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1 Introduction

One of the fundamental research problems in the theory of generalized inverses of matrices is to
establish reverse order laws for generalized inverses of matrix products. It was Erik Ivar Fredholm
who seemed to have first mentioned the concept of generalized inverse in 1903. He formulated a
pseudoinverse for a linear integral operator, which is not invertible in the ordinary sense. Hilbert,
Schmidt, Bounitzky, Hurwitz and other mathematicians had studied the generalized inverses of inte-
gral operators and differential operators before Moore introduced the generalized inverse of matrices
by algebraic methods in 1920 [17]. Bjerhammar rediscovered Moore’s inverse and also noted the
relationship of generalized inverses to solutions of linear systems in 1951 [5]. In 1955, Penrose [21]
extended Bjerhammar’s results and showed that Moore’s inverse for a given matrix A is the unique
matrix X satisfying the four equations:

AXA = A;XAX = X; (AX)∗ = AX; (XA)∗ = XA.

In honour of Moore and Penrose, this unique inverse is now commonly called the Moore-Penrose
inverse and is denoted by A†. Meanwhile, generalized inverses were defined for operators by Tseng
[24], Murray and von Neumann [19], Nashed [20] and others. Beutler discussed generalized inverses
for both bounded and unbounded operators with closed and arbitrary ranges [3, 4]. Throughout the
years, the Moore-Penrose inverse was extensively studied. One of the primary reasons for considering
the Moore-Penrose inverse is solving systems of linear equations, which constitutes an important
application in various fields.

It is well known that the reverse order law (AB)−1 = B−1A−1 is not true in general for various
generalized inverses such as the Moore-Penrose inverse, Drazin inverse etc. Cline attempted to find
a reasonable representation for the Moore-Penrose inverse of the product of matrices [9] and Greville
found some necessary and sufficient conditions for the reverse order law to hold in matrix setting
[13]. The reverse order law problem for bounded linear operators on Hilbert spaces was analyzed by
Bouldin [6, 7] and Izumino [16]. The theory of generalized inverses on infinite-dimensional Hilbert
spaces can be found in [2, 15, 25].
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In this paper, we present algebraic proofs of some characterizations of reverse order law for the
Moore-Penrose inverses of closed range Hilbert space operators. In the second section, we collect
some definitions and lemmas which will be used in the sequel. We start the main section with some
examples to show that the reverse order law does not hold for Hilbert space operators in general. In
total, we present 61 results, including some range inclusion results to characterize the reverse order
law in this setting. We extend the results of Arghiriade [1] and Tian [22, 23] to infinite-dimensional
Hilbert spaces.

2 Preliminaries

Let H1 and H2 be Hilbert spaces and B(H1,H2) denote the set of all linear bounded operators from
H1 to H2. We abbreviate B(H1) = B(H1,H1). For A ∈ B(H1,H2), we denote by A∗, N (A) and
R(A), respectively, the adjoint, the null-space and the range of A. An operator A ∈ B(H1) is said to
be self-adjoint (Hermitian) if A = A∗. An operator A ∈ B(H1) is said to be a projection if A2 = A.
A projection is said to be orthogonal if A2 = A = A∗. The Moore-Penrose inverse of A ∈ B(H1,H2)
is the operator X ∈ B(H2,H1) which satisfies the Penrose equations

AXA = A (2.1)
XAX = X (2.2)
(AX)∗ = AX (2.3)
(XA)∗ = XA. (2.4)

A matrix X is called a {i, . . . , j}-generalized inverse of A, denoted by A(i,...,j) if it satisfies the
ith, . . . , jth conditions of the Penrose equations. The collection of all {i, . . . , j}-generalized inverses
of A is denoted by A{i, . . . , j}. If the Moore-Penrose inverse of A exists, then it is unique and it is
denoted by A†. It should be noted that A† is bounded if and only if R(A) is closed in H2.

For the sake of clarity as well as for easier reference, we mention the following properties of the
Moore-Penrose inverse without proof [25].

Lemma 2.1. Let A ∈ B(H1,H2) be a closed range operator. The following statements hold:

(i) (A†)† = A.

(ii) (A†)∗ = (A∗)†.

(iii) A = AA∗(A∗)† = (A∗)†A∗A.

(iv) A† = A∗(AA∗)† = (A∗A)†A∗.

(v) (AA∗)† = (A∗)†A†, (A∗A)† = A†(A∗)†.

(vi) A∗ = A∗AA† = A†AA∗.

(vii) R(A) = R(AA∗) = R(AA†).

(viii) R(A†) = R(A∗) = R(A†A) = R(A∗A).

(ix) AA† = PR(A) and A†A = PR(A∗) = PR(A†).

(x) If H1 = H2, then (An)† = (A†)n for n ≥ 1.

Here, PR(A) and PR(A∗) denote the projections onto R(A) and R(A∗), respectively. We use A†
∗

instead of (A†)∗ throughout the paper.
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Lemma 2.2 ([8], Theorem 1). Let A ∈ B(H1,H2) be a closed range operator such that R(A) =
R(A∗). Then AA† = A†A and AnA† = An−1, n ≥ 2.

Lemma 2.3. Let H be a Hilbert space and P ∈ B(H) be a projection. Then P is Hermitian if and
only if P = PP ∗P.

Proof. Suppose P = PP ∗P and P is a projection. Let B = P − P ∗. Then it is easy to verify that
B3 = 0 and R(B) = R(B∗). By Lemma 2.2, B3(B†)2 = 0 gives B = 0. Thus, P is Hermitian.
Converse follows directly.

Remark 1. If P is an orthogonal projection, then P satisfies all the Penrose equations and hence
P † = P.

Lemma 2.4 ([26], Lemma 1.3). Let A ∈ B(H1,H2) have a closed range and B ∈ B(H2,H1). Then

(i) B ∈ A{1, 3} ⇔ A∗AB = A∗,

(ii) B ∈ A{1, 4} ⇔ BAA∗ = A∗.

Theorem 2.1 ([12], Theorem 1). Let A and B be bounded operators on a Hilbert space H. The
following statements are equivalent:

(i) R(A) ⊆ R(B);

(ii) there exists a bounded operator C on H so that A = BC.

Theorem 2.2 ([14], Theorem 7.20). Let A ∈ B(H) be self-adjoint. Then there exist a measure space
(X,Σ, µ), a bounded measurable real-valued function f on X and a unitary operator U : H → L2(X,µ)
such that

A = U∗TU,

where T is the multiplication operator given by Tψ = fψ, ∀ψ ∈ L2(X,µ).

Definition 1. Let (H, 〈., .〉) be a Hilbert space and A ∈ B(H). The operator A is called a positive
semi-definite operator if 〈Ax, x〉 ≥ 0 for all x ∈ H.

Lemma 2.5. Let H be a Hilbert space and A ∈ B(H) be a positive semi-definite operator such that
Am = An for some natural numbers m 6= n. Then A2 = A.

Proof. We know that a positive semi-definite operator is self adjoint. By Theorem 2.2, we can write

A = U∗TU,

where T is the multiplication operator given by Tψ = fψ, ∀ψ ∈ L2(X,µ). Using the positive semi-
definiteness of the operator, we get f(x) ≥ 0 ∀x ∈ X.

It is given that Am = An which implies

fmψ = fnψ, ∀ψ ∈ L2(X,µ). (2.5)

Let x0 ∈ X and E be a subset of X such that x0 ∈ E and µ(E) 6= 0. Since equation (2.5) holds
for the characteristic function on E, we get fm(x0)(1− fn−m(x0)) = 0, from which we can conclude
f(x0) = 0 or f(x0) = 1 as f(x) ≥ 0 ∀x ∈ X. As x0 is arbitrary f(x) = 0 or f(x) = 1 for all x ∈ X.

Now, T 2ψ(x) = T (f(x)ψ(x)) = f(x)2ψ(x) = f(x)ψ(x) = Tψ(x) for all ψ(x) ∈ L2(X,µ). Also,
U∗T 2U = U∗TU ⇒ A2 = A.
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Lemma 2.6. Let A and B be orthogonal projections on a Hilbert space H and m > n ≥ 1. If
(ABA)m = (ABA)n, then AB = BA.

Proof. ABA = ABBA = ABB∗A∗ = AB(AB)∗. Thus ABA is Hermitian and positive semi-definite
as AB(AB)∗ is so. Then by Lemma 2.5, (ABA)m = (ABA)n implies (ABA)2 = ABA. Consider
(ABA−AB)(ABA−AB)∗ = (ABA−AB)(ABA−BA) = (ABA)2−ABABA−ABABA+ABA = 0.
Thus ABA = AB. Similarly, we can verify (ABA−BA)(ABA−BA)∗ = 0, which gives ABA = BA.
Thus, we get AB = BA.

Lemma 2.7. Let A and B be orthogonal projections on a Hilbert space H and m > n ≥ 1. If
(AB)m = (AB)n, then AB = BA.

Proof. Since (AB)2A = ABABA = ABAABA = (ABA)2, thus (AB)mA = (ABA)m for all m ≥ 1.
Now it is clear that(AB)m = (AB)n gives (ABA)m = (ABA)n. Then by Lemma 2.6, we get AB =
BA.

3 Main results

We start the section with some examples to show that the reverse order law does not hold good for
closed range Hilbert space operators in general.

Example 1. LetH = `2 be the space of all square summable sequences. For x = (x1, x2, x3, . . . ) ∈ H,
define Ax = (x1 + x2, x2, x3, x4, . . . ) and Bx = (x1, 0, x3, 0, x5, . . . ). Then

AB(x) = A(x1, 0, x3, 0, x5, . . . ) = (x1, 0, x3, 0, x5, . . . ) = Bx.

It can be verified easily that A,B and AB are bounded and have closed ranges. We see that

A∗(x) = (x1, x1 + x2, x3, x4, . . . ) and B∗(x) = (x1, 0, x3, 0, x5, . . . ) = Bx.

Using the Euler-Knopp method for finding the Moore-Penrose inverses of operators ([25], p.327) we
get

A†(x) = (x1 − x2, x2, x3, x4, . . . ).
By Remark 1, we get B† = B and (AB)† = B†. Hence, B†A†(x) = B†(x1 − x2, x2, x3, x4, . . . ) =
(x1 − x2, 0, x3, 0, x5, . . . ) 6= (AB)†(x), thus (AB)† 6= B†A†.

Example 2. Let H = `2. For x = (x1, x2, x3, . . . ) ∈ H, define Ax = (0, x2, 0, x4, 0, . . . ) and Bx =
(x1 + x2, 2x1 + 2x2, x3, x4, . . . ). Then AB(x) = (0, 2x1 + 2x2, 0, x4, . . . ). It is easy to verify that A,B
and AB are bounded and have closed ranges. Since A∗(x) = (0, x2, 0, x4, 0, x6, . . . ) = Ax, by Remark
1 we get A†x = Ax. Also, B∗(x) = (x1 + 2x2, x1 + 2x2, x3, x4, . . . ) and B†(x) = ( 1

10
(x1 + 2x2),

1
10

(x1 +
2x2), x3, x4, . . . ) by the Euler-Knopp method. Thus, we get

B†A†(x) = B†(0, x2, 0, x4, 0, x6, . . . ) = (
x2
5
,
x2
5
, 0, x4, 0, . . . )

and
(AB)†x = (

x2
4
,
x2
4
, 0, x4, 0, . . . ).

Hence (AB)† 6= B†A†. One can also check that B†A† satisfies the third and fourth but not the first
and second Penrose equations.

Lemma 3.1 ([16], Proposition 2.1). Let H1,H2,H3 be Hilbert spaces, and let A ∈ B(H2,H3) and
B ∈ B(H1,H2) be such that A,B have closed ranges. Then AB has a closed range if and only if
A†ABB† has a closed range.
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The results mentioned below in Theorems 3.1 to 3.4 are proved in C∗-algebra setting [18] and for
the sake of completeness, we give the proof of those in Hilbert space setting. However, our proofs are
much simpler than those available for the reverse order law for closed range Hilbert space operators.

In the following result, the existence of (A†ABB†)† is guaranteed by Lemma 3.1.

Theorem 3.1. Let H1,H2,H3 be Hilbert spaces, and let A ∈ B(H2,H3) and B ∈ B(H1,H2) be such
that A,B,AB have closed ranges. Then the following statements are equivalent:

(i) ABB†A†AB = AB ;

(ii) B†A†ABB†A† = B†A† ;

(iii) BB†A†A is a projection ;

(iv) A†ABB† = BB†A†A ;

(v) A†ABB† is a projection ;

(vi) (A†ABB†)† = BB†A†A;

(vii) B†(A†ABB†)†A† = B†A†.

Proof. (i)⇒ (ii): If ABB†A†AB = AB, then

B†A† = (B∗B)†B∗A∗(AA∗)† (by Lemma 2.1 (iv))
= (B∗B)†(AB)∗(AA∗)†

= (B∗B)†(ABB†A†AB)∗(AA∗)† (by the assumption)

= (B∗B)†B∗A†ABB†A∗(AA∗)†

= B†A†ABB†A† (by Lemma 2.1 (iv)).

(ii)⇒(iii): Using (ii) we see that (BB†A†A)2 = BB†A†ABB†A†A = BB†A†A. Hence, it shows that
BB†A†A is a projection.
(iii)⇒(iv): We have

BB†A†A(BB†A†A)∗BB†A†A = BB†A†A(A†A)∗(BB†)∗BB†A†A

= BB†A†A(A†A)(BB†)BB†A†A

= BB†A†ABB†A†A = BB†A†A.

Then by Lemma 2.3, we get (BB†A†A)∗ = BB†A†A, since BB†A†A is a projection. Thus BB†A†A =
A†ABB†.
(iv)⇒(v): It is given that A†ABB† = BB†A†A. We have

(A†ABB†)2 = A†ABB†A†ABB† = BB†A†AA†ABB†

= BB†A†ABB† = A†ABB†BB† = A†ABB†.

(v)⇒(vi): Using the fact that A is a projection if and only if A∗ is a projection, it is easy to verify
all Penrose equations.
(vi)⇒(vii): Pre- and post-multiplying by B† and A† respectively in (vi), we get the desired result.
(vii)⇒(i): It is given that B†A† = B†(A†ABB†)†A†. We have

ABB†A†AB = ABB†(A†ABB†)†A†AB

= AA†ABB†(A†ABB†)†A†ABB†B

= AA†ABB†B = AB,

where all the equalities follow using the first Penrose equation.
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Next, we give ten equivalent conditions for B†A† to be a {1, 2, 3}-generalized inverse of AB in
Hilbert space setting. The existence of (ABB†)† follows as the ranges of ABB† and AB are equal.

Theorem 3.2. Let the conditions of Theorem 3.1 hold. Then the following statements are equivalent:

(i) AB(AB)† = ABB†A†;

(ii) B†A† ∈ AB{1, 2, 3};

(iii) BB†A∗AB = A∗AB;

(iv) (AB)(AB)†A = ABB†;

(v) A∗ABB† = BB†A∗A;

(vi) (ABB†)† = BB†A†;

(vii) B†(ABB†)† = B†A†;

(viii) B{1, 3}A{1, 3} ⊆ AB{1, 3};

(ix) B†A† ∈ AB{1, 3};

(x) (BB∗)†A† ∈ ABB∗{1, 2, 3}.

Proof. We prove the equivalence of all the statements in the following order of implications:

(i)⇒ (ii)⇒ (iii)⇒ (iv)⇒ (v)⇒ (vi)⇒ (vii)⇒ (ix)⇔ (viii), (ix)⇒ (i).

(i)⇒(ii): Since ABB†A† = AB(AB)†, post-multiplying by AB we get,

ABB†A†AB = AB(AB)†AB = AB.

Hence, B†A† ∈ AB{1}. By Theorem 3.1, B†A† ∈ AB{2}. Now using the assumption we get,
(ABB†A†)∗ = (AB(AB)†)∗ = AB(AB)† = ABB†A†. Thus B†A† ∈ AB{1, 2, 3}.
(ii)⇒(iii): Suppose B†A† ∈ AB{1, 2, 3}. Then by Theorem 3.1, A†ABB† = BB†A†A. Thus, we get

A∗AB = A∗AA†ABB†B = A∗ABB†A†AB

= A∗(ABB†A†)∗AB (since B†A† ∈ AB{3}
= A∗A†

∗
BB†A∗AB = (A†A)∗BB†A∗AB

= A†ABB†A∗AB = BB†A†AA∗AB

= BB†A∗AB (by Lemma 2.1 (vi)).

(iii)⇒(iv): We have

(AB)(AB)†A = ((AB)(AB)†)∗A∗
∗

= (A∗AB(AB)†)∗

= (BB†A∗AB(AB)†)∗ (by the assumption)

= ((AB)(AB)†)∗(BB†A∗)∗ = AB(AB)†ABB†

= ABB†.

(iv)⇒(v): Pre-multiplying the given condition by A∗, we get A∗ABB† = A∗AB(AB)†A. As the RHS
of the previous equality is Hermitian, A∗ABB† is also Hermitian and

A∗ABB† = (A∗ABB†)∗ = BB†A∗A.
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(v)⇒(vi): We show this by verifying all Penrose equations. Given that A∗ABB† = BB†A∗A. Pre-
multiplying by A†

∗
, we get ABB† = AA†ABB† = (AA†)∗ABB† = A†

∗
A∗ABB† = A†

∗
BB†A∗A.

Hence

(ABB†)(BB†A†)(ABB†) = ABB†A†ABB† = A†
∗
BB†A∗AA†ABB†

= A†
∗
A∗ABB†BB† = (AA†)∗ABB† = ABB†.

This shows that BB†A† ∈ ABB†{1}. Now,

BB†A† = BB†A∗(AA∗)† (by Lemma 2.1 (iv))
= (ABB†)∗(AA∗)† = (ABB†BB†A†ABB†)∗(AA∗)†

= (ABB†A†ABB†)∗(AA∗)† = BB†A†ABB†A∗(AA∗)†

= BB†A†ABB†BB†A† (by Lemma 2.1 (iv)).

Thus, BB†A† ∈ ABB†{1, 2}. Also,

(ABB†)(BB†A†) = (A†
∗
A∗ABB†)(BB†A†) = A†

∗
BB†A∗ABB†A†.

As the RHS of the last equality is Hermitian, (ABB†)(BB†A†) is so. Similarly, we can prove
(BB†A†)(ABB†) is Hermitian. It ensures that (ABB†)† = BB†A†.
(vi)⇒(vii): Pre-multiplying the given condition by B†, we get (vii).
(vii)⇒(ix): It is clear that ABB†(ABB†)†ABB† = ABB†. Then by (vii), we have ABB†A†ABB† =

ABB†. Post-multiplying by B we get ABB†A†AB = AB. Thus B†A† ∈ AB{1}. Also, ABB†A† is
Hermitian since ABB†A† = ABB†(ABB†)†. Thus B†A† ∈ AB{1, 3}.
(ix)⇒(viii): Let CD ∈ B{1, 3}A{1, 3} where C ∈ B{1, 3} and D ∈ A{1, 3}. By Lemma 2.4, C and D
satisfy B∗BC = B∗ and A∗AD = A∗. Also, we note that B†BC = (B∗B)†B∗BC = (B∗B)†B∗ = B†

and, similarly we can prove A†AD = A†. By using B†A† ∈ AB{1, 3}, we get

(AB)∗(AB)CD = (ABB†A†AB)∗ABCD = (AB)∗ABB†A†ABCD

= (AB)∗AA†ABB†BCD (by Theorem 3.1)

= (AB)∗AA†ABB†D = (AB)∗ABB†A†AD

= (AB)∗ABB†A† = (ABB†A†AB)∗ = (AB)∗.

(viii)⇒(ix): Obvious.
(ix)⇒(i): By the assumption, we have ABB†A†AB = AB and (ABB†A†)∗ = ABB†A†. Post-
multiplying by (AB)† in the first equation and taking adjoint on both sides, we get AB(AB)† =
ABB†A†.
(ix)⇒(x): The first and third Penrose conditions follow easily from (ix). The second Penrose condi-
tion can be verified with the help of Theorem 3.1 (iv).
(x)⇒(ix): Since (BB∗)†A† ∈ ABB∗{1}, we get ABB∗(BB∗)†A†ABB∗ = ABB∗ i.e.,
ABB†A†ABB∗ = ABB∗ by Lemma 2.1 (iv) and Theorem 3.1. Post-multiplying by B†∗ and us-
ing Lemma 2.1 (iii), we get

ABB†A†AB = AB.

Also, ABB∗(BB∗)†A† = ABB†A† is Hermitian. It shows that B†A† ∈ AB{1, 3}.

The following result is similar to Theorem 3.2. It gives ten equivalent conditions for B†A† to
be a {1, 2, 4}-generalized inverse of AB in Hilbert space setting. Here, the existence of (A†AB)† is
guaranteed as the ranges of (A†AB)∗ and (AB)∗ are the same.
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Theorem 3.3. Let the conditions of Theorem 3.1 hold. Then the following statements are equivalent:

(i) (AB)†AB = B†A†AB;

(ii) B†A† ∈ AB{1, 2, 4};

(iii) ABB∗ = ABB∗A†A;

(vi) B(AB)†AB = A†AB;

(v) A†ABB∗ = BB∗A†A;

(vi) (A†AB)† = B†A†A;

(vii) (A†AB)†A† = B†A†;

(viii) B{1, 4}A{1, 4} ⊆ AB{1, 4};

(ix) B†A† ∈ AB{1, 4};

(x) B†(A∗A)† ∈ A∗AB{1, 2, 4}.

Proof. The proof is similar to that of Theorem 3.2.

Theorem 3.4. Let the conditions of Theorem 3.1 hold. Then the following statements are equivalent:

(i) (AB)† = B†A†;

(ii) (AB)(AB)† = ABB†A† and (AB)†AB = B†A†AB;

(iii) A∗AB = BB†A∗AB and ABB∗ = ABB∗A†A;

(iv) AB(AB)†A = ABB† and B(AB)†AB = A†AB;

(v) A∗ABB† = BB†A∗A and BB∗A†A = A†ABB∗;

(vi) (ABB†)† = BB†A†and (A†AB)† = B†A†A;

(vii) B†(ABB†)† = B†A†and (A†AB)†A† = B†A†;

(viii) B{1, 3}A{1, 3} ⊆ AB{1, 3} and B{1, 4}A{1, 4} ⊆ AB{1, 4};

(ix) B†A† ∈ AB{1, 3, 4};

(x) (BB∗)†A† ∈ ABB∗{1, 2, 3} and B†(A∗A)† ∈ A∗AB{1, 2, 4}.

Proof. Follows from Theorems 3.2 and 3.3.

Remark 2. Consider the operators A and B on H defined in Example 1. Then for all x ∈ H,
A∗ABx = (x1, x1, x3, 0, x5, . . .) and BB†A∗ABx = (x1, 0, x3, 0, x5, . . .). Hence

A∗AB 6= BB†A∗AB and ABB∗x = (x1, 0, x3, 0, x5, . . .) = ABB∗A†Ax.

Note that the conditions in (iii) of Theorem 3.4 are not satisfied and (AB)† 6= B†A† which was shown
in Example 1.

Theorem 3.5. Let the conditions of Theorem 3.1 hold. Then the following statements hold:
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(i) B† = (AB)†A⇔ R(B) = R(A∗AB).

(ii) A† = B(AB)† ⇔ R(A∗) = R(BB∗A∗).

Proof. (i) Suppose that B† = (AB)†A. Pre-multiplying by AB, we get ABB† = (AB)(AB)†A, which
is equivalent to BB†A∗AB = A∗AB by Theorem 3.2. This implies R(A∗AB) ⊆ R(B) as BB† is the
projection onto R(B). Now by Lemma 2.1 (iv),

B† = (AB)†A = [(AB)∗(AB)]†(AB)∗A

implies that B†∗ = A∗AB[(AB)∗(AB)]†, as AB)∗(AB) is Hermitian. Thus

R(B) = R(B†
∗
) = R(A∗AB[(AB)∗(AB)]†) ⊆ R(A∗AB).

Conversely, R(B) = R(A∗AB) =⇒ BB†A∗AB = A∗AB. By Theorem 3.2, B†A† ∈ AB{1, 2, 3},
R(B†

∗
) = R(B) = R(A∗AB) ⊆ R(A∗) and A†A is the projection onto R(A∗) gives A†AB = B

and A†AB†
?

= B†
?

=⇒ B†A†A = B†. It shows that (A†AB)† = B† = B†A†A. By Theorem 3.3,
B†A† ∈ AB{1, 2, 4} and hence (AB)† = B†A†. Therefore B† = B†A†A = (AB)†A.
(ii) Proof is similar to (i).

Theorem 3.6. Let the conditions of Theorem 3.1 hold. Then the following statements hold:

(i) (AB)† = (A†AB)†A† ⇔ R(AA∗AB) = R(AB).

(ii) (AB)† = B†(ABB†)† ⇔ R(B∗B(AB)∗) = R((AB)∗).

Proof. (i) If we replace A by A† and B by AB in Theorem 3.5 (i), we get (AB)† = (A†AB)†A† ⇔
R(AB) = R(A†

∗
A†AB) = R(A†

∗
B). Now by Theorem 2.1, there exists a bounded operator C such

that AB = A†
∗
BC. Pre-multiplying by AA∗ we get AA∗AB = AA∗A†

∗
BC = A(A†A)∗BC = ABC.

Thus we get R(AA∗AB) ⊆ R(AB). Similarly, we can prove R(AB) ⊆ R(AA∗AB).
(ii) Replace A by AB and B by B† in Theorem 3.5 (ii) and use a similar argument as above.

Theorem 3.7. Let the conditions of Theorem 3.1 hold. Then the following statements are equivalent:

(i) (AB)† = B†A†;

(ii) R(A∗AB) ⊆ R(B) and R(BB∗A∗) ⊆ R(A∗);

(iii) R(AA∗AB) = R(AB) and R(BB∗A∗) ⊆ R(A∗);

(iv) R(A∗AB) ⊆ R(B) and R[(ABB∗B)∗] = R[(AB)∗];

(v) R(A∗ABB∗) = R(BB∗A∗A).

Proof. First we note that the condition R(A∗AB) ⊆ R(B) is equivalent to Theorem 3.2 (iii) and the
condition R(BB∗A∗) ⊆ R(A∗) is equivalent to Theorem 3.3 (iii).
(i)⇔(ii): Follows from Theorem 3.4 (iii).
(i)⇒(iii): By Theorem 3.4 (vii), (AB)† = B†A† = (A†AB)†A†. Then (iii) follows from Theorem 3.6
(i).
(iii)⇒(v): By Theorem 2.1, there exists an operator T such that AA∗AB = ABT. Pre-multiplying by
A† we get A∗AB = A†ABT = A†ABB∗B†

∗
T = BB∗A†AB†

∗
T by Theorem 3.3 (v). Also, A∗ABB∗ =

BB∗A†AB†
∗
TB∗. Thus R(A∗ABB∗) ⊆ R(BB∗A∗A). Similarly, AB = AA∗ABS, for some operator

S. Pre- and post-multiplying by A† and B∗A∗A respectively, we get A†ABB∗A∗A = A∗ABSB∗A∗A.
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Then by Theorem 3.3 (v), BB∗A†AA∗A = A∗ABSB∗A∗A. Thus, BB∗A∗A = A∗ABSB∗A∗A. It
shows that

R(A∗ABB∗) = R(BB∗A∗A).

(v)⇒(ii): By Theorem 2.1, there exists an operator T such that A∗ABB∗ = BB∗A∗AT. Pre-
multiplying by BB† and post-multiplying by B†∗ we get,

BB†A∗ABB∗B†
∗

= BB∗A∗ATB†
∗
.

Hence, BB†A∗AB = BB∗A∗ATB†
∗

= A∗ABB∗B†
∗

= A∗AB, thus R(A∗AB) ⊆ R(B). Similarly, we
can prove A†ABB∗A∗ = BB∗A∗ and hence R(BB∗A∗) ⊆ R(A∗).
We can give the proof of (i)⇒(iv) and (iv)⇒(v) in a similar fashion.

Remark 3. Let A and B be as defined in Example 1. Then we get A∗ABx = (x1, x1, x3, 0, x5, . . .).
Thus R(A∗AB) 6⊆ R(B), A∗(x) = (x1, x1 +x2, x3, x4, . . .) and BB∗A∗x = (x1, 0, x3, 0, x5, . . .) implies
R(BB∗A∗) ⊆ R(A∗). This shows that R(A∗AB) ⊆ R(B) is indispensable for the reverse order law
to hold.

Lemma 3.2. Let the conditions of Theorem 3.1 hold. If P = (AA∗)mA and Q = B(B∗B)n, then
P,Q and PQ have closed ranges.

Proof. By Lemma 3.1, AB has a closed range if and only if A†ABB† has a closed range.
Take A as (AA∗)m and B as A to apply Lemma 3.1. Then, we have (AA∗)m†(AA∗)mAA† =
((AA∗)†(AA∗))mAA† = (AA†)mAA† = AA†AA† = AA†. Now, R(AA†) = R(A) is closed implies
R(P ) is closed. Similar argument works for Q also.

Now again by Lemma 3.1, PQ has a closed range if and only if P †PQQ† has a closed range. For,

P †PQQ† = [(AA∗)mA]†(AA∗)mAB(B∗B)n[B(B∗B)n]†

= A†[(AA∗)m]†(AA∗)mAB(B∗B)n[(B∗B)n]†B†

= A†AA†ABB†BB† = A†ABB†.

Here, the reverse order law is applied for [(AA∗)mA]† and [B(B∗B)n]† as they satisfy condition (ii)
in Theorem 3.7.

The next result is an extension of Theorem 11.1 of [23] to infinite e-dimensional setting. Djordjević
and Dinčić [10, 11] have extended the results of Tian [22, 23] using the operator matrix method to
different settings. By Lemma 3.1, R(AB) is closed if and only if R(A†ABB†) = R(A∗A†∗BB†) =
R(A†AB†∗B∗) is closed. This happens if and only if R(A†∗B) and R(AB†∗) are closed. Thus
(A†∗B)† and (AB†∗)† exist. Also, R(A) is closed if and only if R(A∗) is closed implies R(BB†A†A)
is closed and hence R(B†A†) is closed. For natural numbers m and n, the existence of the Moore-
Penrose inverse of (AA∗)m and (B∗B)n is guaranteed as they are powers of Hermitian operators
with closed ranges, according to the spectral mapping theorem. The existence of the Moore-Penrose
inverse of all other operators discussed below can be guaranteed with the closedness of the ranges of
AB,A†∗B,AB†∗ and B†A†.

Theorem 3.8. Let the conditions of Theorem 3.1 hold. Then the following statements are equivalent:

(1) (AB)† = B†A†;

(2) B(AB)†A = BB†A†A;

(3) AA∗(B∗A∗)†B∗B = AB;
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(4) (AB)† = B†A†ABB†A†;

(5) (AB)† = (A†AB)†A† and (A†AB)† = B†A†A;

(6) (AB)† = B†(ABB†)† and (ABB†)† = BB†A†;

(7) (AB)† = B†(A†ABB†)†A† and (A†ABB†)† = BB†A†A;

(8) B†A† ∈ AB{1, 3, 4};

(9) (AB)(AB)† = ABB†A† = A†∗BB†A∗ and (AB)†AB = B†A†AB = B∗A†A(B†)∗;

(10) (A†∗B)† = B†A∗;

(11) A†(B∗A†)†B∗ = A†ABB†;

(12) AA†(B∗A†)†B∗B = AB;

(13) (A†∗B)† = B†A†ABB†A∗;

(14) (A†∗B)† = (A†AB)†A∗ and (A†AB)† = B†A†A;

(15) (A†∗B)† = B†(A†∗BB†)† and (A†∗BB†)† = BB†A∗;

(16) (A†∗B)† = B†(A†ABB†)†A∗ and (A†ABB†)† = BB†A†A;

(17) B†A∗ ∈ A†∗B{1, 3, 4};

(18) (B∗A†)†B∗A† = ABB†A† = A†∗BB†A∗ and B∗A†(B∗A†)† = B†A†AB = B∗A†AB†∗;

(19) (AB†∗)† = B∗A†;

(20) B†∗(AB†∗)†A = BB†A†A;

(21) AA∗(B†A∗)†B†B = AB;

(22) (AB†∗)† = B∗A†ABB†A†;

(23) (AB†∗)† = (A†AB†∗)†A† and (A†AB†∗)† = B∗A†A;

(24) (AB†∗)† = B∗(ABB†)† and (ABB†)† = BB†A†;

(25) (AB†∗)† = B∗(A†ABB†)†A† and (A†ABB†)† = BB†A†A;

(26) B∗A† ∈ AB†∗{1, 3, 4};

(27) (B†A∗)†B†A∗ = ABB†A† = A†∗BB†A∗ and B†A∗(B†A∗)† = B†A†AB = B∗A†AB†∗;

(28) (B†A†)† = AB;

(29) A†(B†A†)†B† = A†ABB†;

(30) (AA∗)†(B†A†)†(B∗B)† = A†∗A†∗;

(31) (B†A†)† = ABB†A†AB;

(32) (B†A†)† = A(B†A†A)† and (B†A†A)† = A†AB;



Reverse order law for closed range operators 19

(33) (B†A†)† = (BB†A†)†B and (BB†A†)† = ABB†;

(34) (B†A†)† = A(BB†A†A)†B and (BB†A†A)† = A†ABB†;

(35) AB ∈ B†A†{1, 3, 4};

(36) B†A†(B†A†)† = B†A†AB = B∗A†AB†∗ and (B†A†)†B†A† = ABB†A† = A†∗BB†A∗;

(37) (AB)† = (A∗AB)†A∗ and (A∗AB)† = B†(A∗A)†;

(38) (AB)† = B∗(ABB∗)† and (ABB∗)† = (BB∗)†A†;

(39) (AB)† = B∗(A∗ABB∗)†A∗ and (A∗ABB∗)† = (BB∗)†(A∗A)†;

(40) (AB)† = (B∗B)n((AA∗)mAB(B∗B)n)†(AA∗)m and

((AA∗)mAB(B∗B)n)† = (B(B∗B)n)†((AA∗)mA)†;

(41) (AB)† = B∗(BB∗)n((A∗A)m+1(BB∗)n+1)†(A∗A)mA∗ and

((A∗A)m+1(BB∗)n+1)† = ((BB∗)†)n+1((A∗A)†)m+1.

Proof. (1)⇒ (2): Straightforward.
(2)⇒ (3): Pre- and post-multiplying the given condition by B∗ and A∗, respectively, we get
B∗B(AB)†AA∗ = B∗A∗, equivalently AA∗(B∗A∗)†B∗B = AB.
(3)⇒ (1): We have B∗B(AB)†AA∗ = B∗A∗. Pre- and post-multiplying by (B∗B)† and (AA∗)†

respectively, we get B†B(AB)†AA† = B†A†. It is clear that R((AB)†) = R((AB)∗) ⊆ R(B∗)
and R((AB)†∗) = R(AB) ⊆ R(A). Thus B†B(AB)† = (AB)† and (AB)†AA† = (AB)†. Hence,
B†B(AB)†AA† = (AB)† = B†A†.
(1)⇒ (4): It is easy to see from the assumption that

(AB)† = (AB)†AB(AB)† = B†A†ABB†A†.

(4)⇒ (5): Pre-multiplying the given condition by B and post-multiplying by A, we get B(AB)†A =

BB†A†ABB†A†A = (BB†A†A)2. (BB†A†A)4 = (BB†A†A)2(BB†A†A)2 = B(AB)†AB(AB)†A =
B(AB)†A = (BB†A†A)2. Since BB† and A†A are orthogonal projections by Lemma 2.7, BB†A†A =
A†ABB†. The statements (AB)† = (A†AB)†A† and (A†AB)† = B†A†A can be proved by verifying
all Penrose equations using BB†A†A = A†ABB†.
(5)⇒ (6): Note that by substituting the second condition in the first condition of (5), we get
(AB)† = B†A†. Thus, we have AB = AB(AB)†AB = ABB†A†AB, (AB)† = (AB)†AB(AB)† =
B†A†ABB†A†, ABB†A† is a projection and Hermitian. Now (ABB†)† = BB†A† is easily ver-
ifiable, using Theorem 3.1 (iii). Moreover, (AB)† = B†A†ABB†A† = B†A†(AB)(AB)† =
B†BB†A†AB(AB)† = B†(ABB†)†(AB)(AB)† = B†(ABB†)†.
(6)⇒ (7): Suppose (AB)† = B†(ABB†)†. Then

(AB)(AB)† = ABB†(ABB†)† = ABB†BB†A† = ABB†A†.

Thus, AB = ABB†A†AB. Now by Theorem 3.1 (vi), we get (A†ABB†)† = BB†A†A. Since BB†A† =
(ABB†)†, (A†ABB†)† = (ABB†)†A. Therefore B†(A†ABB†)†A† = B†(ABB†)†AA† = (AB)†AA† =
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(AB)†.
(7)⇒ (8): We have

AB = AB(AB)†AB = ABB†(A†ABB†)†A†AB

= ABB†BB†A†AA†AB = ABB†A†AB

and (AB)(AB)† = ABB†(A†ABB†)†A† = ABB†BB†A†AA† = ABB†A†. Similarly, (AB)†AB =
B†A†AB. Thus B†A† ∈ AB{1, 3, 4}.
(8)⇒ (9): Since B†A† ∈ AB{1, 3, 4}, AB = ABB†A†AB and ABB†A† = (ABB†A†)∗. Now,

(AB)(AB)† = ABB†A†AB(AB)† = (ABB†A†)∗AB(AB)†

= (B†A†)∗(AB)∗AB(AB)†

= (B†A†)∗(AB)∗( by Lemma 2.1 (vi))
= (ABB†A†)∗ = ABB†A†

= A†∗BB†A∗.

Similarly, we can prove the other relation.
(9)⇒ (10): Since AB(AB)† = ABB†A†, AB(AB)†AB = ABB†A†AB. Then by Theorem 3.1 (iv),
A†ABB† = BB†A†A. It is clear from the assumption that B†A∗ ∈ A†

∗
B{3, 4}. Also, it is easy to

verify that B†A∗ ∈ A†∗B{1, 2}.
(10)⇒ (1): Applying Theorem 3.1 for A†∗ and B, we get A∗A†∗BB† = BB†A∗A†∗ i.e., A†ABB† =

BB†A†A. Using the third and fourth Penrose conditions for (10), we get

ABB†A†AB = AA†ABB†B = AB,

B†A†ABB†A† = B†BB†A†AA† = B†A†,

(ABB†A†)∗ = A†∗BB†A∗ = ABB†A†,

(B†A†AB)∗ = B∗A†AB†∗ = B†A†AB.

The equivalences of (10)-(18) can be established by replacing A by A†∗ in (1)-(9). Similarly, the
equivalences of (19)-(27) can be established by replacing B by B†∗ in (1)-(9) and the equivalences of
(28)-(36) can be established by replacing A by B† and B by A† in (1)-(9). The equivalence of (1)
and (19) is similar to that of (1) and (10). The equivalence of (1) and (28) follows by applying the
Moore-Penrose inverse on both sides of (1) and (28).
(1)⇒ (37): We use Theorem 3.1 to prove (A∗AB)† = B†(A∗A)†. We get the first Penrose equation
verified as below. By using Lemma 2.1 (iv) and (vi), we get

A∗ABB†(A∗A)†A∗AB = A∗ABB†A†AB = A∗AA†ABB†B = A∗AB.

By Lemma 2.1, Theorem 3.1 and Theorem 3.2 (v), we get

[A∗ABB†(A∗A)†]∗ = [BB†A∗A(A∗A)†]∗ = (BB†A†A)∗ = A†ABB†.

The right-hand side is Hermitian, so is the left-hand side. Similarly, we can prove the second and
fourth Penrose equations. Also, we get

(A∗AB)†A∗ = B†(A∗A)†A∗ = B†A† = (AB)†.
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(1)⇒ (38): Similar to (1)⇒ (37).
(1)⇒ (39): By using Lemma 2.1 and Theorem 3.1, we get

A∗ABB∗(BB∗)†(A∗A)†A∗ABB∗ = A∗ABB†A†ABB∗

= A∗AA†ABB†BB∗

= A∗ABB∗.

Now, using Lemma 2.1 and Theorem 3.2 (v), we have

[A∗ABB∗(BB∗)†(A∗A)†]∗ = [A∗ABB†(A∗A)†]∗ = [BB†A∗A(A∗A)†]∗

= (BB†A†A)∗,

which is Hermitian by Theorem 3.1. Hence the first and third conditions of the Penrose equations
are satisfied. The second and fourth conditions follow similarly.
(1)⇒ (40): Let P = (AA∗)mA and Q = B(B∗B)n. Then R(P ), R(Q) and R(PQ) have closed
ranges by Lemma 3.2. We prove [(AA∗)mAB(B∗B)n]† = [B(B∗B)n]†[(AA∗)mA]† i.e., (PQ)† = Q†P †

by verifying the Penrose equations. By Lemma 2.1 and Theorem 3.1, we get

PQQ†P †PQ = (AA∗)mAB(B∗B)n[(B∗B)n]†B†A†[(AA∗)m]†(AA∗)mAB(B∗B)n

= (AA∗)mABB†BB†A†AA†AB(B∗B)n

= (AA∗)mABB†A†AB(B∗B)n = (AA∗)mAA†ABB†B(B∗B)n

= (AA∗)mAB(B∗B)n = PQ.

Similarly, we can prove the second Penrose equation. For proving the third one we use the following
facts that for all m ≥ 1, A†(AA∗)m = A∗(AA∗)m−1, [(AA∗)m]†A = [(AA∗)m−1]†A†∗ = A†∗ and
(ABB†A†)∗ = ABB†A†. We have

(PQQ†P †)∗ = ((AA∗)mABB†A†[(AA∗)m]†)∗

= [(AA∗)m]†ABB†A†(AA∗)m

= A†∗BB†A∗ = (ABB†A†)∗.

The right-hand side is Hermitian so is the left-hand side. Similarly, the fourth Penrose equation can
be proved. Also, we have

(B∗B)n[(AA∗)mAB(B∗B)n]†(AA∗)m = (B∗B)n[B(B∗B)n]†[(AA∗)mA]†(AA∗)m

= (B∗B)n[(B∗B)n]†B†A†[(AA∗)m]†(AA∗)m

= B†BB†A†AA† = B†A† = (AB)†.

(1)⇒ (41): Let P = (AA∗)m+1 and Q = (B∗B)n+1.We can prove the existence of (PQ)† by a similar
argument in Lemma 3.2.

PQQ†P †PQ = (AA∗)m+1B†BAA†(B∗B)n+1

= (AA∗)m+1AA†B†B(B∗B)n+1

= (AA∗)m+1(B∗B)n+1 = PQ.

Using the fact AA∗B†B = B†BAA∗, we have

(PQQ†P †)∗ = (AA∗)m+1B†B[(AA∗)m+1]†

= B†B(AA∗)m+1[(AA∗)m+1]†

= B†BAA†.
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The right-hand side is Hermitian so is the left-hand side. Similarly, the second and fourth Penrose
equations can be proved. Now we have

B∗(BB∗)n((A∗A)m+1(BB∗)n+1)†(A∗A)mA∗ = B∗(BB∗)n[(BB∗)n+1]†

[(A∗A)m+1]†(A∗A)mA∗

= B∗BB†(BB∗)†(A∗A)†A†AA∗

= B∗(BB∗)†(A∗A)†A∗ = B†A† = (AB)†.

(37)− (41)⇒ (1): Using the given conditions we get

(AB)† = (A∗AB)†A∗ = B†(A∗A)†A∗ = B†A†.

Similarly, other implications also follow by substituting the second set of equations into the first ones
and using the properties of the Moore-Penrose inverse given in Lemma 2.1.

Proposition 3.1. Let the conditions of Theorem 3.1 hold. Then the following statements are true.

(i) A∗ABB†A†A is Hermitian if and only if B†A† ∈ AB{3}.

(ii) BB†A†ABB∗ is Hermitian if and only if B†A† ∈ AB{4}.

Proof. Since ABB†A† = A†∗A∗ABB†A†AA† we get B†A† ∈ AB{3} if and only if A∗ABB†A†A is
Hermitian. Similarly, we can prove (ii).

The next result is a continuation of Theorem 3.8.

Theorem 3.9. Let the conditions of Theorem 3.1 hold. Then the following statements are equivalent:

(1) (AB)† = B†A†;

(42) (ABB∗)† = (BB∗)†A† and BB†A†ABB∗ is Hermitian;

(43) (A∗AB)† = B†(A∗A)† and A∗ABB†A†A is Hermitian;

(44) (ABB†)† = BB†A† and BB†A†ABB∗ is Hermitian;

(45) (A†AB)† = B†A†A and A∗ABB†A†A is Hermitian;

(46) (A∗ABB†)† = (BB∗)†(A∗A)†; A∗ABB†A†A and BB†A†ABB∗ are Hermitian;

(47) (A†ABB∗)† = (BB∗)†A†A; A∗ABB†A†A and BB†A†ABB∗ are Hermitian;

(48) (A∗ABB†)† = BB†(A∗A)†; A∗ABB†A†A and BB†A†ABB∗ are Hermitian;

(49) (A†ABB†)† = BB†A†A; A∗ABB†A†A and BB†A†ABB∗ are Hermitian.

Proof. In all the implications of the proof, Proposition 3.1 is also used.
(1)⇒ (42): Follows from Theorem 3.8 (38).
(42)⇒ (1): Follows from Theorem 3.2 (x).
(1)⇒ (43): Follows from Theorem 3.8 (37).
(43)⇒ (1): Follows from Theorem 3.3 (x).
(1)⇒ (44): Follows from Theorem 3.8 (6).
(44)⇒ (1): Follows from Theorem 3.2 (vi).
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(1)⇒ (45): Follows from Theorem 3.8 (5).
(45)⇒ (1): Follows from Theorem 3.3 (vi).
(1)⇒ (46): Follows from Theorem 3.8 (39).
(46)⇒ (1): It is easy to verify that B†A† ∈ AB{1, 2}.
(46)⇔ (47): Replacing B by BB∗ in the equivalence (43)⇔ (45).
(46)⇔ (48): Replacing A by A∗A in the equivalence (42)⇔ (44).

(47)⇔ (49): Replacing A by A†A in the equivalence (42)⇔ (44).
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20 (1951), 188-220.

[6] R.H. Bouldin, The pseudo-inverse of a product. SIAM J. Appl. Math., 25 (1973), 489-495.

[7] R.H. Bouldin, Generalized inverses and factorizations, in: Recent Applications of Generalized Inverses. in: Pit-
man Ser. Res. Notes in Math., 66 (1982), 233-248.

[8] K.G. Brock, A note on commutativity of a linear operator and its Moore-Penrose inverse. Numer. Funct. Anal.
Optim., 11 (1990), 673-678.

[9] R.E. Cline, Note on the generalized inverse of the product of matrices. SIAM Rev., 6 (1964), 57-58.
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1 Introduction and terminology

Modules are the natural generalizations of abelian groups. Among many generalizations of torsion
abelian groups the notion of TAG-modules and its related properties have attracted considerable
attention since 1976 (see, for example, [1, 19]). Following [17], a module MR is called a TAG-module
if it satisfies the following two conditions.

(I) Every finitely generated submodule of any homomorphic image ofM is a direct sum of uniserial
modules.

(II) Given any two uniserial submodules U and V of a homomorphic image ofM , for any submodule
W of U , any non-zero homomorphism f : W → V can be extended to a homomorphism
g : U → V , provided the composition length d(U/W ) ≤ d(V/f(W )).

A module MR satisfying only condition (I) is called a QTAG-module (see [18]). This is a very
fascinating structure that has been the subject of research of many authors. They studied different
notions and structures of QTAG-modules and developed the theory of these modules by introducing
several notions, investigated some interesting properties and characterized different submodules of
QTAG-modules. Not surprisingly, many of the developments parallel the earlier development of the
structure of torsion abelian groups. The present work translates a few of the ideas of the abelian
p-groups over to the area of QTAG-modules and certainly contributes to the overall knowledge of
the structure of QTAG-modules.

Throughout our discussion all the rings R here are associative with unity (1 6= 0) and modules
M are unital QTAG-modules. A module M over a ring R is called uniserial if it has a unique
decomposition series of finite length. A module M is called uniform if intersection of any two of
its non-zero submodules is non-zero. An element x in M is called uniform if xR is a non-zero
uniform (hence uniserial) module. For any module M with a unique decomposition series, d(M)
denotes its decomposition length. For any uniform element x of M , its exponent e(x) is defined
to be equal to the decomposition length d(xR). For any 0 6= x ∈ M , HM(x) (the height of x
in M) is defined by HM(x) = sup{d(yR/xR) : y ∈ M, x ∈ yR and y uniform}. For k ≥ 0,
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Hk(M) = {x ∈M | HM(x) ≥ k} denotes the submodule of M generated by the elements of height at
least k and for some submodule N of M , Hk(M) = {x ∈M | d(xR/(xR∩N)) ≤ k} is the submodule
of M generated by the elements of exponents at most k.

Let us denote by M1, the submodule of M , containing uniform elements of infinite height. The
module M is h-divisible if M = M1 = ∩∞k=0 Hk(M). The module M is h-reduced if it does not
contain any h-divisible submodule. In other words, it is free from the elements of infinite height.
The module M is said to be bounded [17], if there exists an integer k such that HM(x) ≤ k for every
uniform element x ∈M . A submodule N of M is h-pure [10] in M if N ∩Hk(M) = Hk(N), for every
integer k ≥ 0.

For a QTAG-module M and an ordinal α, Hα(M) is defined as Hα(M) = ∩β<αHβ(M). For an
ordinal α, a submodule N of M is said to be α-pure, if Hβ(M) ∩ N = Hβ(N) for all β ≤ α and a
submodule N of M is said to be isotype in M , if it is α-pure for every ordinal α [15]. For an ordinal
α, a submodule N ⊆ M is an α-high submodule [14] of M if N is maximal among the submodules
of M that intersect Hα(M) trivially.

A submodule N ⊂ M is nice [12] in M, if Hα(M/N) = (Hα(M) + N)/N for all ordinals α, i.e.
every coset of M modulo N may be represented by an element of the same height. The sum of all
simple submodules of M is called the socle of M and is denoted by Soc(M). The cardinality of the
minimal generating set of M is denoted by g(M). For all ordinals α, fM(α) is the αth-Ulm invariant
of M and it is equal to g

(
Soc(Hα(M))/Soc(Hα+1(M))

)
.

The major aim here is to extend Theorem 1 from [8] to two important classes of QTAG-modules
the first one the class of summable modules, whereas the second one the class of α-modules, where
α is a limit ordinal. The work is organized thus: in the first section, i.e. here, we have studied the
basic notation as well as the terminology necessary for applicable purposes. In the second section, we
proceed by proving the preliminary results, and in the third one we obtain a new simplified but more
convenient for us major result, when a countable number of h-pure submodules can be a countable
number of isotype submodules that seem to be interesting. In the fourth section, several applications
of Theorem 3.1 in terms of total projectivity are provided which are of some importance.

It is interesting to note that almost all the results which hold for TAG-modules are also valid for
QTAG-modules [15]. Many results, stated in the present paper, are clearly generalizations from the
papers [7, 8, 9]. For the better understanding of the mentioned topic here one must go through the
papers [2, 3]. Most of our notations and terminology will be standard being in agreement with [4]
and [5].

2 Preliminary results

We begin by defining a µ-module.

Definition 1. Let µ be a cardinal. We say that a QTAG-module M is a µ-module if M has
cardinality µ and each submodule of M having cardinality less than µ is a direct sum of uniserial
modules.

The question whether all µ-modules are direct sums of uniserial modules, has a significance in the
theory of QTAG-modules. For every infinite cardinal µ there exists a µ-module that is a direct sum
of uniserial modules with µ ≥ ℵk and k ≥ 0. We conjecture that the problem has a negative answer
in general, but nevertheless we shall inspect in the sequel its validity for a finite cardinal µ. This
follows immediately from the well-known structure of finitely generated QTAG-modules. However,
we now have the following result.
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Theorem 2.1. Suppose that M is a QTAG-module and ω is a first limit ordinal. If M is an
ℵω-module, then M is a direct sum of uniserial modules.

Proof. LetM be aQTAG-module of cardinality ℵω such that each submodule ofM having cardinality
less than ℵω is a direct sum of uniserial modules. Since any infinite submodule can be imbedded in
an h-pure submodule of the same cardinality, it easily follows that M is the union of an ascending
chain of h-pure submodules Sk of M such that g(S) = ℵk for 0 ≤ k < ω. For each k < ω,
consider Sk = Σi∈IkxiR and let α denote the smallest ordinal having cardinality ℵω. Then there exist
submodules Nβ of M , for β < α, such that
(1) N0 = 0.
(2) Nβ is h-pure in M for each β < α.
(3) Nβ + Sk is h-pure in M for each β < α and k < ω.
(4) Nβ+1 ⊇ Nβ for each β such that β + 1 < α.
(5) Nβ+1/Nβ is countably generated for each β such that β + 1 < α.
(6) Nβ ∩ Sk = Σi∈Ik,βxiR for β < α and k < ω, where Ik,β is a subset of Ik.
(7) Nγ = ∪β<γNβ if γ is a limit ordinal less than α.
(8) M = ∪β<αNβ.

Let λ < α, and suppose that a submodule Nβ of M with β < λ such that conditions (1) − (7)
hold when α is replaced by λ. After this, let us assume that a submodule Nλ of M satisfying these
conditions also. Then we have two cases to consider:
Case (i). λ is a limit ordinal. In this case, let us consider Nλ = ∪β<λNβ. Since Nβ is h-pure for
each β < λ, so that Nλ is h-pure in M . This, in tern, implies that Nλ +Sk is h-pure in M . Thus, we
see that condition (6) from definition of Nλ is satisfied. Now, we set Ik,λ = ∪β<λIk,β for each k, then
it is easy to verify that Nλ ∩ Sk = Σi∈Ik,λxiR. Henceforth, all the conditions (1) − (7) are satisfied
for β < λ.
Case (ii). λ − 1 exists. Consider the submodule Nλ of M such that Nλ is a countably generated
extension of Nλ−1 and
(2+) Nλ is h-pure in M .
(3+) Nλ + Sk is h-pure in M for each k < ω.
(6+) Nλ ∩ Sk = Σi∈Ik,λxiR for each k, where Ik,λ is a subset of Ik.

Let P be any submodule of M containing Nλ−1. If P/Nλ−1 is countably generated, there exists a
submodule Q of M containing P with g(Q/Nλ−1) ≤ ℵ0 such that Q/Nλ−1 is h-pure in M/Nλ−1 and
[(Q/Nλ−1) + (Sk + Nλ−1)/Nλ−1]/[(Sk + Nλ−1)/Nλ−1] is h-pure in (M/Nλ−1)/[(Sk + Nλ−1)/Nλ−1] for
each k < ω. From the h-purity of Nλ−1 and Sk + Nλ−1, we get that Q + Sk = Q + Sk + Nλ−1 is an
h-pure submodule of M . Next, let Jk be a countably generated extension of the subset Ik,λ−1 such
that Q ∩ Sk = Σi∈JkxiR. It follows that there is an ascending chain

Q0 ⊆ Q1 ⊆ Q2 ⊆ · · · ⊆ Qt ⊆ . . .

of h-pure submodules of M such that Qt is countably generated and Qt + Sk is h-pure in M for all
t, k < ω. Letting Qt ∩ Sk ⊆ Σi∈Jk,txiR, where Jk,t is a countably generated extension of the subset
Ik,λ−1 of Ik such that Qt+1 ⊇ Σi∈Jk,txiR for all k. Define Nλ = ∪t<ωQt and we set Ik,λ = ∪t<ωJk,t,
then Nλ ∩ Sk = Σi∈Ik,λxiR. Thus, all conditions (1)− (7) are satisfied for β < λ.

In addition, if the index set Ik is chosen to be the set of ordinals less than ℵk, then we can easily
continue along condition (8) that β ∈ Ik,β for all k < ω provided that β ∈ Ik.

In order to show that M is a direct sum of uniserial modules, it remains only to show that Nβ

is a direct sum of Nβ+1 for each β < α. Since Nβ is h-pure and Nβ+1/Nβ is countably generated,
it is enough to show that Hω(Nβ+1/Nβ) = 0. Suppose that y + Nβ ∈ Hω(Nβ+1/Nβ) ⊆ Hω(M/Nβ).
Since Nβ + Sk is h-pure in M , then y + Nβ ∈ Hω((Nβ + Sk)/Nβ) where y ∈ Sk for some k. In
this connection, observe that Hω((Nβ + Sk)/Nβ) = 0. This completes the argument showing that
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(Nβ + Sk)/Nβ
∼= Sk/(Nβ ∩ Sk) is a direct sum of uniserial modules. Setting Nβ+1 = Nβ + Qβ, we

obtain that M = Σβ<αQβ, and the theorem is proved.

The same idea is applicable even to QTAG-modules having cardinality ℵβ, where β is cofinal
with ω. So, we state without proof the following direct corollary.

Theorem 2.2. If a QTAG-module M has cardinality ℵβ where β is cofinal with ω, then M is a
direct sum of uniserial modules provided each submodule of M having cardinality less than ℵβ is a
direct sum of uniserial modules.

For freely use in the sequel, we obtain the following

Theorem 2.3. Suppose that a QTAG-module M is a set-theoretic union of a countable number of
h-pure submodules Sk for each k. If Sk is a direct sum of uniserial modules, then so is M .

Proof. By appealing to the same reasoning as in Theorem 2.1, one may infer that the assertion
follows.

Now, we proceed by proving

Corollary 2.1. Let S be a submodule of a QTAG-module M such that M is a direct sum of uniserial
modules. Then S is a direct sum of uniserial modules.

Proof. Suppose that M is a union of an ascending chain of h-pure submodules Sk such that Sk
is bounded. Choose Pk = S ∩ Sk for each k. Let Qk ⊇ Pk be maximal in S with respect to
Qk ∩ Hk(S) = 0. It is easy to see that Qk is h-pure in S. Therefore, since Qk is bounded, we get
that Qk is a direct sum of uniserial modules. Since Qk ⊇ Pk, it follows immediately that S is a
set-theoretic union of its submodules Qk. Henceforth, according to Theorem 2.3, S is a direct sum
of uniserial modules, as required.

3 Main results

In Section 2, we have shown that if a QTAG-module M is the set-theoretic union of a countable
number of h-pure submodules Sk, then M is a direct sum of uniserial modules if Sk is a direct sum of
uniserial modules for each k. In the present section, we generalize this result by proving that if the
submodules Sk are isotype then M must be totally projective provided that Sk is totally projective
of countable length for each k. In particular, an ascending chain of isotype and totally projective
submodules of countable length leads to a totally projective module.

Recall from [11] that an h-reduced QTAG-moduleM is said to be totally projective if it possesses
a collection N consisting of nice submodules of M such that (i) 0 ∈ N (ii) if {Ni}i∈I is any subset of
N , then Σi∈INi ∈ N (iii) given any N ∈ N and any countable subset X of M, there exists K ∈ N
containing N ∪ X, such that K/N is countably generated. Call a collection N of nice submodules
of M which satisfies conditions (i), (ii) and (iii) a nice system for M . It is well-known that any
countably generated h-reduced QTAG-module is totally projective by induction on the length of
M . Thus the direct sum of any number of countably generated h-reduced QTAG-modules is totally
projective.

Before presenting our main attainment, we prove the following working lemma.

Lemma 3.1. Let α be an arbitrary ordinal and M a QTAG-module of countable length. Suppose
that

0 = N0 ⊆ N1 ⊆ N2 ⊆ · · · ⊆ Nβ ⊆ . . . , β < α
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is a chain of nice submodules of M satisfying the following conditions:
(a) Nβ+1/Nβ is countably generated.
(b) Nγ = ∪β<γNβ where γ is a limit.
(c) M = ∪β<αNβ.

Then M is totally projective.

Proof. Let µ be the first uncountable ordinal such that α < µ. Therefore, M satisfies a nice system
of countability. In fact, for an arbitrary α, it is not evident that conditions (a) − (c) imply a nice
system of countability.

By hypothesis, M embeds as an isotype submodule of a totally projective module, for a height-
preserving monomorphism from Nβ to Nβ+1. Since the length of M is countable, M itself is totally
projective and hence the result follows.

The main result is now the following.

Theorem 3.1. Let a QTAG-module M be a set-theoretic union of a countable number of isotype
submodules Sk. If Sk is totally projective of countable length for each k, then M is totally projective.

Proof. First we note that M has countable length. Let us assume that length of M = η and let
the submodules Sk be indexed by the nonnegative integers. For k < ω, let Sk = Σi∈IkTi where Ti is
countably generated for each i. Suppose that

0 = N0 ⊆ N1 ⊆ N2 ⊆ · · · ⊆ Nβ ⊆ . . . , β < λ

is a chain of submodules of M satisfying the following conditions:
(a) Nβ+1/Nβ is countably generated.
(b) Nγ = ∪β<γNβ where γ is a limit.
(c) Nβ ∩ Sk = Σi∈Ik,βTi for each k and β, where Ik,β is a subset of Ik.
(d) 〈Hλ(M), Nβ〉 ∩ 〈Sk, Nβ〉 = 〈Hλ(Sk), Nβ〉 for each k and β and for each λ ≤ η.

We consider two possibilities. Firstly, if λ is a limit ordinal, we define Nλ = ∪β<λNβ and see
that conditions (a) − (d) are satisfied for the chain of submodules Nβ. Secondly, if λ − 1 exists.
For an arbitrary countably generated extension T of Nλ−1 in M , there exists a countably generated
extension P of T such that P ∩Sk = Σi∈JkTi, for each k, where Jk is a countable generated extension
of Ik,λ−1.

Next, with this in hand, we ascertain the same argument that there exists a countably generated
extension Q of P ⊇ T ⊇ Nλ−1 in M such that

〈Hλ(M), Q〉 ∩ 〈Sk, Q〉 = 〈Hλ(Sk), Q〉,

for all λ ≤ η and all k < ω. Let {xi}i<ω be a set of representatives for the cosets of P/Nλ−1. For
each triple (i, k, λ) with i, k < ω and λ ≤ η such that y + zk ∈ xi + Nλ−1 where y ∈ Hλ(M) and
zk ∈ Sk. If we choose a representative y = yi,k,λ for the triple (i, k, λ), then clearly there are only a
countable number of such representatives. Setting Q1 = 〈P, yi,k,λ〉, one may see that

〈Hλ(M), P 〉 ∩ 〈Sk, P 〉 ⊆ 〈Hλ(Sk), Q1〉.

If we replace Q1 by P , then Qj+1 is replaced by Qj such that Qj+1 = 〈Qj, yi,k,λ〉. Hence, the desired
properties follows if Q = ∪j<ωQj.

Furthermore, suppose that the conditions (a) and (d) holds. Then there exists a countable
generated extension Nλ of Nλ−1 containing T that satisfies both conditions (c) and (d). Hence, a
chain of submodules satisfying conditions (a)−(d) is applicable to deduce thatM is totally projective.
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To complete the proof of the theorem, it remains only to show that Nβ is nice in M for each β.
It suffices to show that

Hλ(M/Nβ) = 〈Hλ(M), Nβ〉/Nβ (3.1)

for all λ ≤ η. The proof is by induction on λ in conjunction with

Hλ(M/Nβ) ∩ 〈Sk, Nβ〉/Nβ = 〈Hλ(Sk), Nβ〉/Nβ = Hλ(〈Sk, Nβ〉/Nβ) (3.2)

Clearly, for a given λ the second equality in condition (3.2) is a consequence of the first equality.
However, the second equality is valid, because of condition (c). We claim that condition (3.2) hold
good for λ = σ, where σ is a limit. Then it is suffices to show that condition (3.2) holds for all λ < σ.
By the choice of σ, condition (3.1) holds for all λ < σ. Hence, if λ < σ, we observe that

Hλ(M/Nβ) ∩ 〈Sk, Nβ〉/Nβ = (〈Hλ(M), Nβ〉 ∩ 〈Sk, Nβ〉)/Nβ.

Thus, by condition (d), we write

Hλ(M/Nβ) ∩ 〈Sk, Nβ〉/Nβ = 〈Hλ(Sk), Nβ〉/Nβ,

and so condition (3.2) holds for λ = σ. This gives that

Hσ(M/Nβ) ⊆ ∪k<ω〈Hσ(Sk), Nβ〉/Nβ ⊆ 〈Hσ(M), Nβ〉/Nω,

which allows us to infer that Nβ is nice in M for each β.

4 Applications

The purpose of the present section is to explore some structural corollaries of Theorem 3.1. Several
such applications are now presented.

4.1 Summability

Singh [17] proved that a QTAG-module M is a direct sum of uniserial modules if and only if M is
the union of an ascending chain of bounded submodules. Apparently, M is a direct sum of uniserial
modules if and only if Soc(M) = ⊕k∈ωSk and HM(x) = k for every x ∈ Sk. This led to the notion
of summable modules, see, [16]. Let us recall the definition: an h-reduced QTAG-module M is
summable if Soc(M) = ⊕β<αNβ, where Nβ is the set of all elements of Hβ(M) which are not in
Hβ+1(M), where α is the length of M . It is self-evident that a QTAG-module of length ω is a direct
sum of uniserial modules if and only if the QTAG-module is summable. However, for the sake of
completeness, the following corollaries are immediate.
(i) Countably generated h-reduced QTAG-modules are summable.
(ii) Direct sums of countably generated h-reduced QTAG-modules are summable.
(iii) Isotype submodules of summable modules of countable length are summable.

We start here with the following easy observation.

Theorem 4.1. Let M be a summable QTAG-module of countable length α. If M/Hβ(M) is totally
projective for each limit ordinal β < α, then M is totally projective.
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Proof. The proof is by induction on α. If there is a limit ordinal β such that both Hβ(M) and
M/Hβ(M) are totally projective, then M is itself totally projective. Let α1 < α2 < · · · < αk < . . .
be an increasing sequence of ordinals whose limit is α. We choose S1 ⊆ S2 ⊆ · · · ⊆ Sk ⊆ . . . be an
ascending chain of submodules, so that Sk is αk-high in M . Observe that Soc(S) = Soc(M), where
S = ∪k<ωSk. Therefore, since S is h-pure in M , we get that S = M . Thus in view of Theorem 3.1, it
suffices to show that Sk is totally projective for each k. However, we know that Sk is isomorphic to an
isotype submodule of M/Hαk(M) under the natural map. Henceforth, a simple technical argument
applies to get that Sk is totally projective which gives the desired total projectivity of M .

The following statement generalizes Theorem 2.2.

Theorem 4.2. Let M be a QTAG-module of cardinality ℵβ where β is cofinal with ω. If each
submodule of M having cardinality less than ℵβ is contained in a totally projective submodule of M
having countable length, then M is totally projective.

Proof. Assume that Sk is a submodule of M having cardinality ℵβk , where β1 < β2 < · · · < βk < . . .
be an increasing sequence of ordinals whose limit is β. Note that if Sk is contained in an isotype
submodule Pk of M having the same cardinality ℵβk as that of Sk, then Pk is contained in a totally
projective submodule Qk of M having countable length. Since Pk is isotype in Qk, Pk is totally
projective. It follows that M is the union of a countable ascending chain P1 ⊆ P2 ⊆ · · · ⊆ Pk ⊆ . . .
of isotype and totally projective submodules Pk. One seeing readily in view of Theorem 3.1 that M
is totally projective, as wanted.

This brings us to another technical observation.

Theorem 4.3. Let M1 and M2 be QTAG-modules of countable type λ and suppose that M1 is
totally projective. If, for each ordinal β ≤ λ, there exists a height-preserving isomorphism between
Soc(M1/Hβω(M1)) and Soc(M2/Hβω(M2)), then M2 is totally projective and M1

∼= M2.

Proof. By hypothesis, there exists a height-preserving isomorphism between Soc(M1) and Soc(M2).
It is easy to see that M1 and M2 have the same Ulm invariants (and are therefore isomorphic) if M2

is totally projective.
We induct on λ to show thatM2 is totally projective. SinceM1 is summable,M2 is also summable.

If λ = 1, then M2 is a direct sum of uniserial modules. Thus, assuming that λ > 1 and that λ − 1
exists. Observe that

M1/Hω(λ−1)(M1)/Hωβ(M1/Hω(λ−1)(M1)) ∼= M1/Hωβ(M1),

for all β ≤ λ − 1, and similarly for M2. Hence in virtue of inductive hypothesis, M2/Hω(λ−1)(M2)
is totally projective. Since both Soc(Hω(λ−1)(M1)) and Soc(Hω(λ−1)(M2)) have a height-preserving
isomorphism, we deduce that Hω(λ−1)(M2) is a direct sum of uniserial modules. This guarantees that
M2 is totally projective.

In the remaining case when λ is a limit ordinal, we assume that Soc(M1) = ΣUβ and Soc(M2) =
ΣVβ be decompositions of Soc(M1) and Soc(M2), respectively, such that HUβ(x) = HVβ(y) = β, for
some x ∈ U , y ∈ V . Let 1 ≤ λ1 ≤ λ2 < · · · < λk < . . . be an increasing sequence of ordinals
whose limit is λ, we choose N1 ⊆ N2 ⊆ · · · ⊆ Nk ⊆ . . . and L1 ⊆ L2 ⊆ · · · ⊆ Lk ⊆ . . . be the
ascending chain of submodules such that Soc(Nk) = Σβ<ωλkUβ and Soc(Lk) = Σβ<ωλkVβ. Note that
M1 = ∪k<ωNk and M2 = ∪k<ωLk since ∪k<ωNk and ∪k<ωLk are h-pure submodules of M1 and M2,
respectively, containing Soc(M1) and Soc(M2).

What remains to show is that Lk is totally projective. Our future aim, which we pursue, is to check
the existence of a height-preserving isomorphism between Soc(Nk/Hωβ(Nk)) and Soc(Lk/Hωβ(Lk))
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for each β ≤ λk. To that goal, we have two cases to consider. First, if β = λk, then there is a height-
preserving isomorphism between Soc(Nk/Hωβ(Nk)) = Soc(Nk) and Soc(Lk/Hωβ(Lk)) = Soc(Lk)
by the choice of Nk and Lk. For the second case where β < λk, it is easily observed that
M1 = 〈Nk, Hωβ(M1)〉 since Nk is ωλk-high in M1. Similarly, M2 = 〈Lk, Hωβ(M2)〉. Therefore,
M1/Hωβ(M1) ∼= Nk/Hωβ(Nk) and M2/Hωβ(M2) ∼= Lk/Hωβ(Lk). Then there exists a height-
preserving isomorphism between Soc(Nk/Hωβ(Nk)) and Soc(Lk/Hωβ(Lk)) for each β ≤ λk. It follows
by induction hypothesis that Lk is totally projective.

In addition, since Lk is isotype in M2 and M2 = ∪k<ωLk, so referring to Theorem 3.1, we can
conclude that M2 is totally projective, as promised.

4.2 α-modules

For the definition of an α-module, the reader can see [13] or [6] where it is given in all details.
However, for a convenience of the reader, we shall include it in the text. A QTAG-module M is an
α-module, where α is a limit ordinal, if M/Hβ(M) is totally projective for every ordinal β < α.

It is well-known that every totally projective module is an α-module. Besides, it is simple to
checked that an α-module of length α is a direct sum of countably generated modules if and only if
it is summable.

Now, we are ready to formulate the following

Theorem 4.4. Let M be a QTAG-module of length α such that M is an α-module. If M is a
set-theoretic union of countable number of submodules Sk where the heights of the nonzero uniform
elements of Sk in M are bounded by some ordinal αk < α, then M is totally projective.

Proof. Suppose that M = ∪k<ωSk where Sk is isotype of length αk < α for each k. Since M has
countable length, then Sk is totally projective. Because Sk ∼= 〈Sk, Hαk(M)〉/Hαk(M) is isomorphic
to an isotype submodule of a totally projective module M/Hαk(M) having countable length αk, it
easily follows that M is totally projective by the usage of Theorem 3.1 if α is countable.

Similarly, if the interval (γ, α) of ordinals is countable for some γ less than α, then Hγ(M) is
totally projective. Indeed, since Hγ(M) has countable length and Hγ(M) = ∪k<ωHγ(Sk) such that
Hγ(Sk) is isotype in Hγ(M). Therefore, Hγ(M) is totally projective if (γ, α) is countable for some
γ < α. Moreover, since M is an α-module, then M/Hγ(M) is totally projective. This means that
M is totally projective, and the result follows for (γ, α) is countable with γ < α.

We next assume that (γ, α) is uncountable for every ordinal γ less than the length α of M . In
particular, if γ < α, then γ + ω < α. Without loss of generality, we may assume that Sk is maximal
with Sk ∩Hαk(M) = 0. Then Sk is an αk-high submodule of M .

Finally, consider the case αk = σk + ω for some ordinal σk. Suppose now the ordinal αk has
the form αk + ω for some αk < α. Since αk = σk + ω and Sk is an αk-high in M , we have
M = 〈Sk, Hσk(M)〉 and M/Hσk(M) ∼= Sk/Hσk(Sk) for each k. Consequently, Sk/Hσk(Sk) is totally
projective, and we get Hσk(Sk) is totally projective since it is isomorphic to an isotype submodule of
the totally projective module Hσk(M)/Hαk(M). Therefore, we conclude that Sk is totally projective,
and again the application of Theorem 3.1 leads to M being totally projective, as expected.
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1 Introduction

In the present paper we study the following quasilinear and essentially nonlinear integral equations
with monotonous Hammerstein-Volterra operator on the whole axis R := (−∞,+∞):

fi(x) =
n∑
j=1

x∫
−∞

Kij(x, t){fj(t) + ωij(t, fj(t))}dt, i = 1, 2, ..., n, x ∈ R, (1.1)

ϕi(x) =
n∑
j=1

x∫
−∞

Kij(x, t){Gj(ϕj(t)) + ωij(t, ϕj(t))}dt, i = 1, 2, ..., n, x ∈ R, (1.2)

with respect to the unknown measurable on R vector-functions f(x) = (f1(x), ..., fn(x))T and ϕ(x) =
(ϕ1(x), ..., ϕn(x))T respectively (T is the sign of transposition). In systems (1.1) and (1.2) the matrix
kernel K(x, t) = (Kij(x, t))

n×n
i,j=1 satisfies the following conditions:

a) Kij(x, t) > 0, (x, t) ∈ R2 := R× R, Kij ∈ L∞(R2), i, j = 1, 2, ..., n, where L∞(R2) is the space
of all essentially bounded functions on the set R2,
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b) there exists a symmetric matrix A = (aij)
n×n
i,j=1 with positive elements aij and with a unit

spectral radius such that

b1)
γij(x) :=aij −

x∫
−∞

Kij(x, t)dt ≥ 0, γij(x) 6≡ 0, x ∈ R,

lim
x→−∞

γij(x) = 0, i, j = 1, 2, ..., n,

b2)
∞∫
t

Kij(x, t)dx ≤ aij, t ∈ R, i, j = 1, 2, ..., n,

b3) 0∫
−∞

(−x)γij(x)dx < +∞, i, j = 1, 2, ..., n,

c) there exists a number δ0 > 0 such that

εij := inf
x∈(−∞,0]

∞∫
δ0

Kij(x+ y, x)dy > 0, i, j = 1, 2, ..., n.

From the properties of the matrix A, by Perron’s theorem (see [12]), follows the existence of a vector
η = (η1, ..., ηn)T with positive coordinates ηi, i = 1, 2, ..., n, such that

Aη = η. (1.3)

The nonlinearities {Gj(u)}nj=1 and {ωij(t, u)}n×ni,j=1 satisfy the following conditions:

I) Gj ∈ C[0,+∞), Gj(u) is a concave function on the set [0,+∞), Gj(0) = 0, j = 1, 2, ..., n,

II) Gj(u) are increasing with respect to u on the set [0,+∞), j = 1, 2, ..., n,

III) there exists a number α > 0, such that Gj(η
∗
j ) = η∗j , Gj(u) ≥ u, u ∈ [0, η∗j ], where η∗j = αηj,

j = 1, 2, ..., n,

A) ωij(t, 0) ≡ 0, t ∈ R, i, j = 1, 2, ..., n,

B) for every fixed t ∈ R the functions ωij(t, u), i, j = 1, 2, ..., n monotonically increase with respect
to u on the set [0,+∞),

C) there exist functions
βij(t) := sup

u∈[0,+∞)

(ωij(t, u)) , i, j = 1, 2, ..., n,

such that βij(t), i, j = 1, 2, ..., n are monotone nondecreasing with respect to t on the set R and
satisfy the following inequality

n∑
j=1

βij(x) (aij − γij(x)) ≤
n∑
j=1

ηjγij(x), x ∈ R, i = 1, 2, ..., n, (1.4)
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D) {ωij(t, u)}n×ni,j=1 satisfy the Caratheodory condition with respect to the argument u on the set
R× [0,+∞), i.e. for every fixed u ∈ [0,+∞) the functions {ωij(t, u)}n×ni,j=1 are measurable with
respect to t on R and for almost every t ∈ R these functions are continuous with respect to u
on the set [0,+∞).

The study of systems of nonlinear integral equations (1.1) and (1.2), besides purely mathematical
interest, has also an important interest in different applied problems of mathematical physics and
mathematical biology. In particular, for specific representations of matrix kernels {Kij(x, t)}n×ni,j=1

and nonlinearities {Gj(u)}nj=1 and {ωij(t, u)}n×ni,j=1 such systems of nonlinear integral equations can
be found in the kinetic theory of gases, radiative transfer theory, Markovian processes and in the
mathematical theory of space-time epidemic spread (see [1]-[5], [10], [13], [14]).

In the case, when the kernels {Kij(x, t)}n×ni,j=1 depend on the difference of their arguments and
satisfy the supercritical condition (the spectral radius of the matrix A is greater than one) with
particular restrictions on the functions {ωij(t, u)}n×ni,j=1 system (1.1) on (−∞, 0] (and the corresponding
system of nonlinear integral equations on [0,+∞), whose right-hand-side integrals have limits from
x ≥ 0 to +∞) is studied in sufficient detail in the work [9]. In the present paper a one-parameter
family of positive summable and bounded on (−∞, 0] (on [0,+∞)) solutions is constructed and the
set of the corresponding parameters is described.

It should also be noted that in the case when Kij(x, t) = Kij(x− t), (x, t) ∈ R2, i, j = 1, 2, ..., n
the corresponding systems of convolution type nonlinear integral equations (NIE) (i.e. when the
integral in the right-hand sides of (1.1) and (1.2) has the limits from −∞ to +∞) were studied in
the works [6]-[8].

In the present paper under conditions a)−c), I) - III) and A) - D) we will deal with the problems of
existence of nonnegative (nontrivial) and bounded solutions of systems of nonlinear integral equations
(1.1) and (1.2) and also will study the asymptotic behaviour of the constructed solutions on −∞.
Firstly, a constructive theorem of existence of a one-parameter family of componentwise nonnegative
(nontrivial) and bounded solutions, which have finite limit values in −∞ will be proved. Then, we
will prove the integrability on the set (−∞, 0] of the difference between the limit (at −∞) and the
constructed solution for every value of the corresponding parameter on the set (0,+∞) (see Theorem
2.1). Owner furthermore, by using these results, we will construct componentwise nonnegative and
bounded on R solution ϕ(x) = (ϕ1(x), ..., ϕn(x))T of system of nonlinear integral equations (1.2).
Additionally, we will prove the existence of

lim
x→−∞

ϕj(x) = η∗j

and that η∗j−ϕj ∈ L1(−∞, 0), j = 1, 2, ..., n (see Theorem 3.1). At the end of the work we will provide
specific examples of matrix kernels {Kij(x, t)}n×ni,j=1 and nonlinearities {Gj(u)}nj=1, {ωij(t, u)}n×ni,j=1 that
satisfy all the conditions of the proved theorem. Note that a part of those examples have applied
character (they arise in specific problems of mathematical physics and biology).

2 One parameter family of solutions for system (1.1)

In the current section we will prove the following result for system of NIE (1.1):

Theorem 2.1. Under conditions a) - c) and A) - D) system of NIE (1.1) has a one-parameter
family of componentwise nonnegative (nontrivial) and bounded solutions fγ(x) = (fγ1 (x), ..., fγn (x))T ,
γ ∈ (0,+∞), such that

lim
x→−∞

fγj (x) = ηjγ

and ηjγ − fγj ∈ L1(−∞, 0), j = 1, 2, ..., n, where η is defined by (1.3).
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Proof. Firstly, let us consider the first auxiliary system of linear nonhomogeneous Volterra type
integral equations:

ψi(x) = gi(x) +
n∑
j=1

x∫
−∞

Kij(x, t)ψj(t)dt, i = 1, 2, ..., n, x ∈ R (2.1)

with respect to an unknown summable on R vector-function ψ(x) = (ψ1(x), ..., ψn(x))T , where the
vector-function g(x) = (g1(x), ..., gn(x))T has the following structure:

gi(x) =
n∑
j=1

βij(x) (aij − γij(x)) , i = 1, 2, ..., n, x ∈ R. (2.2)

We introduce the following iterations for system (2.1):

ψ
(m+1)
i (x) = gi(x) +

n∑
j=1

x∫
−∞

Kij(x, t)ψ
(m)
j (t)dt,

ψ
(0)
i (x) = gi(x), x ∈ R, i = 1, 2, ..., n, m = 0, 1, ... .

(2.3)

By mathematical induction it is not hard to verify that

1) ψ(m)
i (x) are measurable on R, i = 1, 2, ..., n, m = 0, 1, 2, ...,

2) ψ(m)
i (x) ↑ with respect to m, i = 1, 2, ..., n, x ∈ R.

We will prove that

3) ψ(m)
i (x) ≤ ηi, m = 0, 1, 2, ..., i = 1, 2, ..., n, x ∈ R.

Indeed, estimate 3) for m = 0 directly follows from b1), (1.3) and (1.4):

ψ
(0)
i (x) = gi(x) ≤

n∑
j=1

ηjγij(x) ≤
n∑
j=1

aijηj = ηi, x ∈ R, i = 1, 2, ..., n.

Assume that 3) holds for some m ∈ N. Then, with consideration of b1), (1.3), (1.4), a) and (2.2)
from (2.3) we get

ψ
(m+1)
i (x) ≤

n∑
j=1

βij(x) (aij − γij(x)) +
n∑
j=1

ηj

x∫
−∞

Kij(x, t)dt ≤

≤
n∑
j=1

ηjγij(x) +
n∑
j=1

ηj (aij − γij(x)) =
n∑
j=1

aijηj = ηi, i = 1, 2, ..., n, x ∈ R.

Now we will prove that

4) ψ(m)
i ∈ L1(−∞, 0), i = 1, 2, ..., n, m = 0, 1, 2, ... .

Indeed, in the case when m = 0 inclusion 4) follows from the definition of gi(x), i = 1, 2, ..., n, with
consideration of (1.4), conditions b1) and b3). Let ψ

(m)
i ∈ L1(−∞, 0), i = 1, 2, ..., n for some natural
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m. Then, considering (1.4), a), b), c) and (2.2), from (2.3) for every δ < 0 by Fubini’s theorem (see
[11]) we have

0 ≤
0∫
δ

ψ
(m+1)
i (x)dx ≤

n∑
j=1

0∫
δ

ηjγij(x)dx+
n∑
j=1

0∫
δ

x∫
−∞

Kij(x, t)ψ
(m)
j (t)dtdx =

=
n∑
j=1

ηj

0∫
δ

γij(x)dx+
n∑
j=1

0∫
δ

δ∫
−∞

Kij(x, t)ψ
(m)
j (t)dtdx+

n∑
j=1

0∫
δ

x∫
δ

Kij(x, t)ψ
(m)
j (t)dtdx ≤

≤
n∑
j=1

ηj

0∫
−∞

γij(x)dx+
n∑
j=1

δ∫
−∞

ψ
(m)
j (t)

0∫
δ

Kij(x, t)dxdt+
n∑
j=1

0∫
δ

ψ
(m)
j (t)

0∫
t

Kij(x, t)dxdt ≤

≤
n∑
j=1

ηj

0∫
−∞

γij(x)dx+
n∑
j=1

aij

0∫
−∞

ψ
(m)
j (t)dt < +∞.

By passing to the limit as δ → −∞, we conclude that ψ(m+1)
i ∈ L1(−∞, 0). Now let t ≤ 0 be

an arbitrary number. We multiply both sides of (2.3) by ηi, i = 1, 2, ..., n and taking into account
conditions a), b), c), (1.4) and also the proven inclusions 1)-4), we integrate both sides of the obtained
equality by x ∈ (−∞, t], then we add the equations for i = 1, 2, ..., n. As a result we obtain

n∑
i=1

ηi

t∫
−∞

ψ
(m+1)
i (x)dx ≤

≤
n∑
i=1

ηi

n∑
j=1

ηj

t∫
−∞

γij(x)dx+
n∑
i=1

ηi

n∑
j=1

t∫
−∞

x∫
−∞

Kij(x, y)ψ
(m+1)
j (y)dydx =

=
n∑
i=1

ηi

n∑
j=1

ηj

t∫
−∞

γij(x)dx+
n∑
i=1

ηi

n∑
j=1

t∫
−∞

0∫
−∞

Kij(x, x+ τ)ψ
(m+1)
j (x+ τ)dτdx =

=
n∑
i=1

ηi

n∑
j=1

ηj

t∫
−∞

γij(x)dx+
n∑
i=1

ηi

n∑
j=1

0∫
−∞

t∫
−∞

Kij(x, x+ τ)ψ
(m+1)
j (x+ τ)dxdτ =

=
n∑
i=1

ηi

n∑
j=1

ηj

t∫
−∞

γij(x)dx+
n∑
i=1

ηi

n∑
j=1

−δ0∫
−∞

t∫
−∞

Kij(x, x+ τ)ψ
(m+1)
j (x+ τ)dxdτ+

+
n∑
i=1

ηi

n∑
j=1

0∫
−δ0

t∫
−∞

Kij(x, x+ τ)ψ
(m+1)
j (x+ τ)dxdτ =

=
n∑
i=1

ηi

n∑
j=1

ηj

t∫
−∞

γij(x)dx+
n∑
i=1

ηi

n∑
j=1

−δ0∫
−∞

t+τ∫
−∞

Kij(z − τ, z)ψ
(m+1)
j (z)dzdτ+
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+
n∑
i=1

ηi

n∑
j=1

0∫
−δ0

t+τ∫
−∞

Kij(z − τ, z)ψ
(m+1)
j (z)dzdτ ≤

≤
n∑
i=1

ηi

n∑
j=1

ηj

t∫
−∞

γij(x)dx+
n∑
i=1

ηi

n∑
j=1

−δ0∫
−∞

t−δ0∫
−∞

Kij(z − τ, z)ψ
(m+1)
j (z)dzdτ+

+
n∑
i=1

ηi

n∑
j=1

0∫
−δ0

t∫
−∞

Kij(z − τ, z)ψ
(m+1)
j (z)dzdτ =

=
n∑
i=1

ηi

n∑
j=1

ηj

t∫
−∞

γij(x)dx+
n∑
i=1

ηi

n∑
j=1

t−δ0∫
−∞

t−δ0∫
−∞

Kij(z − τ, z)ψ
(m+1)
j (z)dzdτ+

+
n∑
i=1

ηi

n∑
j=1

−δ0∫
t−δ0

t−δ0∫
−∞

Kij(z − τ, z)ψ
(m+1)
j (z)dzdτ+

+
n∑
i=1

ηi

n∑
j=1

t∫
−∞

ψ
(m+1)
j (z)

0∫
−δ0

Kij(z − τ, z)dτdz =

=
n∑
i=1

ηi

n∑
j=1

ηj

t∫
−∞

γij(x)dx+
n∑
i=1

ηi

n∑
j=1

t−δ0∫
−∞

ψ
(m+1)
j (z)

t−δ0∫
−∞

Kij(z − τ, z)dτdz+

+
n∑
i=1

ηi

n∑
j=1

t−δ0∫
−∞

ψ
(m+1)
j (z)

−δ0∫
t−δ0

Kij(z − τ, z)dτdz+

+
n∑
i=1

ηi

n∑
j=1

t∫
−∞

ψ
(m+1)
j (z)

0∫
−δ0

Kij(z − τ, z)dτdz =

=
n∑
i=1

ηi

n∑
j=1

ηj

t∫
−∞

γij(x)dx+
n∑
i=1

ηi

n∑
j=1

t−δ0∫
−∞

ψ
(m+1)
j (z)

−δ0∫
−∞

Kij(z − τ, z)dτdz+

+
n∑
i=1

ηi

n∑
j=1

t∫
−∞

ψ
(m+1)
j (z)

0∫
−δ0

Kij(z − τ, z)dτdz =

=
n∑
i=1

ηi

n∑
j=1

ηj

t∫
−∞

γij(x)dx+
n∑
i=1

ηi

n∑
j=1

t−δ0∫
−∞

ψ
(m+1)
j (z)

0∫
−∞

Kij(z − τ, z)dτdz+

+
n∑
i=1

ηi

n∑
j=1

t∫
t−δ0

ψ
(m+1)
j (z)

0∫
−δ0

Kij(z − τ, z)dτdz =

=
n∑
i=1

ηi

n∑
j=1

ηj

t∫
−∞

γij(x)dx+
n∑
i=1

ηi

n∑
j=1

t−δ0∫
−∞

ψ
(m+1)
j (z)

∞∫
z

Kij(y, z)dydz+
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+
n∑
i=1

ηi

n∑
j=1

t∫
t−δ0

ψ
(m+1)
j (z)

z+δ0∫
z

Kij(y, z)dydz ≤

≤
n∑
i=1

ηi

n∑
j=1

ηj

t∫
−∞

γij(x)dx+
n∑
i=1

ηi

n∑
j=1

aij

t−δ0∫
−∞

ψ
(m+1)
j (z)dz+

+
n∑
i=1

ηi

n∑
j=1

t∫
t−δ0

ψ
(m+1)
j (z)

z+δ0∫
z

Kij(y, z)dydz =

=
n∑
i=1

ηi

n∑
j=1

ηj

t∫
−∞

γij(x)dx+
n∑
j=1

t−δ0∫
−∞

ψ
(m+1)
j (z)dz

n∑
i=1

ajiηi+

+
n∑
i=1

ηi

n∑
j=1

t∫
t−δ0

ψ
(m+1)
j (z)

z+δ0∫
z

Kij(y, z)dydz =

=
n∑
i=1

ηi

n∑
j=1

ηj

t∫
−∞

γij(x)dx+
n∑
j=1

ηj

t−δ0∫
−∞

ψ
(m+1)
j (z)dz+

+
n∑
i=1

ηi

n∑
j=1

t∫
t−δ0

ψ
(m+1)
j (z)

z+δ0∫
z

Kij(y, z)dydz,

from which it follows that

n∑
j=1

ηj

t∫
t−δ0

ψ
(m+1)
j (z)dz ≤

n∑
i=1

ηi

n∑
j=1

ηj

t∫
−∞

γij(x)dx+

+
n∑
i=1

ηi

n∑
j=1

t∫
t−δ0

ψ
(m+1)
j (z)

z+δ0∫
z

Kij(y, z)dydz.

(2.4)

Observe that

aij −
z+δ0∫
z

Kij(y, z)dy ≥
∞∫
z

Kij(y, z)dy −
z+δ0∫
z

Kij(y, z)dy =

=

∞∫
z+δ0

Kij(y, z)dy =

∞∫
δ0

Kij(z + u, z)du ≥ εij for z ≤ 0, i, j = 1, 2, ..., n .

(2.5)
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Considering (2.4) and (2.5), we obtain

n∑
j=1

ηj

t∫
t−δ0

ψ
(m+1)
j (z)dz ≤

≤
n∑
i=1

ηi

n∑
j=1

ηj

t∫
−∞

γij(x)dx+
n∑
j=1

t∫
t−δ0

ψ
(m+1)
j (z)

(
n∑
i=1

ajiηi −
n∑
i=1

εijηi

)
dz =

=
n∑
i=1

ηi

n∑
j=1

ηj

t∫
−∞

γij(x)dx+
n∑
j=1

ηj

t∫
t−δ0

ψ
(m+1)
j (z)dz −

n∑
i=1

n∑
j=1

εijηi

t∫
t−δ0

ψ
(m+1)
j (z)dz,

which is the same as

n∑
j=1

n∑
i=1

εijηi

t∫
t−δ0

ψ
(m+1)
j (z)dz ≤

n∑
i=1

ηi

n∑
j=1

ηj

t∫
−∞

γij(x)dx. (2.6)

Let p < 0 be an arbitrary number. We integrate both sides of (2.6) with respect to t from p to 0.
Then, according to b1), b3) and Fubini’s theorem from (2.6) we obtain

0 ≤
n∑
j=1

n∑
i=1

εijηi

0∫
p

t∫
t−δ0

ψ
(m+1)
j (z)dzdt ≤

n∑
i=1

ηi

n∑
j=1

ηj

0∫
−∞

t∫
−∞

γij(x)dxdt =

=
n∑
i=1

ηi

n∑
j=1

ηj

0∫
−∞

(−x)γij(x)dx < +∞.

(2.7)

By passing to the limit as p→ −∞, we obtain

0 ≤
n∑
j=1

n∑
i=1

εijηi

0∫
−∞

t∫
t−δ0

ψ
(m+1)
j (z)dzdt ≤

n∑
i=1

ηi

n∑
j=1

ηj

0∫
−∞

(−x)γij(x)dx

or

0 ≤
n∑
j=1

n∑
i=1

εijηi

0∫
−∞

0∫
−δ0

ψ
(m+1)
j (t+ τ)dτdt ≤

≤
n∑
i=1

ηi

n∑
j=1

ηj

0∫
−∞

(−x)γij(x)dx < +∞, m = 0, 1, 2, ... .

(2.8)

By changing the order of integration in (2.8), we have

0 ≤
n∑
j=1

n∑
i=1

εijηi

0∫
−δ0

0∫
−∞

ψ
(m+1)
j (t+ τ)dtdτ ≤

≤
n∑
i=1

ηi

n∑
j=1

ηj

0∫
−∞

(−x)γij(x)dx, m = 0, 1, 2, ... ,
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from which it follows that

0 ≤
n∑
j=1

n∑
i=1

εijηi

0∫
−δ0

−δ0∫
−∞

ψ
(m+1)
j (y)dydτ ≤

≤
n∑
i=1

ηi

n∑
j=1

ηj

0∫
−∞

(−x)γij(x)dx, m = 0, 1, 2, ...

or

0 ≤
n∑
j=1

n∑
i=1

εijηi

−δ0∫
−∞

ψ
(m+1)
j (y)dy ≤

≤ 1

δ0

n∑
i=1

ηi

n∑
j=1

ηj

0∫
−∞

(−x)γij(x)dx, m = 0, 1, 2, ... .

(2.9)

Due to 1)-3) we have

0 ≤
0∫

−δ0

ψ
(m+1)
j (y)dy ≤ ηjδ0, j = 1, 2, ..., n, m = 0, 1, 2, ... . (2.10)

We denote

µ := min
1≤j≤n

n∑
i=1

εijηi. (2.11)

Then, from (2.9), in particular, it follows that

0 ≤
−δ0∫
−∞

ψ
(m+1)
j (y)dy ≤ 1

µδ0
·

n∑
i=1

ηi

n∑
i=1

ηj

0∫
−∞

(−x)γij(x)dx,

m = 0, 1, 2, ..., j = 1, 2, ..., n.

(2.12)

Therefore, inequalities (2.10) and (2.12) entail the following two-sided estimate

0 ≤
0∫

−∞

ψ
(m+1)
j (y)dy ≤ ( max

1≤j≤n
ηj)δ0 +

1

µδ0

n∑
i=1

ηi

n∑
i=1

ηj

0∫
−∞

(−x)γij(x)dx < +∞,

j = 1, 2, ..., n, m = 0, 1, 2, ... .

(2.13)

From 1)-4) and (2.11) it follows that the sequence of measurable on R vector-functions ψ(m)(x) =(
ψ

(m)
1 (x), ..., ψ

(m)
n (x)

)T
, m = 0, 1, 2, ... has a pointwise limit when m→∞:

lim
m→∞

ψ(m)(x) = ψ(x),

additionally, the limit vector-function ψ(x) = (ψ1(x), ..., ψn(x))T according to B. Levi’s theorem (see
[11]) satisfies system (2.1). Once again using 1)-4) and (2.11), we can state that

gi(x) ≤ ψi(x) ≤ ηi, x ∈ R, i = 1, 2, ..., n, (2.14)
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0 ≤
0∫

−∞

ψj(x)dx ≤ ( max
1≤j≤n

ηj)δ0 +
1

µδ0

n∑
i=1

ηi

n∑
i=1

ηj

0∫
−∞

(−x)γij(x)dx < +∞,

i = 1, 2, ... .

(2.15)

We now consider the second auxiliary linear nonhomogeneous system of integral equations on R:

ψ∗i (x) = g∗i (x) +
n∑
j=1

x∫
−∞

Kij(x, t)ψ
∗
j (t)dt, x ∈ R, i = 1, 2, ..., n (2.16)

with respect to the unknown vector function ψ∗(x) = (ψ∗1(x), ..., ψ∗n(x))T , where

g∗i (x) =
n∑
j=1

ηjγij(x), i = 1, 2, ..., n, x ∈ R. (2.17)

Repeating the same reasoning as for system (2.1), wherein taking ψi(x), i = 1, 2, ..., n as the zero ap-
proximation, we can prove that system of integral equations (2.16) has a componentwise nonnegative
and bounded solution ψ∗(x) = (ψ∗1(x), ..., ψ∗n(x))T , and, besides that

gi(x) ≤ ψi(x) ≤ ψ∗i (x) ≤ ηi, x ∈ R, i = 1, 2, ..., n, (2.18)

0 ≤
0∫

−∞

ψ∗j (x)dx ≤ ( max
1≤j≤n

ηj)δ0 +
1

µδ0

n∑
i=1

ηi

n∑
i=1

ηj

0∫
−∞

(−x)γij(x)dx < +∞,

i = 1, 2, ... .

(2.19)

On the other hand, note that system of integral equations (2.16) also has a trivial solution η =
(η1, ..., ηn)T . Indeed, considering b1), (2.17) and (1.3), we obtain

g∗i (x) +
n∑
j=1

ηj

x∫
−∞

Kij(x, t)dt =
n∑
j=1

ηj(aij − γij(x)) +
n∑
j=1

ηjγij(x) =
n∑
j=1

aijηj = ηi,

i = 1, 2, ..., n.

From (2.18) and (2.19) it follows that ψ∗i (x) 6≡ ηi, x ∈ R, i = 1, 2, ..., n. Therefore,

Φi(x) := ηi − ψ∗i (x) ≥ 0, Φi(x) 6≡ 0, x ∈ R, i = 1, 2, ..., n

and also satisfies the homogeneous system of integral equations

Φi(x) =
n∑
j=1

x∫
−∞

Kij(x, t)Φj(t)dt, x ∈ R, i = 1, 2, ..., n. (2.20)

We now prove that there exists

lim
x→−∞

Φi(x) = ηi, i = 1, 2, ..., n.

Indeed, for negative values of x from (2.16) due to a) and b1) we conclude that

0 ≤ ψ∗i (x) ≤
n∑
j=1

ηjγij(x) +
n∑
j=1

sup
(x,t)∈R2

(Kij(x, t)) ·
x∫

−∞

ψ∗j (t)dt→ 0, when x→ −∞,
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from which we obtain that there exists lim
x→−∞

ψ∗i (x) = 0, i = 1, 2, ..., n. Therefore, there exists

lim
x→−∞

Φi(x) = ηi, i = 1, 2, ..., n. Since ψ∗i ∈ L1(−∞, 0), i = 1, 2, ..., n, hence ηi − Φi ∈ L1(−∞, 0),
i = 1, 2, ..., n.

Finally, we consider the following family of successive approximations for the system (1.1):

f
(m+1)
i,γ (x) =

n∑
j=1

x∫
−∞

Kij(x, t){f (m)
j,γ (t) + ωij(t, f

(m)
j,γ (t))}dt,

f
(0)
i,γ (x) = γΦi(x), m = 0, 1, 2, ..., i = 1, 2, ..., n, x ∈ R,

(2.21)

where γ ∈ (0,+∞) is an arbitrary parameter.
By using mathematical induction it is not hard to verify that for every γ ∈ (0,+∞)

Γ1) f
(m)
i,γ (x) are measurable on R, i = 1, 2, ..., n, m = 0, 1, 2, ..., (2.22)

Γ2) f
(m)
i,γ (x) ↑ with respect to m, i = 1, 2, ..., n, x ∈ R. (2.23)

We will now prove that

Γ3) f
(m)
i,γ (x) ≤ γΦi(x) + ψi(x), i = 1, 2, ..., n, x ∈ R. (2.24)

For m = 0 the given inequality directly follows from the definition of the zero approximation with
consideration of nonnegativity of the functions {ψi(x)}ni=1 on R. Assume that (2.24) holds for some
m ∈ N. Then, taking into account (2.1), (2.20) and A)-C), from (2.21) we get

f
(m+1)
i,γ (x) ≤

n∑
j=1

x∫
−∞

Kij(x, t){γΦj(t) + ψj(t) + ωij(t, γΦj(t) + ψj(t))}dt ≤

≤ γ

n∑
j=1

x∫
−∞

Kij(x, t)Φj(t)dt+
n∑
j=1

x∫
−∞

Kij(x, t)ψj(t)dt+
n∑
j=1

x∫
−∞

Kij(x, t)βij(t)dt ≤

≤ γΦi(x) +
n∑
j=1

x∫
−∞

Kij(x, t)ψj(t)dt+
n∑
j=1

βij(x)(aij − γij(x)) = γΦi(x) + ψi(x),

i = 1, 2, ..., n, x ∈ R.

Let us prove that

Γ4) If γ1, γ2 ∈ (0,+∞) are arbitrary parameters and γ1 > γ2, then

f
(m)
i,γ1

(x)− f (m)
i,γ2

(x) ≥ (γ1 − γ2)Φi(x), x ∈ R, i = 1, 2, ..., n, m = 0, 1, 2, ... (2.25)

Indeed, in the case of m = 0 inequalities (2.25) are transformed to equalities by the definition of the
zero approximation in iterations (2.21). Let (2.25) hold for some natural m. Then, from (2.21) due
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to conditions B) and (2.20) we will obtain

f
(m+1)
i,γ1

(x)− f (m+1)
i,γ2

(x) =

=
n∑
j=1

x∫
−∞

Kij(x, t){f (m)
j,γ1

(t)− f (m)
j,γ2

(t) + ωij(t, f
(m)
j,γ1

(t))− ωij(t, f (m)
j,γ2

(t))}dt ≥

≥ (γ1 − γ2)
n∑
j=1

x∫
−∞

Kij(x, t){Φj(t) + ωij(t, f
(m)
j,γ2

(t) + (γ1 − γ2)Φj(t))− ωij(t, f (m)
j,γ2

(t))}dt ≥

≥ (γ1 − γ2)
n∑
j=1

x∫
−∞

Kij(x, t)Φj(t)dt = (γ1 − γ2)Φi(x), i = 1, 2, ..., n, x ∈ R.

So, from Γ1) - Γ4) it follows that the sequence of measurable vector functions f
(m)
γ (x) =

(f
(m)
1,γ (x), ..., f

(m)
n,γ (x))T , m = 0, 1, 2, ..., for every γ ∈ (0,+∞) has a pointwise limit when m → ∞:

lim
m→∞

f
(m)
γ (x) = fγ(x) = (fγ1 (x), ..., fγn (x))T , moreover,

γΦj(x) ≤ fγj (x) ≤ γΦj(x) + ψj(x), j = 1, 2, ..., n, x ∈ R, (2.26)
fγ1j (x)− fγ2j (x) ≥ (γ1 − γ2)Φj(x), j = 1, 2, ..., n, x ∈ R, (2.27)

where γ1, γ2 ∈ (0,+∞), γ1 > γ2 are arbitrary parameters. Considering conditions D), b) according
to B. Levi’s theorem for every γ ∈ (0,+∞) the vector function fγ(x) = (fγ1 (x), ..., fγn (x))T satisfies
system of NIE (1.1).

Since lim
x→−∞

ψ∗i (x) = 0, i = 1, 2, ..., n, from (2.18) it follows that

lim
x→−∞

ψi(x) = 0, i = 1, 2, ..., n. (2.28)

From (2.15), (2.26) and (2.28) directly follows that

lim
x→−∞

{fγi (x)− γΦi(x)} = 0, i = 1, 2, ..., n, γ ∈ (0,+∞), (2.29)

0 ≤ fγi − γΦi ∈ L1(−∞, 0), i = 1, 2, ..., n, γ ∈ (0,+∞). (2.30)

Since lim
x→−∞

(ηi − Φi(x)) = 0, ηi−Φi ∈ L1(−∞, 0), i = 1, 2, ..., n, hence there exists lim
x→−∞

fγi (x) = γηi,
and from the estimate

0 ≤ |γηi − fγi (x)| ≤ γ(ηi − Φi(x)) + fγi (x)− γΦi(x) ∈ L1(−∞, 0), i = 1, 2, ..., n

it follows that γηi − fγi ∈ L1(−∞, 0), i = 1, 2, ..., n, γ ∈ (0,+∞).

3 Solvability of system of NIE (1.2). Examples

In the current section with the use of the results of Theorem 2.1 and some geometrical inequalities
for concave functions, we will deal with the problem of solvability for system of NIE (1.2).

Theorem 3.1. Under conditions a) - c), I) - III) and A) - D) system of NIE (1.2) has componentwise
nonnegative (nontrivial) and bounded on R solution ϕ(x) = (ϕ1(x), ..., ϕn(x))T , such that

lim
x→−∞

ϕj(x) = η∗j

and η∗j − ϕj ∈ L1(−∞, 0), j = 1, 2, ..., n where η∗ is defined in III).
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Proof. Due to Theorem 2.1 for the number γ∗ = α corresponds a solution fγ
∗
(x) =

(fγ
∗

1 (x), ..., fγ
∗

n (x))T of system (1.1) with the properties

αΦj(x) ≤ fγ
∗

j (x) ≤ αΦj(x) + ψj(x), j = 1, 2, ..., n, x ∈ R, , (3.1)

lim
x→−∞

fγ
∗

j (x) = α · ηj = η∗j , η
∗
j − f

γ∗

j ∈ L1(−∞, 0), j = 1, 2, ..., n. (3.2)

Consider the following iterations for system (1.2):

ϕ
(m+1)
i (x) =

n∑
j=1

x∫
−∞

Kij(x, t){Gj(ϕ
(m)
j (t)) + ωij(t, ϕ

(m)
j (t))}dt,

ϕ
(0)
i (x) = fγ

∗

i (x), m = 0, 1, 2, ..., i = 1, 2, ..., n, x ∈ R.

(3.3)

Using I), II), B), D) and a) with induction on m it is easy to check that

E1) ϕ
(m)
i (x) are measurable with respect to x on R, m = 0, 1, 2, ..., i = 1, 2, ..., n,

E2) ϕ
(m)
i (x) ↑ with respect to m, x ∈ R, i = 1, 2, ..., n.

Below we will prove that

E3) ϕ
(m)
i (x) ≤ η∗i + ψi(x), x ∈ R, m = 0, 1, 2, ..., i = 1, 2, ..., n.

In the case when m = 0 inequalities E3) directly folow from (3.1) and III), by taking into account
the estimates Φi(x) ≤ ηi, i = 1, 2, ..., n, x ∈ R. Assume that E3) holds for some natural m. Then,
using the following inequalities

Gj(η
∗
j + u) ≤ η∗j + u, u ≥ 0, j = 1, 2, ..., n

(which follow from the concaveness of the functions {Gj(u)}nj=1 (see Fig. 1.)), and also C), III), II),
(1.3), (2.1) and (2.14), from (3.3) we have

ϕ
(m+1)
i (x) ≤

n∑
j=1

x∫
−∞

Kij(x, t){Gj(η
∗
j + ψj(t)) + ωij(t, η

∗
j + ψj(t))}dt ≤

≤
n∑
j=1

x∫
−∞

Kij(x, t)(η
∗
j + ψj(t) + βij(t))dt ≤

n∑
j=1

η∗j (aij − γij(x))+

+
n∑
j=1

x∫
−∞

Kij(x, t)ψj(t)dt+ gi(x) ≤ η∗i + ψi(x), i = 1, 2, ..., n, x ∈ R.

So, from E1)-E3) we conclude that the sequence of measurable vector functions ϕ(m)(x) =

(ϕ
(m)
1 (x), ..., ϕ

(m)
n (x))T , m = 0, 1, 2, ... has a pointwise limit when m → ∞: lim

m→∞
ϕ(m)(x) = ϕ(x) =

(ϕ1(x), ..., ϕn(x))T , moreover,

fγ
∗

i (x) ≤ ϕi(x) ≤ η∗i + ψi(x), i = 1, 2, ..., n, x ∈ R. (3.4)

Using conditions I) and D) due to B. Levi’s theorem we obtain that ϕ(x) = (ϕ1(x), ..., ϕn(x))T is a
solution to system of NIE (1.2). From (3.4), (3.2), (2.15) and (2.28) it follows that lim

x→−∞
ϕi(x) = η∗i

and η∗i − ϕi ∈ L1(−∞, 0), i = 1, 2, ..., n.
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Figure 1:

At the end we will present specific examples of monotonous kernels {Kij(x, t)}n×ni,j=1 and non-
linearities {Gj(u)}nj=1, {ωij(t, u)}n×ni,j=1 that satisfy the conditions of the proven Theorems 2.1 and
3.1.

Firstly, we will give examples of matrix kernels {Kij(x, t)}n×ni,j=1. Let functions {λij(x)}n×ni,j=1 be
defined and continuous on the set R and satisfy the following conditions

F1) 0 < ρij := inf
x∈R

λij(x) ≤ λij(x) ≤ 1, λij(x) 6≡ 1, x ∈ R, i, j = 1, 2, ..., n,

F2) lim
x→−∞

λij(x) = 1, x(1− λij(x)) ∈ L1(−∞, 0), i, j = 1, 2, ..., n.

Also, let functions {K̊ij(x)}n×ni,j=1 be continuous on R and satisfy the following conditions:

H1) K̊ij(x) > 0, x ∈ R, K̊ij(−t) = K̊ij(t), t ≥ 0, i, j = 1, 2, ..., n,

H2) K̊ij ∈ L∞(R), aij =
∞∫
0

K̊ij(x)dx, i, j = 1, 2, ..., n.

Then we can choose the following classes of matrix functions as matrix kernels {Kij(x, t)}n×ni,j=1:

W1) Kij(x, t) = λij(x) · K̊ij(x− t), (x, t) ∈ R2, i, j = 1, 2, ..., n,

W2) Kij(x, t) =
λij(t)+λij(x)

2
· K̊ij(x− t), (x, t) ∈ R2, i, j = 1, 2, ..., n,

W3) Kij(x, t) = λij(x+ t) · K̊ij(x− t), (x, t) ∈ R2, i, j = 1, 2, ..., n.

Let us take a look at example W3). Condition a) directly follows from F1) and H1), H2). We will
now verify condition b). We have

γij(x) = aij −
x∫

−∞

λij(x+ t)K̊ij(x− t)dt ≥ aij −
x∫

−∞

K̊ij(x− t)dt = 0, i, j = 1, 2, ..., n, x ∈ R.
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On the other hand, considering equations H2), F2), F1) and H1), we obtain

0∫
−∞

(−x)γij(x)dx =

0∫
−∞

(−x)

x∫
−∞

(1− λij(x+ t))K̊ij(x− t)dtdx =

=

0∫
−∞

(−x)

∞∫
0

(1− λij(2x− y))K̊ij(y)dydx =

∞∫
0

K̊ij(y)

0∫
−∞

(−x)(1− λij(2x− y))dxdy =

=
1

2

∞∫
0

K̊ij(y)

−y∫
−∞

(
−t− y

2

)
(1− λij(t))dtdy ≤

1

4

∞∫
0

K̊ij(y)

0∫
−∞

(−t− y) (1− λij(t))dtdy ≤

≤ 1

4

∞∫
0

K̊ij(y)dy

0∫
−∞

(−t) (1− λij(t))dt =
aij
4

0∫
−∞

(−t) (1− λij(t))dt < +∞, i, j = 1, 2, ..., n.

Now, let us verify that lim
x→−∞

γij(x) = 0, i, j = 1, 2, ..., n. Due to conditions a), F1), and F2), H2)

we have

0 ≤ γij(x) =

x∫
−∞

K̊ij(x− t)(1− λij(x+ t))dt ≤M

x∫
−∞

(1− λij(x+ t))dt =

= M

2x∫
−∞

(1− λij(y))dy → 0, when x→ −∞, where M := max
1≤i,j≤n

(sup
τ∈R

K̊ij(τ)).

Finally, let us verify condition c). Due to F1) and H2) we obtain

∞∫
δ0

Kij(x+ y, x)dy =

∞∫
δ0

λij(2x+ y)K̊ij(y)dy ≥ ρij · ãij, where ãij =

∞∫
δ0

K̊ij(y)dy,

i, j = 1, 2, ..., n, x ∈ R.

Therefore εij ≥ ρij · ãij > 0, i, j = 1, 2, ..., n. Let us now give examples of nonlinearities {Gj(u)}nj=1

and {ωij(u)}n×ni,j=1.

Examples of {Gj(u)}nj=1:

Q1) Gj(u) =
(
η∗j
) p−1

p p
√
u, j = 1, 2, ..., n, where p ≥ 2 is a natural number, u ∈ [0,+∞),

Q2) Gj(u) =
η∗j

1− e−η∗j
(
1− e−u

)
, j = 1, 2, ..., n, u ∈ [0,+∞),

Q3) Gj(u) =
1

2

(
p
√
u
(
η∗j
) p−1

p +
η∗j

1− e−η∗j
(
1− e−u

))
, j = 1, 2, ..., n, u ∈ [0,+∞).

Examples of {ωij(t, u)}n×ni,j=1:

V1) ωij(t, u) = βij(t)(1− e−u), u ∈ [0,+∞), t ∈ R, i, j = 1, 2, ..., n,

V2) ωij(t, u) = βij(t)
u
u+1

, u ∈ [0,+∞), t ∈ R, i, j = 1, 2, ..., n,
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V3) ωij(t, u) = βij(t) · th(u), u ∈ [0,+∞), t ∈ R, i, j = 1, 2, ..., n,

where
th(u) :=

eu − e−u

eu + e−u
.

Note that in all examples V1) − V3) it is assumed that βij ∈ C(R), i, j = 1, 2, ..., n. Let us
verify conditions I)-III) on the example Q2). Firstly, it is obvious that Gj ∈ C[0,+∞), Gj(0) = 0,
j = 1, 2, ..., n. Since G′′j (u) = − η∗j

1−e−η
∗
j
· e−u < 0, u ∈ [0,+∞), j = 1, 2, ..., n, therefore, the functions

{Gj(u)}nj=1 are concave. G′j(u) =
η∗j

1−e−η
∗
j
· e−u > 0, u ∈ [0,+∞), j = 1, 2, ..., n, Gj(u) ↑ with respect

to u on [0,+∞), j = 1, 2, ..., n. Obviously, Gj(η
∗
j ) = η∗j , j = 1, 2, ..., n. It remains to show that

Gj(u) ≥ u, u ∈ [0, η∗j ], j = 1, 2, ..., n. Let us consider the following functions on the segment [0, η∗j ]:

χj(u) =
η∗j

1− e−η∗j
(1− e−u)− u, u ∈ [0, η∗j ], j = 1, 2, ..., n.

Note that χj(0) = 0, χj(η
∗
j ) = 0, χ′′j (u) = − η∗j

1−e−η
∗
j
· e−u < 0, j = 1, 2, ..., n. Therefore χj(u) ≥ 0, u ∈

[0, η∗j ], j = 1, 2, ..., n.
Let us now verify the conditions A) - D) for the example V2). Firstly, it is obvious that ωij(t, 0) =

0, t ∈ R, i, j = 1, 2, ..., n. Since

∂ωij(t, u)

∂u
= βij(t)

1

(u+ 1)2
> 0, u ∈ [0,+∞), t ∈ R, i, j = 1, 2, ..., n,

ωij(t, u) ↑ with respect to u on the set [0,+∞), i, j = 1, 2, ..., n. From the representation of V2) it
follows that

sup
u∈[0,+∞)

(ωij(t, u)) = βij(t), t ∈ R, i, j = 1, 2, ..., n.

For the rest of examples Q1), Q3), V1) and V2) the verification of the corresponding conditions is
made similarly.

For the sake of completeness, let us also give specific examples of {K̊ij(x)}n×ni,j=1, {λij(x)}n×ni,j=1 and
{βij(x)}n×ni,j=1.

Examples of {K̊ij(x)}n×ni,j=1:

T1) K̊ij(x) =
2aij√
π
e−x

2
, x ∈ R, i, j = 1, 2, ..., n,

T2) K̊ij(x) =
b∫
a

e−|x|sdσij(s), x ∈ R, i, j,= 1, 2, ..., n,

where σij(s), i, j = 1, 2, ..., n are nondecreasing and continuous functions on the set [a, b), 0 < a <
b ≤ +∞, moreover,

b∫
a

1

s
dσij(s) = aij, i, j = 1, 2, ..., n.

Examples of {λij(x)}n×ni,j=1:

S1) λij(x) = 1− (1− ρij)D(x), x ∈ R, i, j = 1, 2, ..., n, where D(x) :=

{
ex, x < 0

1, x ≥ 0
,

S2) λij(x) = 1− (1− ρij)
2

· (th(x) + 1), x ∈ R, i, j = 1, 2, ..., n.
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Examples of {βij(x)}n×ni,j=1:

J1) βij(x) =
ηj
aij
γij(x), x ∈ R, i, j = 1, 2, ..., n, given that γij(x) ↑ with respect to

x on R, i, j = 1, 2, ..., n,

J2) βij(x) =
ηjγij(x)

aij − γij(x)
, x ∈ R, i, j = 1, 2, ..., n, given that γij(x) ↑ with respect

to x on R, i, j = 1, 2, ..., n.

Let us take a look at example J2). First of all let us give examples of functions {γij(x)}ni,j=1 that
satisfy the condition in J2). For example in the case of W1) the functions γij(x) allow the following
representation:

γij(x) =

x∫
−∞

K̊ij(x− t)(1− λij(x))dt = aij(1− λij(x)), x ∈ R, i, j = 1, 2, ..., n.

Note that in examples S1) and S2) the functions (1 − λij(x)), i, j = 1, 2, ..., n are increasing on
R. Therefore, if as a λij(x), i, j = 1, 2, ..., n we choose examples S1) and S2) we will obtain the
monotonicity of the functions {γij(x)}ni,j=1 on the set R. But in that case the functions {βij(x)}n×ni,j=1 in
examples J2) also will be nondecreasing on the set R. For example J2) inequality (1.4) is automatically
satisfied. The corresponding conditions on the functions {βij(x)}n×ni,j=1 for example J1) are verified
similarly.

It is interesting to note, that the problem of uniqueness of the solution for system (1.2) in conical
segments {[0, η∗j ]}nj=1 still remains open. For system (1.1) the uniqueness of the solution (in the class
of bounded on R vector-functions) fails, since, according to the results of Theorem 2.1, system (1.1)
has a one-parameter family of nonnegative (nontrivial) and bounded (on R) solutions.
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1 Introduction

Volume and layer potentials are integrals on a subset Y of the Euclidean space Rn that depend
on a variable in a subset X of Rn. Typically, X and Y are either measurable subsets of Rn with
the n-dimensional Lebesgue measure, or manifolds that are embedded in Rn, or boundaries of open
subsets of Rn with the surface measure and X may well be different from Y .

For many relevant results in Hölder spaces, one can introduce a unified approach by assuming
that X and Y are subsets of a metric space (M,d) and that Y is equipped with a measure ν that
satisfies an upper Ahlfors growth condition that includes non-doubling measures (cf. (4.2)). With
this respect we mention the works of Garćıa-Cuerva and Gatto [6], [7], Gatto [8] who have considered
the case X = Y = M and proved T1 Theorems for integral operators. Then one can also consider
a stronger growth condition. Namely, the strong upper Ahlfors growth condition (4.9) that has
been introduced in [15] to treat the dependence of singular and weakly singular integral operators
both upon the variation of the density and of the kernel, when the kernel belongs to certain classes
of kernels that generalize those of Giraud [10], Gegelia [9], Kupradze, Gegelia, Basheleishvili and
Burchuladze [13, Chapter IV] and the so-called standard kernels.

In this paper, we first introduce some basic multiplication and embedding theorems for such
classes of kernels (see Section 3).

In Section 4, we summarize and complement some results of [15].
In Section 5, we prove the tangential differentiation Theorem 5.1 with respect to a semi-tangent

vector for integral operators defined on an upper-Ahlfors regular subset of the Euclidean space.
In Section 6, we consider the case in which Y is a compact manifold of codimension 1 in Rn, and

we show application of the results of [15], of the above mentioned properties of the kernel classes
and of Theorem 5.1 by proving Theorem 6.3 on the continuity of the tangential gradient of a weakly
singular integral operator that is defined in Y upon variation both of the kernel and of the density
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in Hölder spaces. Here we mention that Theorem 6.3 applies to relevant integral operators such as
the layer potentials. In a forthcoming paper, we plan to apply the multiplication and embedding
theorems of the classes of kernels of Section 3 and of Theorem 6.3 to analyze the continuity properties
of the double layer potential that is associated with the fundamental solution of a second order elliptic
operator with constant coefficients.

2 Notation

Let X be a set. Then we set

B(X) ≡
{
f ∈ CX : f is bounded

}
, ‖f‖B(X) ≡ sup

X
|f | ∀f ∈ B(X) ,

where CX denotes the set of all functions from X to C. If (M,d) is a metric space, we set

B(ξ, r) ≡ {η ∈M : d(ξ, η) < r} (2.1)

for all (ξ, r) ∈M×]0,+∞[ and

diam (X) ≡ sup{d(x1, x2) : x1, x2 ∈ X}

for all subsets X of M . Then C0(M) denotes the set of all continuous functions from M to C and
we introduce the subspace C0

b (M) ≡ C0(M) ∩B(M) of B(M). Let ω be a function from [0,+∞[ to
itself such that

ω(0) = 0, ω(r) > 0 ∀r ∈]0,+∞[ ,

ω is increasing, lim
r→0+

ω(r) = 0 , (2.2)

and sup
(a,t)∈[1,+∞[×]0,+∞[

ω(at)

aω(t)
< +∞ .

If f is a function from a subset D of a metric space (M,d) to C, then we denote by |f : D|ω(·) the
ω(·)-Hölder constant of f , which is delivered by the formula

|f : D|ω(·) ≡ sup

{
|f(x)− f(y)|
ω(d(x, y))

: x, y ∈ D, x 6= y

}
.

If |f : D|ω(·) <∞, we say that f is ω(·)-Hölder continuous. Sometimes, we simply write |f |ω(·) instead
of |f : D|ω(·). The subset of C0(D) whose functions are ω(·)-Hölder continuous is denoted by C0,ω(·)(D)

and |f : D|ω(·) is a semi-norm on C0,ω(·)(D). Then we consider the space C0,ω(·)
b (D) ≡ C0,ω(·)(D)∩B(D)

with the norm
‖f‖

C
0,ω(·)
b (D) ≡ sup

x∈D
|f(x)|+ |f |ω(·) ∀f ∈ C0,ω(·)

b (D) .

In the case in which ω(·) is the function rα for some fixed α ∈]0, 1], a so-called Hölder exponent, we
simply write |· : D|α instead of |· : D|rα , C0,α(D) instead of C0,rα(D), C0,α

b (D) instead of C0,rα

b (D),
and we say that f is α-Hölder continuous provided that |f : D|α < +∞.

3 Special classes of potential type kernels in metric spaces

If X and Y are sets, then we denote by DX×Y the diagonal of X × Y , i.e., we set

DX×Y ≡ {(x, y) ∈ X × Y : x = y} (3.1)
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and if X = Y , then we denote by DX the diagonal of X ×X, i.e., we set

DX ≡ DX×X .

An off-diagonal function in X×Y is a function from (X×Y )\DX×Y to C. We now wish to consider
a specific class of off-diagonal kernels in a metric space (M,d).

Definition 1. Let X and Y be subsets of a metric space (M,d). Let s ∈ R. We denote by Ks,X×Y ,
the set of all continuous functions K from (X × Y ) \ DX×Y to C such that

‖K‖Ks,X×Y ≡ sup
(x,y)∈(X×Y )\DX×Y

|K(x, y)| d(x, y)s < +∞ .

The elements of Ks,X×Y are said to be kernels of potential type s in X × Y .

We plan to consider ‘potential type’ kernels as in the following definition. See also Dondi and the
author [5], where such classes have been introduced in a form that generalizes those of Giraud [10],
Gegelia [9], Kupradze, Gegelia, Basheleishvili and Burchuladze [13, Chapter IV].

Definition 2. Let X and Y be subsets of a metric space (M,d). Let s1, s2, s3 ∈ R. We denote by
Ks1,s2,s3(X × Y ) the set of all continuous functions K from (X × Y ) \ DX×Y to C such that

‖K‖Ks1,s2,s3 (X×Y ) ≡ sup

{
d(x, y)s1|K(x, y)| : (x, y) ∈ X × Y, x 6= y

}
+ sup

{
d(x′, y)s2

d(x′, x′′)s3
|K(x′, y)−K(x′′, y)| :

x′, x′′ ∈ X, x′ 6= x′′, y ∈ Y \B(x′, 2d(x′, x′′))

}
< +∞ .

One can easily verify that (Ks1,s2,s3(X×Y ), ‖·‖Ks1,s2,s3 (X×Y )) is a normed space. By our definition,
if s1, s2, s3 ∈ R, we have

Ks1,s2,s3(X × Y ) ⊆ Ks1,X×Y
and

‖K‖Ks1,X×Y ≤ ‖K‖Ks1,s2,s3 (X×Y ) ∀K ∈ Ks1,s2,s3(X × Y ) .

We note that if we choose s2 = s1 + s3 we have the so-called class of standard kernels. We now turn
to prove a series of statements in a metric space setting that extend the validity of corresponding
statements for the classes that had been introduced in Giraud [10], Gegelia [9], Kupradze, Gegelia,
Basheleishvili and Burchuladze [13, Chapter IV]. We start with the following elementary known
embedding lemma.

Lemma 3.1. Let X and Y be subsets of a metric space (M,d). Let s1, s2, s3 ∈ R. If a ∈]0,+∞[,
then Ks1,s2,s3(X × Y ) is continuously embedded into Ks1,s2−a,s3−a(X × Y ).

Proof. It suffices to note that if x′, x′′ ∈ X, x′ 6= x′′, then

d(x′, y)s2−a

d(x′, x′′)s3−a
=

d(x′, y)s2

d(x′, x′′)s3
d(x′, x′′)a

d(x′, y)a
≤ d(x′, y)s2

d(x′, x′′)s3

( 1
2
d(x′, y)

d(x′, y)

)a
=

d(x′, y)s2

d(x′, x′′)s3
2−a ∀y ∈ Y \B(x′, 2d(x′, x′′)) .
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Next we introduce the following known elementary lemma, which we exploit later and which can
be proved by the triangular inequality.

Lemma 3.2. Let (M,d) be a metric space. Then

1

2
d(x′, y) ≤ d(x′′, y) ≤ 2d(x′, y) ,

for all x′, x′′ ∈M , x′ 6= x′′, y ∈M \B(x′, 2d(x′, x′′)).

Next we prove the following product rule for kernels.

Theorem 3.1. Let X and Y be subsets of a metric space (M,d). Let s1, s2, s3, t1, t2, t3 ∈ R.

(i) If K1 ∈ Ks1,s2,s3(X × Y ) and K2 ∈ Kt1,t2,t3(X × Y ), then the following inequality holds

|K1(x
′, y)K2(x

′, y)−K1(x
′′, y)K2(x

′′, y)|

≤ ‖K1‖Ks1,s2,s3 (X×Y )‖K2‖Kt1,t2,t3 (X×Y )

(
d(x′, x′′)s3

d(x′, y)s2+t1
+

2|s1|d(x′, x′′)t3

d(x′, y)t2+s1

)
for all x′, x′′ ∈ X, x′ 6= x′′, y ∈ Y \B(x′, 2d(x′, x′′)).

(ii) The pointwise product is bilinear and continuous from

Ks1,s1+s3,s3(X × Y )×Kt1,t1+s3,s3(X × Y ) to Ks1+t1,s1+s3+t1,s3(X × Y ) .

Proof. (i) By the triangular inequality and by the definition of the norm for kernels, we have

|K1(x
′, y)K2(x

′, y)−K1(x
′′, y)K2(x

′′, y)|
≤ |K1(x

′, y)−K1(x
′′, y)| |K2(x

′, y)|+ |K1(x
′′, y)| |K2(x

′, y)−K2(x
′′, y)|

≤ ‖K1‖Ks1,s2,s3 (X×Y )‖K2‖Kt1,t2,t3 (X×Y )

(
d(x′, x′′)s3

d(x′, y)s2+t1
+

d(x′, x′′)t3

d(x′, y)t2d(x′′, y)s1

)
If s1 ≥ 0, Lemma 3.2 implies that

1

d(x′′, y)s1
≤ 1

d(x′, y)s12−s1
=

2s1

d(x′, y)s1
.

If instead s1 < 0, Lemma 3.2 implies that

1

d(x′′, y)s1
≤ 1

d(x′, y)s12s1
=

2−s1

d(x′, y)s1
.

Hence, the validity of the inequality of statement (i) follows.
(ii) Since

|K1(x, y)K2(x, y)| ≤
‖K1‖Ks1,X×Y ‖K2‖Kt1,X×Y

d(x, y)s1d(x, y)t1
∀x, y ∈ X × Y, x 6= y ,

statement (ii) is an immediate consequence of the inequality of statement (i) with s3 = t3, s2 = s1+s3,
t2 = t1 + s3.

Then we have the following product rule of a kernel and of a function of either x ∈ X or y ∈ Y .
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Proposition 3.1. Let X and Y be subsets of a metric space (M,d). Let s1, s2, s3 ∈ R, α ∈]0, 1].
Then the following statements hold.

(i) If K ∈ Ks1,s2,s3(X × Y ) and f ∈ C0,α
b (X), then

|K(x, y)f(x)| d(x, y)s1 ≤ ‖K‖Ks1,X×Y sup
X
|f | ∀(x, y) ∈ (X × Y ) \ DX×Y

and

|K(x′, y)f(x′)−K(x′′, y)f(x′′)|

≤ ‖K‖Ks1,s2,s3 (X×Y )‖f‖C0,α
b (X)

{
d(x′, x′′)s3

d(x′, y)s2
+ 2|s1|

d(x′, x′′)α

d(x′, y)s1

}
for all x′, x′′ ∈ X, x′ 6= x′′, y ∈ Y \B(x′, 2d(x′, x′′)).

(ii) If s2 ≥ s1 and X and Y are both bounded, then the map from

Ks1,s2,s3(X × Y )× C0,s3
b (X) to Ks1,s2,s3(X × Y )

that takes (K, f) to the kernel K(x, y)f(x) of the variable (x, y) ∈ (X × Y ) \ DX×Y is bilinear
and continuous.

(iii) The map from
Ks1,s2,s3(X × Y )× C0

b (Y ) to Ks1,s2,s3(X × Y )

that takes (K, f) to the kernel K(x, y)f(y) in the variable (x, y) ∈ (X × Y ) \ DX×Y is bilinear
and continuous.

Proof. (i) The first inequality is an obvious consequence of the definition of the norm in Ks1,X×Y . To
prove the second one, we note that

|K(x′, y)f(x′)−K(x′′, y)f(x′′)|
≤ |K(x′, y)−K(x′′, y)| |f(x′)|+ |K(x′′, y)| |f(x′)− f(x′′)|

≤ ‖K‖Ks1,s2,s3 (X×Y )‖f‖C0,α
b (X)

{
d(x′, x′′)s3

d(x′, y)s2
+
d(x′, x′′)α

d(x′′, y)s1

}
If s1 ≥ 0, Lemma 3.2 implies that

d(x′, x′′)α

d(x′′, y)s1
≤ d(x′, x′′)α

d(x′, y)s12−s1
= 2s1

d(x′, x′′)α

d(x′, y)s1
.

If instead s1 < 0, Lemma 3.2 implies that

d(x′, x′′)α

d(x′′, y)s1
≤ d(x′, x′′)α

d(x′, y)s12s1
= 2−s1

d(x′, x′′)α

d(x′, y)s1
.

Hence, the second inequality in statement (i) holds true. To prove (ii), it suffices to note that

d(x′, x′′)s3

d(x′, y)s1
=
d(x′, x′′)s3d(x′, y)s2−s1

d(x′, y)s1d(x′, y)s2−s1
≤ (diam (X ∪ Y ))s2−s1

d(x′, x′′)s3

d(x′, y)s2
,

to apply the second inequality of statement (i) and to invoke the first inequality of statement (i).
Statement (iii) is obvious.



Tangential gradient of an integral operator in a manifold 59

We also point out the validity of the following elementary remark that holds if both X and Y are
bounded.

Remark 1. Let (M,d) be a metric space. Let X, Y be bounded subsets of M . Let s1, s2, s3 ∈
[0,+∞[. If a ∈]0,+∞[, then Lemma 3.2 implies the validity of the following inequality

sup

{
d(x′, y)s2

d(x′, x′′)s3
|K(x′, y)−K(x′′, y)| :

x′, x′′ ∈ X, a ≤ d(x′, x′′), y ∈ Y \B(x′, 2d(x′, x′′))

}
≤ (diam (X ∪ Y ))s2

as3
‖K‖Ks1,X×Y

(
(2a)−s1 + (2−12a)−s1

)
for all K ∈ Ks1,X×Y and accordingly the norm on Ks1,s2,s3(X × Y ) defined by setting

‖K‖a;Ks1,s2,s3 (X×Y ) ≡ ‖K‖Ks1,X×Y + sup

{
d(x′, y)s2

d(x′, x′′)s3
|K(x′, y)−K(x′′, y)| :

x′, x′′ ∈ X, 0 < d(x′, x′′) < a, y ∈ Y \B(x′, 2d(x′, x′′))

}
is equivalent to the norm ‖ · ‖Ks1,s2,s3 (X×Y ) on Ks1,s2,s3(X × Y ).

Next we prove the following embedding statement that holds for bounded sets.

Proposition 3.2. Let (M,d) be a metric space. Let X, Y be bounded subsets of M . Let s1, s2, s3,
t1, t2, t3 ∈ R. Then the following statements hold.

(i) If t1 ≥ s1 then Ks1,X×Y is continuously embedded into Kt1,X×Y .

(ii) If t1 ≥ s1, t3 ≤ s3 and (t2 − t3) ≥ (s2 − s3), then Ks1,s2,s3(X × Y ) is continuously embedded
into Kt1,t2,t3(X × Y ).

(iii) If t1 ≥ s1, t3 ≤ s3, then Ks1,s1+s3,s3(X × Y ) is continuously embedded into Kt1,t1+t3,t3(X × Y ).

Proof. Statement (i) is an immediate corollary of the following elementary inequality

d(x, y)t1|K(x, y)| ≤ d(x, y)t1−s1d(x, y)s1|K(x, y)|
≤ (diam (X ∪ Y ))t1−s1‖K‖Ks1,X×Y ∀(x, y) ∈ X × Y \ DX×Y ,

which holds for all K ∈ Ks1,X×Y . To prove (ii), it suffices to invoke (i) and to note that

d(x′, y)t2

d(x′, x′′)t3
|K(x′, y)−K(x′′, y)|

=
d(x′, y)t2−s2

d(x′, x′′)t3−s3
d(x′, y)s2

d(x′, x′′)s3
|K(x′, y)−K(x′′, y)|

≤ d(x′, y)t2−s2d(x′, x′′)s3−t3‖K‖Ks1,s2,s3 (X×Y )

≤ d(x′, y)t2−s2(2−1d(x′, y))s3−t3‖K‖Ks1,s2,s3 (X×Y )

≤ d(x′, y)(t2−t3)−(s2−s3)2t3−s3‖K‖Ks1,s2,s3 (X×Y )

≤ (diam (X ∪ Y ))(t2−t3)−(s2−s3)2t3−s3‖K‖Ks1,s2,s3 (X×Y )

for all x′, x′′ ∈ X, x′ 6= x′′, y ∈ Y \ B(x′, 2d(x′, x′′)) and K ∈ Ks1,s2,s3(X × Y ). Finally, statement
(iii) is an immediate corollary of statement (ii).
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We now show that we can associate a potential type kernel to all Hölder continuous functions.

Lemma 3.3. Let X and Y be subsets of a metric space (M,d). Let α ∈]0, 1]. Let C0,α(X ∪ Y ) be
endowed with the Hölder seminorm |· : X ∪ Y |α. Then the following statements hold.

(i) If µ ∈ C0,α(X ∪ Y ), then the map Ξ[µ] defined by

Ξ[µ](x, y) ≡ µ(x)− µ(y) ∀(x, y) ∈ (X × Y ) \ DX×Y (3.2)

belongs to K−α,0,α(X × Y ).

(ii) The operator Ξ from C0,α(X∪Y ) to K−α,0,α(X×Y ) that takes µ to Ξ[µ] is linear and continuous.

Proof. It suffices to observe that

|µ(x)− µ(y)| ≤ |µ : X ∪ Y |αd(x, y)α ∀(x, y) ∈ (X × Y ) \ DX×Y

and that

|(µ(x′)− µ(y))− (µ(x′′)− µ(y))| = |µ(x′)− µ(x′′)| ≤ |µ : X ∪ Y |α
d(x′, x′′)α

d(x′, y)0

for all x′, x′′ ∈ X, x′ 6= x′′, y ∈ Y \B(x′, 2d(x′, x′′)).

Sometimes the kernel has a special form which we need later on. Thus we introduce the following
preliminary lemma for standard kernels.

Lemma 3.4. Let X and Y be subsets of a metric space (M,d). Let s1 ∈ R, s3 ∈]−∞, 1], θ ∈]0, 1].
Let C0,θ(X ∪ Y ) be endowed with the Hölder seminorm |· : X ∪ Y |θ. Then the following statements
hold.

(i) The map H from Ks1,X×Y ×C0,θ(X ∪ Y ) to Ks1−θ,X×Y , which takes (Z, g) to the function from
(X × Y ) \ DX×Y to C defined by

H[Z, g](x, y) ≡ (g(x)− g(y))Z(x, y) ∀(x, y) ∈ (X × Y ) \ DX×Y (3.3)

is bilinear and continuous.

(ii) The map H from

Ks1,s1+s3,s3(X × Y )× C0,θ(X ∪ Y ) to Ks1−θ,s1+s3−1,s3−(1−θ)(X × Y ) ,

which takes (Z, g) to the function defined by (3.3) is bilinear and continuous.

Proof. (i) It suffices to note that the Hölder continuity of g implies that

|H[Z, g](x, y)| ≤ |g : X ∪ Y |θ
d(x, y)s1−θ

‖Z‖Ks1,X×Y ∀(x, y) ∈ (X × Y ) \ DX×Y . (3.4)

(ii) By Lemma 3.3, the linear operator from

Ks1,s1+s3,s3(X × Y )× C0,θ(X ∪ Y ) to Ks1,s1+s3,s3(X × Y )×K−θ,0,θ(X × Y )

that takes (Z, g) to (Z,Ξ[g]) is linear and continuous. By the elementary embedding Lemma 3.1, the
inclusion map from

Ks1,s1+s3,s3(X × Y )×K−θ,0,θ(X × Y )

to Ks1,s1+s3−(1−θ),s3−(1−θ)(X × Y ) × K−θ,−(1−s3),θ−(1−s3)(X × Y ) is linear and continuous. Then the
product Theorem 3.1 (ii) for standard kernels implies that the product is continuous from

Ks1,s1+s3−(1−θ),s3−(1−θ)(X × Y )×K−θ,−(1−s3),θ−(1−s3)(X × Y )

to Ks1−θ,s1+s3−1,s3−(1−θ)(X × Y ) and thus the proof is complete.
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4 Preliminaries on upper υY -Ahlfors regular sets

We plan to consider integral operators in subsets X and Y of a metric space (M,d) when Y is
endowed of a measure as follows.

Let N be a σ-algebra of parts of Y ,BY ⊆ N .

Let ν be measure on N . (4.1)
Let ν(B(x, r) ∩ Y ) < +∞ ∀(x, r) ∈ X×]0,+∞[ .

Here BY denotes the σ-algebra of all Borel subsets of Y .

Definition 3. Let X and Y be subsets of a metric space (M,d). Let υY ∈]0,+∞[. Let ν be as
in (4.1). We say that Y is upper υY -Ahlfors regular with respect to X provided that the following
condition holds

there exist rX,Y,υY ∈]0,+∞] , cX,Y,υY ∈]0,+∞[ such that

ν(B(x, r) ∩ Y ) ≤ cX,Y,υY r
υY

for all x ∈ X and r ∈]0, rX,Y,υY [ . (4.2)

In the case X = Y , we say that Y is upper υY -Ahlfors regular.

One could show that if n ∈ N, n ≥ 2 and if Y is a compact embedded differential manifold in
Rn of codimension 1, then Y is upper (n − 1)-Ahlfors regular with respect to Rn. Then one can
prove the following basic inequalities for the integral on an upper Ahlfors regular set Y and on the
intersection of Y with balls with center at a point x of X of the powers of d(x, y)−1 with exponent
s ∈] −∞, υY [, that are variants of those proved by Gatto [8, page 104] in the case X = Y (for a
proof see [15, Lemmas 3.2, 3.4]).

Lemma 4.1. Let X and Y be subsets of a metric space (M,d). Let υY ∈]0,+∞[. Let ν be as in
(4.1). Let Y be upper υY -Ahlfors regular with respect to X. Then the following statements hold.

(i) ν({x}) = 0 ∀x ∈ X ∩ Y .

(ii) Let ν(Y ) < +∞. If s ∈]0, υY [, then

c′s,X,Y ≡ sup
x∈X

∫
Y

dν(y)

d(x, y)s
≤ ν(Y )a−s + cX,Y,υY

υY
υY − s

aυY −s

for all a ∈]0, rX,Y,υY [. If s = 0, then

c′0,X,Y ≡ sup
x∈X

∫
Y

dν(y)

d(x, y)0
= ν(Y ) .

(iii) Let ν(Y ) < +∞ whenever rX,Y,υY < +∞. If s ∈]−∞, υY [, then

c′′s,X,Y ≡ sup
(x,t)∈X×]0,+∞[

ts−υY
∫
B(x,t)∩Y

dν(y)

d(x, y)s
< +∞ .

By the Hölder inequality one can prove the following statement of Hille-Tamarkin (see [15, Propo-
sition 4.1]).



62 M. Lanza de Cristoforis

Proposition 4.1. Let X and Y be subsets of a metric space (M,d). Let υY ∈]0,+∞[, s ∈ [0, υY [.
Let ν be as in (4.1). Let ν(Y ) < +∞. Let Y be upper υY -Ahlfors regular with respect to X. Then
the following statements hold.

(i) If (K,ϕ) ∈ Ks,X×Y ×L∞ν (Y ), then the function K(x, ·)ϕ(·) is integrable in Y for all x ∈ X and
the function A[K,ϕ] defined by

A[K,ϕ](x) ≡
∫
Y

K(x, y)ϕ(y) dν(y) ∀x ∈ X (4.3)

is bounded.

(ii) The bilinear map from Ks,X×Y ×L∞ν (Y ) to B(X), which takes (K,ϕ) to A[K,ϕ] is continuous
and the following inequality holds

sup
X
|A[K,ϕ]| ≤ c′s,X,Y ‖K‖Ks,X×Y ‖ϕ‖L∞ν (Y ) (4.4)

for all (K,ϕ) ∈ Ks,X×Y × L∞ν (Y ) (see Lemma 4.1 (ii) for c′s,X,Y ).

Under the assumptions of the previous proposition, one can actually prove that the function
A[K,ϕ] is continuous. To do so, we first introduce the following result for potential type operators.

Proposition 4.2. Let X and Y be subsets of a metric space (M,d). Let ν be as in (4.1). Let
ν(Y ) < +∞. Let s ∈ R. Let K ∈ Ks,X×Y . Let d(x, ·)−s belong to L1

ν(Y \ {x}) for all x ∈ X. Let

sup
x∈X

∫
Y \{x}

d(x, y)−s dν(y) < +∞ . (4.5)

If ν({x}) = 0 for all x ∈ X ∩ Y and if for each ε ∈]0,+∞[ there exists δ ∈]0,+∞[ such that

sup
x∈X

∫
F\{x}

d(x, y)−s dν(y) ≤ ε if F ∈ N , ν(F ) ≤ δ , (4.6)

and if ϕ ∈ L∞ν (Y ), then the function A[K,ϕ] from X to C defined by (4.3) is continuous.

Proof. Let x̃ ∈ X. It suffices to show that if {xj}j∈N is a sequence in X which converges to x̃, then

lim
j→∞

∫
Y

K(xj, y)ϕ(y) dν(y) =

∫
Y

K(x̃, y)ϕ(y) dν(y) .

We now turn to prove such a limiting relation by exploiting the Vitali Convergence Theorem. To do
so, we prove the validity of the following two statements.

(j) There exists Nx̃ ∈ N such that ν(Nx̃) = 0 and

lim
j→∞

K(xj, y)ϕ(y) = K(x̃, y)ϕ(y) ∀y ∈ Y \Nx̃ .

(jj) For each ε ∈]0,+∞[, there exists δ ∈]0,+∞[ such that

sup
j∈N

∫
F

|K(xj, y)ϕ(y)| dν(y) ≤ ε if F ∈ N , ν(F ) ≤ δ .



Tangential gradient of an integral operator in a manifold 63

Since ν({x̃} ∩ Y ) = 0, we can take Nx̃ ≡ {x̃} ∩ Y and statement (j) follows by our continuity
assumption on K that follows by the membership of K in Ks,X×Y . We now turn to prove (jj). By
our assumptions on K, we have∫

F

|K(xj, y)ϕ(y)| dν(y) ≤ ‖K‖Ks,X×Y
∫
F

d(xj, y)−s dν(y)‖ϕ‖L∞ν (F )

for all j ∈ N. Thus it suffices to choose δ ∈]0,+∞[ such that

sup
x∈X

∫
F

d(x, y)−s dν(y) ≤ ε(1 + ‖K‖Ks,X×Y ‖ϕ‖L∞ν (Y ))
−1 if F ∈ N , ν(F ) ≤ δ ,

and statement (jj) holds true and the proof is complete.

In order to apply Proposition 4.2 in the case Y is upper Ahlfors regular, we need to prove the
following lemma.

Lemma 4.2. Let X and Y be subsets of a metric space (M,d). Let υY ∈]0,+∞[, s ∈ [0, υY [. Let ν
be as in (4.1). Let ν(Y ) < +∞. Let Y be upper υY -Ahlfors regular with respect to X. Then for each
ε ∈]0,+∞[ there exists δ ∈]0,+∞[ such that

sup
x∈X

∫
F

d(x, y)−s dν(y) ≤ ε if F ∈ N , ν(F ) ≤ δ , (4.7)

Proof. We first note that if F ∈ N , then F is a subset of Y . Accordingly F is also upper υY -Ahlfors
regular with respect to X and we can choose rX,F,υY = rX,Y,υY , cX,F,υY = cX,Y,υY . If s > 0, then
Lemma 4.1 (ii) implies that

sup
x∈X

∫
F

d(x, y)−s dν(y) ≤ ν(F )a−s + cX,Y,υY
υY

υY − s
aυY −s ∀a ∈]0, rX,Y,υY [ .

Thus if ε ∈]0,+∞[, then we choose aε ∈]0, rX,Y,υY [ such that

cX,Y,υY
υY

υY − s
aυY −sε <

ε

2

and we can set δ ≡ ε
2
asε . Then we have

sup
x∈X

∫
F

d(x, y)−s dν(y) ≤ δa−sε +
ε

2
= ε

whenever F ∈ N and ν(F ) ≤ δ. If instead s = 0, then condition (4.7) holds trivially with δ = ε.

Proposition 4.3. Let X and Y be subsets of a metric space (M,d). Let ν be as in (4.1). Let
ν be finite. Let s ∈ [0, υY [. Let Y be upper υY -Ahlfors regular with respect to X. If (K,ϕ) ∈
Ks,X×Y × L∞ν (Y ), then the function A[K,ϕ] from X to C defined by (4.3) is continuous.

Proof. We plan to deduce the continuity of A[K,ϕ] by the continuity Proposition 4.2. To do so, it
suffices to note that Lemma 4.1 (i), (ii) imply that ν({x}) = 0 for all x ∈ X ∩ Y and that condition
(4.5) is satisfied. Moreover, Lemma 4.2 implies that condition (4.6) is satisfied.

Next we plan to introduce a result on the integral operator

Q[Z, g, 1](x) ≡
∫
Y

Z(x, y)(g(x)− g(y)) dν(y) ∀x ∈ X . (4.8)

when Z belongs to the class Ks1,s2,s3(X×Y ) as in Definition 2 and g is a C-valued function in X ∪Y .
We exploit the operator in (4.8) in the next section and we note that operators as in (4.8) appear
in the applications (cf. e.g., Colton and Kress [3, page 56], and Dondi and the author [5, § 8]). In
order to estimate the Hölder quotient of Q[Z, g, 1], we need to introduce a further norm for kernels.
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Definition 4. Let X and Y be subsets of a metric space (M,d). Let ν be as in (4.1). Let s1, s2,
s3 ∈ R. We set

K]s1,s2,s3(X × Y ) ≡
{
K ∈ Ks1,s2,s3(X × Y ) :

K(x, ·) is ν − integrable in Y \B(x, r) for all (x, r) ∈ X×]0,+∞[ ,

sup
x∈X

sup
r∈]0,+∞[

∣∣∣∣∫
Y \B(x,r)

K(x, y) dν(y)

∣∣∣∣ < +∞
}

and

‖K‖K]s1,s2,s3 (X×Y ) ≡ ‖K‖Ks1,s2,s3 (X×Y )

+ sup
x∈X

sup
r∈]0,+∞[

∣∣∣∣∫
Y \B(x,r)

K(x, y) dν(y)

∣∣∣∣ ∀K ∈ K]s1,s2,s3(X × Y ) .

Clearly, (K]s1,s2,s3(X×Y ), ‖·‖K]s1,s2,s3 (X×Y )) is a normed space. By definition, the spaceK]s1,s2,s3(X×
Y ) is continuously embedded into the space Ks1,s2,s3(X ×Y ). Then we consider a stronger version of
the upper Ahlfors regularity. Namely, we assume that Y is strongly upper υY -Ahlfors regular with
respect to X, i.e., that

there exist rX,Y,υY ∈]0,+∞] , cX,Y,υY ∈]0,+∞[ such that

ν((B(x, r2) \B(x, r1)) ∩ Y ) ≤ cX,Y,υY (rυY2 − r
υY
1 )

for all x ∈ X and r1, r2 ∈ [0, rX,Y,υY [ with r1 < r2 , (4.9)

where we mean that B(x, 0) ≡ ∅ (in the case X = Y , we just say that Y is strongly upper υY -Ahlfors
regular). So, for example, if Y is a compact manifold of class C1 that is embedded in M = Rn, then
Y can be proved to be strongly upper (n− 1)-Ahlfors regular with respect to Y . Next we introduce
a function that we need for a generalized Hölder norm. For each θ ∈]0, 1], we define the function
ωθ(·) from [0,+∞[ to itself by setting

ωθ(r) ≡


0 r = 0 ,
rθ| ln r| r ∈]0, rθ] ,
rθθ | ln rθ| r ∈]rθ,+∞[ ,

where rθ ≡ e−1/θ for all θ ∈]0, 1]. Obviously, ωθ(·) is concave and satisfies condition (2.2). We also
note that if D ⊆M , then the continuous embedding

C0,θ
b (D) ⊆ C

0,ωθ(·)
b (D) ⊆ C0,θ′

b (D)

holds for all θ′ ∈]0, θ[ (cf. Section 2). We are now ready to state the following statement of [15,
Proposition 6.3] on the Hölder continuity of Q[Z, g, 1] that extends some work of Gatto [8, Proof
of Theorem 3, Theorem 4]. Here where we mean that C0,β(X ∪ Y ) is endowed with the semi-norm
|· : X ∪ Y |β.

Proposition 4.4. Let X and Y be subsets of a metric space (M,d). Let

υY ∈]0,+∞[ , β ∈]0, 1] , s1 ∈ [β, υY + β[ , s2 ∈ [β,+∞[ , s3 ∈]0, 1] .

Let ν be as in (4.1), ν(Y ) < +∞.

(i) If s1 < υY , then the following statements hold.
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(a) If s2 − β > υY , s2 < υY + β + s3 and Y is upper υY -Ahlfors regular with respect to X,
then the bilinear map from

Ks1,s2,s3(X × Y )× C0,β(X ∪ Y ) to C
0,min{β,υY +s3+β−s2}
b (X) ,

which takes (Z, g) to Q[Z, g, 1] is continuous.

(aa) If s2 − β = υY and Y is strongly upper υY -Ahlfors regular with respect to X, then the
bilinear map from

Ks1,s2,s3(X × Y )× C0,β(X ∪ Y ) to C
0,max{rβ ,ωs3 (r)}
b (X) ,

which takes (Z, g) to Q[Z, g, 1] is continuous.

(ii) If s1 = υY , then the following statements hold.

(b) If s2 − β > υY , s2 < υY + β + s3 and Y is upper υY -Ahlfors regular with respect to X,
then the bilinear map from

K]s1,s2,s3(X × Y )× C0,β(X ∪ Y ) to C
0,min{β,υY +s3+β−s2}
b (X) ,

which takes (Z, g) to Q[Z, g, 1] is continuous.

(bb) If s2 − β = υY and Y is strongly upper υY -Ahlfors regular with respect to X, then the
bilinear map from

K]s1,s2,s3(X × Y )× C0,β(X ∪ Y ) to C
0,max{rβ ,ωs3 (r)}
b (X) ,

which takes (Z, g) to Q[Z, g, 1] is continuous.

(iii) If s1 > υY , then the following statements hold.

(c) If s2 − β > υY , s2 < υY + β + s3 and Y is upper υY -Ahlfors regular with respect to X,
then the bilinear map from

Ks1,s2,s3(X × Y )× C0,β(X ∪ Y ) to C
0,min{υY +β−s1,υY +s3+β−s2}
b (X) ,

which takes (Z, g) to Q[Z, g, 1] is continuous.

(cc) If s2 − β = υY and Y is strongly upper υY -Ahlfors regular with respect to X, then the
bilinear map from

Ks1,s2,s3(X × Y )× C0,β(X ∪ Y ) to C
0,max{rυY +β−s1 ,ωs3 (r)}
b (X) ,

which takes (Z, g) to Q[Z, g, 1] is continuous.

5 A differentiation theorem for integral operators on upper Ahlfors reg-
ular subsets of Rn

We first introduce some preliminaries.
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Definition 5. Let n ∈ N \ {0}. Let X be a subset of Rn, p ∈ X. We say that a vector w ∈ Rn is
semi-tangent to X at the point p provided that either w = 0 or there exists a sequence {xj}j∈N in
X \ {p} which converges to p and such that

w

|w|
= lim

j→∞

xj − p
|xj − p|

.

We say that a vector w ∈ Rn is tangent to X at the point p provided that both w and −w are
semi-tangent to X at the point p.

Here | · | denotes the Euclidean modulus in Rn. We denote by TpX the set of all semi-tangent
vectors to X at p. One can easily check that TpX is a cone of Rn, i.e., that

λw ∈ TpX whenever (λ,w) ∈]0,+∞[×TpX .

We say that TpX is the cone of semi-tangent vectors to X at p. If TpX is also a subspace of Rn,
then we say that X has a tangent space at p, that TpX is the tangent space to X at p and that
p+ TpX is the affine tangent space to X at p. Next we state the definition of directional derivative
for a function defined on an arbitrary subset of Rn.

Definition 6. Let Z be a real or complex normed space. Let X be a subset of Rn. Let φ be a
function from X to Z. Let p ∈ X, v ∈ TpX, |v| = 1.

We say that φ has a derivative at p with respect to the direction v provided that there exists an
element DX,vϕ(p) ∈ Z such that

DX,vϕ(p) = lim
j→∞

φ(xj)− φ(p)

|xj − p|
in Z

for all sequences {xj}j∈N in X \ {p} which converge to p and such that

v = lim
j→∞

xj − p
|xj − p|

.

Then we say that DX,vϕ(p) is the derivative of φ at p with respect to the direction v.

We note that if there exist an open neighborhood W of p in Rn and if φ̃ is a continuously (real)
differentiable function fromW to Z and satisfies the equality φ̃|X∩W = φ|X∩W , then φ has a derivative
at p with respect to the direction v and

DX,vϕ(p) = Dvφ̃(p) = dφ̃(p)[v] .

Indeed, dφ̃(p)[v] = limj→∞ dφ̃(p)
[
xj−p
|xj−p|

]
in Z and

0 = lim
j→∞

‖φ̃(xj)− φ̃(p)− dφ̃(p)[xj − p]‖Z
|xj − p|

= lim
j→∞

∥∥∥∥∥ φ̃(xj)− φ̃(p)

|xj − p|
− dφ̃(p)

[
xj − p
|xj − p|

]∥∥∥∥∥
Z

= lim
j→∞

∥∥∥∥φ(xj)− φ(p)

|xj − p|
− dφ̃(p)

[
xj − p
|xj − p|

]∥∥∥∥
Z

and accordingly

lim
j→∞

φ(xj)− φ(p)

|xj − p|
= lim

j→∞
dφ̃(p)

[
xj − p
|xj − p|

]
= dφ̃(p)[v] in Z
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for all sequences {xj}j∈N as in Definition 5 of a semi-tangent vector. Then we can prove the following
differentiation theorem for integral operators that are defined on upper Ahlfors regular subsets of
Rn. To do so, we set

Bn(x, ρ) ≡ {y ∈ Rn : |x− y| < ρ}
for all ρ > 0, x ∈ Rn.

Theorem 5.1. Let X, Y ⊆ Rn. Let υY ∈]0,+∞[. Let (Y,N , ν) be a measured space such that
BY ⊆ N . Let ν be finite. Let Y be upper υY -Ahlfors regular with respect to X. Let s1 ∈ [0, υY [. Let
x ∈ X, v ∈ TxX, |v| = 1. Let a kernel K ∈ Ks1,s1+1,1(X × Y ) satisfy the following assumptions

DX,vK(x, y) exists in C ∀y ∈ Y \ {x} ,

DX,v

∫
Y

K(x, y) dν(y) exists in C .

Let µ ∈ C1
b (Rn). Then the function

∫
Y
K(·, y)µ(y) dν(y) admits a derivative with respect to v at the

point x, the function DX,vK(x, y)(µ(y)−µ(x)) is ν-integrable in the variable y ∈ Y and the following
formula holds

DX,v

∫
Y

K(x, y)µ(y) dν(y) (5.1)

=

∫
Y

[DX,vK(x, y)](µ(y)− µ(x)) dν(y) + µ(x)DX,v

∫
Y

K(x, y) dν(y)

(see Definition 6 for DX,v).

Proof. By the existence of DX,v

∫
Y
K(x, y) dν(y) and by the elementary equality∫

Y

K(x, y)µ(y) dν(y)

=

∫
Y

K(x, y)(µ(y)− µ(x)) dν(y) + µ(x)

∫
Y

K(x, y) dν(y)

(cf. Proposition 4.1), the existence of DX,v

∫
Y
K(x, y)µ(y) dν(y) is equivalent to the existence of

DX,v

∫
Y
K(x, y)(µ(y)− µ(x)) dν(y) and in the case of existence, we have

DX,v

∫
Y

K(x, y)µ(y) dν(y) = DX,v

∫
Y

K(x, y)(µ(y)− µ(x)) dν(y) (5.2)

+DX,vµ(x)

∫
Y

K(x, y) dν(y) + µ(x)DX,v

∫
Y

K(x, y) dν(y) .

We now turn to show the existence of

DX,v

∫
Y

K(x, y)(µ(y)− µ(x)) dν(y) (5.3)

and to compute it. Let {xj}j∈N be a sequence in X \ {x} such that

lim
j→∞

xj = x , v = lim
j→∞

xj − x
|xj − x|

.

By the existence of DX,vK(x, y), DX,vµ(x) and by the continuity of K(·, y) and µ at x, we have

lim
j→∞

1

|xj − x|
[K(xj, y)(µ(y)− µ(xj))−K(x, y)(µ(y)− µ(x))] (5.4)

= DX,vK(x, y)(µ(y)− µ(x))−K(x, y)DX,vµ(x) ∀y ∈ Y \ {x} .
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We now turn to show the existence of the limit associated to the directional derivative of the integral
in (5.3) by applying the Vitali Convergence Theorem. If E ∈ N , the Lipschitz continuity of µ,
Lemma 3.4 with θ = 1 and Lemma 4.1 imply that∫

E

1

|xj − x|
|K(xj, y)(µ(y)− µ(xj))−K(x, y)(µ(y)− µ(x))| dν(y)

≤
∫
E∩Bn(x,2|xj−x|)

1

|xj − x|
|K(xj, y)(µ(y)− µ(xj))|

+

∫
E∩Bn(x,2|xj−x|)

1

|xj − x|
|K(x, y)(µ(y)− µ(x))|

+

∫
E\Bn(x,2|xj−x|)

1

|xj − x|

∣∣∣∣K(xj, y)(µ(y)− µ(xj))

−K(x, y)(µ(y)− µ(x))

∣∣∣∣ dν(y)

≤ ‖H[K,µ]‖Ks1−1,s1+1−1,1−(1−1)

{∫
E∩Bn(xj ,3|xj−x|)

1

|xj − x|
dν(y)

|xj − y|s1−1

+

∫
E∩Bn(x,2|xj−x|)

1

|xj − x|
dν(y)

|x− y|s1−1

+

∫
E\Bn(x,2|xj−x|)

1

|xj − x|
|xj − x|1

|x− y|s1
dν(y)

}
≤ ‖H[K,µ]‖Ks1−1,s1,1

{
3υY −(s1−1)c′′s1−1,X,Y |xj − x|

υY −s1

+2υY −(s1−1)c′′s1−1,X,Y |xj − x|
υY −s1

+ν(E)a−s1 + cX,Y,υY
υY

υY − s1
aυY −s1

}
for all a ∈]0, rX,Y,υY [ and j ∈ N, where the last summand in the braces is absent if s1 = 0. Now let
ε ∈]0,+∞[. Then we choose a ∈]0, rX,Y,υY [ such that

‖H[K,µ]‖Ks1−1,s1,1
cX,Y,υY

υY
υY − s1

aυY −s1 ≤ ε/3

and jε ∈ N such that

‖H[K,µ]‖Ks1−1,s1,1

{
3υY −(s1−1)c′′s1−1,X,Y |xj − x|

υY −s1

+2υY −(s1−1)c′′s1−1,X,Y |xj − x|
υY −s1

}
≤ ε/3

for all j ∈ N such that j ≥ jε. Thus if E ∈ N satisfies the inequality

‖H[K,µ]‖Ks1−1,s1,1
ν(E)a−s1 ≤ ε/3

we have ∫
E

1

|xj − x|
|K(xj, y)(µ(y)− µ(xj))−K(x, y)(µ(y)− µ(x))| dν(y) ≤ ε
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for all j ∈ N such that j ≥ jε. Then the pointwise convergence of (5.4) and the Vitali Convergence
Theorem imply that the pointwise limit of (5.4) is integrable in y ∈ Y \ {x} and that

lim
j→∞

∫
Y

1

|xj − x|
[K(xj, y)(µ(y)− µ(xj))−K(x, y)(µ(y)− µ(x))] dν(y)

=

∫
Y

DX,vK(x, y)(µ(y)− µ(x))−K(x, y)DX,vµ(x) dν(y) . (5.5)

By our assumptions, K(x, y) is integrable in y ∈ Y \ {x} and DX,vµ is bounded. Hence,
DX,vK(x, y)(µ(y)− µ(x)) is integrable in y ∈ Y \ {x} and the right hand side of (5.5) equals∫

Y

DX,vK(x, y)(µ(y)− µ(x)) dν(y)−
∫
Y

K(x, y)DX,vµ(x) dν(y) .

Hence,

DX,v

∫
Y

K(x, y)(µ(y)− µ(x)) dν(y)

=

∫
Y

DX,vK(x, y)(µ(y)− µ(x)) dν(y)−
∫
Y

K(x, y) dν(y)DX,vµ(x)

and formula (5.2) implies the validity of the formula of the statement.

6 Tangential derivatives of weakly singular integral operators on embed-
ded manifolds of Rn whose kernels have singular derivatives

Since a compact manifold Y of class C1 that is embedded in Rn can be proved to be (n− 1)-upper
Ahlfors regular and each C1 function on Y can be extended to a C1 function in Rn with compact
support (cf. e.g., proof of Theorem 2.85 of Dalla Riva, the author and Musolino [4]), the differentiation
Theorem 5.1 implies the validity of the following theorem, which is a variant of a known result. For
the definition of tangential gradient gradY , we refer e.g., to Kirsch and Hettlich [11, A.5], Chavel [2,
Chapter 1].

Theorem 6.1. Let n ∈ N, n ≥ 2. Let Y be a compact manifold of class C1 that is embedded in Rn.
Let s1 ∈ [0, (n− 1)[. Let the kernel K ∈ Ks1,s1+1,1(Y × Y ) satisfy the following assumptions

K(·, y) ∈ C1(Y \ {y}) ∀y ∈ Y ,
∫
Y

K(·, y) dσy ∈ C1(Y ) .

Let gradY,xK(·, ·) denote the tangential gradient of K(·, ·) with respect to the first variable. Let µ ∈
C1(Y ). Then the function

∫
Y
K(·, y)µ(y) dσy is of class C1(Y ), the function [gradY,xK(x, y)](µ(y)−

µ(x)) is integrable in the variable y ∈ Y for all x ∈ Y and the following formula holds for the
tangential gradient of

∫
Y
K(·, y)µ(y) dν(y)

gradY

∫
Y

K(x, y)µ(y) dσy (6.1)

=

∫
Y

[gradY,xK(x, y)](µ(y)− µ(x)) dσy + µ(x)gradY

∫
Y

K(x, y) dσy ,

for all x ∈ Y .
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Next we prove formula (6.1) for the tangential gradient under weaker assumptions for µ. To do
so, however we must strenghten our assumptions on the kernel.

Theorem 6.2. Let n ∈ N, n ≥ 2. Let Y be a compact manifold of class C1 that is embedded in Rn.
Let s1 ∈ [0, (n− 1)[. Let β ∈]0, 1], t1 ∈]0, (n− 1) + β[. Let the kernel K ∈ Ks1,s1+1,1(Y × Y ) satisfy
the following assumptions

K(·, y) ∈ C1(Y \ {y}) ∀y ∈ Y ,
∫
Y

K(·, y) dσy ∈ C1(Y ) ,

gradY,xK(·, ·) ∈ (Kt1,Y×Y )n ,

where gradY,xK(·, ·) denotes the tangential gradient of K(·, ·) with respect to the first variable. Let µ ∈
C0,β
b (Y ). Then the function

∫
Y
K(·, y)µ(y) dσy is of class C1(Y ), the function [gradY,xK(x, y)](µ(y)−

µ(x)) is integrable in y ∈ Y for all x ∈ Y and formula (6.1) for the tangential gradient of∫
Y
K(·, y)µ(y) dσy holds true.

Proof. We plan to prove the statement by approximating µ by functions of class C1(Y ) for which
we know that the statement is true by Theorem 6.1. By the Mc Shane extension Theorem, there
exists µ̃ ∈ C0,β

b (Rn) that extends µ (cf. e.g., Mc Shane [16], Björk [1, Prop. 1] Kufner, John and
Fučik [12, Thm. 1.8.3]). Possibly multiplying µ̃ by a function of class C∞c (Rn), we can assume that
µ̃ has a compact support. Next we wish to approximate µ̃ by functions of class C∞c (Rn) by means
of a standard family of mollifiers {ηε}ε∈]0,+∞[ with

supp ηε ⊆ Bn(0, ε) , ηε ≥ 0 ,

∫
Rn
ηε dx = 1 ∀ε ∈]0,+∞[

(cf. e.g., Dalla Riva, the author and Musolino [4, A. 11]). Thus we set

µl(x) ≡ µ̃ ∗ η2−l(x) ∀x ∈ Rn ,

for all l ∈ N. By known properties of the convolution, we have µl ∈ C∞c (Rn) for each l ∈ N. Moreover,

lim
l→∞

µl = µ̃ uniformly in Rn .

We also observe that the Young inequality for the convolution implies that

sup
Rn
|µl| ≤ sup

Rn
|µ̃|
∫
Rn
|η2−l(y)| dy = sup

Rn
|µ̃| ∀l ∈ N .

Then we note that |µl : Rn|β ≤ |µ̃ : Rn|β for all l ∈ N. Indeed, if x′, x′′ ∈ Rn, then

|µl(x′)− µl(x′′)| ≤
∫
Rn
|µ̃(x′ − y)− µ̃(x′′ − y)|η2−l(y) dy

≤ |µ̃ : Rn|β|x′ − x′′|β
∫
Rn
η2−l(y) dy = |µ̃ : Rn|β|x′ − x′′|β .

Then the sequence {µl|Y }l∈N is bounded in C0,β(Y ) and converges uniformly to µ in Y . Now let
β′ ∈]0, β[, 0 < t1 − β′ < n − 1. By the compactness of the embedding of C0,β(Y ) into C0,β′(Y ),
possibly selecting a subsequence, we can assume that

lim
l→∞

µl|Y = µ in C0,β′(Y ) .
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By Lemma 3.4 (i), we have

lim
l→∞

gradY,xK(x, y)(µl(y)− µ(x)) = gradY,xK(x, y)(µ(y)− µ(x))

in Kt1−β′,Y×Y . Since 0 < t1 − β′ < n − 1, the Hille-Tamarkin Proposition 4.1 and Proposition 4.3
imply that

lim
l→∞

∫
Y

gradY,xK(x, y)(µl(y)− µl(x)) dσy

=

∫
Y

gradY,xK(x, y)(µ(y)− µ(x)) dσy uniformly in x ∈ Y

and that
∫
Y

gradY,xK(·, y)(µl(y)− µl(·)) dσy is continuous in Y for each l ∈ N. Then the validity of
formula (6.1) for µl implies that

lim
l→∞

gradY,x

∫
Y

K(x, y)µl(y) dσy (6.2)

=

∫
Y

[gradY,xK(x, y)](µ(y)− µ(x)) dν(y) + µ(x)gradY

∫
Y

K(x, y) dσy

uniformly in x ∈ Y . Since K ∈ Ks1,Y×Y and s1 < n − 1, again Proposition 4.1 and Proposition 4.3
imply that

lim
l→∞

∫
Y

K(x, y)µl(y) dσy =

∫
Y

K(x, y)µ(y) dσy (6.3)

uniformly in x ∈ Y and that
∫
Y
K(·, y)µl(y) dσy is continuous in Y for each l ∈ N. By (6.2) and

(6.3), we deduce that
∫
Y
K(·, y)µ(y) dσy belongs to C1(Y ) and that formula (6.1) for its tangential

gradient holds true.

By combining Proposition 4.4 and the previous theorem, we can now prove a continuity theorem
for the integral operator with kernel K and with values into a Schauder space on a compact manifold
Y of class C1. For the definition of the Schauder spaces C1,β(Y ) and C1,ω(·)(Y ) of all functions
µ of class C1 on Y such that the tangential gradient of µ is β-Hölder continuous and ω(·)-Hölder
continuous, respectively or for an equivalent definition based on a finite family of parametrizations
of Y , we refer for example to Dondi and the author [5, § 2], Dalla Riva, the author and Musolino [4,
§ 2.20].

Theorem 6.3. Let n ∈ N, n ≥ 2. Let Y be a compact manifold of class C1 that is embedded in
Rn. Let s1 ∈ [0, (n− 1)[. Let β ∈]0, 1], t1 ∈ [β, (n− 1) + β[, t2 ∈ [β,+∞[, t3 ∈]0, 1]. Let the kernel
K ∈ Ks1,s1+1,1(Y × Y ) satisfy the following assumption

K(·, y) ∈ C1(Y \ {y}) ∀y ∈ Y .

Let gradY,xK(·, ·) denote the tangential gradient of K(·, ·) with respect to the first variable.

(i) If t1 < (n− 1) and gradY,xK(·, ·) ∈ (Kt1,t2,t3(Y × Y ))n, then the following statements hold.

(a) If t2 − β > (n− 1), t2 < (n− 1) + β + t3 and∫
Y

K(·, y) dσy ∈ C1,min{β,(n−1)+t3+β−t2}(Y ) ,

then the map from C0,β(Y ) to C1,min{β,(n−1)+t3+β−t2}(Y ) that takes µ to the function∫
Y
K(·, y)µ(y) dσy is linear and continuous.
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(aa) If t2 − β = (n− 1) and ∫
Y

K(·, y) dσy ∈ C1,max{rβ ,ωt3 (·)}(Y ) ,

then the map from C0,β(Y ) to C1,max{rβ ,ωt3 (·)}(Y ) that takes µ to the function∫
Y
K(·, y)µ(y) dσy is linear and continuous.

(ii) If t1 = (n− 1) and gradY,xK(·, ·) ∈
(
K]t1,t2,t3(Y × Y )

)n
, then the following statements hold.

(b) If t2 − β > (n− 1), t2 < (n− 1) + β + t3 and∫
Y

K(·, y) dσy ∈ C1,min{β,(n−1)+t3+β−t2}(Y ) ,

then the map from C0,β(Y ) to C1,min{β,(n−1)+t3+β−t2}(Y ) that takes µ to the function∫
Y
K(·, y)µ(y) dσy is linear and continuous.

(bb) If t2 − β = (n− 1) and ∫
Y

K(·, y) dσy ∈ C1,max{rβ ,ωt3 (·)}(Y ) ,

then the map from C0,β(Y ) to C1,max{rβ ,ωt3 (·)}(Y ) that takes µ to the function∫
Y
K(·, y)µ(y) dσy is linear and continuous.

(iii) If t1 > (n− 1) and gradY,xK(·, ·) ∈ (Kt1,t2,t3(Y × Y ))n, then the following statements hold.

(c) If t2 − β > (n− 1), t2 < (n− 1) + β + t3 and∫
Y

K(·, y) dσy ∈ C1,min{β,(n−1)+β−t1,(n−1)+t3+β−t2}(Y ) ,

then the map from C0,β(Y ) to C1,min{β,(n−1)+β−t1,(n−1)+t3+β−t2}(Y ) that takes µ to the func-
tion

∫
Y
K(·, y)µ(y) dσy is linear and continuous.

(cc) If t2 − β = (n− 1) and∫
Y

K(·, y) dσy ∈ C1,max{rβ ,r(n−1)+β−t1 ,ωt3 (·)}(Y ) ,

then the map from C0,β(Y ) to C1,max{rβ ,r(n−1)+β−t1 ,ωt3 (·)}(Y ) that takes µ to the function∫
Y
K(·, y)µ(y) dσy is linear and continuous.

Proof. Since Y is a compact manifold of class C1 that is embedded in Rn, Y can be proved
to be strongly upper (n − 1)-Ahlfors regular with respect to Y . By Theorem 6.2, the function∫
Y
K(·, y)µ(y) dσy is of class C1(Y ) for all µ ∈ C0,β(Y ) and formula (6.1) for the tangential gradient

of
∫
Y
K(·, y)µ(y) dσy holds true under any of the assumptions of (i)–(iii). Next, we consider statement

(i). Under the assumptions of (a), Proposition 4.4 (i) implies that map

from C0,β(Y ) to C0,min{β,(n−1)+t3+β−t2}(Y ) ,
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which takes µ to the function
∫
Y

[gradY,xK(x, y)](µ(y) − µ(x)) dσy is linear and continuous. By our
assumption on

∫
Y
K(·, y) dσy, the map

from C0,β(Y ) to C0,min{β,β,(n−1)+t3+β−t2}(Y ) ,

which takes µ to µ(·)gradY
∫
Y
K(·, y) dσy is linear and continuous. Then formula (6.1) implies that

the map
from C0,β(Y ) to C0,min{β,β,(n−1)+t3+β−t2}(Y )

that takes µ to gradY,x
∫
Y
K(·, y)µ(y) dσy is linear and continuous. By Propositions 4.1 and 4.3, the

map from C0,β(Y ) to C0(Y ) that takes µ to
∫
Y
K(·, y)µ(y) dσy is linear and continuous. Hence,

we deduce the validity of (a) of statement (i). The proof of (aa) follows the lines of the proof of
statement (a) by invoking statement (aa) instead of statement (a) of (i) of Proposition 4.4.

The proofs of statements (ii) and (iii) follow the lines of that of statement (i) by invoking state-
ments (ii) and (iii) instead of statement (i) of Proposition 4.4. In case of statement (iii) (c) we also
observe that the pointwise product is bilinear and continuous

from C0,β(Y )× C0,min{β,(n−1)+β−t1,(n−1)+t3+β−t2}(Y )

to C0,min{β,(n−1)+β−t1,(n−1)+t3+β−t2}(Y ) .

In the case of statement (iii) (cc) we also observe that the pointwise product is bilinear and continuous

from C0,β(Y )× C0,max{rβ ,r(n−1)+β−t1 ,ωt3 (·)}(Y ) to C0,max{rβ ,r(n−1)+β−t1 ,ωt3 (·)}(Y )

(cf. e.g., Dondi and the author [5, § 2]).

Acknowledgment

The author acknowledges the support of the Research Project GNAMPA-INdAM
CUP_E53C22001930001 ‘Operatori differenziali e integrali in geometria spettrale’.



74 M. Lanza de Cristoforis

References

[1] J.E. Björk, On extensions of Lipschitz functions. Ark. Mat. 7 (1969), 513–515.

[2] I. Chavel, Eigenvalues in Riemannian geometry. Including a chapter by Burton Randol. With an appendix by
Jozef Dodziuk. Pure and Applied Mathematics, 115. Academic Press, Inc., Orlando, FL, 1984.

[3] D. Colton, R. Kress, Integral equation methods in scattering theory, Wiley, New York, 1983.

[4] M. Dalla Riva, M. Lanza de Cristoforis, P. Musolino, Singularly perturbed boundary value problems. A functional
analytic approach, Springer, Cham, 2021.

[5] F. Dondi, M. Lanza de Cristoforis, Regularizing properties of the double layer potential of second order elliptic
differential operators, Mem. Differ. Equ. Math. Phys. 71 (2017), 69–110.
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1 Introduction

It is well known that function spaces have increasing applications in many areas of modern analysis,
in particular, harmonic analysis and partial differential equations. The most general function spaces,
probably, are the Besov spaces and the Triebel–Lizorkin spaces which cover many classical concrete
function spaces such as Lebesgue spaces, Lipschitz spaces, Sobolev spaces, Hardy spaces and BMO
spaces ([37], [38]).

D. Yang and W. Yuan in [41], [42] and W. Sickel, D. Yang and W. Yuan in [36], introduced
a class of Besov type and Triebel–Lizorkin type spaces which generalized many classical function
spaces such as Besov spaces, Triebel-Lizorkin spaces, Morrey spaces and Q-type spaces. Recently
the Besov type and Triebel-Lizorkin type space with variable exponents was investigated by many
authors (e.g. [43], [44]).

The 2-microloal space is due to Bony [3] in order to study the propagation of singularities of
the solutions of nonlinear evolution equations. It is an appropriate instrument to describe the local
regularity and the oscillatory behavior of functions near singularity (Meyer [32]). The theory has
been elaborated and widely used in fractal analysis and signal processing. For systematic discussions
of the concept and further references of 2-microlocal spaces, we refer to Meyer[31], [32], Levy-Vehel
and Seuret [30], Jaffard ([17], [18], [19], [20]), Jaffard and Mélot [21], and Jaffard and Meyer [22].

The 2-microlocal spaces have been generalized by Jaffard as a general pointwise regularity associ-
ated with Banach or quasi-Banach spaces [19], [20]. In this paper we introduce new inhomogeneous
2-microlocal spaces based on Jaffard’s idea (See [33] for the homogeneous 2-microlocal spaces) and
we will investigate the properties and the characterizations of these new 2-microlocal Besov and
Triebel–Lizorkin spaces which unify many classical function spaces such as the Besov type and
Triebel–Lizorkin type spaces, the 2–microlocal spaces in the sense of Meyer [32], the Morrey space
and the local Morrey spaces. These new function space are very similar to the classical 2-microlocal
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Besov and Triebel-Lizorkin spaces studied recently by many authors ([1], [6], [8], [13], [14], [15], [16],
[25], [26], [39], [40]).

The plan of the remaining sections in the paper is as follows:
In Section 2 we give the definitions of our new 2-microlocal spaces via the Littlewood-Paley

decomposition and the notations which are used later and we give examples for these spaces.
In Section 3 we define corresponding sequence spaces for our function spaces. Furthermore, we

give some auxiliary lemmas which are needed in later sections.
In Section 4 we will characterize our function spaces via the corresponding sequence spaces by

the ϕ–transform in the sense of Fraizer–Jarwerth [10], the atomic and molecular decomposition and
the wavelet decomposition. Moreover, we investigate the properties for these function spaces and we
also study relations between our 2-microlocal spaces and the classical 2-microlocal spaces.

In Section 5, as applications, we give the conditions under which the Calderón–Zygmund operators
and the pseudo–differential operators are bounded on the function spaces.

In Section 6 we give the characterizations via differences and oscillations.
Throughout the paper, we use C to denote a positive constant. But the same notation C are not

necessarily the same on any two occurrences. We use the notations i∨j = max{i, j}, i∧j = min{i, j},
and a+ = a ∨ 0. The symbol X ∼ Y means that there exist positive constants C1 and C2 such that
X ≤ C1Y and Y ≤ C2X.

2 Definitions

We consider the dyadic cubes in Rn of the form Q = [0, 2−l)n + 2−lk for k ∈ Zn and l ∈ Z, and
use the notation l(Q) = 2−l for the side length and xQ = 2−lk for the corner point. Throughout the
paper, we use the notations P, Q, R for the dyadic cubes of the form [0, 2−l)n + 2−lk in Rn, and
when the dyadic cubes Q appear as indices, it is understood that Q runs over all dyadic cubes of
this form in Rn. We denote by D the set of all dyadic cubes of this form. For a dyadic cube Q and
a constant c > 1, cQ denotes the cube of same center as Q and c times larger. We denote by χE the
characteristic function of a set E in Rn.

We set N = {1, 2, · · · } and N0 = N ∪ {0}. Let S = S(Rn) be the space of all Schwartz functions
on Rn and S ′ its dual.

We use 〈f, g〉 for the standard inner product
∫
fḡ of two functions and the same notation is

employed for the action of a distribution f ∈ S ′ on ḡ ∈ S.
Let φ0 be a Schwartz function and φ̂0 its Fourier transform satisfying

(1.1) supp φ̂0 ⊂ {ξ ∈ Rn : |ξ| ≤ 2},
(1.2) φ̂0(ξ) = 1 if |ξ| ≤ 1.
We set
φ(x) = φ0(x)− 2−nφ0(2

−1x), φj0 = 2jnφ0(2
jx), Sjf = f ∗ φj0 for j ∈ N0, and φj(x) = 2jnφ(2jx) for

j ∈ N.
Then we have
(1.3) supp φ̂ ⊂ {ξ ∈ Rn : 1

2
≤ |ξ| ≤ 2}, and

(1.4) there exist positive numbers c and a sufficiently small ε such that φ̂(ξ) ≥ c in 1− ε ≤ |ξ| ≤
1 + ε.

It holds that
∑

j∈N0
φ̂j = 1. Let f ∈ S ′, then we have the Littlewood-Paley decomposition

f =
∑

j∈N0
f ∗ φj (convergence in S ′) [36, Triebel 2.3.1(6)].

Let s ∈ R. For f ∈ S ′, we define some sequences indexed by dyadic cubes P :

c(Bs
pq)(P ) = (

∑
i≥(− log2 l(P ))∨0 ||2isf ∗ φi||

q
Lp(P ))

1/q, 0 < p, q ≤ ∞,
c(F s

pq)(P ) = ||{
∑

i≥(− log2 l(P ))∨0(2
is|f ∗ φi|)q}1/q||Lp(P ),
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0 < p <∞, 0 < q ≤ ∞,
c(F s

∞q)(P ) = l(P )−
n
q ||{
∑

i≥(− log2 l(P ))∨0(2
is|f ∗ φi|)q}1/q||Lq(P ),

0 < q ≤ ∞,
with the usual modification for q =∞.

We shall use the notation Es
pq with either Bs

pq or F s
pq. We say the B-type case when Es′

pq = Bs′
pq,

and the F-type case when Es′
pq = F s′

pq.

Definition 1. Let s, s′, σ ∈ R, 0 < p, q ≤ ∞ and x0 ∈ Rn.
The space As(Es′

pq)
σ
x0

is defined to be the space of all f ∈ S ′ such that

||f ||As(Es′pq)σx0 ≡ sup
D3Q3x0

l(Q)−σ sup
D3P⊂3Q

l(P )−sc(Es′

pq)(P ) <∞.

The following abbreviation A0(Es′
pq)

σ
x0
≡ (Es′

pq)
σ
x0
, As(Es′

pq)
0
x0
≡ As(Es′

pq) and A0(Es′
pq)

0
x0
≡ Es′

pq ≡
Es′
pq(Rn) will be used in the sequel. We note that the space As(Es′

pq) is the inhomogeneous Besov type
space or the inhomogeneous Triebel–Lizorkin type space in the sense of Yang–Sickel–Yuan [26] and
the space Es′

pq ≡ Es′
pq(Rn) is the classical inhomogeneous Besov or inhomogeneous Triebel–Lizorkin

space.
Let f ∈ S ′, then we define some sequences indexed by dyadic cubes P :

c(B̃s′
pq)

σ
x0

(P ) =

(
∑

i≥(− log2 l(P ))∨0 ||2is
′|f ∗ φi(x)|(2−i + |x0 − x|)−σ||qLp(P ))

1/q,
0 < p, q ≤ ∞,

c(F̃ s′
pq)

σ
x0

(P ) =

||{
∑

i≥(− log2 l(P ))∨0(2
is′|f ∗ φi(x)|(2−i + |x0 − x|)−σ)q}1/q||Lp(P ),

0 < p <∞, 0 < q ≤ ∞,
c(F̃ s′

∞q)
σ
x0

(P ) =

l(P )−
n
q ||{
∑

i≥(− log2 l(P ))∨0(2
is′|f ∗ φi(x)|(2−i + |x0 − x|)−σ)q}1/q||Lq(P ),

0 < q ≤ ∞,
with the usual modification for q =∞.

We shall use the notation Ẽs′
pq with either B̃s′

pq or F̃ s′
pq. We say the B-type case when Ẽs′

pq = B̃s′
pq,

and the F-type case when Ẽs′
pq = F̃ s′

pq.

Definition 2. Let s, s′, σ ∈ R, 0 < p, q ≤ ∞ and x0 ∈ Rn.
The space As(Ẽs′

pq)
σ
x0

is defined to be the space of all f ∈ S ′ such that

||f ||As(Ẽs′pq)σx0 ≡ sup
D3P

l(P )−sc(Ẽs′

pq)
σ
x0

(P ) <∞.

The space As(Ẽs′
pq)

σ
x0

is the classical 2–microlocal Besov or Triebel–Lizorkin space.
We use the abbreviation A0(Ẽs′

pq)
σ
x0
≡ (Ẽs′

pq)
σ
x0
.

Examples.

(i) The spaces A0(Es′
pq)

0
x0

= A0(Ẽs′
pq)

0
x0

= Es′
pq(Rn) are the inhomogeneous Besov spaces or inhomo-

geneous Triebel–Lizorkin spaces [37], [38].
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(ii) The Besov type spaces Bs,τ
pq (Rn) and the Triebel–Lizorkin type spaces F s,τ

pq (Rn) introduced by
D. Yang , W. Sickel and W. Yuan [36] , are contained in our definition as

Es′,s
pq (Rn) = Ans(Es′

pq)
0
x0

= Ans(Ẽs′
pq)

0
x0
.

(iii) The Besov-Morrey spaces N s
uqp, and the Triebel–Lizorkin-Morrey spaces Esuqp studied by Y.

Sawano and H. Tanaka [34], or Y. Sawano, D. Yang and W. Yuan [35] are realized in our
definition as

N s
uqp ⊂ An(

1
p
− 1
u
)(Bs

pq)
0
x0

if 0 < p ≤ u ≤ ∞ and 0 < q ≤ ∞,

Esuqp = An(
1
p
− 1
u
)(F s

pq)
0
x0

if 0 < p ≤ u ≤ ∞ and 0 < q ≤ ∞.

The Morrey spaceMu
p is realized as

Mu
p = An(

1
p
− 1
u
)(F 0

p2)
0
x0

if 1 < p < u <∞.

(iv) The Ḃσ-Morrey spaces Ḃσ(Lp,λ) studied by Y. Komori-Furuya et al. [28], are contained in our
definition as

Ḃσ(Lp,λ) = Aλ+
n
p (F 0

p2)
σ
0 , 1 < p <∞.

(v) The 2-microlocal Besov spaces Bs,s′
pq (U) studied in H. Kempka [23, 24], are realized in our

definition as

Bs,s′
pq (U) = (B̃s+s′

pq )−s
′

x0
when U = {x0}.

(vi) The local Morrey spaces LMp,λ introduced by V.I. Burenkov and H.V. Guliyes [6] and studied
in Ts. Batbold and Y. Sawano [2] and a number of papers, are realized in our definition as

LMp,λ = (F 0
p2)

λ/p
0 , 1 < p <∞.

(vii) The spaces Cs,s′
x0

studied in Y. Meyer [31], [32], are realized in our definition as

Cs,s′
x0

= (B̃s+s′
∞∞)−s

′
x0

= (Bs+s′
∞∞)−s

′
x0

.

3 Sequence spaces

For a sequence c = (c(R)) with l(R) ≤ 1 we define some sequences indexed by dyadic cubes P :

c(bspq)(P ) = (
∑

i≥(− log2 l(P ))∨0 ||
∑

l(R)=2−i 2is|c(R)|χR||qLp(P ))
1/q,

0 < p, q ≤ ∞,
c(f spq)(P ) = ||

{∑
i≥(− log2 l(P ))∨0

(∑
l(R)=2−i 2is|c(R)|χR

)q}1/q||Lp(P ),
0 < p <∞, 0 < q ≤ ∞, and

c(f s∞q)(P ) = l(P )−
n
q ||
{∑

i≥(− log2 l(P ))∨0
(∑

l(R)=2−i 2is|c(R)|χR
)q}1/q||Lq(P ),

0 < q ≤ ∞, with the usual modification for q =∞.

The notation espq is used to denote either bspq or f spq. We say the B-type case when es′pq = bs
′
pq, and

the F-type case when es′pq = f s
′
pq.

Definition 3. Let s, s′, σ ∈ R, 0 < p, q ≤ ∞ and x0 ∈ Rn.
We define the sequence space as(es′pq)σx0 to be the space of all sequences c = (c(R))l(R)≤1 such that

||c||as(es′pq)σx0 ≡ sup
D3Q3x0

l(Q)−σ sup
D3P⊂3Q

l(P )−sc(es
′

pq)(P ) <∞.
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We use the abbreviation a0(es′pq)σx0 ≡ (es
′
pq)

σ
x0
, as(es′pq)0x0 ≡ as(es

′
pq) and

a0(es
′
pq)

0
x0
≡ es

′
pq ≡ es

′
pq(Rn). We note that the space as(es′pq) is the sequence space of the inhomogeneous

Besov type space or the inhomogeneous Triebel–Lizorkin type space in the sense of Yang–Sickel–
Yuan [36] and the space es′pq ≡ es

′
pq(Rn) is the sequence space of the classical inhomogeneous Besov or

inhomogeneous Triebel–Lizorkin space.

Remark 1. It is easy that when σ < 0, we have As(Es′
pq)

σ
x0

= {0} and as(es
′
pq)

σ
x0

= {0} for
0 < p, q ≤ ∞ (See Proposition 4.1 below).

We define that for a sequence (c(R))l(R)≤1,

c(b̃s
′
pq)

σ
x0

(P ) =

(
∑

i≥(− log2 l(P ))∨0 ||
∑

l(R)=2−i 2is
′ |c(R)|(2−i + |x0 − x|)−σχR||qLp(P ))

1/q,
0 < p, q ≤ ∞,

c(f̃ s
′
pq)

σ
x0

(P ) =

||{
∑

i≥(− log2 l(P ))∨0(
∑

l(R)=2−i 2is
′|c(R)|(2−i + |x0 − x|)−σχR)q}1/q||Lp(P ),

0 < p <∞, 0 < q ≤ ∞,
c(f̃ s

′
∞q)

σ
x0

(P ) = l(P )−
n
q ×

||{
∑

i≥(− log2 l(P ))∨0(
∑

l(R)=2−i 2is
′ |c(R)|(2−i + |x0 − x|)−σχR)q}1/q||Lq(P ),

0 < q ≤ ∞,
with the usual modification for q =∞.

The notation ẽs′pq is used to denote either b̃s′pq or f̃ s
′
pq. We say the B-type case when ẽs′pq = b̃s

′
pq, and

the F-type case when ẽs′pq = f̃ s
′
pq.

Definition 4. Let s, s′, σ ∈ R, 0 < p, q ≤ ∞ and x0 ∈ Rn.
We define the sequence space as(ẽs′pq)σx0 to be the space of all sequences c = (c(R))l(R)≤1 such that

||c||as(ẽs′pq)σx0 ≡ sup
D3P

l(P )−sc(ẽs
′

pq)
σ
x0

(P ) <∞.

We use the abbreviation a0(ẽs′pq)σx0 ≡ (ẽs
′
pq)

σ
x0
.

Definition 5. Let r1, r2 ≥ 0 and L > 0. We say that a matrix operator A = {aQP}QP , indexed by
dyadic cubes Q and P , is (r1, r2, L)-almost diagonal if the matrix {aQP} satisfies

|aQP | ≤ C
( l(Q)
l(P )

)r1(1 + l(P )−1|xQ − xP |)−L if l(Q) ≤ l(P ),
|aQP | ≤ C

( l(P )
l(Q)

)r2(1 + l(Q)−1|xQ − xP |)−L if l(Q) > l(P ).

The results about the boundedness of almost diagonal operators in [9: Theorem 3.3], also hold
in our cases.

Lemma 3.1. Suppose that s, s′, σ ∈ R, x0 ∈ Rn and 0 < p, q ≤ ∞. Then,
(i) an (r1, r2, L)–almost diagonal matrix operator A is bounded on as(es′pq)σx0 for r1 > max(s′, σ+

s + s′ − n
p
), r2 > J − s′ and L > J where J = n/min(1, p, q) in the case es

′
pq = f s

′
pq , and

J = n/min(1, p) in the case es′pq = bs
′
pq, respectively,

(ii) an (r1, r2, L)-almost diagonal matrix operator A is bounded on as(ẽs
′
pq)

σ
x0

for r1 > max(s′ +
(σ ∨ 0), (σ ∨ 0) + s + s′ − n

p
), r2 > J − s′ + (σ ∧ 0) and L > J where J = n/min(1, p, q) in the

case ẽs′pq = f̃ s
′
pq, and J = n/min(1, p) in the case ẽs′pq = b̃s

′
pq, respectively.
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Proof : (i) We may assume σ ≥ 0 by Remark 1. We assume that A = (aRR′) is (r1, r2, L)–
almost diagonal. Let c = (c(R)) ∈ as(es

′
pq)

σ
x0
. For dyadic cubes P and R with R ⊂ P , we write

Ac = A0c+ A1c+ A2c with

(A0c)(R) =
∑

l(R)≤l(R′)≤l(P )

aRR′c(R
′),

(A1c)(R) =
∑

l(R′)<l(R)≤l(P )

aRR′c(R
′),

(A2c)(R) =
∑

l(R)≤l(P )<l(R′)≤1

aRR′c(R
′).

We claim that
||Aic||as(es′pq)σx0 ≤ C||c||as(es′pq)σx0 , i = 0, 1, 2.

We will consider the case of F-type for 0 < p < ∞, 0 < q ≤ ∞. Since A is almost diagonal, we see
that for dyadic cubes P with l(P ) = 2−j,

(A0c)(f
s′

pq)(P ) = ||
{∑
i≥j∨0

∑
l(R)=2−i

(
2is
′ |(A0c)(R)|

)q
χR
}1/q||Lp(P )

≤ C||
{∑
i≥j∨0

∑
l(R)=2−i

2is
′q
( ∑
i≥k≥j∨0

∑
l(R′)=2−k

|aRR′||c(R′)|
)q
χR
}1/q||Lp(P )

≤ C||
{∑
i≥j∨0

∑
l(R)=2−i

2is
′q ×

( ∑
i≥k≥j∨0

∑
l(R′)=2−k

2−(i−k)r1(1 + 2k|xR − xR′|)−L|c(R′)|
)q
χR
}1/q||Lp(P ).

Using the maximal function Mtf(x), 0 < t ≤ 1, defined by

Mtf(x) = sup
x∈Q

( 1

l(Q)n

∫
Q

|f(y)|t dy
)1/t

(cf. [28: Lemma 7.1] or [9: Remark A.3]), we have for L > n/t,

(A0c)(f
s′

pq)(P ) ≤ C||
{∑
i≥j∨0

∑
l(R)=2−i

2is
′q2−ir1q×

( ∑
i≥k≥j∨0

2kr12(k−i)+n/tMt

( ∑
l(R′)=2−k

|c(R′)|χR′
))q

χR
}1/q||Lp(P )

≤ C||
{ ∑
i≥j∨0

2−i(r1−s
′)q
( ∑
i≥k≥j∨0

2kr1Mt

( ∑
l(R′)=2−k

|c(R′)|χR′
))q}1/q||Lp(P )

≤ C||
{∑
i≥j∨0

2is
′qMt

( ∑
l(R′)=2−i

|c(R′)|χR′
)q}1/q||Lp(P )

≤ C||
{ ∑
i≥j∨0

2is
′q
( ∑
l(R′)=2−i

|c(R′)|χR′
)q}1/q||Lp(P ) = Cc(f s

′

pq)(P ),

where these inequalities follow from Hardy’s inequality if r1 > s′ and the Fefferman-Stein inequality
if 0 < t < min(p, q).
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For the B-type case we have the same estimate for r1 > s′ and 0 < t < min(1, p).
Therefore, we get the estimate

A0c(e
s′

pq)(P ) ≤ Cc(es
′

pq)(P )

if r1 > s′, 0 < p <∞, 0 < q ≤ ∞, L > J .
In the sane way we will get the estimate for (A1c)(f

s′
pq)(P ). We have that for dyadic cubes P with

l(P ) = 2−j,

(A1c)(f
s′

pq)(P ) = ||
{∑
i≥j∨0

∑
l(R)=2−i

(
2is
′|(A1c)(R)|

)q
χR
}1/q||Lp(P )

≤ C||
{∑
i≥j∨0

∑
l(R)=2−i

2is
′q
(∑
i≤k

∑
l(R′)=2−k

|aRR′||c(R′)|
)q
χR
}1/q||Lp(P )

≤ C||
{∑
i≥j∨0

∑
l(R)=2−i

2is
′q ×

(∑
i≤k

∑
l(R′)=2−k

2−(k−i)r2(1 + 2i|xR − xR′|)−L|c(R′)|
)q
χR
}1/q||Lp(P ).

Using the maximal function Mtf(x) as above, we have

(A1c)(f
s′

pq)(P ) ≤ C||
{∑
i≥j∨0

∑
l(R)=2−i

2is
′q2ir2q×

(∑
i≤k

2−kr22(k−i)+n/tMt

( ∑
l(R′)=2−k

|c(R′)|χR′
))q

χR
}1/q||Lp(P )

≤ C||
{ ∑
i≥j∨0

2i(r2+s
′−n/t)q ×(∑

i≤k

2−k(r2−n/t)Mt

( ∑
l(R′)=2−k

|c(R′)|χR′
))q}1/q||Lp(P )

≤ C||
{∑
i≥j∨0

2is
′qMt

( ∑
l(R′)=2−i

|c(R′)|χR′
)q}1/q||Lp(P )

≤ C||
{ ∑
i≥j∨0

2is
′q
( ∑
l(R′)=2−i

|c(R′)|χR′
)q}1/q||Lp(P ) = Cc(f s

′

pq)(P ),

where these inequalities follow from Hardy’s inequality if r2 + s′ − n/t > 0 and the Fefferman-Stein
inequality if 0 < t < min(p, q).

In the same way we get the same estimate for the B-type case that

(A1c)(b
s′

pq)(P ) ≤ Cc(bs
′

pq)(P )

if r2 + s′ − n/t > 0, 0 < t < min(1, p). Therefore, we get the estimate

A1c(e
s′

pq)(P ) ≤ Cc(es
′

pq)(P )

if r2 > J − s′, 0 < p <∞, 0 < q ≤ ∞, L > J .
When p =∞, we get the same estimate. Thus, we get

||Aic||as(es′pq)σx0 ≤ C||c||as(es′pq)σx0 , i = 0, 1
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if r1 > s′, r2 > J − s′, L > J , 0 < p ≤ ∞ and 0 < q ≤ ∞.
Next, we will give the estimates for the A2 case.

We note that if L > n , ∑
l(P )=2−j

(1 + 2j|xR − xP |)−L <∞

(cf. [4, Lemma 3.4]), and if c ∈ as(es′pq)σx0 , then

|c(R)| ≤ C(|x0 − xR|+ l(R))σl(R)s+s
′−n/p||c||as(es′pq)σx0

for a dyadic cube R ⊂ 3Q and x0 ∈ Q. Hence, we obtain, for dyadic cubes P with l(P ) = 2−j,
0 < p <∞ and 0 < q ≤ ∞,

(A2c)(f
s′

pq)(P ) = ||
{∑
i≥j

∑
l(R)=2−i

(
2is
′|(A2c)(R)|

)q
χR
}1/q||Lp(P )

≤ C||
{∑
i≥j

∑
l(R)=2−i

2is
′q×

( ∑
j≥k≥0

∑
l(R′)=2−k

2−(i−k)r1(1 + 2k|xR − xR′|
)−L|c(R′)|)qχR}1/q||Lp(P )

≤ C||
{∑
i≥j

2−i(r1−s
′)q×

( ∑
j≥k≥0

2kr12−k(σ+s+s
′−n/p)(1 + 2k|x0 − xP |)σ||c||as(fs′pq)σx0

)q}1/q||Lp(P )

≤ C2−j(r1−s
′)2−jn/p

∑
j≥k≥0

2k(r1−σ−s−s
′+n/p)(1 + 2j|x0 − xP |)σ||c||as(fs′pq)σx0

≤ C2−j(r1−s
′+n/p)2j(r1−σ−s−s

′+n/p)(1 + 2j|x0 − xP |)σ||c||as(fs′pq)σx0
≤ C2−js(2−j + |x0 − xP |)σ||c||as(fs′pq)σx0

where these inequalities follow if r1 > σ + s+ s′ − n
p
, r1 > s′, L > n and σ ≥ 0.

In the same way for the B-type case we have the same estimate.
Hence, we have,

||A2c||as(es′pq)σx0 ≤ C||c||as(es′pq)σx0

if r1 > σ + s+ s′ − n/p, r1 > s′, 0 < p <∞ and 0 < q ≤ ∞.
We get the same estimate for the case p =∞. Therefore, we obtain the desired conclusion.
(ii) We put wi = (2−i + |x0− x|)−σ. We see that wi ≤ 2(i−k)+σwk if 0 ≤ σ, and wi ≤ 2(k−i)+σwk if

0 > σ. Then, using these inequalities we can prove the desired result by using the same way in the
above proof of (i).

Lemma 3.2. Let r1, r2 ∈ N0, L > n and L1 > n+ r1, L2 > n+ r2. Assume that for dyadic cubes P
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and R, φP and ϕR are functions on Rn satisfying following properties:

(2.1)

∫
Rn
φP (x)xγdx = 0 for |γ| < r1,

(2.2) |φP (x)| ≤ C(1 + l(P )−1|x− xP |)−max(L,L1),

(2.3) |∂γφP (x)| ≤ Cl(P )−|γ|(1 + l(P )−1|x− xP |)−L

for 0 < |γ| ≤ r2,

(2.4)

∫
Rn
ϕR(x)xγdx = 0 for |γ| < r2,

(2.5) |ϕR(x)| ≤ C(1 + l(R)−1|x− xR|)−max(L,L2),

(2.6) |∂γϕR(x)| ≤ Cl(R)−|γ|(1 + l(R)−1|x− xR|)−L

for 0 < |γ| ≤ r1,

where (2.1) and (2.6) are void when r1 = 0, and (2.3) and (2.4) are void when r2 = 0. Then, we have
that

l(P )−n|〈φP , ϕR〉| ≤ C
( l(P )
l(R)

)r1(1 + l(R)−1|xP − xR|)−L

if l(P ) ≤ l(R),
l(R)−n|〈φP , ϕR〉| ≤ C

( l(R)
l(P )

)r2(1 + l(P )−1|xP − xR|)−L

if l(R) < l(P ).

Proof. We refer to [10: Corollary B.3] , [5: Lemma 6.3] or [29: Lemma 3.1].

Lemma 3.3. Suppose that s, s′, σ ∈ R, x0 ∈ Rn and 0 < p, q ≤ ∞. Let r1, r2 ∈ N0 and L > n.
Assume that functions φP and ϕP satisfy (2.1), (2.2), (2.3), (2.4), (2.5), (2.6) in Lemma 3.2. Let J
as in Lemma 3.1. Then we have

(i) for a dyadic cube R and a sequence c ∈ as(es′pq)σx0,∑
D3P, l(P )≤1 c(P )〈φP , ϕR〉 is convergent if r1 > J − n− s′ and L > J ,

(ii) for a dyadic cube R and a sequence c ∈ as(ẽs′pq)σx0,∑
D3P, l(P )≤1 c(P )〈φP , ϕR〉 is convergent if r1 > J − n− s′ − (σ ∧ 0) and L > J + σ.

Proof : (i) We may assume that σ ≥ 0 by Remark 1.
We write

∑
D3P c(P )〈φP , ϕR〉 = I = I0 + I1 with

I0 =
∑

l(R)≤l(P )≤1

c(P )〈φP , ϕR〉,

I1 =
∑

l(P )<l(R)

c(P )〈φP , ϕR〉

for c ∈ as(es′pq)σx0 . We claim that Ii <∞, i = 0, 1.
For a dyadic cube R with l(R) = 2−i we have, by Lemma 3.2 that

|I0| ≤ C
∑
i≥j≥0

∑
l(P )=2−j

|c(P )||〈φP , ϕR〉|

≤ C
∑
i≥j≥0

∑
l(P )=2−j

|c(P )|2−in2(j−i)r2(1 + 2j|xR − xP |)−L

≤ C
∑
i≥j≥0

2−i(r2+n)2jr2Mt(
∑

l(P )=2−j

|c(P )|χP )(x),
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for L > n/t, 0 < t < 1 and x ∈ R. Taking L1(R) norm and using the Fefferman-Stein inequality, we
have,

|I0|2−in = ||I0||L1(R)

≤ C2−in||
∑
i≥j≥0

Mt(
∑

l(P )=2−j

|c(P )|χP )||L1(R)

≤ C2−in||
∑
i≥j≥0

∑
l(P )=2−j

|c(P )|χP ||L1(R)

≤ C
∑

1≥l(P ), R⊂P

|c(P )|2−2in <∞.

In the same way we obtain the estimate of I1:

|I1| ≤ C
∑
j≥i∨0

∑
l(P )=2−j

|c(P )||〈φP , ϕR〉|

≤ C
∑
j≥i∨0

∑
l(P )=2−j

|c(P )|2−jn2(i−j)r1(1 + 2i|xR − xP |)−L

≤ C
∑
j≥i∨0

2−j(r1+n)2ir1
∑

l(P )=2−j

|c(P )|(1 + 2i|xR − xP |)−L

≤ C
∑
j≥i∨0

2−j(r1+n−n/t+s
′)2ir12−in/tMt(

∑
l(P )=2−j

2js
′|c(P )|χP )(x)

if 0 < t ≤ 1, L > n/t and x ∈ R with l(R) = 2−i.
By using the monotonicity of lq-norm and Hölder’s inequality, we get the following result,

|I1| ≤ C2−i(n+s
′){
∑
j≥i∨0

(Mt(
∑

l(P )=2−j

2js
′|c(P )|χP )(x))q}1/q

if r1 + n− n/t+ s′ > 0, 0 < q ≤ ∞ and x ∈ R.
Taking Lp(R) norm and using the Fefferman-Stein inequality, we have, for a dyadic cube R with

l(R) = 2−i and c ∈ as(f s′pq)σx0 ,

|I1|2−in/p = ||I1||Lp(R) ≤ C2−i(n+s
′)c(f s

′

pq)(R)

≤ C2−i(n+s
′+σ+s)||c||as(fs′pq)σx0 <∞

if 0 < t < min(p, q), 0 < p < ∞, 0 < q ≤ ∞. In the same way we get the same estimate for
the case p = ∞. Furthermore, we obtain the same estimate for the B-type case if 0 < t < p,
0 < p ≤ ∞, 0 < q ≤ ∞. Therefore, we obtain that I1 is convergent if r1 > J − n− s′ and L > J .

(ii) Let I0 and I1 be as in the proof of (i). Then by arguing as in the proof of (i), we have I0 <∞
for L > n. We put wj(P ) = (2−j + |xP − x0|)−σ for a dyadic cube P with l(P ) = 2−j.

Note that
|c(P )| ≤ Cl(P )s+s

′−n/pwj(P )−1||c||as(ẽs′pq)σx0

for c ∈ as(ẽs′pq)σx0 . We have, by Lemma 3.2 for a dyadic cube R with l(R) = 2−i and σ ≥ 0,
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|I1| ≤ C
∑
j≥i∨0

∑
l(P )=2−j

|c(P )||〈φP , ϕR〉|

≤ C
∑
j≥i∨0

∑
l(P )=2−j

|c(P )|2−jn2(i−j)r1(1 + 2i|xR − xP |)−L

≤ C
∑
j≥i∨0

∑
l(P )=2−j

|c(P )|2−jn2(i−j)r1wj(P )wj(P )−1 ×

(1 + 2i|xR − xP |)−L

≤ C
∑
j≥i∨0

2−j(r1+n)2ir12−iσ
∑

l(P )=2−j

|c(P )|wj(P )×

(1 + 2i|xR − xP |)−(L−σ)

≤ C
∑
j≥i∨0

2−j(r1+n−n/t+s
′)2i(r1+σ−n/t) ×

Mt(
∑

l(P )=2−j

2js
′
wj(P )|c(P )|χP )(x).

By using the same way as in the proof of (i), we get

|I1|2−ip/n ≤ C2−i(n+s
′+σ)c(ẽs

′

pq)
σ
x0

(R)

≤ C2−i(n+s
′+σ+s)||c||as(ẽs′pq)σx0 <∞

if r1 > J − n− s′ and L > σ + J . We also obtain the same estimate for the case σ < 0.

For a sequence c(P ) with l(P ) = 2−j, we define the sequence c∗(P ) by

c∗(P ) =
∑

l(R)=2−j

|c(R)|(1 + 2j|xP − xR|)−L

for L > J where J is as in Lemma 3.1.
We define for f ∈ S ′, γ ∈ N0 and a dyadic cube P with l(P ) = 2−j, the sequence infγ(f)(P ) and

tγ(P ) by
infγ(f)(P ) = max{infR3y |φj ∗ f(y)| : R ⊂ P, l(R) = 2−(γ+j)},

tγ(P ) = inf
P3y
|φj−γ ∗ f(y)|.

Lemma 3.4. For s′, σ ∈ R, x0 ∈ Rn, 0 < p, q ≤ ∞, f ∈ S ′ and a dyadic cube P with l(P ) = 2−j,
we have

(i)
c(es

′

pq)(P ) ∼ c∗(es
′

pq)(P ), c(ẽs
′

pq)
σ
x0

(P ) ∼ c∗(ẽs
′

pq)
σ
x0

(P ),

(ii)

infγ(f)(P )χP ≤ C2γL
∑

R⊂P,l(R)=2−(γ+j) t∗γ(R)χR.

for γ sufficient large.

Proof. (i) It suffices to prove
c∗(es

′

pq)(P ) ≤ Cc(es
′

pq)(P )
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since |c(P )| ≤ c∗(P ).
Using the Fefferman-Stein inequality, we have

c∗(f s
′

pq)(P ) = ||{
∑
i≥j∨0

(2is
′ ∑
l(R)=2−i

|c∗(R)|χR)q}1/q||Lp(P )

≤ C||{
∑
i≥j∨0

(2is
′ ∑
l(R)=2−i

∑
l(R′)=2−i

|c(R′)| ×

(1 + 2i|xR − xR′ |)−LχR)q}1/q||Lp(P )

≤ C||{
∑
i≥j∨0

(2is
′ ∑
l(R)=2−i

Mt(
∑

l(R′)=2−i

|c(R′)|χR′)χR)q}1/q||Lp(P )

≤ C||{
∑
i≥j∨0

(
∑

l(R′)=2−i

2is
′|c(R′)|χR′)q}1/q||Lp(P ) = Cc(f s

′

pq)(P )

if 0 < t < min(p, q), L > n/t and 0 < p < ∞, 0 < q ≤ ∞. Moreover, for the p = ∞ case, we have
the same result. For the B-type case , we obtain the same result by the same argument as above.
We also obtain the same result for the other case.

(ii) Let R0 and R in P be cubes with l(R0) = l(R) = 2−(γ+j). It suffices to show

tγ(R0) ≤ C2γLt∗γ(R).

Since
1 ≤ 2L2γL(1 + 2γ+j|xR − xR0|)−L,

we have

tγ(R0) ≤ Ctγ(R0)2
γL(1 + 2γ+j|xR − xR0|)−L

≤ C2γL
∑

l(R′)=2−(γ+j)

tγ(R
′)(1 + 2γ+j|xR − xR′|)−L = C2γLt∗γ(R).

4 Characterizations

Remark 2. (See [11: (3.20)] ). Let φ0 be a Schwartz function satisfying (1.1) and (1.2) and let φ
be a Schwartz function satisfying (1.3) and (1.4). Then there exist a Schwartz function ϕ0 satisfying
the same conditions (1.1) and (1.2) and a Schwartz function ϕ satisfying the same conditions (1.3)
and (1.4) such that∑

j∈N0
ϕ̂j(ξ)φ̂j(ξ) = 1 for any ξ where ϕj(x) = 2jnϕ(2jx), j ∈ N.

Hence we have the ϕ-transform [8; Lemma 2.1] for f ∈ S ′ such that

f =
∑
l(Q)≤1

l(Q)−n〈f, ϕQ〉φQ,

where φQ(x) = φ(l(Q)−1(x−xQ)) and ϕQ(x) = ϕ(l(Q)−1(x−xQ)) for a dyadic cube Q with l(Q) < 1,
and φQ(x) = φ0(l(Q)−1(x−xQ)) and ϕQ(x) = ϕ0(l(Q)−1(x−xQ)) for a dyadic cube Q with l(Q) = 1.

Theorem 4.1. For s, s′, σ ∈ R, 0 < p, q ≤ ∞, x0 ∈ Rn and φ0, φ ∈ S as in Remark 2, we have
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(i)

As(Es′

pq)
σ
x0

= {f =
∑
l(Q)≤1

c(Q)φQ : (c(Q)) ∈ as(es′pq)σx0},

and
(ii)

As(Ẽs′

pq)
σ
x0

= {f =
∑
l(Q)≤1

c(Q)φQ : (c(Q)) ∈ as(ẽs′pq)σx0}.

Remark 3. (1) We see that
∑

l(Q)≤1 c(Q)φQ is convergent in S ′ for each sequence c ∈ as(es′pq)σx0 or
c ∈ as(ẽs′pq)σx0 by Lemma 3.3.

(2) We notice that D ≡ {f =
∑

l(Q)≤1 c(Q)φQ : c ∈ as(es
′
pq)

σ
x0
} is independent of the choice

of φ0, φ ∈ S as in Remark 2. Indeed, suppose {φ1
0, φ

1} and {φ2
0, φ

2} are Schwartz functions as in
Remark 2, and the spaces D1 and D2 are defined by using {φ1

0, φ
1} and {φ2

0, φ
2} in the place of

{φ0, φ} respectively. We consider the ϕ-transform

φ1
P =

∑
l(R)≤1

l(R)−n〈φ1
P , ϕ2

R〉φ2
R.

Then for D1 3 f =
∑

l(P )≤1 c(P )φ1
P , c ∈ as(es

′
pq)

σ
x0
, we have

f =
∑
l(P )≤1

c(P )φ1
P =

∑
l(R)≤1

Ac(R)φ2
R

where A = {l(R)−n〈φ1
P , ϕ2

R〉}RP . From Lemma 3.1 and Lemma 3.2, we see that for c ∈ as(es′pq)σx0 ,
Ac ∈ as(es′pq)σx0 . This shows that D1 ⊂ D2. By the same argument, we see that D2 ⊂ D1. That is,
D1 = D2. These imply that the space D is independent of the choice of {φ0, φ}. In the same way
D̃ = {f =

∑
l(Q)≤1 c(Q)φQ : (c(Q)) ∈ as(ẽs′pq)σx0} is independent of the choice of {φ0, φ}.

Proof of Theorem 4.1. (i) We may assume σ ≥ 0 by Remark 1. We put D ≡ {f =
∑

l(Q)≤1 c(Q)φQ :

c ∈ as(es
′
pq)

σ
x0
}. In order to prove D ⊂ As(Es′

pq)
σ
x0

we claim for a dyadic cube P , and for f =∑
Q c(Q)φQ ∈ D,

c(Es′

pq)(P ) ≤ Cc(es
′

pq)(P ) (a)

if 0 < p, q ≤ ∞. Let (c(P )) ∈ as(es′pq)σx0 . Since S is closed under the convolution, we have, for i ≥ 0,

|φi ∗ f(x)| = |
∑
l(P )≤1

c(P )φi ∗ φP (x)|

= |
i+1∑

j=(i−1)∨0

∑
l(P )=2−j

c(P )φi ∗ φP (x)|

≤ C

i+1∑
j=(i−1)∨0

∑
l(P )=2−j

|c(P )|(1 + 2j|x− xP |)−L

for a sufficiently large number L. Hence we have, using the maximal function Mtf(x), 0 < t ≤ 1, as
in the proof of Lemma 3.1
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{
∑
i≥j∨0

(2is
′ |φi ∗ f |)q}1/q ≤ C{

∑
i≥j∨0

(2is
′ ∑
l(R)=2−i

|φi ∗ f |χR)q}1/q

≤ C{
∑
i≥j∨0

(2is
′ ∑
l(R)=2−i

(
i+1∑

k=(i−1)∨0

∑
l(R′)=2−k

|c(R′)|(1 + 2k|x− xR′ |)−L)χR)q}1/q

≤ C{
∑
i≥j∨0

(
∑

l(R)=2−i

Mt(
i+1∑

k=(i−1)∨0

∑
l(R′)=2−k

2is
′|c(R′)|χR′)χR)q}1/q

if 0 < t ≤ 1 and L > n/t. Taking Lp(P )-norm and using the Fefferman-Stein inequality, we have for
a dyadic cube P with l(P ) = 2−j

c(F s′

pq)(P ) = ||{
∑
i≥j∨0

(2is
′ |φi ∗ f |)q}1/q||Lp(P )

≤ C||{
∑
i≥j∨0

(Mt(
i+1∑

k=(i−1)∨0

∑
l(R′)=2−k

2is
′ |c(R′)|χR′))q}1/q||Lp(P )

≤ C||{
∑
i≥j∨0

(
i+1∑

k=(i−1)∨0

∑
l(R′)=2−k

2is
′ |c(R′)|χR′)q}1/q||Lp(P )

≤ C||{
∑
i≥j∨0

(
∑

l(R′)=2−i

2is
′ |c(R′)|χR′)q}1/q||Lp(P ) = Cc(f s

′

pq)(P )

if 0 < t < min(p, q) and 0 < p < ∞. For the p = ∞ case , we obtain the same result. In the same
way for the B-type case we have the same estimate

c(Bs′

pq)(P ) ≤ Cc(bs
′

pq)(P ) if 0 < p ≤ ∞.

This implies D ⊂ As(Es′
pq)

σ
x0
.

In order to complete the proof of Theorem 4.1 (i), we will show the inverse. We consider the
ϕ-transform f =

∑
l(P )≤1 c(f)(P )ϕP , c(f)(P ) = l(P )−n〈f , φP 〉 where φP and ϕP as in Remark 2.

It suffices to show that c(f)(P ) ∈ as(es′pq)σx0 for f ∈ As(Es′
pq)

σ
x0
. More precisely, we claim that for a

dyadic cube P with l(P ) = 2−j,

c(f)(es
′

pq)(P ) ≤ Cc(Es′

pq)(P ) (b)

where c(f)(es
′
pq)(P ) is a sequence defined by replacing the sequence c(P ) by the sequence c(f)(P ) in

the definition of c(es′pq)(P ). For f ∈ S ′ and a dyadic cube P with l(P ) = 2−j, we define the sequence
sup(f)(P ) by setting

sup(f)(P ) = sup
P3y
|φj ∗ f(y)|.

For γ ∈ N0 the sequences infγ(f)(P ), tγ(P ) are defined previously and for a sequence c(P ), we also
define a sequence c∗(P ) previously (See Lemma 3.4). We have, from the fact in [9, Lemma A.4] that
sup(f)∗(P ) ∼ infγ(f)∗(P ) for γ sufficiently large.

Thus, we have

|c(f)(P )| = l(P )−n|〈f , φP 〉| = |φj ∗ f(xP )| ≤ sup(f)(P ) ≤ sup(f)∗(P ) ∼ infγ(f)∗(P )

for γ sufficiently large. Therefore, from Lemma 3.4 (i) and (ii) we have
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|c(f)(f s
′

pq)(P )| ≤ Cinfγ(f)∗(f s
′

pq)(P ) ≤ Cinfγ(f)(f s
′

pq)(P )

≤ C||{
∑
i≥j∨0

(
∑

l(R)=2−i

2is
′
infγ(f)(R)χR)q}1/q||Lp(P )

≤ C||{
∑
i≥j∨0

(2is
′
2γL

∑
l(R′)=2−(γ+i)

t∗γ(R
′)χR′)

q}1/q||Lp(P )

≤ C2γL||{
∑

i≥(j∨0)+γ

(2is
′
2−γs

′ ∑
l(R′)=2−i

tγ(R
′)χR′)

q}1/q||Lp(P )

≤ C2γ(L−s
′)||{

∑
i≥(j∨0)+γ

(2is
′ ∑
l(R′)=2−i

|φi−γ ∗ f(y)|χR′)q}1/q||Lp(P )

≤ C2γ(L−s
′)||{

∑
i≥j∨0

(2is
′
2s
′γ

∑
l(R′)=2−(i+γ)

|φi ∗ f(y)|χR′)q}1/q||Lp(P )

≤ C2γL||{
∑
i≥j∨0

(2is
′ |φi ∗ f(y)|)q}1/q||Lp(P ) = Cc(F s′

pq)(P )

if 0 < p < ∞. For p = ∞ , we obtain the same result. For the B-type case we can prove the same
result by the same argument as above,

c(f)(bs
′

pq)(P ) ≤ Cc(Bs′

pq)(P )

if 0 < p ≤ ∞. Thus, we obtain
c(f)(es

′

pq)(P ) ≤ Cc(Es′

pq)(P ).

By Remark 3 (2) this implies that, As(Es′
pq)

σ
x0
⊂ D, 0 < p ≤ ∞. Hence, we obtain As(Es′

pq)
σ
x0

= D.
(ii) We can prove (ii) in the same way as (i).

We have the following properties from Theorem 4.1.

Proposition 4.1. Suppose that s, s,′ σ ∈ R and x0 ∈ Rn.
(i) When σ < 0, we have As(Es′

pq)
σ
x0

= {0}, for 0 < p, q ≤ ∞,
(ii) When σ + s < 0, we have As(Bs′

pq)
σ
x0

= {0}, for 0 < p, q ≤ ∞, and As(F s′
pq)

σ
x0

= {0}, for
0 < p <∞, 0 < q ≤ ∞,

(iii) When s < 0, we have As(B̃s′
pq)

σ
x0

= {0}, for 0 < p, q ≤ ∞, and As(F̃ s′
pq)

σ
x0

= {0}, for
0 < p <∞, 0 < q ≤ ∞.

Proof. These properties are shown easily.

Proposition 4.2. Suppose that s, s,′ σ ∈ R and x0 ∈ Rn.

(i) When s ≤ 0, we have

As(Bs′
pq)

σ
x0

= (Bs′
pq)

s+σ
x0

for 0 < p, q ≤ ∞, and As(F s′
pq)

σ
x0

= (F s′
pq)

s+σ
x0

for 0 < p <∞, 0 < q ≤ ∞,

In particular, when σ ≥ 0 and σ + s = 0, we have

As(Bs′
pq)

σ
x0

= Bs′
pq(Rn) for 0 < p, q ≤ ∞, and As(F s′

pq)
σ
x0

= F s′
pq(Rn) for 0 < p <∞, 0 < q ≤ ∞.

(ii) When σ ≥ 0, we have

As(Es′+σ
pq ) ⊂ As(Ẽs′

pq)
σ
x0
⊂ As(Es′

pq)
σ
x0
,

and when σ < 0, we have

As(Ẽs′
pq)

σ
x0
⊂ As(Es′+σ

pq ).
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(iii) If σ ≥ 0, then we have
(Es′
∞∞)σx0 = (Ẽs′

∞∞)σx0.

Proof. The property (i) can be proved from the fact that

Cl(Q)−σ sup
D3P⊂3Q

l(P )−sc(es
′

pq)(P ) ≥ l(Q)−(σ+s)c(es
′

pq)(Q)

and
l(Q)−σ sup

D3P⊂3Q
l(P )−sc(es

′

pq)(P ) ≤ Cl(Q)−(σ+s) sup
D3P⊂3Q

c(es
′

pq)(P ),

if s ≤ 0.
We obtain the property (ii) from the fact that

c(ẽs
′

pq)
σ
x0

(P ) ≤ Cc(eσ+s
′

pq )(P ),

and
l(Q)−σl(P )−sc(es

′

pq)(P ) ≤ Cl(P )−sc(ẽs
′

pq)
σ
x0

(P )

since l(Q)−σ ≤ C(l(P ) + |x0 − xP |)−σ for P ⊂ 3Q if σ ≥ 0. The last half of property (ii) can be
proved since

c(ẽs
′

pq)
σ
x0

(P ) ≥ c(es
′+σ
pq )(P )

if σ < 0. To prove the property (iii), it suffices to see from property (ii),

(es
′

∞∞)σx0 ⊂ (ẽs
′

∞∞)σx0 .

We consider any dyadic cube R with l(R) = 2−i and dyadic cubes Ql with x0 ∈ Ql and l(Ql) =
2−l, i ≥ l such that Qi ⊂ · · · ⊂ Ql ⊂ Ql−1 ⊂ · · · and ∪i≥lQl = Rn. We set Q0

l ≡ 3Ql \ 3Ql+1, i > l
and Q0

i ≡ 3Qi. We divide the proof into two cases:
Case (a): R ⊂ Q0

l , i > l case. Then we have 2−i + |x0 − xR| ≥ C2−l,
Case (b): R ⊂ Q0

i . Then we have 2−i + |x0 − xR| ≥ 2−i.
In the case (a) we have

2is
′ |c(R)|(2−i + |x0 − xR|)−σ ≤ C2is

′
2lσ|c(R)|

≤ C sup
x0∈Q

2lσ sup
R⊂3Q

2is
′ |c(R)| <∞.

In the case (b) we have

2is
′ |c(R)|(2−i + |x0 − xR|)−σ ≤ C2is

′
2iσ|c(R)|

≤ C sup
x0∈Q

2lσ sup
R⊂3Q

2is
′ |c(R)| <∞.

Proposition 4.3. Suppose that s, s,′ σ ∈ R, and x0 ∈ Rn.
When 0 < q1 ≤ q2 ≤ ∞, 0 < p ≤ ∞, we have

As(Bs′

pq1
)σx0 ⊂ As(Bs′

pq2
)σx0 , As(B̃s′

pq1
)σx0 ⊂ As(B̃s′

pq2
)σx0 ,

and when 0 < q1 ≤ q2 ≤ ∞, 0 < p <∞, we have

As(F s′

pq1
)σx0 ⊂ As(F s′

pq2
)σx0 , As(F̃ s′

pq1
)σx0 ⊂ As(F̃ s′

pq2
)σx0 .

Proof. These inclusions are corollaries of the monotonicity of the lp-norm.

Proposition 4.4. Suppose that s, s,′ σ ∈ R, 0 < ε and x0 ∈ Rn. We have
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(i) As(Bs′+ε
pq1

)σ−εx0
⊂ As(Bs′

pq2
)σx0 for 0 < p ≤ ∞, 0 < q1, q2 ≤ ∞, and

As(F s′+ε
pq1

)σ−εx0
⊂ As(F s′

pq2
)σx0 for 0 < p <∞, 0 < q1, q2 ≤ ∞, and

(ii) As+ε(Es′
pq)

σ−ε
x0
⊂ As(Es′

pq)
σ
x0

for 0 < p, q ≤ ∞, and

(iii) As−ε(Bs′+ε
pq1

)σx0 ⊂ As(Bs′
pq2

)σx0, and A
s−ε(B̃s′+ε

pq1
)σx0 ⊂ As(B̃s′

pq2
)σx0 for 0 < p, q1, q2 ≤ ∞, and

As−ε(F s′+ε
pq1

)σx0 ⊂ As(F s′
pq2

)σx0, and A
s−ε(F̃ s′+ε

pq1
)σx0 ⊂ As(F̃ s′

pq2
)σx0 for 0 < p <∞, 0 < q1, q2 ≤ ∞.

Proof. (ii) is obvious. (i) and (iii) are corollaries of Hölder’s inequality and the monotonicity of the
lp-norm.

Proposition 4.5. Suppose that s, s,′ σ ∈ R and x0 ∈ Rn.

(i) If 0 < p2 ≤ p1 ≤ ∞ and 0 < q ≤ ∞, then

A
s+ n

p1 (Bs′
p1q

)σx0 ⊂ A
s+ n

p2 (Bs′
p2q

)σx0, A
s+ n

p1 (B̃s′
p1q

)σx0 ⊂ A
s+ n

p2 (B̃s′
p2q

)σx0,

and, if 0 < p2 ≤ p1 <∞ and 0 < q ≤ ∞, then

A
s+ n

p1 (F s′
p1q

)σx0 ⊂ A
s+ n

p2 (F s′
p2q

)σx0, A
s+ n

p1 (F̃ s′
p1q

)σx0 ⊂ A
s+ n

p2 (F̃ s′
p2q

)σx0.

(ii) If 0 < q ≤ ∞, 0 < p ≤ ∞, n
p
< s, then

As(Es′
pq)

σ
x0

= (E
s+s′−n

p
∞∞ )σx0 and As(Ẽs′

pq)
σ
x0

= (Ẽ
s+s′−n

p
∞∞ )σx0.

In particular, if 0 ≤ σ, 0 < q ≤ ∞, 0 < p ≤ ∞, n
p
< s, then

As(Es′
pq)

σ
x0

= As(Ẽs′
pq)

σ
x0
.

(iii) If 0 < p1, p2, q ≤ ∞, then

A
n
p1 (Es′

p1∞)σx0 = A
n
p2 (Es′

p2∞)σx0 = (Es′
∞∞)σx0,

A
n
p1 (Ẽs′

p1∞)σx0 = A
n
p2 (Ẽs′

p2∞)σx0 = (Ẽs′
∞∞)σx0,

A
n
p1 (F s′

p1q
)σx0 = A

n
p2 (F s′

p2q
)σx0, A

n
p1 (F̃ s′

p1q
)σx0 = A

n
p2 (F̃ s′

p2q
)σx0.

Proof. The properties (i) are corollaries of Hölder’s inequality. We will prove the properties (ii). We
see that

as+
n
p (es

′

pq)
σ
x0
⊂ (es

′+s
∞∞)σx0 ,

since
l(P )−(s+

n
p
)c(es

′

pq)(P ) ≥ l(P )−(s
′+s)|c(P )|.

Hence in order to prove (ii), it suffices to prove

(es
′+s
∞∞)σx0 ⊂ as+

n
p (es

′

pq)
σ
x0
.

Since
c(ės

′

pq)(P ) ≤ C(es
′+s
∞∞)(P )× l(P )s+

n
p

if s > 0 and 0 < q <∞, we get the desired result. Similarly, for the other case, we can prove.
The first part of properties (iii) is obtained in the same way in the proof of (ii) and the last part

is just [ 10: Corollary 5.7 ].

Proposition 4.6. (Embedding) Let s, s′, σ ∈ R, 0 < p, q ≤ ∞ and x0 ∈ Rn. We have
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(i) As(E
s′1
pξ)

σ
x0
⊂ As(E

s′2
pη)σx0, A

s(Ẽ
s′1
pξ)

σ
x0
⊂ As(Ẽ

s′2
pη)σx0, for s

′
1 > s′2 and 0 < ξ, η ≤ ∞,

(ii) As(B
s′1
p1q)

σ
x0
⊂ As(B

s′2
p2q)

σ
x0
, As(B̃

s′1
p1q)

σ
x0
⊂ As(B̃

s′2
p2q)

σ
x0
, for s′1 − s′2 = n( 1

p1
− 1

p2
) and 0 < p1 ≤

p2 ≤ ∞,

As(F
s′1
p1ξ

)σx0 ⊂ As(F
s′2
p2η)

σ
x0
, As(F̃ s′1

p1ξ
)σx0 ⊂ As(F̃

s′2
p2η)

σ
x0
, for s′1−s′2 = n( 1

p1
− 1
p2

) and 0 < p1 < p2 <∞,
0 < ξ, η ≤ ∞,

(iii) As(Bs′
pq)

σ
x0
⊂ As(F s′

pq)
σ
x0
, As(B̃s′

pq)
σ
x0
⊂ As(F̃ s′

pq)
σ
x0
, for 0 < q ≤ p ≤ ∞,

As(F s′
pq)

σ
x0
⊂ As(Bs′

pq)
σ
x0
, As(F̃ s′

pq)
σ
x0
⊂ As(B̃s′

pq)
σ
x0
, for 0 < p ≤ q ≤ ∞.

Proof. The embedding properties (i) and the first embedding of (ii) are corollaries of Hölder’s
inequality and the monotonicity property of the lp-norm. For the second embedding of (ii), see [37;
Proposition 2.5] (cf. [38; Theorem 2.7.1]). (iii) is a corollary of Minkowski’s inequality (cf. Triebel[
38: 2.3.2 Proposition 2 ] ).

Remark 4. Let 0 < p, q ≤ ∞, s, σ ∈ R, x0 ∈ Rn and s′ > n(1
p
− 1)+. If f ∈ As(Es′

pq)
σ
x0
,

then f is locally integrable (and locally Lp integrable). Indeed, we consider the Littlewood-Paley
decomposition

f =
∑
i≥0

f ∗ φi.

It suffices to show that
∑

i≥0 f ∗ φi is locally integrable and locally Lp integrable. We may consider
any dyadic cube P with l(P ) ≥ 1. Then we have if 1 ≤ p <∞,

||
∑
i≥0

f ∗ φi||L1(P ) ≤ C||
∑
i≥0

f ∗ φi||Lp(P )

≤ C||{
∑
i≥0

(2is
′|f ∗ φi|)q}1/q||Lp(P ) ≤ Cc(F s′

pq)(P ) <∞

by using Hölder inequality if 1 ≤ q ≤ ∞ and the monotonicity property of the lp-norm if 0 < q ≤ 1.
In the same way we have

||
∑
i≥0

f ∗ φi||L1(P ) ≤ C||
∑
i≥0

f ∗ φi||Lp(P ) ≤ C
∑
i≥0

||f ∗ φi||Lp(P )

≤ C{
∑
i≥0

(2is
′ ||f ∗ φi||Lp(P ))

q}1/q ≤ Cc(Bs′

pq)(P ) <∞.

If 0 < p ≤ 1, in the same way we have

||
∑
i≥0

f ∗ φi||Lp(P ) ≤ C||
∑
i≥0

f ∗ φi||L1(P )

≤ C{
∑
i≥0

(2i(s
′−n( 1

p
−1))||f ∗ φi||L1(P ))

q}1/q

= Cc(B
s′−n( 1

p
−1)

1q )(P ) ≤ Cc(Bs′

pq)(P ) <∞,

where we use Proposition 4.6 in the last inequality. Similarly, by using the fact that c(Bs′
p p∨q)(P ) ≤

c(F s′
pq)(P ) we have the same estimate for the F-type case if 0 < p ≤ 1. Therefore, we obtain the
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desired result for f ∈ As(Es′
pq)

σ
x0
. But we note that it holds for 0 < p <∞ in the F-type case and for

0 < p ≤ ∞ in the B-type case. We note that it holds an analogous result for f ∈ As(Ẽs′
pq)

σ
x0

with the
weight wi = (2−i + |x0 − x|)−σ.

We recall the definitions of smooth atoms and molecules.

Definition 6. Let r1, r2 ∈ N0, L > n. A family of functions m = (mQ) indexed by dyadic cubes
Q with l(Q) ≤ 1 is called a family of (r1, r2, L)– smooth molecules if

(3.1) |mQ(x)| ≤ C(1 + l(Q)−1|x− xQ|)−max(L,L2) for some L2 > n+ r2 when l(Q) < 1,
(3.2) |∂γmQ(x)| ≤ Cl(Q)−|γ|(1 + l(Q)−1|x− xQ|)−L for 0 < |γ| ≤ r1, when l(Q) < 1 and
(3.3)

∫
Rn x

γmQ(x)dx = 0 for |γ| < r2 when l(Q) < 1,
where (3.2) is void when r1 = 0, and (3.3) is void when r2 = 0,

(3.4) |∂γmQ(x)| ≤ Cl(Q)−|γ|(1 + l(Q)−1|x− xQ|)−L, |γ| ≤ r1 when l(Q) = 1,
(3.5) we do not assume the vanishing moment condition (3.3) when l(Q) = 1.

A family of functions a = (aQ) indexed by dyadic cubes Q with l(Q) ≤ 1 is called a family of (r1, r2)–
smooth atoms if

(3.6) supp aQ ⊂ 3Q for each dyadic cube Q when l(Q) ≤ 1,
(3.7) |∂γaQ(x)| ≤ Cl(Q)−|γ| for |γ| ≤ r1 when l(Q) ≤ 1, and
(3.8)

∫
Rn x

γaQ(x)dx = 0 for |γ| < r2 when l(Q) < 1,
where (3.8) is void when r2 = 0,

(3.9) we do not assume the vanishing moment condition (3.8) when l(Q) = 1.

Theorem 4.2. Let s, s′, σ ∈ R, 0 < p, q ≤ ∞ and x0 ∈ Rn. Let r1, r2 ∈ N0, J as in Lemma 3.1
and L > n.

(i) We assume that r1, r2 and L satisfy the following condition:
(4.1) r1 > max(s′, σ + s+ s′ − n

p
),

(4.2) r2 > J − n− s′,
(4.3) L > J .
Then we have

As(Es′

pq)
σ
x0

= {f =
∑
l(Q)≤1

c(Q)mQ :

(r1, r2, L)− smooth molecules (mQ), (c(Q)) ∈ as(es′pq)σx0}

= {f =
∑
l(Q)≤1

c(Q)aQ :

(r1, r2)− smooth atoms (aQ), (c(Q)) ∈ as(es′pq)σx0}.
(ii) We assume that r1, r2 and L satisfy
(4.1)′ r1 > max(s′ + (σ ∨ 0), (σ ∨ 0) + s+ s′ − n

p
),

(4.2)′ r2 > J − n− s′ − (σ ∧ 0),
(4.3)′ L > J + σ

Then we have

As(Ẽs′

pq)
σ
x0

= {f =
∑
l(Q)≤1

c(Q)mQ :

(r1, r2, L)− smooth molecules (mQ), (c(Q)) ∈ as(ẽs′pq)σx0}

= {f =
∑
l(Q)≤1

c(Q)aQ :

(r1, r2)− smooth atoms (aQ), (c(Q)) ∈ as(ẽs′pq)σx0}.
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Remark 5. From Lemma 3.3, we remark that f =
∑

l(Q)≤1 c(Q)mQ and f =
∑

l(Q)≤1 c(Q)aQ are
convergent in S ′ for each c ∈ as(es′pq)σx0 or as(ẽs′pq)σx0 .

Proof of Theorem 4.2. (i) We may assume σ ≥ 0 by Remark 1. We put
A ≡ {f =

∑
l(Q)≤1 c(Q)aQ : (r1, r2)−smooth atoms (aQ), (c(Q)) ∈ as(es′pq)σx0},

M ≡ {f =
∑

l(Q)≤1 c(Q)mQ : (r1, r2, L)−smooth molecules (mQ),

(c(Q)) ∈ as(es′pq)σx0}.
Since an (r1, r2)– atom is an (r1, r2, L)– molecule, it is easy to see that A ⊂ M . Let M 3 f =∑
l(Q)≤1 c(Q)mQ and we consider the ϕ-transform

mQ =
∑
l(P )≤1

l(P )−n〈mQ , ϕP 〉φP ,

where φP and ϕP as in Remark 2. Then we have

f =
∑
l(Q)≤1

c(Q)mQ =
∑
l(P )≤1

(Ac)(P )φP ,

where A = {l(P )−n〈mQ , ϕP 〉}PQ. Lemma 3.1 and Lemma 3.2 yield that A is (r1, r2+n, L)– almost
diagonal and Ac ∈ as(es′pq)σx0 for c ∈ as(es′pq)σx0 . Hence, if we put D ≡ {f =

∑
l(Q)≤1 c(Q)φQ : c ∈

as(es
′
pq)

σ
x0
}, then we see that M ⊂ D. From Theorem 4.1 we see D = As(Es′

pq)
σ
x0
. Hence, we obtain

A ⊂M ⊂ As(Es′
pq)

σ
x0
.

Using the argument similar to the proof of [10: Theorem 4.1] (cf. [4: Theorem 5.9] or [5: Theorem
5.8]), for D 3 f =

∑
l(Q)≤1 c(Q)φQ, c ∈ as(es

′
pq)

σ
x0
, we see that there exist a family of (r1, r2)–

atoms {aQ} and a sequence of coefficients {c′(Q)} ∈ as(es
′
pq)

σ
x0

such that f =
∑

l(Q)≤1 c(Q)φQ =∑
l(Q)≤1 c

′(Q)aQ. Hence, we see that D ⊂ A. Therefore, we have As(Ės′
pq)

σ
x0

= M = A. We can prove
(ii) by the same way in (i).

We recall the definition of smooth wavelets.

Definition 7. Let r ∈ N0 and L > n. A family of {ψ0, ψ
(i)} is called (r, L)– smooth wavelets if

{ψ0(x− k) (k ∈ Zn), 2nj/2ψ(i)(2jx− k) (i = 1, · · · , 2n − 1, j ∈ N0, k ∈ Zn)} forms an orthonormal
basis of L2(Rn), and ψ(i) satisfies (5.1), (5.2) and (5.3), and a scaling function ψ0 satisfies (5.4)

(5.1) |ψ(i)(x)| ≤ C(1 + |x|)−max(L,L0) for some L0 > n+ r,
(5.2) |∂γψ(i)(x)| ≤ C(1 + |x|)−L for 0 < |γ| ≤ r,
(5.3)

∫
Rn ψ

(i)(x)xγdx = 0 for |γ| < r
where (5.2) and (5.3) are void when r = 0.

(5.4) |∂γψ0(x)| ≤ C(1 + |x|)−L for |γ| ≤ r,
but ψ0 does not satisfy the vanishing moment condition (5.3). We will forget to write the index i of
the wavelet, which is of no consequence.

We put ψ0,k(x) = ψ0(x − k), k ∈ Zn, ψQ(x) = ψ(l(Q)−1(x − xQ)) for a dyadic cube Q with
l(Q) ≤ 1.

Theorem 4.3. Let s, s′, σ ∈ R, x0 ∈ Rn and 0 < p, q ≤ ∞.
(i) For a family of (r, L)– smooth wavelets {ψ0, ψ} satisfying
(6.1) r > max(s′, σ + s+ s′ − n

p
, J − n− s′) and

(6.2) L > J , where J as in Lemma 3.1,
we have
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As(Es′
pq)

σ
x0

= {f =
∑

k∈Zn ckψ0,k +
∑

l(Q)≤1 c(Q)ψQ : (ck) ∈ as(es
′
pq)

σ
x0
,

(c(Q)) ∈ as(es′pq)σx0},

where (ck)k∈Zn ∈ as(es
′
pq)

σ
x0

means that (c0(Q))l(Q)≤1 ∈ as(es
′
pq)

σ
x0

such as c0(Q) = ck if Q = Q0,k =
[0, 1)n + k, k ∈ Zn and c0(Q) = 0 if l(Q) < 1.

(ii) For a family of (r, L)– smooth wavelets {ψ0, ψ} satisfying
(6.1)′ r > max(s′ + (σ ∨ 0), (σ ∨ 0) + s+ s′ − n

p
, J − n− s′ − (σ ∧ 0)) and

(6.2)′ L > J + σ
we have

As(Ẽs′
pq)

σ
x0

= {f =
∑

k∈Zn ckψ0,k +
∑

l(Q)≤1 c(Q)ψQ : (ck) ∈ as(ẽs
′
pq)

σ
x0
,

(c(Q)) ∈ as(ẽs′pq)σx0}.

Remark 6. We see that by Lemma 3.3,
∑

k∈Zn ckψ0,k and∑
l(Q)≤1 c(Q)ψQ are convergent in S ′ for (ck), (c(Q)) ∈ as(es′pq)σx0 or as(ẽs′pq)σx0 .

Proof of Theorem 4.3. (i) We may assume σ ≥ 0 by Remark 1. We put W = {f =
∑

k∈Zn ckψ0,k +∑
l(Q)≤1 c(Q)ψQ : (ck), (c(Q)) ∈ as(es′pq)σx0}.
Let W 3 f =

∑
k∈Zn ckψ0,k +

∑
l(Q)≤1 c(Q)ψQ and we consider the ϕ–transform

ψ0,k =
∑
l(P )≤1

l(P )−n〈ψ0,k , ϕP 〉φP

ψQ =
∑
l(P )≤1

l(P )−n〈ψQ , ϕP 〉φP

where φP and ϕP as in Remark 2. Then we have

f =
∑
l(P )≤1

(B1ck)(P )φP +
∑
l(P )≤1

(A1c)(P )φP

where B1 = {l(P )−n〈ψ0,k , ϕP 〉}Pk and A1 = {l(P )−n〈ψQ , ϕP 〉}PQ. Lemma 3.1 and Lemma 3.2
yield that B1 and A1 are almost diagonal and B1ck, A1c ∈ as(es

′
pq)

σ
x0

for ck, c ∈ as(es
′
pq)

σ
x0
. Hence, by

Theorem 4.1, we see that W ⊂ D = As(Es′
pq)

σ
x0

where D is as in the proof of Theorem 4.1.
Conversely, let D 3 f =

∑
l(Q)≤1 c(Q)φQ and we consider the wavelet expansion

φQ =
∑
k∈Zn
〈φQ , ψ0,k〉ψ0,k +

∑
l(P )≤1

l(P )−n〈φQ , ψP 〉ψP .

Then we have

f =
∑
k∈Zn

(B2c)(k)ψ0,k +
∑
l(Q)≤1

(A2c)(Q)φQ

where B2 = {〈φQ , ψ0,k〉}kQ and A2 = {l(P )−n〈φQ , ψP 〉}PQ. Lemma 3.1 and Lemma 3.2 yield that
B2 and A2 are almost diagonal and B2c A2c ∈ as(es

′
pq)

σ
x0

for c ∈ as(es′pq)σx0 . Hence, by Theorem 4.1,
we see that As(Ės′

pq)
σ
x0

= D ⊂ W .
We can prove (ii) by the same way in (i). Hence we obtain the result of Theorem 4.3.

Remark 7. (1) we see that Theorem 4.3 is independent of the choice of smooth wavelets {ψ0, ψ
(i)}

(see Remark 3 (2)).
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(2) For f ∈ As(Es′
pq)

σ
x0

or As(Ẽs′
pq)

σ
x0

the parings 〈f , ψ0,k〉 and 〈f , ψQ〉 are well-defined. More
explicitly, we see that for any {φQ, ϕQ} as in Remark 2,

〈f , ψ0,k〉 =
∑
l(P )≤1

l(P )−n〈f , φP 〉〈ψ0,k , ϕP 〉 ≡
∑
l(P )≤1

c(f)(P )〈ψ0,k , ϕP 〉

and
〈f , ψQ〉 =

∑
l(P )≤1

l(P )−n〈f , φP 〉〈ψQ , ϕP 〉 ≡
∑
l(P )≤1

c(f)(P )〈ψQ , ϕP 〉

are convergent by Lemma 3.3 and (b) in the proof of Theorem 4.1. Thus, for f ∈ As(Es′
pq)

σ
x0

or
As(Ẽs′

pq)
σ
x0

we have a wavelet expansion f =
∑

k∈Zn ckψ0,k+
∑

l(Q)≤1 c(Q)ψQ in S ′ and its representation
is unique in S ′, that is, ck = 〈f , ψ0,k〉 and c(Q) = l(Q)−n〈f , ψQ〉. Hence, we have that by Lemma
3.1, Lemma 3.2 and (b) in the proof of Theorem 4.1,

||(ck)||as(es′pq)σx0 = ||〈f , ψ0,k〉||as(es′pq)σx0
≤ ||

∑
l(P )≤1

c(f)(P )〈ψ0,k , ϕP 〉||as(es′pq)σx0

≤ C||c(f)||as(es′pq)σx0 ≤ C||f ||As(Es′pq)σx0
and

||(c(Q))||as(es′pq)σx0 = ||l(Q)−n〈f , ψQ〉||as(es′pq)σx0
≤ C||

∑
l(P )≤1

c(f)(P )l(Q)−n〈ψQ , ϕP 〉||as(es′pq)σx0

≤ C||c(f)||as(es′pq)σx0 ≤ C||f ||As(Es′pq)σx0 .

Conversely, we consider the ϕ-transform

ψ0,k =
∑
P

l(P )−n〈ψ0,k , ϕP 〉φP

and
ψQ =

∑
P

l(P )−n〈ψQ , ϕP 〉φP .

Then we have

f =
∑
k∈Zn

ckψ0,k +
∑
Q

c(Q)ψQ =
∑
k∈Zn

(Bck)(P )φP +
∑
Q

Ac(P )φP

where B = {l(P )−n〈ψ0,k , ϕP 〉} and A = {l(P )−n〈ψQ , ϕP 〉}. Hence we have by Lemma 3.1, Lemma
3.2 and (a) in the proof of Theorem 4.1,

||f ||As(Es′pq)σx0 ≤ C||(Bck) + (Ac)||as(es′pq)σx0
≤ C||Bck||as(es′pq)σx0 + C||Ac||as(es′pq)σx0
≤ C||ck||as(es′pq)σx0 + C||c||as(es′pq)σx0 .

Therefore, we have
||f ||As(Es′pq)σx0 ∼ ||(ck)||as(es′pq)σx0 + ||(c(Q))||as(es′pq)σx0 .

Similarly, we also obtain

||f ||As(Ẽs′pq)σx0 ∼ ||(ck)||as(ẽs′pq)σx0 + ||(c(Q))||as(ẽs′pq)σx0 .
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5 Applications

Definition 8. Let T be the space of Schwartz test functions (C∞-functions with compact support)
and T ′ its dual. For arbitrary r1, r2 ∈ N0 the Calderón–Zygmund operator T with an exponent ε > 0
is a continuous linear operator T → T ′ such that its kernel K off the diagonal {(x, y) ∈ Rn × Rn :
x = y} satisfies

(7.1) |∂γ1K(x, y)| ≤ C|x− y|−(n+|γ|) for |γ| ≤ r1,
(7.2) |K(x, y)−K(x, y′)| ≤ C|y − y′|r2+ε|x− y|−(n+r2+ε) if 2|y′ − y| ≤ |x− y|,
(7.3) |∂γ1K(x, y)− ∂γ1K(x, y′)| ≤ C|y − y′|ε|x− y|−(n+|γ|+ε)
if 2|y′ − y| ≤ |x− y| for 0 < |γ| ≤ r1
(where this statement is void when r1 = 0),
|∂γ1K(x, y)− ∂γ1K(x′, y)| ≤ C|x′ − x|ε|x− y|−(n+|γ|+ε)
if 2|x′ − x| ≤ |x− y| for |γ| ≤ r1,

(where the subindex 1 stands for derivatives in the first variable)
(7.4) T is bounded on L2(Rn).

We obtain the following theorem.

Theorem 5.1. Let s, s′, σ ∈ R, x0 ∈ Rn, 0 < p, q ≤ ∞, r1, r2 ∈ N0 and J as in Lemma 3.1.
(i) The Calderón–Zygmund operator T with an exponent ε > J − n satisfying T (xγ) = 0 for

|γ| ≤ r1 and T ∗(xγ) = 0 for |γ| < r2, is bounded on As(Es′
pq)

σ
x0

if r1 and r2 satisfy (4.1) and (4.2) as
in Theorem 4.2 respectively.

(ii) The Calderón–Zygmund operator T with an exponent ε > J − n+ σ satisfying T (xγ) = 0 for
|γ| ≤ r1 and T ∗(xγ) = 0 for |γ| < r2, is bounded on As(Ẽs′

pq)
σ
x0

if r1 and r2 satisfy (4.1)’ and (4.2)’ as
in Theorem 4.2 respectively.

Proof. The proof is similar to ones of [12].
(i) We may assume σ ≥ 0 by Remark 1. Let f ∈ As(Es′

pq)
σ
x0
. Then we consider a wavelet

expansion f =
∑

k ckψ0,k +
∑

l(Q)≤1 c(Q)ψQ : (ck), (c(Q)) ∈ as(es′pq)σx0 from Theorem 4.3. We may
suppose that smooth wavelets {ψ0 ψ} are compactly supported by Remark 7 (1). Then there exists
a positive constant c such that supp ψ0,k ⊂ cQ0,k where Q0,k = [0, 1)n + k and supp ψQ ⊂ cQ for
every dyadic cube Q with l(Q) = 2−l ≤ 1.

We claim that Tf =
∑

k ck(Tψ0,k) +
∑

l(Q)≤1 c(Q)(TψQ) ≡
∑

k ckmk +
∑

l(Q)≤1 c(Q)mQ is conver-
gent in S ′ and ||Tf ||As(Es′pq)σx0 ≤ C||f ||As(Es′pq)σx0 .

More precisely , we will show that mk and mQ satisfy following properties:
(8.1) |mk(x)| ≤ C(1 + l(Q)−1|x− xk|)−L with L > J ,
(8.2) |mQ(x)| ≤ C(1 + l(Q)−1|x− xQ|)−(n+r2+ε),
(8.3) |∂γmQ(x)| ≤ Cl(Q)−|γ|(1 + l(Q)−1|x− xQ|)−(n+ε) for 0 < |γ| ≤ r1, and
(8.4)

∫
Rn x

γmQ(x)dx = 0 for |γ| < r2.
From the assumption T ∗xγ = 0 for |γ| < r2 we have

∫
Rn x

γmQ(x)dx = 0 for |γ| < r2, that is,
(8.4) holds.

We choose a suitable large constant C0. From Fraizer–Torres–Weiss [12: Corollary 2.14], when
|x− xQ| < 2C02

−l, we have

|mk(x)| ≤ ||mk||∞ ≤ C
∑
|β|≤1

||∂βψ0,k||∞ ≤ C ≤ C(1 + |x− xk|)−L

and
|∂γmQ(x)| ≤ ||∂γmQ||∞ ≤ C

∑
|α|≤|γ|+1

2l(|γ|−|α|)2l|α|||∂αψQ||∞
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≤ C2l|γ| ≤ Cl(Q)−|γ|(1 + l(Q)−1|x− xQ|)−L

for any L ≥ 0 and |γ| ≤ r1. When |x−xQ| ≥ 2C02
−l, using (7.1) and (7.2) in Definition 8, we obtain

|mk(x)| = |
∫
Rn
K(x, y)ψ0,k(y)dy| ≤ C

∫
Rn
|K(x, y)||ψ0,k(y)|dy

≤ C

∫
|y−xk|≤C0

|x− y|−n(1 + |y − xk|)−Ldy ≤ C(1 + |x− xk|)−(L+n).

Moreover, using (7.3) in Definition 8 for 0 < |γ| ≤ r1, we have

|∂γmQ(x)| ≤ C

∫
|y−xQ|≤C02−l

|∂γ1K(x, y)− ∂γ1K(x, xQ)||ψQ(y)|dy

≤ C

∫
|y−xQ|≤C02−l

|y − xQ|ε|x− xQ|−(n+|γ|+ε)dy

≤ C2−l(n+ε)|x− xQ|−(n+|γ|+ε) ≤ C2l|γ|(1 + 2l|x− xQ|)−(n+ε).

Therefore, we obtain (8.1), (8,2) and (8.3). Hence by Lemma 3.3, Tf =
∑

k ckmk +
∑

Q c(Q)mQ is
convergent in S ′ from (8.1), (8.2), (8.3) and (8.4). For the wavelet expansion

mk =
∑
k

〈mk , ψ0,k〉ψ0,k +
∑
P

l(P )−n〈mk , ψP 〉ψP ,

mQ =
∑
k

〈mQ , ψ0,k〉ψ0,k +
∑
P

l(P )−n〈mQ , ψP 〉ψP ,

we have

Tf =
∑
k

ckmk +
∑
l(Q)≤1

c(Q)mQ =

∑
k

((B1ck) + (B2ck))ψ0,k +
∑
l(P )≤1

((A1c) + (A2c))(P )ψP

where B1 = {〈mk , ψ0,k′〉}k′k, B2 = {〈mQ , ψ0,k′〉}k′Q,
A1 = {l(P )−n〈mk , ψP 〉}Pk, A2 = {l(P )−n〈mQ , ψP 〉}PQ. By Lemma 3.1, Lemma 3.2, (8.1), (8,2),
(8,3) and (8.4) the operators B1, B2, A1, A2 are bounded on as(es′pq)σx0 if r1 and r2 satisfy (4.1) and
(4.2) respectively. By Remark 7 (2), it follows that

||Tf ||As(Es′pq)σx0 ∼ ||(B1ck +B2ck)||as(es′pq)σx0 + ||(A1c+ A2c)||as(es′pq)σx0
≤ C(||ck||as(es′pq)σx0 + ||c||as(es′pq)σx0 ) ∼ C||f ||As(Es′pq)σx0 .

Similarly, we obtain (ii).

Definition 9. Let µ ∈ R. A smooth function a defined on Rn × Rn is said to belong to the class
Sµ1,1(Rn) if a satisfies the following differential inequalities that for all α, β ∈ Nn

0 ,

sup
x,ξ

(1 + |ξ|)−µ−|α|+|β||∂αx∂
β
ξ a(x, ξ)| <∞.

a(x,D) is the corresponding pseudo-differential operator such that

a(x,D)f(x) =

∫
Rn
eixξa(x, ξ)f̂(ξ) dξ
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for f ∈ S.

Theorem 5.2. Let s, s′, σ ∈ R, x0 ∈ Rn, 0 < p, q ≤ ∞. Let µ ∈ R, J as in Lemma 3.1 and
a ∈ Sµ1,1(Rn).

(i) a(x,D) is a continuous linear mapping from As(Es′
pq)

σ
x0

to As(Es′−µ
pq )σx0 if s′ > J − n + µ or

a(x, ξ) = a(ξ).
(ii) a(x,D) is a continuous linear mapping from As(Ẽs′

pq)
σ
x0

to As(Ẽs′−µ
pq )σx0 if s

′ > J−n+µ+σ∧0
or a(x, ξ) = a(ξ).

Proof. (i) We may assume σ ≥ 0 by Remark 1. We write T ≡ a(x,D). Let f ∈ As(Es′
pq)

σ
x0
. By

Theorem 4.1, we consider the ϕ-transform f =
∑

P c(P )φP where c(P ) = c(f)(P ) = l(P )−n〈f, ϕP 〉
and φP , ϕP as in Remark 2. Then we see (c(P )) ∈ as(es′pq)σx0 . We write that Tf =

∑
P c(P )mP where

mP = TφP . We see for a dyadic cube P with l(P ) = 2−j

mP =

∫
eixξa(x, ξ)φ̂P (ξ) dξ.

Then we have, using a change of variables,

mP (x) =

∫
ei(x−xP )(2

jξ)a(x, 2jξ)φ̂(ξ) dξ.

By the fact that (1 −4ξ)
L(eixξ) = (1 + |x|2)Leixξ for the Laplacian 4 and using an integration by

parts, we obtain for γ ∈ Nn
0 and l(P ) < 1,

∂γxmP (x)

=

∫
(1−4ξ)

L(ei2
j(x−xP )ξ)(1 + (2j|x− xP |)2)−L ×∑

δ≤γ

(2jiξ)δ∂γ−δx a(x, 2jξ)φ̂(ξ) dξ

= C(1 + (2j|x− xP |)2)−L
∫
ei2

j(x−xP )ξ(1−4ξ)
L ×∑

δ≤γ

(2jiξ)δ∂γ−δx a(x, 2jξ)φ̂(ξ) dξ.

Thus, we have

|∂γxmP (x)|

≤ C(1 + 2j|x− xP |)−2L
∫ ∑

δ≤γ

∑
|α+β+τ |≤2L,α≤δ

×

2j|δ|2j|β||∂αξ (ξ)δ||∂βξ ∂
γ−δ
x a(x, 2jξ)||∂τξ φ̂(ξ)| dξ

≤ C(1 + 2j|x− xP |)−2L
∫ ∑

δ≤γ

∑
|α+β+τ |≤2L,α≤δ

×

2j|δ|2j|β||ξ||δ|−|α|(1 + 2j|ξ|)µ+|γ|−|δ|−|β||∂τξ φ̂(ξ)| dξ
≤ C2jµ2j|γ|(1 + 2j|x− xP |)−2L
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and similarly, for P with l(P ) = 1,

|∂γxmP (x)|
≤ C(1 + |x− xP |)−2L ×∫ ∑

|α+β+τ |≤2L

(1 + |ξ|)µ+|γ|−|α|−|β||∂τξ φ̂0(ξ)| dξ

≤ C(1 + |x− xP |)−2L.

Hence, mP (x) satisfies

|2−jµ∂γmP (x)| ≤ C2j|γ|(1 + 2j|x− xP |)−2L

for P with l(P ) ≤ 1, any γ ∈ N0 and any L ≥ 0. We choose a suitable large L. For the ϕ– transform

2−jµmP =
∑
l(R)≤1

l(R)−n〈2−jµmP , ϕR〉φR,

we have
Tf =

∑
l(P )≤1

2jµc(P )(2−jµmP ) =
∑
l(R)≤1

A(2jµc)(R)φR,

where A = {l(R)−n〈2−jµmP , ϕR〉}RP . From Lemma 3.1 and Lemma 3.2, A is bounded on as(es′−µpq )σx0
if s′ > J − n+µ or a(x, ξ) = a(ξ). We remark that in the case s′ > J − n+µ, we do not assume the
vanishing moment condition for mP . But in the case a(x, ξ) = a(ξ), we have the vanishing moment
condition formP , indeed, for any P with l(P ) < 1,

∫
xγmP (x) dx = C∂γm̂P (0) = C∂γ(φ̂P )·a)(0) = 0

for any γ ∈ N0. From (a) and (b) in the proof of Theorem 4.1, it follows that

||Tf ||
As(Es

′−µ
pq )σx0

≤ C||A(2jµc)||
as(es

′−µ
pq )σx0

≤ C||2jµc||
as(es

′−µ
pq )σx0

≤ C||c||as(es′pq)σx0 ≤ C||f ||As(Es′pq)σx0 .

(ii) Similarly, we can prove for this case.

Corollary . Let s, s′, σ ∈ R, x0 ∈ Rn, 0 < p, q ≤ ∞.
(i) Let µ ∈ R. Then the Bessel potential (1−4)µ/2 is a continuous isomorphisms from As(Es′

pq)
σ
x0

onto As(Es′−µ
pq )σx0, and from As(Ẽs′

pq)
σ
x0

onto As(Ẽs′−µ
pq )σx0.

(ii) Let γ ∈ Nn
0 . Then the differential operator ∂γ is continuous from As(Es′

pq)
σ
x0

to As(Es′−|γ|
pq )σx0,

and from As(Ẽs′
pq)

σ
x0

to As(Ẽs′−|γ|
pq )σx0.

Proof. These are immediate corollaries of Theorem 5.2. To finish the proof of (i) we need to show
the mapping is surjective and one to one. For h ∈ As(Es′−µ

pq )σx0 , we set f = (1 − 4)−µ/2h. Then
h = (1−4)µ/2f .

6 Characterizations via differences and oscillations

Definition 10. Let k ∈ N0. We define the differences of functions

41
uf(x) = f(x+ u)− f(x) and 4k+1 = 414k.

We set
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dki f(y) = 1
|Bi(y)|

∫
k|u|≤2−i |4

k
uf(y)| du

where Bi(x) is the ball with a center x and a radius 2−i, and |Bi(x)| means its volume. It is obvious
that |dki f(y)| ≤ C supk|u|≤2−i |4k

uf(y)|.
We define the oscillation of locally Lp integrable functions f (0 < p ≤ ∞) by

osckpf(x, i) = inf(
1

|Bi(x)|

∫
Bi(x)

|f(y)− P (y)|p dy)1/p

with the suitable modification for p =∞, where the infimum is taken over all polynomials P (x) ∈ Pk,
the space of all polynomials with deg ≤ k on Rn. By PBf for a ball B we denote the unique
polynomial in Pk such that

∫
B

(f(x)−PBf(x))xα dx = 0 for all |α| ≤ k. We see that ||PBf ||L∞(B) ≤
1
|B|

∫
B
|f(x)| dx and PBf = f for f ∈ Pk. We put

Ωk
pf(x, i) = (

1

|Bi(x)|

∫
Bi(x)

|f(y)− PBi(x)f(y)|p dy)1/p.

Then we see osckpf(x, i) ∼ Ωk
pf(x, i) if 1 ≤ p ≤ ∞ (cf. [19]).

Lemma 6.1. (i) Let s ∈ R, σ ≥ 0 and let k ∈ N, k > s′ > 0, 1 ≤ p ≤ ∞, 0 < q ≤ ∞ and let f
be locally Lp integrable.

Then we have

sup
D3Q3x0

l(Q)−σ sup
D3P⊂3Q

l(P )−s×

(
∑

i≥(− log2 l(P ))∨0

(2is
′

sup
k|u|≤2−i

||4k
uf ||Lp(P ))

q)1/q

≤ C sup
D3Q3x0

l(Q)−σ sup
D3P⊂3Q

l(P )−s ×

(
∑

i≥(− log2 l(P ))∨0

(2is
′||osck−1p f(x, i)||Lp(P ))

q)1/q,

and

sup
D3Q3x0

l(Q)−σ sup
D3P⊂3Q

l(P )−s×

(
∑

i≥(− log2 l(P ))∨0

(2is
′ ||osck−1p f(x, i)||Lp(P ))

q)1/q

≤ C sup
D3Q3x0

l(Q)−σ sup
D3P⊂3Q

l(P )−s ×

(||f ||Lp(P ) + (
∑

i≥(− log2 l(P ))∨0

(2is
′ ||dki f ||Lp(P ))

q)1/q).

(ii) Let s ∈ R, σ ≥ 0 and let k ∈ N, k > s′ > 0, 1 ≤ p <∞, 0 < q ≤ ∞ and let f be locally
Lp integrable . Then we have
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sup
D3Q3x0

l(Q)−σ sup
D3P⊂3Q

l(P )−s×

||(
∑

i≥(− log2 l(P ))∨0

(2is
′

sup
k|u|≤2−i

|4k
uf |)q)1/q||Lp(P )

≤ C sup
D3Q3x0

l(Q)−σ sup
D3P⊂3Q

l(P )−s ×

||(
∑

i≥(− log2 l(P ))∨0

(2is
′
osck−1p f(x, i))q)1/q||Lp(P ),

and

sup
D3Q3x0

l(Q)−σ sup
D3P⊂3Q

l(P )−s×

||(
∑

i≥(− log2 l(P ))∨0

(2is
′
osck−1p f(x, i))q)1/q||Lp(P )

≤ C sup
D3Q3x0

l(Q)−σ sup
D3P⊂3Q

l(P )−s ×

(||f ||Lp(P ) + ||(
∑

i≥(− log2 l(P ))∨0

(2is
′
dki f)q)1/q)||Lp(P ).

Proof. We will see that for k|u| ≤ 2−i,

|4k
uf(x)| ≤ C(

∑k
e=0 |f(x+ eu)− PBi(x+eu)f(x+ eu)|)

≤ C
∑k

e=0

∑
l≥i Ω

k−1
p f(x+ eu, l).

We consider a sequence for i < · · · < m→∞,

Bi(x+ eu) ⊃ · · · ⊃ Bm(x+ eu) ⊃ · · · → x+ eu.

Then we have
1

|Bm|

∫
Bm

|f − PBif | dy ≤
1

|Bm|

∫
Bm

|f − PBmf | dy

+
1

|Bm|

m∑
l=i+1

∫
Bm

|PBlf − PBl−1
f | dy

≤ 1

|Bm|

∫
Bm

|f − PBmf | dy + C
m∑

l=i+1

1

|Bl|

∫
Bl

|f − PBl−1
f | dy

≤ 1

|Bm|

∫
Bm

|f − PBmf | dy + C

m∑
l=i

1

|Bl|

∫
Bl

|f − PBlf | dy.

Hence, we have

|f(x+ eu)− PBi(x+ eu)| = lim
m→∞

1

|Bm|

∫
Bm

|f − PBif | dy

≤ lim
m→∞

1

|Bm|

∫
Bm

|f − PBmf | dy + C

∞∑
l=i

1

|Bl|

∫
Bl

|f − PBlf | dy

≤ C

∞∑
l=i

Ωk−1
p f(x+ eu, l).
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Therefore, we have for a dyadic cube P with l(P ) = 2−j,

(
∑
i≥j∨0

(2is
′

sup
k|u|≤2−i

||4k
uf ||Lp(P ))

q)1/q

≤ C(
∑
i≥j∨0

(2is
′∑
l≥i

||Ωk−1
p f(x, l)||Lp(3P ))

q)1/q

≤ C(
∑
i≥j∨0

(2is
′ ||Ωk−1

p f(x, i)||Lp(3P ))
q)1/q

≤ C(
∑
i≥j∨0

(2is
′ ||osck−1p f(x, i)||Lp(3P ))

q)1/q

≤ C(|x0 − xP |+ 2−j)σ2−js sup
D3Q3x0

l(Q)−σ sup
D3P⊂3Q

l(P )−s ×

(
∑
i≥j∨0

(2is
′||osck−1p f(x, i)||Lp(P ))

q)1/q

by using Hardy’s inequality if s′ > 0. This completes the proof of the first half of (i).
Next, we will prove the last half of (i).
We consider a function θ ∈ S such that supp θ ⊂ {k|u| ≤ 1} and

∫
θ(u) du = 1. We put

hi(x) =

∫
(f(x)−4k

uf(x))θi(u) du

where θi(u) = 2niθ(2iu). We claim that

osck−1p f(x, i) ≤ C( 1
|Bi(x)|

∫
Bi(x)
|dki f(y)|p dy)1/p + Cosck−1p hi(x, i).

We see that

osck−1p f(x, i) ∼ Ωk−1
p f(x, i) =

(
1

|Bi(x)|

∫
Bi(x)

|f(y)− PBi(x)f(y)|p dy)1/p

≤ (
1

|Bi(x)|

∫
Bi(x)

|f(y)− hi(y)|p dy)1/p

+ (
1

|Bi(x)|

∫
Bi(x)

|hi(y)− PBi(x)hi(y)|p dy)1/p

+ (
1

|Bi(x)|

∫
Bi(x)

|PBi(x)hi(y)− PBi(x)f(y)|p dy)1/p

≤ C(
1

|Bi(x)|

∫
Bi(x)

|f(y)− hi(y)|p dy)1/p

+ C(
1

|Bi(x)|

∫
Bi(x)

|hi(y)− PBi(x)hi(y)|p dy)1/p

≤ C(
1

|Bi(x)|

∫
Bi(x)

(

∫
k|u|≤2−i

|4k
uf(y)||θi(u)| du)p dy)1/p

+CΩk−1
p hi(x, i)

≤ C(
1

|Bi(x)|

∫
Bi(x)

|dki f(y)|p dy)1/p + Cosck−1p hi(x, i).
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Next, we will estimate osck−1p hi(x, i). We consider the (k − 1)th Taylor polynomial q(x) of hi at x.
Then we have

hi(y)− q(y)

=

∫ 1

0

∑
|β|=k

k

β!
∂βhi(x+ t(y − x))(x− y)β(1− t)k−1 dt

=

∫ 1

0

∑
|β|=k

k

β!

∫ k∑
m=1

(
k
m

)
(−1)k−m∂βf(x+ t(y − x) +mu)×

θl(u) du(x− y)β(1− t)k−1 dt

=

∫ 1

0

∑
|β|=k

k

β!

∫ k∑
m=1

(
k
m

)
(−1)k−mmkf(x+ t(y − x) +m2−iu)×

∂βθ(u) du(x− y)β(1− t)k−1 dt.

Hence, we see by using Minkowski’s inequality

||osck−1p hi(x, i)||Lp(P ) ≤ ||(
1

|Bi(x)|

∫
Bi(x)

|hi(y)− q(y)|p dy)1/p||Lp(P )

≤ C(

∫
P

1

|Bi(x)|

∫
Bi(x)

(

∫ 1

0

∫
k|u|≤1

k∑
m=1

|f(x+ t(y − x) +m2−iu)| ×

|∂βθ(u)|du|x− y|k(1− t)k−1 dt)p dydx)1/p

≤ C

∫ 1

0

∫
k|u|≤1

k∑
m=1

(
1

|Bi(x)|

∫
Bi(0)

∫
P

|f(x+ ty +m2−iu)|p dxdy)1/p×

2−ik(1− t)k−1 dudt

≤ C

∫ 1

0

∫
k|u|≤1

k∑
m=1

(
1

|Bi(x)|

∫
Bi(0)

∫
P+ty+m2−iu

|f(x)|p dxdy)1/p×

2−ik(1− t)k−1 dudt

≤ C2−ik(

∫
5P

|f(x)|p dx)1/p ≤ C2−ik||f ||Lp(5P ).

Moreover, we have

||( 1

|Bi(x)|

∫
Bi(x)

|dki f(y)|p dy)1/p||Lp(P )

≤ C(

∫
P

(
1

|Bi(x)|

∫
Bi(0)

|dki f(x+ y)|p dydx)1/p

≤ C(
1

|Bi(x)|

∫
Bi(0)

∫
P+y

|dki f(x)|p dxdy)1/p

≤ C(

∫
3P

|dki f(x)|p dx)1/p ≤ C||dki f ||Lp(3P ).

Thus, we have for a dyadic cube P with l(P ) = 2−j

(
∑
i≥j∨0

(2is
′ ||osck−1p f(x, i)||Lp(P ))

q)1/q
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≤ C(
∑
i≥j∨0

(2is
′||dki f ||Lp(3P ))

q)1/q + C(
∑
i≥j∨0

2−i(k−s
′)q)1/q||f ||Lp(5P )

≤ C(
∑
i≥j∨0

(2is
′ ||dki f ||Lp(3P ))

q)1/q + C||f ||Lp(5P )

≤ C(|x0 − xP |+ 2−j)σ2−js sup
D3Q3x0

l(Q)−σ sup
D3P⊂3Q

l(P )−s(
∑
i≥j∨0

(2is
′ ||dki f ||Lp(P ))

q)1/q

+C(|x0 − xP |+ 2−j)σ2−js sup
D3Q3x0

l(Q)−σ sup
D3P⊂3Q

l(P )−s||f ||Lp(P )

if k > s′. The proof of (i) is complete. In the same way we can prove (ii).
Theorem 6.1. (i) Let s′, s, σ ∈ R with 0 < s′, 0 ≤ σ, and let x0 ∈ Rn, 1 ≤ p ≤ ∞, 0 < q ≤ ∞.
Let k ∈ N with k > s′ > 0. Then we have following equivalences for f ∈ S ′

||f ||As(Bs′pq)σx0 + sup
x0∈Q

l(Q)−σ sup
P⊂3Q

l(P )−s||f ||Lp(P )

∼ sup
x0∈Q

l(Q)−σ sup
P⊂3Q

l(P )−s(||f ||Lp(P )

+ (
∑

i≥(− log2 l(P ))∨0

(2is
′

sup
k|u|≤2−i

||4k
uf ||Lp(P ))

q)1/q)

∼ sup
x0∈Q

l(Q)−σ sup
P⊂3Q

l(P )−s(||f ||Lp(P )

+ (
∑

i≥(− log2 l(P ))∨0

(2is
′||osck−1p f ||Lp(P ))

q)1/q)

∼ sup
x0∈Q

l(Q)−σ sup
P⊂3Q

l(P )−s(||f ||Lp(P )

+ (
∑

i≥(− log2 l(P ))∨0

(2is
′||dki f ||Lp(P ))

q)1/q).

(ii) Let s, s′, σ ∈ R with 0 < s′, 0 ≤ σ, x0 ∈ Rn, 1 ≤ p < ∞, 1 ≤ q ≤ ∞. Let k ∈ N with
k > s′ > 0. Then we have following equivalences for f ∈ S ′

||f ||As(F s′pq)σx0 + sup
x0∈Q

l(Q)−σ sup
P⊂3Q

l(P )−s||f ||Lp(P )

∼ sup
x0∈Q

l(Q)−σ sup
P⊂3Q

l(P )−s(||f ||Lp(P )

+ ||(
∑

i≥(− log2 l(P ))∨0

(2is
′

sup
k|u|≤2−i

|4k
uf |)q)1/q||Lp(P ))

∼ sup
x0∈Q

l(Q)−σ sup
P⊂3Q

l(P )−s(||f ||Lp(P )

+ ||(
∑

i≥(− log2 l(P ))∨0

(2is
′
osck−1p f)q)1/q||Lp(P ))

∼ sup
x0∈Q

l(Q)−σ sup
P⊂3Q

l(P )−s(||f ||Lp(P )

+ ||(
∑

i≥(− log2 l(P ))∨0

(2is
′
dki f)q)1/q||Lp(P )).
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Proof. (i) It suffices to prove the first part of (i) by Lemma 6.1. We consider the Littlewood-Paley
decomposition f = Sif +

∑
l>i f ∗ φl. Then we have for k|u| ≤ 2−i and a dyadic cube P with

l(P ) = 2−j , i ≥ j

||4k
uf ||Lp(P ) ≤ ||4k

u(f − Sif)||Lp(P ) + ||4k
uSif ||Lp(P )

≤ C
∑
l>i

||4k
u(f ∗ φl)||Lp(P ) + C||4k

uSif ||Lp(P ).

We will estimate ||4k
uSif ||Lp(P ). Note the following formula

4k
uSif(x) =

∫ ∞
−∞

∑
|ν|=k

k!

ν!
uν∂νSif(x+ ξu)Nk(ξ) dξ

where Nk is the B-spline of order k (e.g. See [27]). Therefor we have for k|u| ≤ 2−i

||4k
uSif ||Lp(P ) ≤ C

∑
|ν|=k |u|k||∂νSif ||Lp(2P ).

Next, we will estimate ||∂νSif ||Lp(2P ):

||∂νSif ||Lp(2P ) = ||
∫
f(x− 2−iy) ∂νφ0(y) dy||Lp(2P )

≤ C

∫
(

∫
2P+2−iy

|f(x)|p dx)1/p|∂νφ0(y)| dy

≤ C2−js
∫

(|x0 − xP |+ 2−j(1 + |y|))σ|∂νφ0(y)| dy

× sup
x0∈Q

l(Q)−σ sup
P⊂3Q

l(P )−s||f ||Lp(P )

≤ C(|x0 − xP |+ 2−j)σ2−js sup
x0∈Q

l(Q)−σ sup
P⊂3Q

l(P )−s||f ||Lp(P ).

Hence, we have

||4k
uf ||Lp(P )

≤ C
∑
l>i

||4k
u(f ∗ φl)||Lp(P )

+C(|x0 − xP |+ 2−j)σ2−js2−ik sup
x0∈Q

l(Q)−σ sup
P⊂3Q

l(P )−s||f ||Lp(P ).

Moreover, we obtain by using Hardy’s inequality if s′ > 0

(
∑
i≥j∨0

(2is
′

sup
k|u|≤2−i

||4k
uf ||Lp(P ))

q)1/q

≤ C(
∑
i≥j∨0

(2is
′∑
l>i

||4k
u(f ∗ φl)||Lp(P ))

q)1/q

+ C(
∑
i≥j∨0

(2−i(k−s
′)(|x0 − xP |+ 2−j)σ2−js

× sup
x0∈Q

l(Q)−σ sup
P⊂3Q

l(P )−s||f ||Lp(P ))
q)1/q

≤ C(
∑
i>j∨0

(2is
′ ||4k

u(f ∗ φi)||Lp(P ))
q)1/q

+ C(|x0 − xP |+ 2−j)σ2−js sup
x0∈Q

l(Q)−σ sup
P⊂3Q

l(P )−s||f ||Lp(P ).
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This implies that

sup
x0∈Q

l(Q)−σ sup
P⊂3Q

l(P )−s(
∑
i≥j∨0

(2is
′

sup
k|u|≤2−i

||4k
uf ||Lp(P ))

q)1/q

≤ C sup
x0∈Q

l(Q)−σ sup
P⊂3Q

l(P )−s(
∑
i>j∨0

(2is
′ ||f ∗ φi||Lp(P ))

q)1/q

+ C sup
x0∈Q

l(Q)−σ sup
P⊂3Q

l(P )−s||f ||Lp(P )

≤ C||f ||As(Bs′pq)σx0 + C sup
x0∈Q

l(Q)−σ sup
P⊂3Q

l(P )−s||f ||Lp(P ).

We will show the converse statement. It is easy to see that there exist φm ∈ S m = 1, · · ·n such
that φ =

∑n
m=14k

cemφ
m for enough small c where e1, · · · , en are the canonical basis vectors in Rn.

Then we have for i ∈ N

f ∗ φi =
n∑

m=1

f ∗ 4k
c2−iem

φmi =
n∑

m=1

4k
c2−iem

f ∗ φmi .

Therefore, we have for a dyadic cube P with l(P ) = 2−j and i ≥ j

||f ∗ φi||Lp(P )

≤ C||
n∑

m=1

4k
c2−iem

f ∗ φmi ||Lp(P )

≤ C

∫ n∑
m=1

(

∫
P+2−iy

|4k
c2−iem

f(x)|p dx)1/p|φm(y)| dy

≤ C

∫ n∑
m=1

(

∫
P+2−iy

sup
k|u|≤2−i

|4k
uf(x)|p dx)1/p|φm(y)| dy.

Hence, we have if l(P ) < 1

(
∑
i≥j

(2is
′ ||f ∗ φi||Lp(P ))

q)1/q

≤ C(|x0 − xP |+ 2−j)σ2−js ×
sup
x0∈Q

l(Q)−σ sup
P⊂3Q

l(P )−s(
∑
i≥j

(2is
′

sup
k|u|≤2−i

||4k
uf ||Lp(P ))

q)1/q

and if l(P ) ≥ 1

(
∑
i≥0

(2is
′||f ∗ φi||Lp(P ))

q)1/q

≤ (
∑
i>0

(2is
′ ||f ∗ φi||Lp(P ))

q)1/q + ||f ∗ φ0||Lp(P )

≤ C(|x0 − xP |+ 2−j)σ2−js sup
x0∈Q

l(Q)−σ sup
P⊂3Q

l(P )−s ×

(
∑
i>0

(2is
′

sup
k|u|≤2−i

||4k
uf ||Lp(P ))

q)1/q

+ C(|x0 − xP |+ 2−j)σ2−js sup
x0∈Q

l(Q)−σ sup
P⊂3Q

l(P )−s||f ||Lp(P ).
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Thus, we have

sup
x0∈Q

l(Q)−σ sup
P⊂3Q

l(P )−s(
∑
i≥0

(2is
′ ||f ∗ φi||Lp(P ))

q)1/q

≤ C sup
x0∈Q

l(Q)−σ sup
P⊂3Q

l(P )−s ×

(
∑
i≥0

(2is
′

sup
k|u|≤2−i

||4k
uf ||Lp(P ))

q)1/q

+ sup
x0∈Q

l(Q)−σ sup
P⊂3Q

l(P )−s||f ||Lp(P ).

This completes the proof of Theorem 6.1 (i). In the same way we can prove (ii).
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