2 = −4. The Jordan block Aj has the form Aj =

−4 0 0
1 −4 0
0 0 −2

. There

exists a nonsingular matrix S such that SAj = A0S. Next we point out one of the possible matrices

S meeting this condition. Let S =

1 2 0
2 2 −1
0 0 1

, then S−1 =

−1 1 1
1 −0.5 −0.5
0 0 1

. Now we need to

obtain the matrices Q and Q−1. The matrix Aj has the block form Aj =

(
A1 0
0 −2

)
, where A1 is a

(2×2) matrix. The matrix Q has the same form as Aj has, i.e. Q =

(
Q1 0
0 Q2

)
, where Q1 is a (2×2)

matrix, Q2 is a number. At this, Q1 = α0I+α1H, Q2 = α2, where α0, α1, α2 are the real parameters

such that detQ 6= 0, H =

(
0 0
1 0

)
. Thus, Q =

α0 0 0
α1 α0 0
0 0 α2

 and Q is commutative with Aj. Since

detQ 6= 0, we set α0 6= 0, α2 6= 0. In addition, we put α1 6= 0. Then Q−1 =

(
Q−1

1 0
0 Q−1

2

)
, where

Q−1
1 = β0I +β1H =

(
β0 0
β1 β0

)
, Q−1

2 = α−1
2 . From the relation Q1Q

−1
1 = I, we obtain the parameters

β0, β1 such that β0 = α−1
0 , β1 = −α1/α

2
0. Thus, the matrices Q and Q−1 are found.

Further we use the transformation with the matrix in the form M = SQ. Put BM = S−1B0,

where B0 = (b11 b21 b31)T. Then BM =

 −b11 + b21 + b31

b11 − 0.5b21 − 0.5b31

b31

 and

BM = Q−1S−1B0 = Q−1BM =


1
α0

(−b11 + b21 + b31)
α1+α0

α2
0
b11 − 2α1+α0

2α2
0
b21 − 2α1+α0

2α2
0
b31

b31

α2

 =

bM11

bM21

bM31

 .

Put CM = C0SQ = CMQ, where C0 = (c11 c12 c13). Subsequently,

CM = (c11 + 2c12 2c11 + 2c12 − c12 + c13),

CM = ((α0 + 2α1)c11 + 2(α0 + α1)c12 α0(2c11 + 2c12) α2(−c12 + c13)) = (cM11 cM12 cM13).

Next, we point out two sets of the parameters under which the considered system acquires the
canonical form. Suppose bM21 = bM31 = 0, cM11 6= 0, and cM12 = cM13 = 0. In addition, first let bM11 = 1.
Then 

bM11 = 1
α0

(−b11 + b21 + b31) = 1,

bM21 = α1+α0

α2
0
b11 − 2α1+α0

2α2
0
b21 − 2α1+α0

2α2
0
b31 = 0,

bM31 = b31

α2
= 0.

(6.1)

From the last equation of system (6.1), we have b31 = 0. From the first two equations, it follows that
b11 = α0 + 2α1, b21 = 2(α0 +α1). If b11 and b21 are other than zero in the initial system, then, except
for the conditions α0 6= 0, α1 6= 0, α2 6= 0, we obtain the two additional conditions α0 6= −2α1 and
α0 6= −α1.
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Now, in addition, let bM11 = −1. Then b11 = −(α0 + 2α1), b21 = −2(α0 + α1). Put α0 6= −2α1,
α0 6= −α1. For CM , we have

cM11 = (α0 + 2α1)c11 + 2(α0 + α1)c12 6= 0,
cM12 = 2α0(c11 + c12) = 0,
cM13 = α2(−c12 + c13) = 0.

(6.2)

Since α0 6= 0 and α2 6= 0, we have c11 = −c12 and c12 = c13. From the first equation of system (6.2),
we obtain −α0c11 6= 0. It follows from here that we may choose any number other than zero as c11.
Here c12 = c13 = −c11.

Thus, in the considered system, the feedback vector can consist of all nonzero elements. It is
obvious that for other matrices A0 and S, the numerical coefficients in (6.1) and (6.2) are others,
but the main sense does not change. Introducing the parameters α0 and α1 expands the number of
options for choosing the elements in B0 and C0 such that, for bM11 = −1, the initial system is reduced
to the two-dimensional system (basic system){

ẋ1 = −4x1 − (F (σ) + ψ(t)),
ẋ2 = x1 − 4x2,

(6.3)

and the one-dimensional system
ẋ3 = −2x3,

where σ = cM11x1. We have the vector Γ such that Γ = (γ1, 0)T = (cM11 , 0)T. The systems can be
successfully integrated and investigated analytically.

Consider system (6.3). Setting the parameters of F (σ), ψ(t) and using Theorem 5.1, we can
establish whether there exists a periodic solution with period Tf . However, setting the parameters
of ψ(t) and using Corollary, we can determine the parameters of F (σ) under which system (6.3) has
a solution with Tf given. Next we solve the latter task.
Example 2. In system (6.3) we have λ = −4 < 0. Put F0 = 1, k = 0.02, ω = 2, and ϕ = −1. Then
T = 2π/ω = π. Also, put ν1 = ν2 = 1. Then τ1 = τ2 = π and Tf = 2π are given.

According to (4.6), we take γ1 = 1 > 0, l1 = −100 < 0, and m1 = −100 (m1 = m1 + F0 = −99 <
0). Using (5.2), we obtain l2 ≈ 24.754011 > 0. From (5.3) we calculate m2 ≈ 399.019526 and hence
m2 = m2 + F0 ≈ 400.019526 > 0.

Now we need to verify the inequalities in (4.6). So, we have

l2 − γ1

(
m2

λ
+
k sin(ϕ+ δ)√

λ2 + ω2

)
≈ 124.754446 > 0,

l1 − γ1

(
m2

λ
− k√

λ2 + ω2

)
≈ 0.009354 > 0,

l1 − γ1

(
m1

λ
+
k sin(ϕ+ δ)√

λ2 + ω2

)
≈ −124.754446 < 0,

l2 − γ1

(
m1

λ
+

k√
λ2 + ω2

)
≈ −0.0004607 < 0.

Inequalities (4.6) are true.
Under the values of parameters stated above, consider equation (4.4) for τ1 and equation (4.5)

for τ2. Feasible solution analysis makes it possible to assert that τ1 = π is the least solution of
equation (4.4) and τ2 = π is a unique solution of equation (4.5) on the interval (0, 2π). Therefore all
the conditions of Corollary hold.
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We thus come to the conclusion that there exists a unique asymptotically stable 2T -periodic
solution to the system with γ1 = 1, l1 = −100, m1 = −100, l2 ≈ 24.754011, and m2 ≈ 399.019526.
This task is solved.

To compare the dynamics of the system in both nonautonomous and autonomous cases, consider
the system with ψ(t) ≡ 0 in the vector form Ẋ = AX + Bmi (i = 1, 2). On the plane (x1Ox2), the
autonomous system has the stability centerpoints Xi = −A−1Bmi with coordinates (25, 6.25) and
(−99.754881,−24.938720). As is known, if both centerpoints of stability lay out of the ambiguity
zone, then the autonomous system would have at least one periodic solution with two switch points.
As we see, the point (−99.754881,−24.938720) lies in the interior of the ambiguity zone −100 ≤
x1 ≤ 24.754011 (l1/γ1 ≤ x1 ≤ l2/γ1). This means that the autonomous system (ψ(t) ≡ 0) has no
periodic solutions. Hence the perturbation ψ(t) = 1 + 0.02 sin(2t − 1) has a strong effect on the
system. Thus, the oscillatory process exists in the system only due to the periodic perturbation.

7 Conclusion

We have proposed the approach for the study of the multidimensional system with a non-ideal relay
and a harmonic perturbation by analytical methods. It consists in the decomposition of the system
into subsystems of dimensions 1 and 2 and the research these subsystems. The decomposition is based
on the transformation with the parametric matrix that enables one to choose system parameters.

The main object for the research by analytical methods is a two-dimensional subsystem with the
linear part being reduced to non-trivial Jordan block. We have obtained the sufficient conditions on
the parameters under which the subsystem possesses a unique asymptotically stable periodic solution
(see Theorem 5.1). These conditions are expressed as inequalities, which has allowed us to set the
relay parameters such that there exists the solution with given period (see Corollary). Moreover, we
have pointed out the parameters such that a periodic solution takes place in the dynamics of the
subsystem with a harmonic perturbation but it does not in the dynamics of the same subsystem with
no perturbations (see Example 2).

In the future, the results of Theorem 5.1 can be used to perform numerical simulations of the n-
dimensional system dynamics, since theoretical investigations together with simulations provide more
reliable results for applications. Also, the present study is worthwhile to develop for the system with
the matrix A having complex eigenvalues and the truncated Fourier series (the sum of a constant and
sine functions with different but commensurable periods) as the function of perturbations. Moreover,
the proposed approach can be applied to a class of systems broader than the one considered in this
study, namely, to systems with the nonlinearity being a monotone function of a non-ideal relay.
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1 Introduction

The terms “mean value theorem”, “mean value property”, “mean formula”, and “mean value” are quite
common in mathematics (e.g. real analysis, complex analysis, probability theory, partial differential
equations) and physics. But they may pertain to diverse phenomena.

In the theory of partial differential equations mean value theorems for harmonic functions and
solutions of various elliptic equations are best known. They include the classical mean value prop-
erty for harmonic functions [12] and the results obtained in works [9, 7, 8, 27] for more general
elliptic equations and elliptic operators. Similar theorems are formulated for (hypoelliptic) parabolic
equations [16, 17, 18].

Such facts can be established not only for elliptic and parabolic equations but also for hyperbolic
ones. Foremost, it should be noted the classical Asgeirson’s mean value theorem [3, 6] for the
ultrahyperbolic differential equation and the mean value theorem of Bitsadze and Nakhushev for
the wave equation [2]. Spherical means can be used to solve initial-value problems as it is done
in work [10] for the wave equation and the Darboux equation. Using a symbolic approach [28]
several results [24, 22, 23, 30, 25, 31, 29, 26, 33, 32] associated with mean values of solutions of
various differential equations were obtained in works of Polovinkin and Meshkov et al. It should also
be said that in these works the parallelogram identity (parallelogram rule) for the wave equation
(which the authors call ‘difference mean-value formula’) was generalized to the following cases: a
(nonstrictly) hyperbolic equation with constant coefficients of the third-order [24], fourth-order [22],
higher-order [32], an equation with constant coefficients and with the operator represented by the
product of the first order hyperbolic operators and the second-order elliptic operators [29]. These
results can be used to obtain analytical and numerical solutions to differential equations as it was
done in [12, 14, 11, 20, 21]. However, these results are mainly given for equations with constant
coefficients because of the methods used (Fourier transform, search for accompanying distribution
with compact support).
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Moreover, the characteristic parallelogram of differential equations has some applications in hy-
drodynamics [19].

In this paper, we derive the identity of a curvilinear characteristic parallelogram for a general
semilinear second-order hyperbolic equation using the method of characteristics [12]. This identity
can be considered as the mean value theorem in some sense.

2 Semilinear hyperbolic equation

In the domain Ω ⊆ R2 of two independent variables x = (x1, x2) ∈ Ω we consider the following
semilinear hyperbolic equation of the second-order

Au(x1, x2) = f(x1, x2, u(x1, x2), ∂x1u(x1, x2), ∂x2u(x1, x2)), (2.1)

where the operator A is defined as

Au(x1, x2) := a(x1, x2)∂2
x1
u(x1, x2) + 2b(x1, x2)∂x1∂x2u(x1, x2) + c(x1, x2)∂2

x2
u(x1, x2),

and is hyperbolic (this means b2(x)− a(x)c(x) > 0 for any x ∈ Ω).
Equation (2.1) has two families of characteristics: γ1(x1, x2) and γ2(x1, x2), which are the first

integrals of the ordinary differential equation [12]

a(x)(dx2)2 − 2b(x)dx1dx2 + c(x)(dx1)2 = 0, (2.2)

and solutions of the equation of characteristics [12]

a

(
∂γi
∂x1

)2

+ 2b
∂γi
∂x1

∂γi
∂x2

+ c

(
∂γi
∂x2

)2

= 0, i = 1, 2. (2.3)

It is known [12] that equation (2.2), generally speaking, can be decomposed into two equations

a(x)dx2 − (b(x)±
√
b2(x)− a(x)c(x))dx1 = 0, if a(x) 6= 0,

or
c(x)dx1 − (b(x)±

√
b2(x)− a(x)c(x))dx2 = 0, if c(x) 6= 0,

or
dx1dx2 = 0, if a(x) = c(x) = 0.

Therefore, we can assume that γ1 and γ2 are the first integrals of different differential equations

and they are functionally independent since the Jacobian
∣∣∣∣∂(γ1, γ2)

∂(x1, x2)

∣∣∣∣ is nonzero [12].

If the curves γi, i = 1, 2, have a parametric representation (x
(i)
1 (t), x

(i)
2 (t)), where x(i)

j , j = 1, 2,
are some twice continuously differentiable functions, then the following equality holds [4]

a
(
Dx

(i)
2

)2

− 2bDx
(i)
1 Dx

(i)
2 + c

(
Dx

(i)
1

)2

= 0, i = 1, 2,

where D is the ordinary differential operator.
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3 Curvilinear characteristic parallelogram

Definition 1. Curvilinear characteristic parallelogram of hyperbolic differential equation (2.1) is the
set Π = {x | γ1(x) ∈ [l1, l2] ∧ γ2(x) ∈ [r1, r2]}, where l1, l2, r1, r2 are some real numbers and γi,
i = 1, 2 are two different functionally independent characteristics.

Remark 1. Definition 1 is well defined. It is known [1] that any other first integral of (2.2) has the
form q ◦ γ1, where q is some continuously differentiable function. If γ1(x) ∈ [l1, l2], then, due to the
continuity of q, q(γ1(x)) ∈ q([l1, l2]) = [l̃1, l̃2]. So the curvilinear characteristic parallelogram does
not depend on considered characteristics.

Fig. 1. Curvilinear characteristic parallelogram

Definition 2. Vertices of the curvilinear characteristic parallelogram Π = {x | γ1(x) ∈ [l1, l2] ∧
γ2(x) ∈ [r1, r2]} are points x such that γ1(x) = li ∧ γ2(x) = rj, (i, j) ∈ {1, 2} × {1, 2}.

Remark 2. Definition 2 is well defined. We should show that q ◦ γ1, where q is some continuously
differentiable function, maps [l1, l2] into [l̃1, l̃2] and ∂([l1, l2]) into ∂([l̃1, l̃2]). Obviously, if the function
q is increasing or decreasing these properties must be true. But if the the function q does not satisfy
these conditions, then there exists at least one point l0 ∈ (l1, l2) such that q′(l0) = 0. Due to the
continuity of q, there exists a point x ∈ Π such that γ1(x) = l0 ∈ (l1, l2) This implies∣∣∣∣∂(q ◦ γ1, γ2)

∂(x1, x2)

∣∣∣∣ (x) =

∣∣∣∣q′(γ1(x))∂x1γ1(x) q′(γ1(x))∂x2γ1(x)
∂x1γ2(x) ∂x2γ2(x)

∣∣∣∣ = 0 when γ1(x) = l0.

But we consider only characteristics with nonzero Jacobian. The statement is proved.

Definition 3. Opposite vertices of the curvilinear characteristic parallelogram Π = {x | γ1(x) ∈
[l1, l2] ∧ γ2(x) ∈ [r1, r2]} are its vertices x1 and x2 such that γ1(x1) 6= γ1(x2) and γ2(x1) 6= γ2(x2).

Point transformation of variables of the form y1 = γ1(x1, x2), y1 = γ2(x1, x2) is invertible [34], i.e.
there is the inverse change of variables x1 = γ−1

1 (y1, y2), x2 = γ−1
2 (y1, y2).
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Lemma 3.1. Let Π = {x | γ1(x) ∈ [l1, l2] ∧ γ2(x) ∈ [r1, r2]} be a curvilinear characteristic parallel-
ogram and the conditions a ∈ C2(Π), b ∈ C2(Π), c ∈ C2(Π), and f ∈ C1(Π × R3) be satisfied. The
function u belongs to the class C2(Π) and satisfies equation (2.1) if and only if it can be represented
as

u(x) = g1(γ1(x)) + g2(γ2(x))

+

γ1(x)∫
l(0)

dz1

γ2(x)∫
r(0)

1

2 (a∂x1γ1∂x1γ2 + b (∂x2γ2∂x1γ1 + ∂x2γ1∂x1γ2) + c∂x2γ1∂x2γ2) (γ−1
1 (z), γ−1

2 (z))

×
[
f
(
γ−1

1 (z), γ−1
2 (z), u

(
γ−1

1 (z), γ−1
2 (z)

)
,

∂x1u
(
γ−1

1 (z), γ−1
2 (z)

)
, ∂x2u

(
γ−1

1 (z), γ−1
2 (z)

))
− Aγ1

(
γ−1

1 (z), γ−1
2 (z)

) (
∂x1u

(
γ−1

1 (z), γ−1
2 (z)

)
∂y1γ

−1
1 (z)

+ ∂x2u
(
γ−1

1 (z), γ−1
2 (z)

)
∂y1γ

−1
2 (z)

)
− Aγ2

(
γ−1

1 (z), γ−1
2 (z)

) (
∂x1u

(
γ−1

1 (z), γ−1
2 (z)

)
∂y2γ

−1
1 (z)

+ ∂x2u
(
γ−1

1 (z), γ−1
2 (z)

)
∂y2γ

−1
2 (z)

)]
dz2, (3.1)

where l(0) ∈ [l1, l2], r(0) ∈ [r1, r2], and the functions g1, g2 belong to the classes C2(D(g1)), C2(D(g2))
respectively.

Proof. Let a function u ∈ C2(Π) satisfy equation (2.1). Making the nonlinear nondegenerate change
of independent variables y1 = γ1(x1, x2), y1 = γ2(x1, x2) and denoting u(x1, x2) = v(y1, y2) we obtain
a new differential equation

2 (a∂x1γ1∂x1γ2 + b (∂x2γ2∂x1γ1 + ∂x2γ1∂x1γ2) + c∂x2γ1∂x2γ2)
(
γ−1

1 (y), γ−1
2 (y)

)
× ∂y1∂y2v(y) + Aγ1

(
γ−1

1 (y), γ−1
2 (y)

)
∂y1v(y) + Aγ2

(
γ−1

1 (y), γ−1
2 (y)

)
∂y2v(y)

= f
(
γ−1

1 (y), γ−1
2 (y), u

(
γ−1

1 (y), γ−1
2 (y)

)
, ∂x1u

(
γ−1

1 (y), γ−1
2 (y)

)
,

∂x2u
(
γ−1

1 (y), γ−1
2 (y)

))
= f

(
γ−1

1 (y), γ−1
2 (y), v(y), ∂y1v(y)∂x1γ1

(
γ−1

1 (y), γ−1
2 (y)

)
+ ∂y2v(y)∂x1γ2

(
γ−1

1 (y), γ−1
2 (y)

)
, ∂y1v(y)∂x2γ1

(
γ−1

1 (y), γ−1
2 (y)

)
+ ∂y2v(y)∂x2γ2

(
γ−1

1 (y), γ−1
2 (y)

))
Let us integrate it twice to obtain the equality

v(y) = g1 (y) + g2 (y)

+

y1∫
l(0)

dz1

y2∫
r(0)

1

2 (a∂x1γ1∂x1γ2 + b (∂x2γ2∂x1γ1 + ∂x2γ1∂x1γ2) + c∂x2γ1∂x2γ2) (γ−1
1 (y), γ−1

2 (y))

×
[
f
(
γ−1

1 (z), γ−1
2 (z), u

(
γ−1

1 (z), γ−1
2 (z)

)
,

∂x1u
(
γ−1

1 (z), γ−1
2 (z)

)
, ∂x2u

(
γ−1

1 (z), γ−1
2 (z)

))
− Aγ1(γ−1

1 (z), γ−1
2 (z))∂y1v(z)− Aγ2(γ−1

1 (z), γ−1
2 (z))∂y2v(z)

]
dz2,

Returning to the variables x1 and x2 we obtain equation (3.1). This also implies that the functions
gj belong to the class C2(D(g1)), j = 1, 2.

Substituting representations (3.1) into equation (2.1), we verify that the function u satisfies this
equation in Π.

Remark 3. Under some additional conditions on the functions f , a, b, c, g1, g2, we can show the
solvability of integro-differential equation (3.1) using the methods proposed in the works [5, 13, 35].
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For the convenience of further presentation, we introduce the notation

β = 2 (a∂x1γ1∂x1γ2 + b (∂x2γ2∂x1γ1 + ∂x2γ1∂x1γ2) + c∂x2γ1∂x2γ2) ,

K(z, p, q, r) = f(γ−1
1 (z), γ−1

2 (z), p, q, r)

− Aγ1(γ−1
1 (z), γ−1

2 (z))(q∂y1γ
−1
1 (z) + r∂y1γ

−1
2 (z))

− Aγ2(γ−1
1 (z), γ−1

2 (z))(q∂y2γ
−1
1 (z) + r∂y2γ

−1
2 (z)),

K̃(z, p, q, r) = (β(γ−1
1 (z), γ−1

2 (z)))−1K(z, p, q, r)

4 Curvilinear parallelogram identity

Theorem 4.1. Let a function u belong to the class C2(Ω) and be a solution to hyper-
bolic equation (2.1), where a ∈ C2(Ω), b ∈ C2(Ω), c ∈ C2(Ω), and f ∈ C1(Ω ×
R3). Then for any curvilinear characteristic parallelogram Π = {x | γ1(x) ∈ [l1, l2] ∧
γ2(x) ∈ [r1, r2]} ⊆ Ω with vertices A(γ−1

1 (l1, r1), γ−1
2 (l1, r1)), B(γ−1

1 (l1, r2), γ−1
2 (l1, r2)),

C(γ−1
1 (l2, r2), γ−1

2 (l2, r2)), (γ−1
1 (l2, r1), γ−1

2 (l2, r1)), the following equality holds

u(A)− u(B) + u(C)− u(D)

=

l2∫
l1

dz1

r2∫
r1

K̃
(
z, u

(
γ−1

1 (z), γ−1
2 (z)

)
, ∂x1u

(
γ−1

1 (z), γ−1
2 (z)

)
,

∂x2u
(
γ−1

1 (z), γ−1
2 (z)

))
dz2.

(4.1)

Proof. According to Lemma 3.1, the function u is representable in the form

u(x) = g1(γ1(x)) + g2(γ2(x))

+

γ1(x)∫
l1

dz1

γ2(x)∫
r1

K̃
(
z, u

(
γ−1

1 (z), γ−1
2 (z)

)
, ∂x1u

(
γ−1

1 (z), γ−1
2 (z)

)
,

∂x2u
(
γ−1

1 (z), γ−1
2 (z)

))
dz2.

(4.2)

where gi ∈ C2(D(gi)), i = 1, 2. Using expression (4.2) we calculate

u(A) = g1(l1) + g2(r1), u(B) = g1(l1) + g2(r2), u(D) = g1(l2) + g2(r1),

u(C) = g1(l2) + g2(r2)

+

l2∫
l1

dz1

r2∫
r1

K̃
(
z, u

(
γ−1

1 (z), γ−1
2 (z)

)
, ∂x1u

(
γ−1

1 (z), γ−1
2 (z)

)
,

∂x2u
(
γ−1

1 (z), γ−1
2 (z)

))
dz2. (4.3)

Substituting representations (4.3) into (4.1) we obtain the correct equality.

Theorem 4.2. Let functions u ∈ C2(Ω), a ∈ C2(Ω), b ∈ C2(Ω), c ∈ C2(Ω), f ∈ C1(Ω × R3), and
the condition b2(x) − a(x)c(x) > 0 be satisfied, where Ω ⊆ R2. If for any curvilinear characteristic
parallelogram Π = {x | γ1(x) ∈ [l1, l2] ∧ γ2(x) ∈ [r1, r2]} ⊆ Ω with vertices A(γ−1

1 (l1, r1), γ−1
2 (l1, r1)),

B(γ−1
1 (l1, r2), γ−1

2 (l1, r2)), C(γ−1
1 (l2, r2), γ−1

2 (l2, r2)), (γ−1
1 (l2, r1), γ−1

2 (l2, r1)), where γi, i = 1, 2 are
solutions of equations (2.2) and γ−1

i are defined as before, equality (4.1) is satisfied, then the function
u is a solution to equation (2.1).
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Proof. Let l2 = l + l1, r2 = r + r1. So, we can write the coordinates of points A, B, C and D in the
form

A(γ−1
1 (l1, r1), γ−1

2 (l1, r1)), B(γ−1
1 (l1, r + r1), γ−1

2 (l1, r + r1)),

C(γ−1
1 (l + l1, r + r1), γ−1

2 (l + l1, r + r1)), D(γ−1
1 (l + l1, r1), γ−1

2 (l + l1, r1)).

Let us consider the expression

u(A)− u(B)

r
=
u(γ−1

1 (l1, r1), γ−1
2 (l1, r1))− u(γ−1

1 (l1, r + r1), γ−1
2 (l1, r + r1))

r
−−→
r→0

−−→
r→0

−∂ru(γ−1
1 (l1, r1), γ−1

2 (l1, r1)).

In the same way
u(C)− u(D)

r
−−→
r→0

∂ru(γ−1
1 (l1 + l, r1), γ−1

2 (l1 + l, r1)).

Now since
∂ru(γ−1

1 (l1 + l, r1), γ−1
2 (l1 + l, r1))− ∂ru(γ−1

1 (l1, r1), γ−1
2 (l1, r1))

l
−−→
l→0

−−→
l→0

∂l∂ru(γ−1
1 (l1, r1), γ−1

2 (l1, r1)),

we obtain lim
(r,l)→(0,0)

(lr)−1(u(A)− u(B) + u(C)− u(D)) = ∂l∂ru(γ−1
1 (l1, r1), γ−1

2 (l1, r1)). Similarly, we

get

lim
(r,l)→(0,0)

1

lr

l+l1∫
l1

dz1

r+r1∫
r1

K̃
(
z, u

(
γ−1

1 (z), γ−1
2 (z)

)
, ∂x1u

(
γ−1

1 (z), γ−1
2 (z)

)
,

∂x2u
(
γ−1

1 (z), γ−1
2 (z)

))
dz2 =

= K̃
(
z = (l1, r1), u

(
γ−1

1 (z), γ−1
2 (z)

)
, ∂x1u

(
γ−1

1 (z), γ−1
2 (z)

)
, ∂x2u

(
γ−1

1 (z), γ−1
2 (z)

))
.

Thus

lim
(r,l)→(0,0)

1

lr

(
u(A)− u(B) + u(C)− u(D)

−
l+l1∫
l1

dz1

r+r1∫
r1

K̃
(
z, u

(
γ−1

1 (z), γ−1
2 (z)

)
, ∂x1u

(
γ−1

1 (z), γ−1
2 (z)

)
, ∂x2u

(
γ−1

1 (z), γ−1
2 (z)

))
dz2

)

= lim
(r,l)→(0,0)

u(A)− u(B) + u(C)− u(D)

lr

− lim
(r,l)→(0,0)

1

lr

l+l1∫
l1

dz1

r+r1∫
r1

K̃
(
z, u

(
γ−1

1 (z), γ−1
2 (z)

)
, ∂x1u

(
γ−1

1 (z), γ−1
2 (z)

)
,

∂x2u
(
γ−1

1 (z), γ−1
2 (z)

))
dz2 = ∂l∂ru(γ−1

1 (l1, r1), γ−1
2 (l1, r1))

−
K
(
z = (l1, r1), u

(
γ−1

1 (z), γ−1
2 (z)

)
, ∂x1u

(
γ−1

1 (z), γ−1
2 (z)

)
, ∂x2u

(
γ−1

1 (z), γ−1
2 (z)

))
β(γ−1

1 (l1, r1), γ−1
2 (l1, r1))

.

This means that the function u satisfies at the point

(γ−1
1 (z = (y1 = l1, y2 = r1)), γ−1

2 (z))
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the differential equation

β(γ−1
1 (z), γ−1

2 (z))∂y1∂y2u(γ−1
1 (z), γ−1

2 (z))

= f
(
γ−1

1 (z), γ−1
2 (z), u

(
γ−1

1 (z), γ−1
2 (z)

)
,

∂x1u
(
γ−1

1 (z), γ−1
2 (z)

)
, ∂x2u

(
γ−1

1 (z), γ−1
2 (z)

))
− Aγ1

(
γ−1

1 (z), γ−1
2 (z)

) (
∂x1u

(
γ−1

1 (z), γ−1
2 (z)

)
∂y1γ

−1
1 (z)

+ ∂x2u
(
γ−1

1 (z), γ−1
2 (z)

)
∂y1γ

−1
2 (z)

)
− Aγ2

(
γ−1

1 (z), γ−1
2 (z)

) (
∂x1u

(
γ−1

1 (z), γ−1
2 (z)

)
∂y2γ

−1
1 (z)

+ ∂x2u
(
γ−1

1 (z), γ−1
2 (z)

)
∂y2γ

−1
2 (z)

)
,

(4.4)

where x1 = γ−1
1 (y1, y2), x2 = γ−1

2 (y1, y2). By virtue of the arbitrariness of Π ⊆ Ω, equality (4.4) is
true for any point (x1 = γ−1

1 (z = (l1, r1)), x2 = γ−1
2 (z = (l1, r1))) ∈ Ω.

Making the change of variables x1 = γ−1
1 (y1, y2), x2 = γ−1

2 (y1, y2) in equation (4.4), we obtain
equation (2.1).

Note that formula (4.1) can be considered as a kind of a mean value theorem.

5 Applications

5.1 Wave equation

Let us consider Au(x1, x2) = ∂2
x1
u(x1, x2) − a2∂2

x2
u(x1, x2), where a > 0 (for definiteness). Then we

have γ1(x1, x2) = x2−ax1, γ2(x1, x2) = x2+ax1, γ−1
1 (y1, y2) = (y2−y1)/(2a), γ−1

2 (y1, y2) = (y1+y2)/2,
Aγ1 ≡ 0, Aγ2 ≡ 0.

5.1.1 Parallelogram identity

Let f ≡ 0. In this case, formula (4.1) transforms to

u

(
r1 − l1

2a
,
l1 + r1

2

)
− u

(
r2 − l1

2a
,
l1 + r2

2

)
+ u

(
r2 − l2

2a
,
l2 + r2

2

)
− u

(
r1 − l2

2a
,
l2 + r1

2

)
= 0, (5.1)

where l1, l2, r1 and r2 are some real numbers. Equality (5.1) is the well-known parallelogram identity
for the wave equation.

5.1.2 Goursat problem

Let us consider the Goursat problem [15]{
(∂2
x1
− a2∂2

x2
)u(x) = f(x), 0 < x1,−ax1 < x2 < ax1,

u(x1, x2 = ax1) = φ(1)(x1), u(x1, x2 = −ax1) = φ(1)(x2), x1 > 0,
(5.2)

where f ∈ C1({x | 0 6 x1,−ax1 6 x2 6 ax1}), φ(1) ∈ C2([0,∞)), φ(2) ∈ C2([0,∞)) and φ(1)(0) =
φ(2)(0). We can write the classical solution of (5.2) using formula (4.1). If we select C(x1, x2),

B

(
ax1 + x2

2a
,
ax1 + x2

2

)
, D
(
ax1 − x2

2a
,
x2 − ax1

2

)
, A(0, 0) and apply (4.1), then we obtain

u(x1,x2) = u(C) = φ(1)

(
ax1 + x2

2a

)
+ φ(2)

(
ax1 − x2

2a

)
− φ(1)(0)
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− 1

4a2

x2−ax1∫
0

dy1

x2+ax1∫
0

f

(
y2 − y1

2a
,
y1 + y2

2

)
dy2, 0 < x1,−ax1 < x2 < ax1.

5.1.3 Mixed problem

Let us consider the first mixed problem [12]
(∂2
x1
− a2∂2

x2
)u(x) = f(x), x ∈ (0,∞)× (0,∞),

u(0, x2) = φ(x1), ∂x1u(0, x2) = ψ(x2), x1 > 0,
u(x1, 0) = µ(x1), x2 > 0,

(5.3)

where f ∈ C1([0,∞)× [0,∞)), φ ∈ C2([0,∞)), ψ ∈ C1([0,∞)), µ ∈ C2([0,∞)).

Fig. 2. To the Goursat problem (5.2).

If x2 − ax1 > 0, then the solution of (5.3) at the point (x1, x2) can be defined by d’Alembert
formula

u(x1, x2) =
φ(x2 − ax1) + φ(x2 + ax1)

2
+

1

2a

x2+ax1∫
x2−ax1

ψ(ξ) dξ +

+
1

2a

x1∫
0

dτ

x2+a(x1−τ)∫
x2−a(x1−τ)

f(τ, ξ) dξ, x2 − ax1 > 0, x1 > 0, x2 > 0.

(5.4)

If x2− ax1 < 0, then we can use parallelogram identity (4.1) to derive the solution of (5.3) at the
point (x1, x2). We can select C(x1, x2), B

(
x1 −

x2

a
, 0
)
, D
(x2

a
, ax1

)
, A(0, ax1 − x2), apply (4.1) and

obtain
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u(x1, x2) = µ
(
x1 −

x2

a

)
+
φ(ax1 + x2)− φ(ax1 − x2)

2
+

1

2a

ax1+x2∫
ax1−x2

ψ(ξ) dξ

+
1

2a

x2
a∫

0

dτ

ax1+x2−aτ∫
ax1−x2+aτ

f(τ, ξ) dξ − 1

4a2

x2−ax1∫
ax1−x2

dy1

ax1+x2∫
ax1−x2

f

(
y2 − y1

2a
,
y2 + y1

2

)
dy2,

x2 − ax1 < 0, x1 > 0, x2 > 0.

(5.5)

Fig. 3. To the first mixed problem (5.3).

Using representations (5.4) and (5.5), we can easily derive necessary and sufficient matching
conditions µ(0) = φ(0), µ′(0) = ψ(0) and µ′′(0) = a2φ′′(0) + f(0, 0) under which the solution u of the
first mixed problem (5.3) will be classical.

5.2 Nonlinear wave equation

For convenience, further in this chapter we will present equations in divergence form. Let us consider
Au(x1, x2) = ∂x1∂x2u(x1, x2). Then we have γ1(x1, x2) = x1, γ2(x1, x2) = x2, γ−1

1 (y1, y2) = y1,
γ−1

2 (y1, y2) = y2, Aγ1 ≡ 0, Aγ2 ≡ 0.

5.2.1 Darboux problem

Let us consider the second Darboux problem for a nonlinear wave equation in divergence form [11]{
∂x1∂x2u(x) + λg(x, u(x)) = f(x), 0 < x1, αx1 < x2 < βx1,
u(x1, x2 = αx1) = u(x1, x2 = βx1) = 0, x1 > 0,

(5.6)

where λ ∈ R, 0 < α < 1 < β < ∞, f ∈ C1({x | 0 6 x1 ∧ αx1 6 x2 6 βx1}), g ∈ C1({x | 0 6
x1 ∧ αx1 6 x2 6 βx1} × R), |g(x1, x2, z)| 6 L1 + L2|z|, L1 > 0, L2 > 0.

We want to obtain an expression for the classical solution u of problem (5.6) at the point P0(x1, x2).
Let us denote by P1M0P0N0 the characteristic parallelogram, whose vertices N0 and M0 lie, respec-
tively, on the segments x2 = αx1 and x2 = βx1, that is: N0 := (x1, αx1), M0 := (β−1x2, x2),
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P1 := (β−1x2, αx1). Since P1 ∈ {x | 0 < x1 ∧ αx1 < x2 < βx1}, we construct analogously the charac-
teristic parallelogram P2M1P1N1 whose verticesN1 andM1 lie, respectively, on the segments x2 = αx1

and x2 = βx1. Continuing this process, we obtain the characteristic parallelogram Pi+1MiPiNi for
which Ni ∈ {x | x2 = αx1}, Mi ∈ {x | x2 = βx1}, and Ni :=

(
x

(i)
1 , αx

(i)
1

)
, Mi :=

(
β−1x

(i)
2 , x2

)
,

Pi+1 :=
(
β−1x

(i)
2 , αx

(i)
1

)
if Pi :=

(
x

(i)
1 , x

(i)
2

)
.

Fig. 4. To the second Darboux problem (5.6).

By virtue of (4.1) and (5.6) we have

u(Pi) = u(Mi) + u(Ni)− u(Pi+1) +

∫∫
Pi+1MiPiNi

[f(z)− λg(z, u(z))] dz

= −u(Pi+1) +

∫∫
Pi+1MiPiNi

[f(z)− λg(z, u(z))] dz, i ∈ N ∪ {0}.

Thus it follows that

u(x1, x2) = u(P0) =

∫∫
P1M0P0N0

[f(z)− λg(z, u(z))] dz− u(P1)

= u(P2) +

∫∫
P1M0P0N0

[f(z)− λg(z, u(z))] dz−
∫∫

P2M1P1N1

[f(z)− λg(z, u(z))] dz

= (−1)nu(Pn) +
n−1∑
i=0

(−1)i
∫∫

Pi+1MiPiNi

[f(z)− λg(z, u(z))] dz.
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Clearly that lim
n→∞

u(Pn) = u
(

lim
n→∞

Pn

)
= u(0, 0) = 0. Hence, passing to the limit, as n → ∞, we

obtain the following integral representation

u(x1, x2) =
∞∑
i=0

(−1)i
∫∫

Pi+1MiPiNi

[f(z)− λg(z, u(z))] dz. (5.7)

The further solution of problem (5.6) is connected with the study of the solvability of equation (5.7),
and it is given in the work [11]. And it turns out that under the conditions specified in the formulation
of problem (5.6), it has a unique classical solution. But we still notice that in the linear case (i.e.,
when λ = 0), formula (5.7) transforms into

u(x1, x2) =
∞∑
i=0

(−1)i
∫∫

Pi+1MiPiNi

f(z)dz, (5.8)

The series in the right-hand side of equality (5.8) is uniformly and absolutely convergent [11]. So, in
the linear case, there is a solution u of (5.6) written in the explicit analytic form (5.8).

5.3 Linear second-order hyperbolic equation

As in the prevoius subsection, we consider Au(x1, x2) = ∂x1∂x2u(x1, x2). Then we have γ1(x1, x2) =
x1, γ2(x1, x2) = x2, γ−1

1 (y1, y2) = y1, γ−1
2 (y1, y2) = y2, Aγ1 ≡ 0, Aγ2 ≡ 0.

5.3.1 Goursat problem

Let us consider the Goursat problem for a linear second-order hyperbolic equation [12]
∂x1∂x2u(x) + a(x)∂x1u(x) + b(x)∂x2u(x) + c(x)u(x) = f(x), x

(0)
1 < x1, x

(0)
2 < x2,

u(x1 = x
(0)
1 , x2) = φ(x2), x2 > x

(0)
2 ,

u(x1, x2 = x
(0)
2 ) = ψ(x1), x1 > x

(0)
1 ,

(5.9)

where f ∈ C({x | x(0)
1 6 x1 ∧ x(0)

2 6 x2}), φ ∈ C2([x
(0)
2 ,∞)), ψ ∈ C1([x

(0)
1 ,∞)) and φ(x

(0)
2 ) = ψ(x

(0)
1 ).

We can write the classical solution of (5.9) using formula (4.1). If we select C(x1, x2), B
(
x

(0)
1 , x2

)
,

D
(
x1, x

(0)
2

)
, A
(
x

(0)
1 , x

(0)
2

)
and apply (4.1), then we obtain

u(x) = u(C) = φ(x2) + ψ(x1)− ψ(x
(0)
2 )

+

x1∫
x

(0)
1

dy1

x2∫
x

(0)
2

[f(y)− a(y)∂x1u(y)− b(y)∂x2u(y)− c(y)u(y)]dy2. (5.10)

A representation of the solution in the form of integro-differential equation (5.10) is obtained.
Under the conditions specified in the formulation of problem (5.9), equation (5.10) will be solvable
[12] and the function u will have the required smoothness. This proves the solvability of problem
(5.9).
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6 Conclusion

In the paper, the property of the characteristic parallelogram for the wave equation is generalized
to the case of a semilinear hyperbolic equation of the second order. This identity connects not only
the values of points at the vertices of the parallelogram but also the continuum of function values on
the parallelogram, in contrast to the linear cases with constant coefficients considered earlier. It is
shown how the obtained results, combined with other methods, can be used to solve various mixed
problems.
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[20] P. Matus, A. Ko lodyńska, Exact difference schemes for hyperbolic equations. Computational methods in applied
mathematics. 7 (2007), no. 4, 341–364.

[21] P. Matus, U. Irkhin, M. Lapinska-Chrzczonowicz Exact difference schemes for time-dependent problems. Com-
putational methods in applied mathematics. 5 (2005), no. 4, 422–448.



74 V.I. Korzyuk, J.V. Rudzko

[22] V.Z. Meshkov, I.P. Polovinkin, M.V. Polovinkina, Yu.D. Ermakova, S.A. Rabeeakh, Рђ mean-value formula
for a two-dimensional linear hyperbolic equation. Proceedings of Voronezh State University. Series: Physics.
Mathematics. (2016), no. 4, 121–126 (in Russian).

[23] V.Z. Meshkov, Yu.D. Ermakova, I.P. Polovinkin, Difference mean-value formula for a two-dimensional linear
fourth order hyperbolic equation. J. Math. Sci. 219 (2016), no. 2, 203–207. DOI: 10.1007/s10958-016-3097-2

[24] V.Z. Meshkov, I.P. Polovinkin, M.V. Polovinkina, Yu.D. Ermakova, S.A. Rabeeakh, Difference mean-value for-
mula for two-dimensional linear hyperbolic equations of third order. Proceedings of Voronezh State University.
Series: Physics. Mathematics. (2015), no. 3. 112–119 (in Russian).

[25] V.Z. Meshkov, I.P. Polovinkin, Mean value properties of solutions of linear partial differential equations. J. Math.
Sci. 160 (2009), 45–52. DOI: 10.1007/s10958-009-9483-2

[26] V.Z. Meshkov, I.P. Polovinkin, On the derivation of new mean-value formulas for linear differential equations
with constant coefficients. Diff. Equat. 47 (2011), 1746–1753. DOI: 10.1134/S0012266111120044

[27] A.L. Muglanov, I.P. Polovinkin, M.V. Polovinkina, Two-point mean value formulas for some elliptic equations
spaces with constant curvature. Journal of Physics: Conference Series. 973 (2018).

[28] A.V. Pokrovskii.Mean value theorems for solutions of linear partial differential equations.Math. Notes. 64 (1998),
220–229. DOI: 10.1007/BF02310309

[29] I.P. Polovinkin, M.V. Polovinkina, Mean value theorems and properties of solutions of linear differential equa-
tions. In: V. Kravchenko, S. Sitnik (eds), Transmutation Operators and Applications. Trends in Mathematics.
BirkhГ¤user, Cham, 2020, 587–602. DOI: 10.1007/978-3-030-35914-0_26

[30] I.P. Polovinkin, Mean value theorems for linear partial differential equations. J. Math. Sci. 197 (2014), no. 3,
399–403. DOI: 10.1007/s10958-014-1721-6

[31] I.P. Polovinkin, The converse of the mean-value theorem for the wave equation. Differ. Uravn. 27 (1991), no. 11,
1987–1990 (in Russian).

[32] M.V. Polovinkina, Mean-value formula for a hyperbolic equation with a factorizable operator. Proceedings of the
Voronezh Winter Mathematical School “Modern Methods of Function Theory and Related Problems.” January
28 – February 2, 2019. Part 4, Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz., 173, VINITI, Moscow,
126–131 (in Russian).

[33] M.V. Polovinkina, I.P. Polovinkin, A.L. Muglanov, Two-point mean value formulas. Lobachevskii J. Math. 41
(2020), 853–868. DOI: 10.1134/S1995080220050091

[34] A.D. Polyanin, V. Zaitsev, A.I. Zhurov, Solution methods for nonlinear equations of mathematical physics and
mechanics. Fizmatlit, Moscow, 2005 (in Russian). DOI: 10.13140/RG.2.1.4809.8729

[35] M.M. Vainberg, Integro-differential equations. Itogi Nauki. Ser. Mat. Anal. Teor. Ver. Regulir. 1962, (1964), 5–37
(in Russian).

Viktor Ivanovich Korzyuk, Jan Viaczas lavavicz Rudzko
Department of Mathematical Cybernetics
Belarusian State University
4 Nezavisimosti Avenue,
Minsk, Belarus
E-mails: korzyuk@bsu.by, janycz@yahoo.com

Received: 22.04.2022



EURASIAN MATHEMATICAL JOURNAL
ISSN 2077-9879
Volume 15, Number 2 (2024), 75 – 91

AN EXISTENCE RESULT FOR A (p(x), q(x))-KIRCHHOFF TYPE
SYSTEM WITH DIRICHLET BOUNDARY CONDITIONS

VIA TOPOLOGICAL DEGREE METHOD

S. Yacini, C. Allalou, K. Hilal

Communicated by M.A. Ragusa

Key words: weak solutions, (p(x), q(x))-Kirchhoff type systeme, variable-exponent Sobolev spaces,
topological degree methods.

AMS Mathematics Subject Classification: 35J35, 47H11, 47H30

Abstract. This paper focuses on the existence of at least one weak solution for a nonlocal elliptic
system of (p(x), q(x))-Kirchhoff type with Dirichlet boundary conditions. The results are obtained
by applying the topological degree method of Berkovits applied to an abstract Hammerstein equation
associated to our system and also by the theory of the generalized Sobolev spaces.

DOI: https://doi.org/10.32523/2077-9879-2024-15-2-75-91

1 Introduction

The study of nonlinear boundary value problems involving variable exponents has received consid-
erable attention in the last decades. This is motivated by the developments in elastic mechanics,
electrorheological fluids, and image restoration [4, 7, 12, 13, 21, 32, 33].

In this work, we aim to prove the existence of a weak solution for the following nonlocal elliptic
system of (p(x), q(x))-Kirchhoff type with the Dirichlet boundary conditions:

T1(u) = λh(x, u,∇u) +Q(x)|u|r1(x)−2u in Ω,

T2(v) = κg(x, v,∇v) +O(x)|v|r2(x)−2v in Ω,

u = v = 0 on ∂Ω,

(1.1)

where

T1(u) = −N1

(∫
Ω

(A1(x,∇u) +
1

p(x)
|∇u|p(x))dx

)
× div

(
a1(x,∇u) + |∇u|p(x)−2∇u

)
,

and
T2(v) = −N2

(∫
Ω

(A2(x,∇v) +
1

q(x)
|∇v|q(x))dx

)
× div

(
a2(x,∇v) + |∇v|q(x)−2∇v

)
.

Here and in the sequel, Ω designates a bounded open set in RN(N ≥ 2), with a Lipschitz boundary
denoted by ∂Ω. p, q, r ∈ C+(Ω), λ and κ are two real parameters, −div ai(x,∇u) (i = 1, 2) are
Leray-Lions operators, h, g : Ω × R × RN → R are two Carathéodory’s functions that satisfy the
assumption of growth, Q,O ∈ L∞(Ω) and Ni : R+ → R+ are functions that satisfy some conditions
which will be stated later. As is well known, problem (1.1) is related to the stationary problem of
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a model presented by Kirchhoff in 1883 [16]. More precisely, Kirchhoff introduced a model given by
the equation

ρ
∂2u

∂t2
−
(ρ0

h
+
E

2L

∫ L

0

∣∣∣∂u
∂x

∣∣∣2dx)∂2u

∂x2
= 0, (1.2)

which extends the classical d’Alembert’s wave equation that takes into account the effects of length
changes of the string produced by transverse vibrations, the parameters in (1.2) have the following
meanings: h is the cross-section area, E is the Young modulus, ρ is the mass density, L is the length
of the string, and ρ0 is the initial tension.

The Kirchhoff type equations involving variable exponent growth conditions have been a very
interesting topic in recent years, it has been studied in many papers; we refer to [10, 11, 19, 23, 29] in
which variational methods have been used to get the existence and multiplicity of solutions, on the
other hand, many authors used the topological degree methods to prove the existence of solutions
see for example (see, for example,[9, 24, 25, 27, 28]).

The purpose of this work is to study the existence of solutions to the problem (1.1) in the
Sobolev spaces with variable exponents by using another approach based on the topological degree
of Berkovits based on the Leray-Schauder principle, presented in [5, 6] for a class of demicontinuous
operators of generalized (S+) type, and the theory of the variable-exponent Sobolev spaces.

This article is arranged as follows. In Section 2, we recall some basic facts about the variable
exponent Lebesgue and Sobolev spaces and we introduce, some classes of operators of generalized
(S+) type and the topological degree, while Section 3 is devoted to the existence of at least one weak
solution for problem (1.1).

2 Preliminary results

2.1 The generalized Lebesgue-Sobolev spaces:

First, we introduce some definitions and basic properties of the Lebesgue-Sobolev spaces with variable
exponents Lp(x)(Ω) and W 1,p(x)(Ω). In this context, we refer to [14, 18, 31] for more details.

Let us set C+(Ω) =
{
p : p ∈ C(Ω) and is such that p(x) > 1 for all x ∈ Ω

}
.

For each p ∈ C+(Ω), we define p+ := max
{
p(x), x ∈ Ω

}
and p− := min

{
p(x), x ∈ Ω

}
.

For every p ∈ C+(Ω), we define

Lp(x)(Ω) =
{
v : Ω→ R is measurable and such that

∫
Ω

|v(x)|p(x)dx < +∞
}
,

equipped with the Luxemburg norm given by

|v|p(x) = inf
{
ε > 0,

∫
Ω

∣∣v(x)

ε

∣∣p(x)
dx ≤ 1

}
,

(
Lp(·)(Ω), | · |p(·)

)
, we call it the generalized Lebesgue space, is a separable, and reflexive Banach space

(see, [18]).

Proposition 2.1 ([14]). Set

%p(x)(v) =

∫
Ω

|v(x)|p(x)dx, ∀ v ∈ Lp(x)(Ω),
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then,

|v|p(x) < 1(respectively = 1;> 1) ⇔ %p(x)(v) < 1(respectively = 1;> 1), (2.1)

|v|p(x) > 1⇒ |v|p
−

p(x) ≤ %p(x)(v) ≤ |v|p
+

p(x), (2.2)

|v|p(x) < 1 ⇒ |v|p
+

p(x) ≤ %p(x)(v) ≤ |v|p
−

p(x), (2.3)

lim
n→∞

|vk − v|p(x) = 0 ⇔ lim
n→∞

%p(x)(vk − v) = 0. (2.4)

Remark 1. From (2.2) and (2.3), we can deduce the follwingin inequalities:

|v|p(x) ≤ %p(x)(v) + 1, (2.5)

%p(x)(v) ≤ |v|p
−

p(x) + |v|p
+

p(x). (2.6)

Proposition 2.2 ([18]). The conjugate space of Lp(x)(Ω) is Lp′(x)(Ω) where 1
p(x)

+ 1
p′(x)

= 1, ∀x ∈ Ω.

For any u ∈ Lp(x)(Ω) and v ∈ Lp′(x)(Ω), we have the Hölder-type inequality∣∣∣ ∫
Ω

uv dx
∣∣∣ ≤ ( 1

p−
+

1

p′−

)
|u|p(x)|v|p′(x) ≤ 2|u|p(x)|v|p′(x). (2.7)

Remark 2. If k1, k2 ∈ C+(Ω) with k1(x) ≤ k2(x) for any x ∈ Ω then, the embedding Lk2(x)(Ω) ↪→
Lk1(x)(Ω) is continuous.

Lp(x),q(x)(Ω) refers to the generalized Lebesgue space Lp(x)(Ω)×Lq(x)(Ω) equipped with the norm
‖ · ‖p(x),q(x) given by

‖(u, v)‖p(x),q(x) = |u|p(x) + |v|q(x), ∀(u, v) ∈ Lp(x),q(x)(Ω).

Now, we define the generalized Sobolev space W 1,p(x)(Ω), for all p ∈ C+(Ω):

W 1,p(x)(Ω) =
{
v ∈ Lp(x)(Ω) such that |∇v| ∈ Lp(x)(Ω)

}
,

equipped with the norm
|v|1,p(x) = |v|p(x) + |∇v|p(x).

We define W 1,p(·)
0 (Ω) as the subspace of W 1,p(·)(Ω), which is the closure of C∞0 (Ω) with respect to the

norm | · |1,p(x).

Proposition 2.3 ([15, 22]). If the exponent p(·) satisfies the log-Hölder continuity condition, i.e.

there is a constant α > 0 such that for every x, y ∈ Ω, x 6= y with |x− y| ≤ 1

2
one has

|p(x)− p(y)| ≤ α

− log |x− y|
, (2.8)

then we have the Poincaré inequality, i.e. the exists a constant C > 0 depending only on Ω and the
function p such that

|u|p(x) ≤ C|∇u|p(x), ∀ u ∈ W 1,p(·)
0 (Ω). (2.9)

In particular, the space W 1,p(x)
0 (Ω) has the norm ‖v‖1,p(x) which is equivalent to |v|1,p(x), defined by

‖v‖1,p(x) = |∇v|p(x).
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Proposition 2.4 ([14, 18]). The spaces
(
W 1,p(x)(Ω), |·|1,p(x)

)
and

(
W

1,p(x)
0 (Ω), ‖·‖1,p(x)

)
are separable

and reflexive Banach spaces.
Furthermore, we have the compact embedding W 1,p(·)

0 (Ω) ↪→ Lp(·)(Ω) (see [18]).

Remark 3. The dual space of W 1,p(x)
0 (Ω) denoted W−1,p′(x)(Ω), is equipped with the norm

‖u‖−1,p′(x) = inf
{
|u0|p′(x) +

N∑
i=1

|ui|p′(x)

}
, ∀u ∈ W−1,p′(x)(Ω)

where the infinimum is taken on all possible decompositions u = u0 − divF with
u0 ∈ Lp

′(x)(Ω) and F = (u1, . . . , uN) ∈ (Lp
′(x)(Ω))N

In the sequel, the notation X 1,p(x),q(x)(Ω) refers to the Orlicz-Sobolev spaceW 1,p(x)
0 (Ω)×W 1,q(x)

0 (Ω),
equipped with th norm ‖(u, v)‖ = ‖(u, v)‖1,p(x),q(x) given by

‖(u, v)‖ = ‖(u, v)‖1,p(x),q(x) = ‖u‖1,p(x) + ‖v‖1,q(x), ∀(u, v) ∈ X 1,p(x),q(x)(Ω)(
X 1,p(x),q(x)(Ω)

)∗
= X−1,p′(x),q′(x)(Ω) is the dual space of X 1,p(x),q(x)(Ω), corresponding to the Orlicz-

Sobolev space W−1,p′(x)(Ω)×W−1,q′(x)(Ω) equipped with the norme

‖(ϕ, φ)‖−1,p′(x),q′(x) = ‖ϕ‖−1,p′(x) + ‖ϕ‖−1,q′(x), ∀(ϕ, φ) ∈ X−1,p′(x),q′(x)(Ω).

The continuous pairing between X 1,p(x),q(x)(Ω) and X−1,p′(x),q′(x)(Ω) is denoted by 〈·, ·〉1,p(x),q(x) satis-
fying

〈(u, v), (ϕ, φ)〉1,p(x),q(x) = 〈u, ϕ〉1,p(x) + 〈v, φ〉1,q(x),

for all (ϕ, φ) ∈ X−1,p′(x),q′(x)(Ω) and (u, v) ∈ X 1,p(x),q(x)(Ω).

2.2 Topological degree theory

Let X be a real separable and reflexive Banach space, X ∗ its dual space with dual pairing 〈 · , · 〉 and
D be a nonempty subset of X . Strong (weak) convergence is represented by the symbol → (⇀), and
let O be the collection of all bounded open sets in X . The readers can find more information about
the history of this theory in [1, 8, 25, 27, 17].

Definition 1. Let Y be a real Banach space. An operator F : D ⊂ X → Y is said to be

1) bounded, if it takes any bounded set into a bounded set.

2) demicontinuous, if for any (un) ⊂ D, un → u implies F (un) ⇀ F (u).

3) compact, if it is continuous and the image of any bounded set is relatively compact.

Definition 2. A mapping F : D ⊂ X → X ∗ is said to be

1) of type (S+), if for any sequence (un) ⊂ D with un ⇀ u and lim sup
n→∞

〈Fun, un − u〉 ≤ 0, it

follows that un → u.

2) quasimonotone, if for any sequence (un) ⊂ D with un ⇀ u, it follows that lim sup
n→∞

〈Fun, un −

u〉 ≥ 0.
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For any bounded operator T : D1 ⊂ X → X ∗ such that D ⊂ D1 and for any operator F : D ⊂ X →
X , we say that F of type (S+)T , if for any sequence (un) ⊂ D with un ⇀ u, yn := Tun ⇀ y and
lim sup
n→∞

〈Fun, yn − y〉 ≤ 0, we have un → u.

Remark 4 (see [30]). 1) If a mapping is compact in a set, then it is quasi-monotone in that set.

2) If the mapping is demicontinuous and satisfies the condition (S+) in a set, then it is quasi-
monotone in that set.

In the sequel, we consider the following classes of operators :

F1(D) :=
{
F : D → X ∗ | F is bounded, demicontinuous and of type (S+)

}
,

FT (D) :=
{
F : D → X | F is demicontinuous and of type (S+)T

}
,

FT,B(D) := {F : D → X| F is bounded, demicontinuous and of class (S+)T }.

An operator T ∈ F1(E) is called an essential inner map to F .

Lemma 2.1 ([17]). Let T ∈ F1(G) be continuous and S : DS ⊂ X ∗ → X be demicontinuous such that
T (G) ⊂ Ds, where G ∈ O. Then the following statements are true:

1) if S is quasimonotone, then I + S ◦ T ∈ FT (G), where I denotes the identity operator,

2) if S is of type (S+), then S ◦ T ∈ FT (G).

Definition 3. Let G ∈ O, T ∈ F1(G) be continuous and consider the mappings F, S : G ⊂ X → X ∗. The
affine homotopy H : [0, 1]×G→ X , defined by

H(t, u) := (1− t)Fu+ tSu for all (t, u) ∈ [0, 1]×G,

is called an admissible affine homotopy with the common continuous essential inner map T .

Lemma 2.2 ([17]). If the mappings F, S ∈ FT (G), then the affine homotopy H : [0, 1]×G → X defined in
Definition 3 of type (S+)T .

Now we give the Berkovits topological degree for a class of demicontinuous operators satisfying condition
(S+)T for more details, see [17].

Theorem 2.1. There exists a unique degree function

d : M =
{

(F,G, h) | G ∈ O, T ∈ F1(G), F ∈ FT (G), h 6∈ F (∂G)
}
−→ Z

which satisfies the following properties.

1) (Existence) If d(F,G, h) 6= 0, then the equation Fu = h has a solution in G.

2) (Normalization) For any h ∈ F (G), we have d(I, E, h) = 1.

3) (Additivity) Let F ∈ FT,B(G). If G1 and G2 are two disjoint open subsets of G such that h 6∈
F (G\(G1 ∪G2)) then we have

d(F,G, h) = d(F,G1, h) + d(F,G2, h).

4) (Homotopy invariance) If H: [0, 1]×G→ X is a bounded admissible affine homotopy with a common
continuous essential inner map and h: [0, 1]→ X is a continuous path in X such that h(t) 6∈ H(t, ∂G)
∀t ∈ [0, 1], then

d(H(t, ·), G, h(t)) = constant for all t ∈ [0, 1].
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3 Assumptions and main results

In this section, we will discuss the existence of a weak solution to problem (1.1).

Let ξ, ξ′ ∈ RN with ξ 6= ξ′. For almost every x in Ω and i = 1, 2, we assume the following hypothesis:
ai(x, ξ) : Ω × RN −→ RN is a Carathéodory function, is the gradient with respect to ξ of the mapping
Ai(x, ξ) : Ω× RN −→ R, that is ai(x, ξ) = ∇ξAi(x, ξ), and is such that

(M1) Ai(x, 0) = 0,

(M2) σ|ξ|p(x) ≤ a1(x, ξ) · ξ ≤ p(x)A1(x, ξ) and ι|ξ|q(x) ≤ a2(x, ξ) · ξ ≤ q(x)A2(x, ξ),

(M3)
∣∣a1(x, ξ)

∣∣ ≤ η(ρ(x) + |ξ|p(x)−1
)
and

∣∣a2(x, ξ)
∣∣ ≤ β(θ(x) + |ξ|q(x)−1

)
,

(M4)
[
ai(x, ξ)− ai(x, ξ′)

]
·
(
ξ − ξ′

)
> 0,

where σ, η, ι, θ, β are some positive constants, ρ(x) is a positive function belonging to Lp′(x)(Ω) and θ(x) is
a positive function belonging to Lq′(x)(Ω), (p′(x) is the conjugate exponent of p(x)).

(H1) h : Ω× R× RN −→ R is a Carathéodory function satisfying the following growth condition:

|h(x, ξ, ξ′)| ≤ µ(γ(x) + |ξ|r1(x)−1 + |ξ′|r1(x)−1),

where µ > 0, γ ∈ Lp′(x)(Ω) and 1 ≤ r−1 ≤ r1(x) ≤ r+
1 < p−.

(H2) g : Ω× R× RN −→ R is a Carathéodory function satisfying the following growth condition:

|g(x, ξ, ξ′)| ≤ α(e(x) + |ξ|r2(x)−1 + |ξ′|r2(x)−1).

where α > 0 and e ∈ Lq′(x)(Ω) and 1 ≤ r−2 ≤ r2(x) ≤ r+
2 < q−.

(M5) Ni: R+ → R+ (i = 1, 2) are continuous and nondecreasing function, for which there exist two functions
l, j such that,

k0t
l(x)−1 ≤ N1(t) ≤ k1t

l(x)−1,

m0t
j(x)−1 ≤ N2(t) ≤ m1t

j(x)−1,

where mi, ki (i = 0, 1) are positive constants l, j ∈ C+(Ω) 1 ≤ l− ≤ l(x) ≤ l+ < p−, and 1 ≤ j− ≤ j(x) ≤
j+ < q−.

Finally, we recall that the Q,O ∈ L∞(Ω) and Q(x),O(x) > 0 for almost every x in Ω.

The definition of a weak solution for problem(1.1) can be stated as follows:

Definition 4. A couple (u, v) ∈ X 1,p(x),q(x)(Ω) is called a weak solution of (1.1) if

〈fpu, ϕ〉+ 〈fqv, ψ〉+

∫
Ω
Q(x)|u|r1(x)−2uϕ(x)dx+

∫
Ω
O(x)|v|r2(x)−2vψ(x)dx

=

∫
Ω
λh(x, u,∇u)ϕ(x)dx+

∫
Ω
κg(x, v,∇v)ψ(x)dx,

where

〈fpu, ϕ〉 = N1

(∫
Ω

(A1(x,∇u) +
1

p(x)
|∇u|p(x)) dx

) [ ∫
Ω
a1(x,∇u)∇ϕ+

∫
Ω
|∇u|p(x)−2∇u∇ϕ

]
,

and

〈fqv, ψ〉 = N2

(∫
Ω

(A2(x,∇v) +
1

q(x)
|∇v|q(x)) dx

) [ ∫
Ω
a2(x,∇v)∇ψ +

∫
Ω
|∇v|q(x)−2∇v∇ψ

]
,

for every (ϕ,ψ) ∈ X 1,p(x),q(x)(Ω).
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Lemma 3.1 ([2]). Let g ∈ Lr(x)(Ω) and (gn) ⊂ Lr(x)(Ω) such that sup
n∈N
‖gn‖r(x) < ∞, If gn(x) → g(x)

for almost every x ∈ Ω, then gn ⇀ g weakly in Lr(x)(Ω).

Lemma 3.2 ([2]). Assume that (M2)-(M4) hold. Let (um)m be a sequence in W
1,n(x)
0 (Ω) such that um ⇀

u weakly in W
1,n(x)
0 (Ω) and ∫

Ω

[
a(x,∇um)− a(x,∇u)

]
∇(um − u)dx −→ 0, (3.1)

then um −→ u strongly in W 1,n(x)
0 (Ω).

Before giving our main result, we first give two important lemmas that will be used later.
Let us consider the following functionals:

L(u, v) := N̂1

(
J1(u)

)
+ N̂2

(
J2(v)

)
:= N̂1

(∫
Ω

(A1(x,∇u) +
1

p(x)
|∇u|p(x)) dx

)
+ N̂2

(∫
Ω

(A2(x,∇v) +
1

q(x)
|∇v|q(x))dx

)
,

for all (u, v) ∈ X 1,p(x),q(x)(Ω), where the functionals J1 : W
1,p(x)
0 (Ω) −→ R and J2 : W

1,q(x)
0 (Ω) −→ R, are

defined by

J1(u) =

∫
Ω

(A1(x,∇u) +
1

p(x)
|∇u|p(x)) dx and J2(v) =

∫
Ω

(A2(x,∇v) +
1

q(x)
|∇v|q(x)) dx,

then J1 ∈ C1(W
1,p(x)
0 (Ω),R), and J2 ∈ C1(W

1,q(x)
0 (Ω),R), N̂i : [0,+∞[−→ [0,+∞[ be the primitive of the

functions Ni (i = 1, 2), defned by

N̂i(t) =

∫ t

0
Ni(ξ) dξ.

On the other hand, we consider the functional J : X 1,p(x),q(x)(Ω)→ R defined by:

J(u, v) = J1(u) + J2(v)

=

∫
Ω

(A1(x,∇u) +
1

p(x)
|∇u|p(x)) dx+

∫
Ω

(A2(x,∇v) +
1

q(x)
|∇v|q(x)) dx,

for all (u, v) ∈ X 1,p(x),q(x)(Ω), then J ∈ C1
(
X 1,p(x),q(x)(Ω),R

)
and,

〈J′(u, v) , (ϕ,ψ)〉 = 〈J ′1(u, ϕ)〉+ 〈J ′2(v, ψ)〉

=

∫
Ω
a1(x,∇u)∇ϕdx+

∫
Ω
|∇u|p(x)−2∇u∇ϕdx+

∫
Ω
a2(x,∇v)∇ψ dx

+

∫
Ω
|∇v|q(x)−2∇v∇ψ dx.

It is obvious that the functional L is defined and continuously Gâteaux differentiable and whose Gâteaux
derivative at the point (u, v) ∈ X 1,p(x),q(x)(Ω) is the functional F := L′(u, v) ∈ (X 1,p(x),q(x)(Ω))∗ given by

〈L′(u, v), (ϕ,ψ)〉 = 〈F(u, v), (ϕ,ψ)〉 = 〈fpu, ϕ〉+ 〈fqv, ψ〉.

Lemma 3.3. Suppose that hypotheses (M1)-(M5) hold, then

i) F is continuous, bounded, strictly monotone operator.

ii) F is a mapping of type (S+).
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Proof. i) It is obvious that F is continuous because F is the Fréchet derivative of L. Now, we verify that
F is bounded. For all (u, v) and (ϕ,ψ) ∈ X 1,p(x),q(x)(Ω) we have,

|〈F(u, v), (ϕ,ψ)〉| ≤
∣∣∣N1

(
J1(u)

) [ ∫
Ω
a1(x,∇u)∇ϕdx+

∫
Ω
|∇u|p(x)−2∇u∇ϕdx

]∣∣∣
+
∣∣∣N2

(
J2(v)

) [ ∫
Ω
a2(x,∇v)∇ψ dx+

∫
Ω
|∇v|q(x)−2∇v∇ψdx

]∣∣∣.
Applying (M5) and Hölder’s inequality, from the last inequality, it follows that

|〈F(u, v), (ϕ,ψ)〉| ≤ k1

(
J1(u)

)l(x)−1
[ ∫

Ω
|a1(x,∇u)∇ϕ|dx+

∫
Ω
|∇u|p(x)−1|∇ϕ|dx

]
+m1

(
J2(v)

)j(x)−1
[ ∫

Ω
|a2(x,∇v)∇ψ|dx+

∫
Ω
|∇v|q(x)−1|∇ψ|dx

]
≤ C1

((∫
Ω
A1(x,∇u)dx

)l(x)−1
+
(∫

Ω
|∇u|p(x)dx

)l(x)−1)
×
[
|a1(x,∇u)|p′(x)|∇ϕ|p(x) + |∇up(x)−1|p′(x)|∇ϕ|p(x)

]
+ C2

((∫
Ω
A2(x,∇v)dx

)j(x)−1
+
(∫

Ω
|∇v|q(x)dx

)j(x)−1)
×
[
|a2(x,∇v)|q′(x)|∇ψ|q(x) + |∇vq(x)−1|q′(x)|∇ψ|q(x)

]
.

Bearing (2.5) and (2.6) in mind, we obtain

|〈F(u, v), (ϕ,ψ)〉| ≤ C3

((∫
Ω
A1(x,∇u)dx

)l(x)−1
+ ‖u‖p

−(l(x)−1)
1,p(x) + ‖u‖p

+(l(x)−1)
1,p(x)

)
×
[
|a1(x,∇u)|p′(x) + %p′(x)(∇up(x)−1) + 1

]
‖ϕ‖1,p(x)

+ C4

((∫
Ω
A2(x,∇v)dx

)j(x)−1
+ ‖v‖q

−(j(x)−1)
1,q(x) + ‖v‖q

+(j(x)−1)
1,q(x)

)
×
[
|a2(x,∇v)|q′(x) + %q′(x)(∇vq(x)−1) + 1

]
‖ψ‖1,q(x)

≤ C5

((∫
Ω
A1(x,∇u)dx

)l(x)−1
+ ‖u‖p

−(l(x)−1)
1,p(x) + ‖u‖p

+(l(x)−1)
1,p(x)

)
×
[
|a1(x,∇u)|p′(x) + ‖u‖p

−

1,p(x) + ‖u‖q
+

1,p(x) + 1
]
‖ϕ‖1,p(x)

+ C6

((∫
Ω
A2(x,∇v)dx

)j(x)−1
+ ‖v‖q

−(j(x)−1)
1,q(x) + ‖v‖q

+(j(x)−1)
1,q(x)

)
×
[
|a2(x,∇v)|q′(x) + ‖v‖q

−

1,q(x) + ‖v‖q
+

1,q(x) + 1
]
‖ψ‖1,q(x),

where C1, ..., C6 > 0 are independent of u and v.

By (M1), we have for any x ∈ Ω, ξ ∈ Rn and (i = 1, 2),

Ai(x, ξ) =

∫ 1

0

d

ds
Ai(x, sξ)ds =

∫ 1

0
ai(x, sξ)ξds,

by combining (M3), Fubini’s theorem and Young’s inequality, we have∫
Ω
A1(x,∇u)dx =

∫
Ω

∫ 1

0
a1(x, s∇u)∇uds dx =

∫ 1

0

[ ∫
Ω
a1(x, s∇u)∇udx

]
ds

≤
∫ 1

0

[
c0

∫
Ω

∣∣a1(x, s∇u)
∣∣p′(x)

dx+ c1

∫
Ω
|∇u|p(x)dx

]
ds
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≤
∫ 1

0

[
c2

∫
Ω
|ρ(x)|p′(x) + |s∇u|p(x) dx+ c1

∫
Ω
|∇u|p(x)dx

]
ds

≤ c3 + c4%p(x)(∇u)

≤ c3 + c4

(
‖u‖p−1,p(x) + ‖u‖p+1,p(x)

)
≤ c5

(
‖u‖p−1,p(x) + ‖u‖p+1,p(x) + 1

)
, (3.2)

where c0, ..., c5 > 0 are independent of u and v.

The same reasoning is used to prove that,∫
Ω
A2(x,∇v)dx ≤ c6

(
‖v‖q−1,q(x) + ‖v‖q+1,q(x) + 1

)
.

From (M3), we can easily show that |a1(x,∇u)|p′(x) and |a2(x,∇v)|q′(x) are bounded for all (u, v) in
X 1,p(x),q(x)(Ω) . Therefore,

|〈F(u, v), (ϕ,ψ)〉| ≤ C7

(
‖ϕ‖1,p(x) + ‖ψ‖1,q(x)

)
,

where C7 > 0 is independent of φ and ψ. Hence, the operator F is bounded.

Next, we prove that the operator F is coercive. For each (u, v) ∈ X 1,p(x,q(x))(Ω), we have

〈F(u, v), (u, v)〉
‖(u, v)‖

=

N1

(
J1(u)

) [ ∫
Ω
a1(x,∇u)∇u+

∫
Ω
|∇u|p(x)dx

]
‖(u, v)‖

+

N2

(
J2(v)

) [ ∫
Ω
a2(x,∇v)∇v +

∫
Ω
|∇v|q(x)dx

]
‖(u, v)‖

.

From (M2) and (M5), we obtain

〈F(u, v), (u, v)〉
‖(u, v)‖

≥ k0

(∫
Ω

(A1(x,∇u) +
1

p+
|∇u|p(x)) dx

)l(x)−1 [
σ

∫
Ω
|∇u|p(x) +

∫
Ω
|∇u|p(x)dx

]
‖(u, v)‖

+m0

(∫
Ω

(A2(x,∇v) +
1

q+
|∇v|q(x)) dx

)j(x)−1 [
ι

∫
Ω
|∇v|q(x) +

∫
Ω
|∇v|q(x)dx

]
‖(u, v)‖

≥ k0

(
σ
p+

∫
Ω
|∇u|p(x) +

1

p+

∫
Ω
|∇u|p(x)) dx

)l(x)−1 [
σ

∫
Ω
|∇u|p(x) +

∫
Ω
|∇u|p(x)dx

]
‖(u, v)‖

+m0

(
ι
q+

∫
Ω
|∇v|q(x) +

1

q+

∫
Ω
|∇v|q(x)) dx

)j(x)−1
×
[
(1 + ι)

∫
Ω
|∇v|q(x) dx

]
‖(u, v)‖

≥ k0

(
σ
p+

∫
Ω
|∇u|p(x) +

1

p+

∫
Ω
|∇u|p(x)) dx

)l(x)−1 [
σ

∫
Ω
|∇u|p(x) +

∫
Ω
|∇u|p(x)dx

]
‖(u, v)‖

+ ≥ m0

(
ι
q+

∫
Ω
|∇v|q(x) +

1

q+

∫
Ω
|∇v|q(x)) dx

)j(x)−1
×
[
(1 + ι)

∫
Ω
|∇v|q(x) dx

]
‖(u, v)‖

≥ C1

‖u‖γl(x)
1,p(x) + ‖v‖βj(x)

1,q(x)

‖(u, v)‖

≥ C1

‖u‖γl
−

1,p(x) + ‖v‖βj
−

1,q(x)

‖u‖1,p(x) + ‖v‖1,q(x)
,
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where C1 > 0 is independent of u and v, γ =

{
p− if ‖u‖ ≤ 1
p+ if ‖u‖ ≥ 1.

and β =

{
q− if ‖v‖1,a(x) ≤ 1

q+ if ‖v‖1,q(x) ≥ 1.

Since lim
x+y−→∞

xs+yt

x+y = +∞ for s, t > 1, then lim
‖(u,v)‖→∞

〈F(u, v)〉
‖(u, v)‖

=∞.

Next, we prove that F is a strictly monotone operator, we show first the monotonicity of J ′i (i = 1, 2).
Using (M4) and taking into account the following inequality (see [20]), for all x, y ∈ RN ,

(|x|p−2x− |y|p−2y)(x− y) · (|x|p + |y|p)
2−p
p ≥ (p− 1)|x− y|p if 1 < p < 2,

(|x|p−2x− |y|p−2y) · (x− y) ≥ (
1

2
)p|x− y|p if p ≥ 2,

we obtain, for all (u1, v1), (u2, v2) ∈ X 1,p(x),q(x)(Ω) with (u1, v1) 6= (u2, v2), that

〈J ′1(u1)− J ′1(u2), u1 − u2〉 > 0 and 〈J ′2(v1)− J ′2(v2), v1 − v2〉 > 0,

which implies that J ′1, J ′2 are strictly monotone.

Thus, by [30, Proposition 25.10 ], Ji are strictly convex. Furthermore, asNi (i = 1, 2) are nondecreas-
ing, then N̂i are convex in R+. So, for each (u1, v1), (u2, v2) ∈ X 1,p(x),q(x)(Ω) with (u1, v1) 6= (u2, v2), and
every s, t ∈ (0, 1) with s+ t = 1, we have

N̂1(J1(su1 + tu2)) < N̂1(sJ1(u1) + tJ1(u2)) ≤ sN̂1(J1(u1)) + tN̂1(J1(u2)),

and
N̂2(J2(sv1 + tv2)) < N̂2(sJ2(v1) + tJ2(v2)) ≤ sN̂2(J2(v1)) + tN̂2(J2(v2)).

This proves that L = N̂1

(
J1

)
+ N̂2

(
J2

)
is strictly convex. Since L′(u, v) = F(u, v) for all (u, v) ∈

X 1,p(x),q(x)(Ω), finally, we infer that F is strictly monotone on
(
X 1,p(x),q(x)(Ω)

)∗.
ii) Now, we verify that the operator F is of type (S+). Assume that (un, vn) ⇀ (u, v) in X 1,p(x),q(x)(Ω)

lim sup
n→∞

〈F(un, vn), (un − u, vn − v)〉 ≤ 0.
(3.3)

We will show that (un, vn)→ (u, v) in X 1,p(x),q(x)(Ω). By the strict monotonicity of F we get,

lim sup
n→∞

〈F(un, vn)−F(u, v), (un − u, vn − v)〉 = lim
n→∞

〈F(un, vn)−F(u, v), (un − u, vn − v)〉 = 0.

Then,
lim
n→∞

〈F(un, vn), (un − u, vn − v)〉 = 0.

Therefore,
lim
n→∞

〈fp(un), un − u〉+ 〈fq(vn), vn − v〉 = 0.

Since fp and fq are monotone,

lim
n→∞

〈fp(un), un − u〉 = 0 and lim
n→∞

〈fq(vn), vn − v〉 = 0. (3.4)

which means that

lim
n→∞

N1

(
J1(u)

) [ ∫
Ω
a1(x,∇un)∇(un − u) +

∫
Ω
|∇un|p(x)−2∇un∇(un − u)dx

]
= 0, (3.5)

lim
n→∞

N2

(
J2(v)

) [ ∫
Ω
a2(x,∇vn)∇(vn − v) +

∫
Ω
|∇un|q(x)−2∇vn∇(vn − v)dx

]
= 0.
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By (3.2), we infer that J1(un) and J2(vn) are bounded.
As N1 is continuous, up to a subsequence there is y, z ≥ 0 such that

N1(J1(un)) −→ N1(y) ≥ k0y
l(x)−1 as n→∞, (3.6)

N2(J2(vn)) −→ N2(z) ≥ m0z
j(x)−1 as n→∞.

From (3.5) and (3.6), we get

lim
n→∞

∫
Ω
a1(x,∇un)∇(un − u)dx+

∫
Ω
|∇un|p(x)−2∇un(∇un −∇u)dx = 0.

Using the continuous embedding W 1,r(x)
0 (Ω) ↪→ Lr(x)(Ω), we have

lim
n→∞

∫
Ω
|∇un|p(x)−2∇un(∇un −∇u)dx = 0 and lim

n→∞

∫
Ω
|∇vn|q(x)−2∇vn(∇vn −∇v)dx = 0.

Then,

lim
n→∞

∫
Ω
a1(x,∇un)∇(un − u)dx = 0. and lim

n→∞

∫
Ω
a2(x,∇vn)∇(vn − v)dx = 0.

In the light of Lemma 3.2, we obtain

(un, vn) −→ (u, v) strongly in X 1,p(x),q(x)(Ω),

which implies that F is of type (S+).

Lemma 3.4. Assume that assumptions (H1) and (H2) hold, then the operator

S : X 1,p(x),q(x)(Ω) −→
(
X 1,p(x),q(x)(Ω)

)∗
, defined for all (ϕ,ψ) ∈ X 1,p(x),q(x)(Ω) by

〈S(u, v), (ϕ,ψ)〉 = −λ
∫

Ω
h(x, u,∇u)ϕdx− κ

∫
Ω
g(x, v,∇v)ψdx

+

∫
Ω
Q(x)|u|r1(x)−2uϕ(x)dx+

∫
Ω
O(x)|v|r2(x)−2vψ(x)dx,

where λ, κ ∈ R, is compact.

Proof. In order to prove this lemma, we proceed in three steps.
Step 1. Let us define the operator Ψ : X 1,p(x),q(x)(Ω)→ Lp

′(x),q′(x)(Ω) by

Ψ(u, v) :=
(
Q(x)|u|r1(x)−2u , O(x)|v|r2(x)−2v

)
,

that is for all (ϕ,ψ) ∈ X 1,p(x),q(x)(Ω) by

〈Ψ(u, v), (ϕ,ψ)〉 =

∫
Ω
Q(x)|u|r1(x)−2uϕdx+

∫
Ω
O(x)|v|r2(x)−2vψdx.

We will show that Ψ is bounded and continuous.
It is clear that Ψ is continuous. Next, we prove that Ψ is bounded. Let (u, v) ∈ X 1,p(x),q(x)(Ω). Since

r+
1 < p− < p(x) and r+

2 < q− < q(x), then

|Ψ(u, v)|p′(x),q′(x) = |Q(x)|u|r1(x)−2u|p′(x) + |O(x)|v|r2(x)−2v|q′(x)

≤ %p′(x)(Q(x)|u|p(x)−2u) + %q′(x)(O(x)|v|q(x)−2v) + 2

=

∫
Ω
|Q(x)|u|p(x)−2u|p′(x)dx+

∫
Ω
|O(x)|v|q(x)−2v|q′(x)dx+ 2

≤
∫

Ω
|Q(x)|p′(x)|u|p(x)dx+

∫
Ω
|O(x)|q′(x)|v|q(x)dx+ 2

≤ ‖Qp′+‖∞%p(x)(u) + ‖Oq′+‖∞%q(x)(v) + 2

≤ C1

(
|u|p+p(x) + |u|p−p(x) + |v|q+q(x) + |v|q−q(x)

)
≤ C2

(
‖u‖p+1,p(x) + ‖u‖p−1,p(x) + ‖v‖q+1,q(x) + |v‖q−1,q(x)

)
,
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where C1, C2 > 0 are independent of u, v. Consequently, Ψ is bounded on X 1,p(x),q(x)(Ω).
Step 2. Let us define the operator ς : X 1,p(x),q(x)(Ω)→ Lp

′(x),q′(x)(Ω) by

ς(u, v) :=
(
− λh(x, u,∇u),−κg(x, v,∇v)

)
,

that is for (ϕ,ψ) ∈ X 1,p(x),q(x)(Ω), by

〈ς(u, v), (ϕ,ψ)〉 = −λ
∫

Ω
h(x, u,∇u)ϕdx− κ

∫
Ω
g(x, v,∇v)ψdx.

We will show that ς is bounded. Let (u, v) ∈ X 1,p(x),q(x)(Ω), then

|ς(u, v)|p′(x),q′(x) ≤ |λh(x, u,∇u)|p′(x) + |κg(x, v,∇v)|q′(x)

=

∫
Ω
|λh(x, u,∇u)|p′(x)dx+

∫
Ω
|κg(x, v,∇v)|q′(x)dx+ 2

≤
(
|λ|p+ + |λ|p−

) ∫
Ω

∣∣∣µ(γ(x) + |u|r1(x)−1 + |∇u|r1(x)−1
)∣∣∣p′(x)

dx

+
(
|κ|q+ + |κ|q−

) ∫
Ω

∣∣∣α(e(x) + |v|r2(x)−1 + |∇v|r2(x)−1
)∣∣∣q′(x)

dx

≤ C1

∫
Ω

(|u|p(x) + |∇u|p(x))dx+ C2

∫
Ω

(|v|q(x) + |∇v|q(x))dx

≤ C3

(
‖u‖p+1,p(x) + ‖u‖p−1,p(x)

)
+ C4

(
‖v‖q+1,q(x) + ‖v‖q−1,q(x)

)
≤ C5

(
‖u‖p+1,p(x) + ‖u‖p−1,p(x) + ‖v‖q+1,q(x) + ‖v‖q−1,q(x)

)
,

where C1, ..., C5 > 0 are independent of u and v. Therefore, ς is bounded.
Next, we show that ς is continuous. Let (un, vn) → (u, v) in X 1,p(x),q(x)(Ω) then,(un, vn) → (u, v) in

Lp(x),q(x)(Ω) and (∇un,∇vn)→ (∇u,∇v) in (Lp(x),q(x)(Ω))N . Then

‖ς(un, vn)− ς(u, v)‖p′(x),q′(x) = ‖λ
(
f(x, un,∇un)− f(x, u,∇u)

)
‖p′(x)

+‖κ
(
h(x, vn,∇vn)− h(x, v,∇v)

)
‖q′(x).

First, we prove that
lim

n→+∞
‖λ
(
h(x, un,∇un)− h(x, u,∇u)

)
‖p′(x) = 0.

By Proposition 2.4, it is equivalent to prove that

lim
n→+∞

%p′(x)

(
λ
(
h(x, un,∇un)− h(x, u,∇u)

))
= 0.

Since un → u in Lp(x),q(x)(Ω) and ∇un → ∇u in(Lp(x),q(x)(Ω))N . Then, there exist a subsequence still
denoted by (un) and δ in Lp(x) and Υ in (Lp(x)(Ω))N such that

un(x)→ u(x) and ∇un(x)→ ∇u(x), (3.7)

|un(x)| ≤ δ(x) and |∇un(x)| ≤ Υ(x), (3.8)

for almost every x ∈ Ω and all n ∈ N. Thus, from assumption (H1) and (3.7), we have

h(x, un,∇un)→ h(x, u,∇u) asn→∞, for almost every x ∈ Ω,

by (3.8) and (H1), we can deduce

|h(x, un(x),∇un(x))| ≤ µ(γ(x) + |δ(x)|p(x)−1 + |Υ(x)|p(x)−1),
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for almost every x ∈ Ω and for all n ∈ N. Taking into account that

γ(x) + |δ(x)|p(x)−1 + |Υ(x)|q(x)−1 ∈ Lp′(x)(Ω),

by applying Lebesgue’s theorem, we have

lim
n→+∞

%p′(x)

(
λh(x, un,∇un)− λh(x, u,∇u)

)
= 0.

The same reasoning is used to prove that

lim
n→+∞

%q′(x)

(
κg(x, vn,∇vn)− κg(x, v,∇v)

)
= 0.

We conclude that ζ is continuous.
Step 3. Since the embedding i : X 1,p(x),q(x)(Ω) → Lp(x),q(x)(Ω) is compact, then the adjoint operator
i∗ : Lp

′(x),q′(x)(Ω) →
(
X 1,p(x),q(x)(Ω)

)∗ is also compact. Hence, the compositions i∗ ◦ Ψ : X 1,p(x),q(x)(Ω) →(
X 1,p(x),q(x)(Ω)

)∗ and i∗ ◦ ζ : X 1,p(x),q(x)(Ω)→
(
X 1,p(x),q(x)(Ω)

)∗ are compact, that means S = i∗ ◦Ψ + i∗ ◦ ζ
is compact. With this last step the proof of Lemma 3.4 is completed.

Our main result is the following existence theorem.

Theorem 3.1. Assume that assumptions (M1)-(M5) and (H1),(H2) are satisfied. Then problem (1.1),
admits at least one weak solution (u, v) in X 1,p(x),q(x)(Ω).

Proof. The couple (u, v) ∈ X 1,p(x),q(x)(Ω) is a weak solution of (1.1) if and only if

F(u, v) = −S(u, v), (3.9)

where F ,S are defined as in Lemmas 3.3 and 3.4, respectively by

F : X 1,p(x),q(x)(Ω) −→
(
X 1,p(x),q(x)(Ω)

)∗
〈F(u, v), (ϕ,ψ)〉 = 〈fpu, ϕ〉+ 〈fqv, ψ〉,

and
S : X 1,p(x),q(x)(Ω) −→

(
X 1,p(x),q(x)(Ω)

)∗
〈S(u, v), (ϕ,ψ)〉 = −λ

∫
Ω
h(x, u,∇u)ϕdx− κ

∫
Ω
g(x, v,∇v)ψdx

+

∫
Ω
Q(x)|u|r1(x)−2uϕ(x)dx+

∫
Ω
O(x)|v|r2(x)−2vψ(x)dx.

By Lemma 3.3, the operator F is continuous, bounded, strictly monotone and of class (S+), therefore, by
the Minty-Browder Theorem (see [30]), the inverse operator

T := F−1 : (X 1,p(x),q(x)(Ω))∗ → X 1,p(x),q(x)(Ω),

T (φ, ψ) = (Tpφ, Tqψ),

is also bounded, continuous, strictly monotone, and of class (S+). The operator T is such that

T (φ, ψ) = (u, v) if and only if (φ, ψ) = F(u, v).

Consequently, following Zeidler’s terminology [30], equation (3.9) is equivalent to the following abstract
Hammerstein equation

(u, v) = T (φ, ψ) and (φ, ψ) + S ◦ T (φ, ψ) = 0, (3.10)

for all (u, v) ∈ X 1,p(x),q(x)(Ω) and (φ, ψ) ∈ (X 1,p(x),q(x)(Ω))∗. To say that a couple (u, v) ∈ X 1,p(x),q(x)(Ω) is
a solution to (3.9) is equivalent to say that (φ, ψ) is a dual solution of (3.10). Then to solve (3.9) it suffices
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to solve (3.10), and we will apply the Berkovits topological degree introduced in Section 2.2. To do this, we,
first, claim that the set

B :=
{

(φ, ψ) ∈ (X 1,p(x),q(x)(Ω))∗ : ∃ t ∈ [0, 1] such that (φ, ψ) + tSoT (φ, ψ) = 0
}
.

is bounded. To verify this, we show that the set
{
T (φ, ψ)| (φ, ψ) ∈ B

}
is bounded. Indeed, taking into

account that
‖T (φ, ψ)‖1,p(x),q(x) = ‖(u, v)‖1,p(x),q(x) = ‖∇u‖p(x) + ‖∇v‖q(x).

We denote D = X 1,p(x),q(x)(Ω) ∩ T (B) and define

D1 =
{

(u, v) ∈ D
∣∣ 1 ≥ ‖∇u‖p(x), ‖∇v‖q(x)

}
,

D2 =
{

(u, v) ∈ D
∣∣ 1 < ‖∇u‖p(x), ‖∇v‖q(x)

}
,

D3 =
{

(u, v) ∈ D
∣∣ 1 < ‖∇u‖p(x) and ‖∇v‖q(x) < 1

}
,

D4 =
{

(u, v) ∈ D
∣∣ 1 > ‖∇u‖p(x) and ‖∇v‖q(x) > 1

}
.

Then we have the following cases:
First case. If (u, v) ∈ D1, then ‖T (φ,Ψ)‖1,p(x),q(x) is bounded by definition.
Second case. If (u, v) ∈ D2, we deduce from (2.2), (M2)-(M3) that

‖T (φ, ψ)‖1,p(x),q(x) ≤ ‖∇u‖
p−
p(x) + ‖∇v‖q−q(x) ≤ %p(x)(∇u) + %q(x)(∇v)

≤ 1

σ

∫
Ω
|∇u|p(x)dx+

1

ι

∫
Ω
|∇v|q(x)dx

≤
∫

Ω
a1(x,∇u)∇u dx+

∫
Ω
a2(x,∇v)∇v dx

≤ max{ 1

σ
,
1

ι
} 〈F(u, v), (u, v)〉1,p(x),q(x)

= −t max{ 1

σ
,
1

ι
} 〈SoT (φ, ψ), T (φ, ψ)〉1,p(x),q(x).

Moreover, by assumptions (H1)-(H2), Young’s inequality and bearing (2.7), (2.6) in mind, we obtain

‖T (φ, ψ)‖1,p(x),q(x) ≤ C1

(∫
Ω
λf(x, u,∇u)udx+

∫
Ω
κh(x, v,∇v)vdx+

∫
Ω
λQ(x)|u|r1(x)dx

+

∫
Ω
κO(x)|v|r2(x)dx

)
≤ C2

[
%p(x)(u) + %q(x)(v) +

∫
Ω
µ(γ(x) + |u|r1(x)−1 + |∇u|r1(x)−1)u dx

+

∫
Ω
α(e(x) + |v|r2(x)−1 + |∇v|r2(x)−1)v dx

]
≤ C3

[
ρp(x)(u) + ρq(x)(v) +

∫
Ω
γ(x)udx+

∫
Ω
|u|p(x)−1u dx+

∫
Ω
|∇u|p(x)−1u dx

+

∫
Ω
e(x)v dx+

∫
Ω
|∇v|q(x)−1v dx+

∫
Ω
|v|q(x)−1v dx

]
≤ C4

[
|u|p−p(x) + |u|p+p(x) + |v|q−q(x) + |v|q+q(x) + |γ|p′(x)|u|p(x) + |e|q′(x)|v|q(x)

+ C5 %p(x)(∇u) + C6 %p(x)(u) + C7 %q(x)(∇v) + C8 %q(x)(v)
]

≤ C9

[
‖u‖p−p(x) + ‖u‖p+p(x) + ‖v‖q−q(x) + ‖v‖q+q(x)

]
,
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where C1, ..., C9 > 0 are independent of u, v. Hence, ‖T (φ, ψ)‖1,p(x),q(x) is bounded.
Third case. If (u, v) ∈ D3, then

‖T (φ, ψ)‖1,p(x),q(x) = ‖∇u‖p(x) + ‖∇v‖q(x)

≤ ‖∇u‖p−p(x) + 1 ≤ 1 + ‖∇u‖p−p(x) + ‖∇v‖q+q(x)

≤ %p(x)(∇u) + %q(x)(∇v) + 1.

From here, we proceed in the same manner as in the prior case to arrive at the conclusion that
‖T (φ, ψ)‖1,p(x),q(x) is bounded.
Fourth case. Similarly to the previous case, if (u, v) ∈ D4 inversing the positions of u and v, we get that{
T (φ, ψ) : (φ, ψ) ∈ B

}
is bounded.

On the other hand, we have that the operator S is bounded. Thus, thanks to (3.10), we have that the
set B is bounded in (X 1,p(x),q(x)(Ω))∗. Consequently, there exists R > 0 such that

‖(φ, ψ)‖1,p′(x),q′(x) < R for all (φ, ψ) ∈ B .

Hence, it follows that

(φ, ψ) + tS ◦ T (φ, ψ) 6= 0 for all (φ, ψ) ∈ ∂BR(0) and t ∈ [0, 1].

Moreover, S is compact, then it is known that S is continuous, quasimonotne and by Lemma 2.1, we conclude
that

I + S ◦ T ∈ FT (BR(0)) and I = F ◦ T ∈ FT (BR(0)).

Since I,S and T are bounded, then

I + S ◦ T ∈ FT ,B(BR(0)) and I = FoT ∈ FT ,B(BR(0)).

Consequently, the homotopy

H : [0, 1]× BR(0)→ (X 1,p(x),q(x)(Ω))∗

(t, φ, ψ) 7→ H(t, φ, ψ) := (φ, ψ) + tS ◦ T (φ, ψ)

is such that H ∈ FT ,B(BR(0)), and thanks to the homotopy invariance and normalization property of the
degree d, seen in Theorem 2.1, we obtain

d(I + S ◦ T ,BR(0), 0) = d(I,BR(0), 0) = 1 6= 0,

which implies that there exists (φ, ψ) ∈ BR(0) satisfying the equality

(φ, ψ) + S ◦ T (φ, ψ) = 0.

Finally, we conclude that (u, v) = T (φ, ψ) is a weak solutions of (1.1).
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1 Introduction

Definition 1. Let n ∈ N, µ ∈ N0. Let M∗µ(Rn) denote the set all real valued trigonometric polynomials of
order less than or equal to µ:

Tµ(x) = Tµ(x1, . . . , xn) =
∑

−µ≤kj≤µ
j=1,...,n

ckje
ik·x (1.1)

=
∑

−µ≤k1≤µ
· · ·

∑
−µ≤kn≤µ

ck1,...,kne
i(k1x1+...knxn).

where x1, . . . , xn ∈ R, ck1,...,kn ∈ C are constant coefficients such that c−k = c̄k (hence Tµ(x) ∈ R for any
x ∈ Rn).

Let hereafter 0 < p ≤ ∞. A function f ∈ L∗p if it is 2π-periodic Lebesgue measurable and

‖f‖∗Lp = ‖f‖Lp(Q(0,π)) <∞, (1.2)

where Q(x, r) = {y ∈ Rn : |xj − yj | < r, j = 1, . . . , n}.

In book [9] the following inequalities are proven for trigonometric polynomials Tµ ∈M∗µ,p(Rn), where the
space M∗µ,p(Rn) is M∗µ(Rn) equiped with the quasinorm ‖ · ‖∗Lp .

1. (Bernstein’s inequality) Let 1 ≤ p ≤ ∞, then for any trigonometric polynomial Tµ ∈M∗µ,p(Rn)

∥∥∥∥∂Tµ∂xj

∥∥∥∥∗
Lp

≤ µ‖Tµ‖∗Lp , j = 1, . . . , n. (1.3)
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2. (Inequality of different metrics) Let 1 ≤ p < q ≤ ∞, then for any trigonometric polynomials Tµ ∈
M∗µ,p(Rn)

‖Tµ‖∗Lq ≤ 3nµ
n( 1
p
− 1
q

)‖Tµ‖∗Lp . (1.4)

3. (Inequality of different dimensions) Let 1 ≤ p ≤ ∞ , 1 ≤ m < n , x = (u, v), u = (x1, . . . , xm) ∈
Rm, v = (xm+1, . . . , xn) ∈ Rn−m, then for any trigonometric polynomial Tµ ∈M∗µ,p(Rn)∥∥∥∥‖Tµ(u, v)‖L∞,v(Rn−m)

∥∥∥∥∗
Lp,u

≤ 3n−mµ
n−m
p ‖Tµ‖∗Lp , (1.5)

in particular,
‖Tµ(u, 0)‖∗Lp ≤ 3n−mµ

n−m
p ‖Tµ‖∗Lp . (1.6)

The purpose of this work is to present similar inequalities in which the space L∗p is replaced by the
periodic Morrey space (Mλ

p )∗.
Note also that Bernstein’s inequality, inequalities of different metrics and different dimensions for entire

functions of exponential type for the spaces Lp(Rn) were proved by S.M. Nikolsky [9], and for the Morrey
spaces in the works [2], [3]

2 Morrey spaces

The spaces Mλ
p (Rn), now called Morrey spaces, were first considered by Charles Morrey [8] in connection

with the study of the regularity of solutions of partial differential equations.

Definition 2. Let 0 < p ≤ ∞ and 0 ≤ λ ≤ n
p , then f ∈M

λ
p (Rn), if f ∈ Llocp (Rn) and

‖f‖Mλ
p (Rn) = sup

x∈Rn
sup
r>0

r−λ‖f‖Lp(B(x,r)) <∞, (2.1)

where B(x, r) = {y ∈ Rn : |x− y| < r}.

Periodic analogues (Mλ
p )∗(Rn) of the Morrey space were considered in [10]

Definition 3. Let 0 < p ≤ ∞ and 0 ≤ λ ≤ n
p , then f ∈ (Mλ

p )∗(Rn), if it has period 2π, is Lebesgue
measurable on Rn and

‖f‖∗Mλ
p

= sup
x∈Q(0,π)

sup
0<r≤π

r−λ‖f‖Lp(Q(x,r)) <∞. (2.2)

We note some properties of these spaces.
1. It is immediately clear from the definition that for λ = 0

‖f‖∗M0
p

= ‖f‖∗Lp .

2. For λ = n
p

‖f‖∗
M

n
p
p

= ‖f‖∗L∞ ,

3. If λ < 0 or λ > n
p , then the spaces (Mλ

p )∗(Rn) consist only of functions equivalent to 0 on Q(0, π).

4. Note that the space (Mλ
p )∗(Rn) has the property of monotonicity with respect to the parameter λ:

(Mλ
p )∗ ⊂ (Mµ

p )∗, 0 ≤ µ < λ ≤ n

p
, 0 < p <∞ (2.3)
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and

‖f‖∗Mµ
p
≤ πλ−µ‖f‖∗Mλ

p
. (2.4)

In particular, for µ = 0

(Mλ
p )∗(Rn) ⊂ (Lp)

∗(Rn)

and
‖f‖∗Lp ≤ π

λ‖f‖∗Mλ
p
. (2.5)

5. In [4] it is proven that for any f ∈ (Mλ
p )∗

‖f‖∗Mλ
p

= ‖f‖∗∗Mλ
p
≡ sup

x∈Rn
sup

0<r≤π
r−λ‖f‖∗Lp(Q(x,r)). (2.6)

6. (Shift invariance) For any f ∈ (Mλ
p )∗

‖f(y + h)‖∗Mλ
p

= ‖f(y)‖∗Mλ
p
∀h ∈ Rn. (2.7)

3 Inequalities for trigonometric polynomials in periodic Morrey spaces

3.1 Bernstein’s inequality
In the one-dimensional case, the interpolation formula for an arbitrary trigonometric polynomial Tµ of order
µ > 0 has the form (see [9]):

T ′µ(x) =
1

4µ

2µ∑
k=1

(−1)k+1 1

sin2 xk
2

Tµ(x+ xk), (3.1)

where xk are the zeros of the polynomial cos(nx).
If Tµ(x) = sin(µx) and x = 0, then we get

µ =
1

4µ

2µ∑
k=1

1

sin2 xk
2

. (3.2)

Theorem 3.1. Let Z∗ be a normed space of 2π-periodic functions in each variable, and let ‖ · ‖∗Z be a shift
invariant norm, i.e. for any function f ∈ Z∗

‖f(x+ h)‖∗Z = ‖f‖∗Z ∀h ∈ Rn. (3.3)

Then for any trigonometric polynomials Tµ ∈ Z∗(Rn)∥∥∥∥∂Tµ∂xj

∥∥∥∥∗
Z

≤ µ‖Tµ‖∗Z , j = 1, . . . , n. (3.4)

The proof is based on representation (3.1).

Corollary 3.1. Let 1 ≤ p ≤ ∞ , 0 ≤ λ ≤ n
p , then for any trigonometric polynomial Tµ ∈ (Mλ

p )∗∥∥∥∥∂Tµ∂xj

∥∥∥∥∗
Mλ
p

≤ µ‖Tµ‖∗Mλ
p
, j = 1, . . . , n. (3.5)
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3.2 Inequality of different metrics
Definition 4. Let 1 ≤ p ≤ ∞, 0 ≤ λ ≤ n

p , r > 0, µ,N ∈ N, Tµ ∈M∗µ,p(Rn) and

((Tµ))∗
Mλ
p,N

= sup
x∈Q(0,π)

sup
0<r≤π

r−λ
((

r

N

)n N−1∑
k1=−N

· · ·
N−1∑

kn=−N∣∣∣∣Tµ(x1 +
r

N
k1, . . . , xn +

r

N
kn

)∣∣∣∣p)1/p

.

Lemma 3.1. Let 1 ≤ p ≤ ∞, n, µ,N ∈ N, 0 ≤ λ ≤ n
p , then for any trigonometric polynomial Tµ ∈M∗µ,p(Rn)

‖Tµ‖∗Mλ
p
≤ ((Tµ))∗

Mλ
p,N
≤ (1 +

π

N
µ)n‖Tµ‖∗Mλ

p
. (3.6)

Lemma 3.2. Let 1 ≤ p ≤ q ≤ ∞ n, µ,N ∈ N, 0 ≤ λ ≤ n
q , then for any trigonometric polynomial

Tµ ∈M∗µ,p(Rn)

((Tµ))∗

M
λ−n( 1

p−
1
q )

q,N

≤ Nn( 1
p
− 1
q

)
((Tµ))∗

Mλ
p,N
. (3.7)

Theorem 3.2. Let 1 ≤ p ≤ q ≤ ∞, n
(

1
p−

1
q

)
≤ λ ≤ n

p , then for any trigonometric polynomial Tµ ∈M∗µ,p(Rn)

‖Tµ‖∗
M
λ−n( 1

p−
1
q )

q

≤ (1 + π)nµ
n( 1
p
− 1
q

)‖Tµ‖∗Mλ
p
. (3.8)

Consider the convolution of functions ϕ, g ∈ L1(Q(0, π)) 2π− periodic in each variable

(ϕ ∗ g)(x) =

∫
Q(0,π)

ϕ(x− y)g(y)dy, x ∈ Rn. (3.9)

Recall that ∀k ∈ Zn
ck(ϕ ∗ g) = (2π)nck(ϕ)ck(g). (3.10)

If ck(ϕ) = (2π)−n then
ck(g) = ck(ϕ ∗ g). (3.11)

Lemma 3.3. Let n ∈ N, µ ∈ N, ϕ ∈ L1(Q(0, π)) be a 2π-periodic trigonometric polynomial in each variable.
In order for any trigonometric polynomial Tµ of order µ to satisfy the equality

Tµ = ϕ ∗ Tµ, (3.12)

it is necessary and sufficient condition that

ck(ϕ) = (2π)−n ∀k ∈ Zn : |kj | ≤ µ, j = 1, . . . , n. (3.13)

Definition 5. (Dirichlet kernel) Let

Dµ(x) =
1

2

µ∑
k=−µ

eikx =
1

2
+

µ∑
k=1

cos(kx) =
sin(µ+ 1

2)x

2 sin x
2

(3.14)

and
D̃µ(x) =

1

π
Dµ(x). (3.15)

Note that

‖D̃µ‖∗L2
=

√
2µ+ 1

2π
(3.16)
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and
‖D̃µ‖∗L∞ =

2µ+ 1

2π
. (3.17)

From equalities (3.16) and (3.17) it follows that for any 2 < p <∞

‖D̃µ‖∗Lp ≤
(

2µ+ 1

2π

)1− 1
p

. (3.18)

A special case of equality (3.12) is the well-known equality

Tµ(x) = D̃µ(x) ∗ Tµ(x).

Remark 1. If ϕ is a trigonometric polynomial of order µ in each variable, then equality (3.12) holds for any
trigonometric polynomials Tµ of order µ in each variable if and only if

ϕ(x) =
1

(2π)n

∑
|kj |≤µ
j=1,...,n

eik·x =
1

(2π)n

n∏
j=1

∑
|kj |≤µ

eikjxj =
1

πn

n∏
j=1

Dµ(xj) =

n∏
j=1

D̃µ(xj).

Remark 2. Let α, n ∈ N

∆α(j) = {k ∈ Zn, |kj | ≤ α}

and
∆α = ∆α(1)× · · · ×∆α(n).

If ϕ is a trigonometric polynomial of order ν > µ in each variable, then equality (3.12) holds for any
trigonometric polynomials Tµ of order µ in each variable if and only if

ϕ(x) =
∑
k∈∆ν

cke
ik·x =

n∏
j=1

D̃µ(xj) +
∑

k∈∆ν\∆µ

cke
ik·x. (3.19)

(
In particular, for n = 1 ϕ(x) = D̃µ(x) +

(∑−µ−1
k=−ν +

∑ν
k=µ+1

)
cke

ik·x.

)
Definition 6. Let, for µ ∈ N, J∗µ denote the set of all 2π-periodic functions ϕ ∈ L1(Q(0, π)), satisfying
condition (3.13) (hence, having form (3.19) for some ν ∈ N, ν ≥ µ).

According to Lemma 3.3 for such functions ϕ equality (3.12) holds.

Definition 7. (see [10]) Let µ, ν ∈ N and ν > µ. The Vallee Poussin kernels are defined as follows:

Vµ,ν(x) = (ν − µ)−1
ν−1∑
l=µ

Dl(x), x ∈ R, (3.20)

in particular,
Vµ(x) = Vµ,2µ(x), µ ≥ 1, V0(x) = 1, x ∈ R. (3.21)

Remark 3. For ν > µ we represent the Dirichlet kernel as

Dν(x) =
1

2
+ cosx+ · · ·+ cosµx+ (cos(µ+ 1)x+ · · ·+ cos νx) (3.22)

= Dµ(x) +Dµ,ν(x), (3.23)

where

Dµ,ν(x) =
ν∑

l=µ+1

cos lx. (3.24)
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Then for ν > µ+ 1

Vµ,ν(x) = Dµ(x) +
1

ν − µ

ν−1∑
l=µ+1

Dµ,l(x). (3.25)

Let us put

Ṽµ,ν(x) =
1

π
Vµ,ν(x), D̃µ,ν(x) =

1

π
Dµ,ν(x), (3.26)

then

Ṽµ,ν(x) = D̃µ(x) +
1

ν − µ

ν−1∑
l=µ+1

D̃µ,l(x). (3.27)

in particular,

Ṽµ(x) = D̃µ(x) +
1

µ

2µ−1∑
l=µ+1

D̃µ,l(x). (3.28)

A special case of equality (3.12) is the equality

Tµ(x) = Ṽµ,ν(x) ∗ Tµ(x), (3.29)

in particular,
Tµ(x) = Ṽµ(x) ∗ Tµ(x).

Remark 4. Note that
D̃µ(x), Ṽµ,ν , ν > µ, Ṽµ ∈ J∗µ (3.30)

Theorem 3.3 (see, for example, [10]). Let µ ∈ N, 1 ≤ p ≤ ∞, then

‖Ṽµ‖∗Lp ≤ 3nµn(1−1/p). (3.31)

Theorem 3.4. (Corollary of the Young-type inequality for periodic Morrey spaces, see [4] )

Let
0 ≤ λ < n

p
, 1 ≤ r, p < q ≤ ∞, 1 +

1

q
=

1

r
+

1

p
,

f1 ∈ Lr(Rn) and f2 ∈ (Mλ
p )∗. Then

‖f1 ∗ f2‖∗
M

pλ
q
q

≤ ‖f1‖∗Lr(‖f2‖∗Mλ
p

)
p
q (‖f2‖∗Lp)

1− p
q . (3.32)

Theorem 3.5. Let 1 ≤ r, p < q ≤ ∞, n, µ ∈ N 0 ≤ λ ≤ n
p , 1 + 1

q = 1
r + 1

p . Then

‖Tµ‖∗
M

pλ
q
q

≤ c(‖Tµ‖∗Mλ
p

)
p
q (‖Tµ‖∗Lp)

1− p
q (3.33)

for any Tµ ∈ (Mλ
p )∗, where

c = c(µ, r) = inf
ϕ∈J∗µ

‖ϕ‖∗Lr . (3.34)

Corollary 3.2. Let 1 ≤ p ≤ q ≤ ∞, n, µ ∈ N 0 ≤ λ ≤ n
p , then for any Tµ ∈ (Mλ

p )∗

‖Tµ‖∗
M

pλ
q
q

≤ 3nµ
n( 1
p
− 1
q

)
(‖Tµ‖∗Mλ

p
)
p
q (‖Tµ‖∗Lp)

1− p
q . (3.35)

Inequality (3.35) follows from inequalities (3.31) and (3.33) since Ṽµ ∈ J∗µ and in (3.33) c ≤ ‖Ṽµ‖∗Lr .



98 V.I. Burenkov, D.J. Joseph

Corollary 3.3. If 1 ≤ p ≤ 2, q ≥ 2p
2−p , then for any Tµ ∈ L∗p

‖Tµ‖∗
M

pλ
q
q

≤
(

2µ+ 1

2π

)n( 1
p
− 1
q

)

(‖Tµ‖∗Mλ
p

)
p
q (‖Tµ‖∗Lp)

1− p
q , (3.36)

in particular, for 0 ≤ λ ≤ n
2

‖Tµ‖∗
LM

λ
2

2

≤
(

2µ+ 1

2π

)n
2

(‖Tµ‖∗LMλ
1
‖Tµ‖∗L1

)
1
2 , (3.37)

and

‖Tµ‖∗L∞ ≤
(

2µ+ 1

2π

)n
2

‖Tµ‖∗L2
. (3.38)

Inequality (3.38) follows from inequalities (3.31), (3.33) and (3.16) since D̃µ ∈ J∗µ and in (3.33) c ≤ ‖D̃µ‖∗L2
.

In the last inequality the constant is sharp, the equality is attained for Tµ(x) =
∏n
l=1 D̃µ(xl). Regarding

generalizations, see [7].

Corollary 3.4. By inequality (2.5) inequalities (3.33)-(3.36) imply that

‖Tµ‖∗
M

pλ
q
q

≤ cπλ(1− p
q

)‖Tµ‖∗Mλ
p
, (3.39)

‖Tµ‖∗
M

pλ
q
q

≤ 3nπ
λ(1− p

q
)
µ
n( 1
p
− 1
q

)‖Tµ‖∗Mλ
p
, (3.40)

‖Tµ‖∗
M

pλ
q
q

≤
(

2µ+ 1

2π

)n( 1
p
− 1
q

)

π
λ(1− p

q
)‖Tµ‖∗Mλ

p
. (3.41)

Remark 5. Inequality (3.35) is a periodic analogue of the inequality of different metrics for entire functions
of exponential type (see [2],[3]).

Remark 6. Note that inequailies (2.4) and (3.40) imply that

‖Tµ‖∗
M
λ−n( 1

p−
1
q )

q

≤ π(λp−n)( 1
p
− 1
q

)‖Tµ‖∗
M

λp
q
q

≤ 3n(πµ)
n( 1
p
− 1
q

)‖Tµ‖∗Mλ
p
. (3.42)

So, inequality (3.40) has a better exponent pλ
q compared with the exponent λ− n(1

p −
1
q ) in (3.8). However,

for some values of λ, p, q the constant (1 + π)n in (3.8) is better than the constant 3nπ
λ(1− p

q
) in (3.40).

3.3 Inequality of different dimensions
Definition 8. Let

0 < p1, p2 ≤ ∞, m1,m2 ∈ N

0 ≤ λ1 ≤
m1

p1
, 0 ≤ λ2 ≤

m2

p2
.

Let us define the space
(Mλ1

p1
)∗(R)m1 × (Mλ2

p2
)∗(Rm2) (3.43)

with a mixed quasinorm as the set of all measurable functions f on Rm1+m2 for which

‖Tµ‖∗
M
λ1
p1

(Rm1 )×Mλ2
p2

(Rm2 )
= ‖‖Tµ(u1, u2)‖∗

M
λ1
p1,u1

(Rm1 )
‖∗
M
λ2
p2,u2

(Rm2 )

= sup
y∈Qm2 (0,π)

sup
0<ρ≤π

ρ−λ2‖ sup
x∈Qm1 (0,π)

sup
0<r≤π

r−λ1‖Tµ(u1, u2)‖Lp1,u1 (Q(x,r))‖Lp2,u2 (Q(x,r)), (3.44)

where Qm1(0, π) = {u1 ∈ Rm1 : |u1j | < π, j = 1, . . . ,m1} and Qm2(0, π) is defined similarly.
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Let us note some properties of these spaces.

Lemma 3.4. Let 0 < p ≤ ∞, m1,m2 ∈ N, 0 < λ1 ≤ m1
p , 0 < λ2 ≤ m2

p , f1 ∈ (Mλ1
p )∗(Rm1) f2 ∈ (Mλ2

p )∗(Rm2)
f1 ∼ 0 on Rm2 f2 ∼ 0 on Rm1, then

‖f1f2‖∗
M
λ1
p (Rm1 )×Mλ2

p (Rm2 )
= ‖f1‖∗

M
λ1
p (Rm1 )

‖f2‖∗
M
λ2
p (Rm2 )

(3.45)

Lemma 3.5. Let 0 < p ≤ ∞, m1,m2 ∈ N, 0 ≤ λ1 ≤ m1
p , 0 ≤ λ2 ≤ m2

p . Then

(Mλ1
p )∗(Rm1)× (Mλ2

p )∗(Rm2) ⊂ (Mλ1+λ2
p )∗(Rm1+m2), (3.46)

and
‖f‖∗

M
λ1+λ2
p (Rm1+m2 )

≤ ‖f‖∗
M
λ1
p (Rm1 )×Mλ2

p (Rm2 )
(3.47)

for any f ∈ (Mλ1
p )∗(Rm1)× (Mλ2

p )∗(Rm2).
If 0 < λ1 + λ2 <

m1+m2
p , then inclusion (3.46) is strict.

Theorem 3.6. Let 1 ≤ p <∞, m, n ∈ N, m < n, 0 ≤ λ ≤ n
p , then

‖Tµ‖∗L∞(Rn−m)×Mλ
p (Rm) ≤ 3n−mµ

n−m
p ‖Tµ‖∗Lp,v(Rn−m)×Mλ

p (Rm), (3.48)

in particular, if x = (u, v), u = (x1 . . . xm), v = (xm+1, . . . , xn), then

‖Tµ(u, 0)‖∗Mλ
p (Rm) ≤ 3n−mµ

n−m
p ‖Tµ‖∗Lp(Rn−m)×Mλ

p (Rm). (3.49)

Remark 7. If λ = 0, then it is obvious that

L∗p(Rn−m)× (M0
p )∗(Rm) = L∗p(Rn−m)× L∗p(Rm) = L∗p(Rn) (3.50)

however, for 0 < λ ≤ m
p according to Lemma 3.5

L∗p(Rn−m)× (Mλ
p )∗(Rm) ⊂ (Mλ

p )∗(Rn), (3.51)

but
L∗p(Rn−m)× (Mλ

p )∗(Rm) 6= (Mλ
p )∗(Rn). (3.52)
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