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Abstract. In the paper, an optimization problem with equality-type constraints is studied. It
is assumed that the minimizing function and the functions de�ning the constraints are Frechet
di�erentiable, the set of the admissible points is nonempty and the minimizing function is bounded
below on the set of admissible points. Under these assumptions we obtain an estimate of the derivative
of the Lagrange function. Moreover, we prove the existence of a minimizing sequence {xn} and
a sequence of unit Lagrange multipliers {λn} such that the sequence of the values of derivative
of the Lagrange function at the point (xn, λn) tends zero. This result is a generalization of the
known assertion stating that for a bounded below di�erentiable function f there exists a minimizing
sequence {xn} such that the values of the derivative f ′(xn) tend to zero. As an auxiliary tool,there
was introduced and studied the property of the directional covering for mappings between normed
spaces. There were obtained su�cient conditions of directional covering for Frechet di�erentiable
mappings.
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1 Introduction

Let X be a Banach space with the norm ‖ · ‖. Denote by BX(x, r) a closed ball centered at x ∈ X
with radius r ≥ 0. Let X∗ stand for the topological dual to X and stand ‖ · ‖∗ for the norm of X∗.

Given a positive integer k and Frechet di�erentiable functions f0, f1, ..., fk : X → R, consider the
optimization problem

f0(x)→ min, f1(x) = 0, ..., fk(x) = 0. (1.1)

De�ne the Lagrange function L : X × Rk+1 → R by the formula

L(x, λ) := λ0f0(x) + λ1f1(x) + ...+ λkfk(x), x ∈ X, λ = (λ0, λ1, ..., λk) ∈ Rk+1.

Denote the set of all admissible points byM, i.e.

M := {x ∈ X : f1(x) = ... = fk(x) = 0}.

The Lagrange multiplier rule (see, for example, [10, Section 1.2]) states that if a point x̂ ∈ X is a

local solution to problem (1.1), then there exists a nonzero vector λ ∈ Rk+1 such that
∂L

∂x
(x̂, λ) = 0

and λ0 ≥ 0.
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In this paper, we show that if a function f0 is bounded from below on M 6= ∅ then there exist

sequences {xn} ⊂ M and {λn} ⊂ Rk+1 such that

∥∥∥∥∂L∂x (xn, λn)

∥∥∥∥
∗
→ 0, f0(xn)→ inf

x∈M
f0(x) as n→∞

and ‖λn‖ = 1 for every n. This result is an analog of the known result for unconstrained optimization
problem stating that for a bounded below di�erentiable functional f0 on X there exists a minimizing

sequence {xn} such that
∂f0

∂x
(xn)→ 0 as n→∞ (see, for example, [6, Chapter 5, Section 3]).

Moreover, in this paper, we obtain an estimate of the derivative of the Lagrange function. When
X is a Hilbert space, similar estimates for the �rst-order and the second-order derivatives were
obtained in [2] and [3]. For the unconstrained optimization problem the estimates of the �rst-order
and the second-order derivatives of the minimizing function were obtained in [7, �2.5.2].

2 Main results

Given x0 ∈M and R > 0, denote

γ(x0, R) := inf{f0(x) : x ∈M∩BX(x0, R)}.

Here γ(x0, R) may take the value −∞. However, in what follows, we will assume that γ(x0, R) > −∞.
Note also that f0(x0)− γ(x0, R) ≥ 0 for every x0 ∈M and R > 0.

Theorem 2.1. Given a point x0 ∈M and a number R > 0, assume that

γ(x0, R) > −∞.

Then for every ε > 0 there exist vectors λ = (λ0, λ1, ..., λk) ∈ Rk+1 and x̂ ∈M∩BX(x0, R) such
that

‖λ‖ = 1, λ0 ≥ 0, f0(x̂) ≤ f0(x0),∥∥∥∥∂L∂x (x̂, λ)

∥∥∥∥
∗
≤ (1 + ε)λ0

f0(x0)− γ(x0, R)

R
. (2.1)

Note that if the set M∩ BX(x0, R) contains a point x for which the vectors
∂fi
∂x

(x), i = 0, k

are linearly dependent and f0(x) ≤ f0(x0), then the proposition of Theorem 2.1 trivially holds. In

this case, x̂ = x and the unit vector λ = (λ0, λ1, ..., λk) satisfying the equality
k∑
i=0

λi
∂fi
∂x

(x) = 0 and

the inequality λ0 ≥ 0 is the desired one (if λ0 < 0 then we take −λ instead of λ). In this case, the
left-hand side of (2.1) equals zero and the right-hand side is nonnegative.

If the vectors
∂fi
∂x

(x), i = 0, k are linearly independent on the set {x ∈ M∩ BX(x0, R) : f0(x) ≤
f0(x0)} then the proposition of Theorem 2.1 is nontrivial. In this case, inequality (2.1) implies that
λ0 > 0.

Note also that inequality (2.1) implies the following weaker estimate∥∥∥∥∂L∂x (x̂, λ)

∥∥∥∥
∗
≤ (1 + ε)

f0(x0)− γ(x0, R)

R
, (2.2)

since ‖λ‖ = 1.

Theorem 2.2. Assume that the function f0 is bounded from below onM. Then there exist sequences
of vectors {xn} ⊂ M and {λn} ⊂ Rk+1 such that

∂L

∂x
(xn, λn)→ 0, f0(xn)→ inf

x∈M
f0(x) as n→∞ and ‖λn‖ = 1 ∀n.
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The proofs of these theorems are presented in Section 4. Let us now discuss the ideas of proofs
of these assertions.

Given a point x0 ∈ X and a number R ≥ 0, we put v := (−1, 0, 0, ..., 0) ∈ Rk+1, F :=
(f0, f1, ..., fk). Since γ(x0, R) is the in�mum of f0 over the admissible setM, the points F (x0) + µv,
µ ≥ 0 do not belong to F (BX(x0, R)) as µ > f0(x0) − γ(x0, R). If the mapping F is ᾱ-covering in

the direction v at every point x ∈ M∩ BX(x0, R) such that f0(x) ≤ f0(x0) (i.e.
∂F

∂x
(x)X = Y and

sup

{
α ≥ 0 : αv ∈ ∂F

∂x
(x)BX(0, 1)

}
≥ ᾱ) then F (x0) + µv ∈ F (BX(x0, R)) for µ ∈ [0, αR). This

assertion is Lemma 3.1 below. These reasonings imply that there exists a point x̂ such that F is
ᾱ-covering with the constant ᾱ not exceeding the right-hand side of inequality (2.1). Inequality (2.1)
simply follows from this fact (see Lemma 3.2 below). To prove Theorem 2.2, it is enough to take an
arbitrary minimizing sequence {xn0} and apply Theorem 2.1 as x0 := xn0 , R := 1 and ε := 1 for every
n.

3 Auxiliary assertions

In this section, we prove two auxiliary assertions: Lemmas 3.1 and 3.2. In the proof of Lemma 3.1,
we will use the following minimum existence conditions from [1, Theorem 3] (see also [8, Lemma 1]).

Theorem 3.1. Given a complete metric space (M,ρ), a lower semicontinuous function U : M → R+

and a number α > 0, assume that the function U satis�es the Caristi-like condition

∀x ∈M : U(x) > 0 ∃x′ ∈M \ {x} : U(x′) + αρ(x, x′) ≤ U(x). (3.1)

Then for every x0 ∈M there exists a point x̄ ∈M such that U(x̄) = 0 and ρ(x0, x̄) ≤ α−1U(x0).

Let Y be a �nite-dimensional linear space with a norm ‖ · ‖. Denote by Y ∗ a dual space to Y. We
denote the value of the functional λ ∈ Y ∗ on the vector y ∈ Y by 〈λ, y〉. An analogous notation we
will use for the functionals from X∗. Denote the unit sphere in Y by S, i.e.

S := {v ∈ Y : ‖v‖ = 1}.

For an arbitrary linear bounded operator A : X → Y we denote by A∗ : Y ∗ → X∗ the adjoint
operator to A. For an arbitrary vector v ∈ S we put

cov(A|v) := sup{α ≥ 0 : αv ∈ ABX(0, 1)}.

It is a straightforward task to ensure that cov(A|v) > 0 if and only if v ∈ AX.

Lemma 3.1. Given a Frechet di�erentiable mapping F : X → Y, vectors x0 ∈ X, v ∈ S and a
number R > 0, assume that

(i) ᾱ := inf

{
cov

(
∂F

∂x
(x)

∣∣∣∣ v) : x ∈ BX(x0, R), F (x) ∈ F (x0) + cone{v}
}
> 0;

(ii)
∂F

∂x
(x)X = Y ∀x ∈ BX(x0, R) : F (x) ∈ F (x0) + cone{v}.

Then

F (x0) + αrv ∈ F (BX(x0, r)) ∀ r ∈ [0, R], ∀α ∈ (0, ᾱ).
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Proof. Fix an arbitrary r ∈ [0, R] and α ∈ (0, ᾱ). Put

M := {x ∈ X : F (x)− F (x0)− sαrv = 0, ‖x− x0‖ ≤ sr, s ∈ [0, 1]}.

Obviously, the set M is nonempty, since it contains the point x0. Moreover, M is closed, since F is
continuous. De�ne a functional U : M → R by the formula

U(x) = ‖F (x)− F (x0)− αrv‖, x ∈M. (3.2)

To prove the lemma it is enough to show that there exists a point x̄ ∈ M such that U(x̄) = 0. To
prove this assertion we will apply Theorem 3.1.

Obviously, the functional U is continuous and nonnegative. So, it is enough to prove that U
satis�es the Caristi-like condition (3.1).

Fix an arbitrary x ∈M such that U(x) > 0 and show that there exists a point x′ ∈M \ {x} such
that

U(x′) + α‖x− x′‖ ≤ U(x). (3.3)

The de�nition of M implies that there exists t ∈ [0, 1] such that

F (x) = F (x0) + tαrv, ‖x− x0‖ ≤ tr. (3.4)

Since U(x) = ‖F (x)− F (x0)− αrv‖ > 0, we have t < 1.

Put A :=
∂F

∂x
(x). It follows from the assumption (i) that cov(A|v) ≥ ᾱ > 0. Hence, ᾱ > (α+ ᾱ)/2

by virtue of the choice of α. The de�nition of cov(A|v) implies that there exists a vector e ∈ BX(0, 1)
such that

Ae =
α + ᾱ

2
v.

Since AX = Y by virtue of (ii), we have that there exists a linear operator R : Y → X such that

e = R

(
α + ᾱ

2
v

)
and ARy ≡ y. (3.5)

Since the mapping F is di�erentiable, we have

F (x+ ξ) = F (x) + Aξ + o(ξ), ξ ∈ X, (3.6)

where o : X → Y is a continuous mapping such that there exists δ > 0, for which the following
relation takes place

‖o(ξ)‖ ≤ ᾱ− α
‖R‖(ᾱ + α)

‖ξ‖ ∀ ξ ∈ BX(0, δ). (3.7)

Reducing δ we obtain that
0 < δ < r − tr. (3.8)

Note that when we reduce δ, relation (3.7) remains true.
Consider the equation

ξ = R(αδv − o(ξ))
with the unknown ξ ∈ BX(0, δ). De�ne a mapping Φ : BX(0, δ)→ BX(0, δ) by the formula

Φ(ξ) := R(αδv − o(ξ)), ξ ∈ BX(0, δ).

This mapping is well-de�ned, i.e. ‖R(αδv − o(ξ))‖ ≤ δ for every ξ ∈ BX(0, δ), since

‖R(αδv − o(ξ))‖ ≤ ‖αδRv‖+ ‖Ro(ξ)‖
(3.5)

≤ 2αδ

α + ᾱ
+ ‖Ro(ξ)‖

(3.7)

≤
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(3.7)

≤ 2αδ

α + ᾱ
+
ᾱ− α
ᾱ + α

‖ξ‖ ≤ 2αδ

α + ᾱ
+
ᾱ− α
ᾱ + α

δ = δ ∀ ξ ∈ BX(0, δ).

Moreover, the mapping Φ is compact and continuous since o(·) is continuous and the linear operator
R : Y → X has a �nite-dimensional image (recall that the space Y is �nite-dimensional). Thus, the
Schauder �xed-point theorem (see, for example, [11, Section 2.1]) implies that there exists a point
ξ′ ∈ BX(0, δ) such that ξ′ = Φ(ξ′). Therefore,

ξ′ = R(αδv − o(ξ′)), ‖ξ′‖ ≤ δ. (3.9)

Put
x′ := x+ ξ′. (3.10)

Let us show that x′ ∈M \ {x}. We have

F (x′)− F (x0) = αr

(
t+

δ

r

)
v, ‖x0 − x′‖ ≤ r

(
t+

δ

r

)
, (3.11)

since

F (x′)
(3.10)
= F (x+ ξ′)

(3.6)
= F (x) + Aξ′ + o(ξ′)

(3.9)
= F (x) + AR(αδv − o(ξ′)) + o(ξ′)

(3.5)
=

(3.5)
= F (x) + αδv

(3.4)
= tαrv + αδv + F (x0) = αrv

(
t+

δ

r

)
+ F (x0);

‖x0 − x′‖ ≤ ‖x0 − x‖+ ‖x− x′‖
(3.4)

≤ tr + ‖x− x′‖ (3.10)
= tr + ‖ξ′‖

(3.9)

≤ r

(
t+

δ

r

)
.

It follows from (3.8) that the inequality t+
δ

r
< 1 takes place. Therefore, relation (3.11) and the

de�nition of M implies x′ ∈ M. Moreover, Rv 6= 0 by virtue of (3.5). Therefore, ξ′ 6= 0 by virtue of
(3.9). So, relation (3.10) implies that x′ 6= x. Hence, we have x′ ∈M \ {x}.

Let us prove that (3.3) holds. We have

U(x′)
(3.2)
= ‖F (x′)− F (x0)− αrv‖ (3.11)

= ‖tαrv + αδv − αrv‖ =
∥∥∥((r − tr)− δ)αv∥∥∥ (3.8)

=

(3.8)
=
∥∥∥(r − tr)αv

∥∥∥− ‖δ · αv‖ = ‖tαrv − αrv‖ − ‖αδv‖ (3.4)
= ‖F (x)− F (x0)− αrv‖ − ‖αδv‖

(3.9)

≤
(3.9)

≤ ‖F (x)− F (x0)− αrv‖ − α‖ξ′‖ (3.2)
= U(x)− α‖ξ′‖ (3.10)

= U(x)− α‖x− x′‖.
So, it is shown that there exists a point x′ ∈ M \ {x} such that relation (3.3) holds. Therefore, the
Caristi-like condition (3.1) holds for the function U.

It is shown that all the assumptions of Theorem 3.1 hold. This theorem implies that there exists
a point x̄ ∈ M such that U(x̄) = 0. The de�nitions of the set M and the functional U imply that
x̄ ∈ BX(x0, r) and F (x0) + αrv = F (x̄). Therefore, F (x0) + αrv ∈ F (BX(x0, r)).

Lemma 3.2. Given a linear bounded operator A : X → Y and a vector v ∈ S, there exists a nonzero
functional λ ∈ Y ∗ such that

‖A∗λ‖∗ ≤ −〈λ, v〉cov(A|v).

Here, obviously, 〈λ, v〉 ≤ 0.

Proof. Put c := cov(A|v). The point cv does not belong to the interior of the set ABX(0, 1). Other-
wise, the inclusion (δ + c)v ∈ ABX(0, 1) takes place fo a su�ciently small δ > 0, so cov(A|v) > c in
contradiction to the de�nition of c. Moreover, the set ABX(0, 1) ⊂ Y is convex.

By the �nite-dimensional separability theorem (see, for example [4, Theorem 4.6]) there exists a
nonzero λ ∈ Y ∗ such that 〈λ, Ax〉 ≥ 〈λ, v〉c for any x ∈ BX(0, 1). Therefore, 〈A∗λ, x〉 ≥ 〈λ, v〉c for
every x ∈ BX(0, 1). So, −‖A∗λ‖∗ ≥ 〈λ, v〉c. Therefore, ‖A∗λ‖∗ ≤ −〈λ, v〉c.
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4 Proofs of the main results

Proof of Theorem 2.1. Take an arbitrary ε > 0. Consider the set

M := {x ∈ BX(x0, R) ∩M : f0(x) ≤ f0(x0)}.

Two cases may occur: either there exists a point x ∈ M such that the vectors
∂fi
∂x

(x), i = 0, k

are linearly dependent or these vectors are linearly independent for every x ∈ M. In the �rst case,
the point x̂ = x is the desired one (see the comments after the formulation of Theorem 2.1).

Consider the second case: the vectors
∂fi
∂x

(x), i = 0, k are linearly independent for every x ∈M .

Then the Lagrange multiplier rule imply that the point x0 is not a point of local minimum of f0

under the constraints f1(x) = ... = fk(x) = 0 (see, for example, [9] or [5]). Thus,

f0(x0) > γ(x0, R). (4.1)

Put Y := Rk+1, v := (−1, 0, ..., 0) ∈ Y. De�ne a mapping F : X → Y by the formula

F (x) := (f0(x), f1(x), ..., fk(x)), x ∈ X.

Obviously, the mapping F is di�erentiable and satis�es the assumption (ii) of Lemma 3.1. Indeed,
if F (x) ∈ F (x0) + cone{v} for some x ∈ BX(x0, R), then by virtue of the choice of v we have

f0(x) ≤ f0(x0) and x0, x ∈ M, whereM = {ξ : f1(ξ) = ... = fk(ξ) = 0}. Thus, the vectors ∂fi
∂x

(x),

i = 0, k are linearly independent.
Put

α0 := (1 + ε)(f0(x0)− γ(x0, R))R−1.

It follows from (4.1) that α0 > 0. Let us show that there exists a point x̂ ∈ BX(x0, R) such that

F (x̂) ∈ F (x0) + cone{v} and cov

(
∂F

∂x
(x̂)

∣∣∣∣ v) < α0. (4.2)

Consider to the contrary that

ᾱ := inf

{
cov

(
∂F

∂x
(x)

∣∣∣∣ v) : x ∈ BX(x0, R), F (x) ∈ F (x0) + cone{v}
}
≥ α0. (4.3)

Then the assumption (i) of Lemma 3.1 holds, since α0 > 0.
Put

α := (1 + 2−1ε)(f0(x0)− γ(x0, R))R−1.

It follows from relations (4.1) and α < α0 ≤ ᾱ that α ∈ (0, ᾱ). Therefore, Lemma 3.1 implies that

F (x0) + αRv ∈ F (BX(x0, R)).

Therefore, there exists a point x ∈ BX(x0, R) such that F (x0) +αRv = F (x). Then the de�nition of
the vector v implies that

f0(x0)−
(

1 +
ε

2

)
(f0(x0)− γ(x0, R)) = f0(x), fi(x) = 0, i = 1, k.

So, relation (4.1) and the de�nition of the mapping F imply that f0(x) < γ(x0, R) and x ∈
M
⋂
BX(x0, R) which contradicts the de�nition of γ. Relation (4.2) is proved.
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Applying Lemma 3.2 to the linear operator A :=
∂F

∂x
(x̂) and the vector v = (−1, 0, ..., 0) we

obtain that there exists a vector λ ∈ Y ∗ such that ‖λ‖ = 1 and∥∥∥∥(∂F∂x (x̂)

)∗
λ

∥∥∥∥
∗
≤ −〈λ, v〉 cov

(
∂F

∂x
(x̂)

∣∣∣∣ v) = λ0cov

(
∂F

∂x
(x̂)

∣∣∣∣ v). (4.4)

This inequality and the equality
∂L

∂x
(x̂, λ) =

(
∂F

∂x
(x̂)

)∗
λ, imply that

∥∥∥∥∂L∂x (x̂, λ)

∥∥∥∥
∗
≤ λ0cov

(
∂F

∂x
(x̂)

∣∣∣∣ v).
The de�nition of α0 and the strict inequality in (4.2) imply (2.1). The inclusion (4.2) implies that

f0(x̂) ≤ f0(x0). Inequality (4.4) and the relation A∗λ 6= 0 imply that λ0 ≥ 0. So, the vectors x̂ and λ
are the desired ones. �

Proof of Theorem 2.2. Put
γ0 := inf

x∈M
f0(x), ε := 1.

Take an arbitrary sequence xn0 ⊂ M such that f0(xn0 ) → γ0. Applying Theorem 2.1 at the point
x0 = xn0 as R = 1 we obtain that there exist sequences {xn} ⊂ M and {λn} ⊂ Rk+1 such that
‖λn‖ = 1 for every n, f0(xn) ≤ f0(xn0 ) for every n and∥∥∥∥∂L∂x (xn, λn)

∥∥∥∥
∗
≤ 2

f0(xn0 )− γ(xn0 , R)

R
≤ 2

f0(xn0 )− γ0

R
→ 0

as n→∞. The constructed sequences {xn} ⊂ M and {λn} ⊂ Rk+1 are the desired ones. �
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1 Introduction

This article is concerned with the existence of weak energy solutions of the boundary value problems
for quasilinear elliptic systems of the form{

−div a(x, u,Du) = f in Ω,
u = 0 on ∂Ω,

(1.1)

where Ω is a bounded open domain in Rn (n ≥ 3) with a smooth boundary ∂Ω and f belongs to
L∞(Ω;Rm). Here u : Ω → Rm, m ∈ N∗, is a vector-valued function and Du is the Jacobian matrix
of u given by

Du(x) =
(
D1u(x), D2u(x), ..., Dnu(x)

)
with Di = ∂/∂i(xi).

We denote by Mm×n the real space of all m × n matrices equipped with the inner product ξ : η =∑
i,j ξijηij for all ξ, η ∈Mm×n.
We assume that the function a : Ω × Rm × Mm×n → Mm×n is a Carath�eodory function, i.e.,

x 7→ a(x, s, ξ) is measurable for every (s, ξ) ∈ Rm ×Mm×n and (s, ξ) 7→ a(x, s, ξ) is continuous for
almost every x ∈ Ω and satis�es the following conditions: ξ 7→ a(x, u, ξ) is continuously di�erentiable
and such that for a convex and C1-mapping A : Ω× Rm ×Mm×n → R, we have

a(x, u, ξ) =
∂

∂ξ
A(x, u, ξ) (1.2)

and
A(x, u, 0) = 0 (1.3)

for almost every x ∈ Ω and all u ∈ Rm. Moreover, we assume that

|a(x, s, ξ)| ≤ d1(x) + |s|p−1 + |ξ|p−1 (1.4)
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for almost every x ∈ Ω and for every (s, ξ) ∈ Rm×Mm×n, where 0 ≤ d1 ∈ Lp
′
(Ω), with 1/p+1/p′ = 1

and the exponent p is such that 2 ≤ p < n. In addition, the mapping ξ → a(x, s, ξ) is monotone, i.e.,(
a(x, s, ξ)− a(x, s, η)

)
: (ξ − η) ≥ 0, ∀ξ, η ∈Mm×n. (1.5)

Finally, the following inequality holds:

|ξ|p ≤ a(x, s, ξ) : ξ ≤ pA(x, s, ξ). (1.6)

The concept of Young measure was introduced in [15] to prove the existence of solutions for (1.1)
when p ∈ (1, 2 − 1

n
] and f = µ is a measure. The authors used weak monotonicity assumptions

on the function a and the weak derivative Du is replaced by the approximate derivative apDu.
Hungerb�uhler has studied, in [19], the existence of weak solutions for (1.1) when the right-hand side
belongs to the dual of the Sobolev space W 1,p

0 (Ω;Rm). He used also mild monotonicity assumptions
and Young measures to achieve the result. The uniqueness and maximal regularity for nonlinear
elliptic systems (1.1) have been proved in [16] when f = µ a Radon measure. Zhou [28] introduced
the sign condition:

ai(x, u, ξ) · ξi ≥ 0 for i = 1, ...,m,

instead of the angle condition:
a(x, u, ξ) : Mξ ≥ 0

assumed in [15], to prove the existence and regularity of solutions to (1.1) with f = µ ∈M(Ω;Rm).
For more results, we refer the reader to see [14, 20, 21, 22, 23, 24, 26, 27] and [1, 2, 3, 4, 5, 6, 7, 8]
where we have used the theory of Young measures for various quasilinear systems.

In [2, 3] we have proved the existence of weak solutions for various kinds of quasilinear elliptic
systems similar to (1.1), for f ∈ W−1,p′(Ω;Rm), under various kinds of monotonicity assumptions
and based on the theory of Young measures. See also [10, 11, 12, 13] for more results and [25] for
di�erent theories and methods used in nonlinear analysis.

In this paper, the source term in (1.1) is assumed to be in L∞(Ω;Rm) and a to satisfy conditions
(1.2)-(1.6). The main objective is to prove the existence of a weak energy solution using the concept
of Young measure and energy functionals. Moreover, a is assumed to be the derivative over the third
argument of another function A. This assumption is necessary in order to associate with the problem
an energy functional, and then to minimize this functional to obtain a weak solution. The main
result of the paper consists in justi�cation of su�cient assumptions for such minimization

A prototype example that is covered by our assumptions (1.2)-(1.6) is the following p-Laplacian
problem: Consider

A(x, u, ξ) =
1

p
|ξ|p, a(x, u, ξ) = |ξ|p−2ξ

where p ≥ 2.
The remaining part of this paper is organized as follows: a brief review on Young measures is

presented in Section 2, while Section 3 is devoted to state the existence result and its proof.

2 A brief review on Young measures

By C0(Rm) we denote the closure of the space of continuous functions on Rm with compact support
with respect to the ‖.‖∞-norm. Its dual can be identi�ed withM(Rm), the space of signed Radon
measures with �nite mass. The related duality pairing is given for ν : Ω→M(Rm), by

〈ν, ϕ〉 =

∫
Rm

ϕ(λ)dν(λ).
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Lemma 2.1 (See p. 19 in [17]). Let {zj}j≥1 be a bounded sequence in L∞(Ω;Rm). Then there exists
a subsequence {zk}k ⊂ {zj}j and a Borel probability measure νx on Rm for a.e. x ∈ Ω, such that for
almost each ϕ ∈ C(Rm) we have

ϕ(zk) ⇀
∗ ϕ weakly in L∞(Ω;Rm),

where ϕ(x) = 〈νx, ϕ〉 =
∫
Rm ϕ(λ)dνx(λ) for a.e. x ∈ Ω.

De�nition 1. We call {νx}x∈Ω the family of Young measures associated with the subsequence {zk}k.

Remark 1. • In [9], it is shown that for any Carath�eodory function ϕ : Ω×Rm → R and {zk}k
a sequence that generates the Young measure νx, we then have

ϕ(x, zk) ⇀ 〈νx, ϕ(x, .)〉 =

∫
Rm

ϕ(x, λ)dνx(λ)

weakly in L1(Ω′) for all measurable Ω′ ⊂ Ω, provided that the negative part ϕ−(x, zk) is equiin-
tegrable.

• Ball shows also in [9], that if zk generates the Young measure νx, then for ϕ ∈ L1(Ω;C0(Rm))

lim
k→∞

∫
Ω

g(x, zk(x))dx =

∫
Ω

〈νx, g(x, .)〉dx.

Lemma 2.2 ([18]). If |Ω| <∞ then

zk → z in measure ⇔ νx = δz(x) for a.e. x ∈ Ω.

Lemma 2.3 ([1]). If {Dzk}k is bounded in Lp(Ω;Mm×n), then the Young measure νx generated by
Dzk has the following properties:

(i) νx is a probability measure, i.e. ‖νx‖M(Mm×n) :=
∫
Mm×n dνx(λ) = 1 for almost every x ∈ Ω.

(ii) The weak L1-limit of Dzk is given by 〈νx, id〉 =
∫
Mm×n λdνx(λ).

(iii) νx satis�es 〈νx, id〉 = Dz(x) for almost every x ∈ Ω.

We conclude this section by recalling the following Fatou-type inequality.

Lemma 2.4 ([15]). Let ϕ : Ω × Rm ×Mm×n → R be a Carath�eodory function and zk : Ω → Rm

a sequence of measurable functions such that zk → z in measure and such that Dzk generates the
Young measure νx, with ‖νx‖M(Mm×n) = 1 for almost every x ∈ Ω. Then

lim inf
k→∞

∫
Ω

ϕ(x, zk, Dzk)dx ≥
∫

Ω

∫
Mm×n

ϕ(x, z, λ)dνx(λ)dx

provided that the negative part ϕ−(x, zk, Dzk) is equiintegrable.

For more results and details about Young measures, we refer the reader not familiar with this
concept to see for example [9, 17, 18, 25].
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3 Existence of weak energy solution

Before we state the main result of this paper, let us introduce the following de�nition of weak energy
solutions of (1.1).

De�nition 2. A weak energy solution of (1.1) is a function u ∈ W 1,p
0 (Ω;Rm) such that∫

Ω

(a(x, u,Du) : Dϕ)dx =

∫
Ω

f(x)ϕdx, for all ϕ ∈ W 1,p
0 (Ω;Rm).

The main result is given in the following.

Theorem 3.1. Assume f ∈ L∞(Ω;Rm) and (1.2)-(1.6) hold. Then there exists a weak energy
solution of (1.1).

Proof of the main result. Let us de�ne the energy functional J : W 1,p
0 (Ω;Rm)→ R by

J(u) =

∫
Ω

A(x, u,Du)dx−
∫

Ω

fudx.

Proposition 3.1. The functional J is well-de�ned on W 1,p
0 (Ω;Rm) and J ∈ C1(W 1,p

0 (Ω;Rm),R)
with the derivative given by

〈J ′(u), ϕ〉 =

∫
Ω

(a(x, u,Du) : Dϕ)dx−
∫

Ω

fϕdx,

for all ϕ ∈ W 1,p
0 (Ω;Rm).

Proof. For any x ∈ Ω, u ∈ W 1,p
0 (Ω;Rm) and ξ ∈Mm×n, we have

A(x, u, ξ) =

∫ 1

0

d

dt
A(x, u, tξ)dt =

∫ 1

0

a(x, u, tξ) : ξdt.

Using (1.4), we get

A(x, u, ξ) ≤
∫ 1

0

(
d1(x) + |u|p−1 + tp−1|ξ|p−1

)
|ξ|dt

≤ d1(x)|ξ|+ |u|p−1|ξ|+ 1

p
|ξ|p.

(3.1)

This and the H�older inequality imply that

0 ≤
∫

Ω

|A(x, u,Du)|dx ≤ ‖d1‖p′‖Du‖p + ‖u‖p−1
p ‖Du‖p +

1

p
‖Du‖pp

and ∫
Ω

|fu|dx ≤ ‖f‖q′‖u‖q, where 1 < q < p.

Next we deduce that J is well-de�ned on W 1,p
0 (Ω;Rm).

Let us �x x ∈ Ω and 0 < |r| < 1. According to the mean value theorem, there exists θ ∈ [0, 1]
such that ∣∣a(x, u,Du+ θDϕ)

∣∣|Dϕ|
=

∣∣A(x, u,Du+ rDϕ)− A(x, u,Du)
∣∣

|r|
≤
(
d1(x) + |u|p−1 + |Du+ θrDϕ|p−1

)
|Dϕ|

≤
(
d1(x) + |u|p−1 + 2p−2

(
|Du|p−1 + (θr)p−1|Dϕ|p−1

))
|Dϕ|.
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H�older's inequality gives that ∫
Ω

d1(x)|Dϕ|dx ≤ ‖d1‖p′‖Dϕ‖p,∫
Ω

|Du|p−1|Dϕ|dx ≤ ‖Du‖p−1
p ‖Dϕ‖p

and ∫
Ω

|Dϕ|p−1|Dϕ|dx = ‖Dϕ‖pp.

From these inequalities, we deduce that(
d1(x) + |u|p−1 + 2p−2

(
|Du|p−1 + (θr)p−1|Dϕ|p−1

))
|Dϕ| ∈ L1(Ω).

Thanks to the Lebesgue theorem, it follows that

〈J ′(u), ϕ〉 =

∫
Ω

a(x, u,Du) : Dϕdx−
∫

Ω

fϕdx.

Assume now that uk → u in W 1,p
0 (Ω;Rm). Then (uk)k is a bounded sequence in W 1,p

0 (Ω;Rm).
According to Lemma 2.1 there is a Young measure νx generated byDuk in L

p(Ω;Mm×n) and satisfying
the properties of Lemma 2.3. Using (1.5) and [2, Lemma 5.3], we get that

0 ≤
(
a(x, u, λ)− a(x, u,Du+ τξ)

)
: (λ−Du− τξ)

= a(x, u,Du) : (λ−Du)− a(x, u, λ) : τξ

− a(x, u,Du+ τξ) : (λ−Du− τξ),

which gives

−a(x, u, λ) : τξ ≥ −a(x, u,Du) : (λ−Du) + a(x, u,Du+ τξ) : (λ−Du− τξ),

for every λ, ξ ∈ Mm×n and τ ∈ R. We have ξ 7→ a(x, u, ξ) is continuously di�erentiable, hence we
can write

a(x, u,Du+ τξ) : (λ−Du− τξ)
= a(x, u,Du+ τξ) : (λ−Du)− a(x, u,Du+ τξ) : τξ

= a(x, u,Du) : (λ−Du)

+ τ
((
∇a(x, u,Du)ξ

)
: (λ−Du)− a(x, u,Du) : ξ

)
+ o(τ),

where ∇ is the derivative of a with respect to its third variable. Therefore,

−a(x, u, λ) : τξ ≥ τ
((
∇a(x, u,Du)ξ

)
: (λ−Du)− a(x, u,Du) : ξ

)
+ o(τ)

which gives, since τ is arbitrary in R, that

a(x, u, λ) : ξ = a(x, u,Du) : ξ +
(
∇a(x, u,Du)ξ

)
: (Du− λ) (3.2)

on the support of νx. Since (a(x, uk, Duk))k is equiintegrable by (1.4) and (uk)k is bounded in
W 1,p

0 (Ω;Rm), it follows that its weak L1-limit a is given by

a(x) :=

∫
Mm×n

a(x, u, λ)dνx(λ)

(3.2)
= a(x, u,Du)

∫
supp νx

dνx(λ)︸ ︷︷ ︸
:=1

+
(
∇a(x, u,Du)

)t∫
supp νx

(Du− λ)dνx(λ)︸ ︷︷ ︸
:=0

= a(x, u,Du).
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As Lp
′
(Ω;Mm×n) is re�exive, it follows that (a(x, uk, Duk))k converges in L

p′(Ω;Mm×n) and its weak
Lp
′
-limit is also a(x) = a(x, u,Du). This and the H�older inequality imply∣∣〈J ′(uk)− J ′(u), ϕ〉

∣∣ ≤ ∫
Ω

∣∣a(x, uk, Duk)− a(x, u,Du)
∣∣|Dϕ|dx

and so
‖J ′(uk)− J ′(u)‖ ≤ ‖a(x, uk, Duk)− a(x, u,Du)‖p′ −→ 0

as k →∞.

Lemma 3.1. The functional J is bounded from below, coercive and weakly lower semi-continuous.

Proof. By (3.1) and H�older's inequality, it is obvious that J is bounded from below. Using (1.6), we
have

J(u) =

∫
Ω

A(x, u,Du)dx−
∫

Ω

fudx

≥ 1

p

∫
Ω

|Du|pdx− ‖f‖q′‖u‖q, (with 1 < q < p)

≥ 1

p

∫
Ω

|Du|pdx− c‖u‖1,p −→ +∞

as ‖u‖1,p →∞, since W 1,p
0 (Ω;Rm) is continuously embedded in Lq(Ω;Rm). Then J is coercive. Let

(uk) ⊂ W 1,p
0 (Ω;Rm) be a sequence which converges weakly to u in W 1,p

0 (Ω;Rm). Hence uk → u in
Lp(Ω;Rm) and in measure on Ω (for a subsequence still indexed by k), by the compact embedding
of W 1,p

0 (Ω;Rm) in Lp(Ω;Rm). Since νx = δDu(x) for a.e. x ∈ Ω by Lemma 2.3, then Lemma 2.2
implies Duk → Du in measure. We have (A(x, uk, Duk))k is equiintegrable by (3.1), it follows then
by Lemma 2.4 that ∫

Ω

∫
Mm×n

A(x, u, λ)dνx(λ)dx ≤ lim inf
k→∞

∫
Ω

A(x, uk, Duk)dx. (3.3)

On the other hand, assumption (1.5) and the relation a(x, u, ξ) = ∂
∂ξ
A(x, u, ξ) imply, in particular,

that ξ 7→ A(x, u, ξ) is convex, i.e.,

A(x, u, λ)︸ ︷︷ ︸
=:F (λ)

≥ A(x, u,Du) + a(x, u,Du) : (λ−Du)︸ ︷︷ ︸
=:G(λ)

, ∀λ ∈Mm×n.

Since λ 7→ F (λ) is a C1-function by Proposition 3.1, then for τ ∈ R
F (λ+ τξ)− F (λ)

τ
≤ G(λ+ τξ)−G(λ)

τ
for τ < 0

and
F (λ+ τξ)− F (λ)

τ
≥ G(λ+ τξ)−G(λ)

τ
for τ > 0.

Hence ∇F = ∇G, i.e.,
A(x, u, λ) = A(x, u,Du) for all λ ∈ supp νx. (3.4)

Going back to (3.3), it follows by (3.4) that∫
Ω

∫
Mm×n

A(x, u, λ)dνx(λ) =

∫
Ω

∫
supp νx

A(x, u,Du)dνx(λ)dx

=

∫
Ω

A(x, u,Du)dx

≤ lim inf
k→∞

∫
Ω

A(x, uk, Duk)dx.
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This fact implies that
J(u) ≤ lim inf

k→∞
J(uk).

Hence, J is weakly lower semi-continuous and the proof is complete.

Since J is proper, weakly semi-continuous and coercive, then J has a minimizer which is in fact
a weak energy solution of (1.1). The proof of the main result is complete.
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1 Introduction

In 1938, due to the applications in elliptic partial di�erential equations, Morrey [28] introduced a
class of function spaces, nowadays named after him. In recent years, there is an increasing interest
in applications of Morrey spaces in various areas of analysis, such as partial di�erential equations,
potential theory and harmonic analysis; we refer, for example, to [1], [11], [12], [21], [25], [33],
[35] and their references.

We begin with some basic notation from the theory of Morrey spaces.

Let µ be Lebesgue measure in Rn, let S(µ,Rn) = S(µ) be the space of all Lebesgue measurable
functions x : Rn → R and let χ(D) stand for the characteristic function of a set D ⊂ Rn. Along with
the Lebesgue spaces Lp ≡ Lp(Rn), p ∈ [1,∞] ideal spaces X are often used in harmonic analysis.
Recall their de�nition (see, for example, [20], [24]).

A Banach space X of measurable functions on Ω is said to be ideal if it follows from the condition
x ∈ X, the measurability of y and the validity of the inequality |y(t)| ≤ |x(t)| for almost all t ∈ Ω
that y ∈ X and ‖y|X‖ ≤ ‖x|X‖ (the symbol ‖x|X‖ denotes the norm of an element x in the space
X). Let v ∈ S(µ), v > 0 almost everywhere (v is a weight). We denote by the symbol Xv a new
ideal space in which the norm is given by the equation ‖x|Xv‖ = ‖x · v|X‖. When X = Lp, our
de�nition of weighted space di�ers somewhat from the often used one: when the weight is included
in the measure.

Along with function spaces we need ideal spaces of sequences. Let ei = {..., 0, 1, 0, ...}, (i ∈ Z, the
unit stands in the i-th place) be the standard basis in the space of two-side sequences. We denote
by the symbol l an ideal space of sequences x =

∑∞
i=−∞ xie

i (xi ∈ R) with the norm ‖x|l‖. All the
properties listed above for function spaces are preserved for sequence spaces. For details concerning
the theory of sequence spaces, see [23].
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The classical Morrey space Mλ,Lp , (λ ∈ R) (see [28]), consists of all functions x ∈ L1,loc(Rn) for
which the following norm is �nite:

‖x|Mλ,Lp‖ = sup
t∈Rn

sup
r>0

r−λ‖x(t+ .)χ(B(0, r))|Lp‖.

We note that if λ = 0, then Mλ,Lp = Lp, if λ = n
p
, then Mλ,Lp = L∞, if λ < 0 or λ > n

p
, then

Mλ,Lp consists only of functions equivalent to zero.

As a natural generalization of Lebesgue spaces, the interpolation properties of Morrey spaces
became an interesting question. The �rst result on this problem is due to Stampacchia [34] and,
independently, Campanato and Murthy [17]. They obtained an interpolation property for linear
operators from Lebesgue spaces to Morrey spaces on Rn and showed that, if a linear operator T is
bounded from Lqi(Rn) to Morrey spaces Mλi,Lpi (Rn) with the operator norm Mi, i ∈ {0, 1}, then T
is also bounded from Lqθ(Rn) to Mλθ,L

pθ (Rn) when

1

qθ
=

1− θ
q0

+
θ

q1

,
1

pθ
=

1− θ
p0

+
θ

p1

, λθ = (1− θ)λ0 + θλ1 (1.1)

for some θ ∈ (0, 1) with the operator norm not more than a positive constant multiple of M1−θ
0 M θ

1 .
In 1969, Peetre [31] found that the previous conclusion still holds true when (Lq0(Rn), Lq1(Rn)) and
Lqθ(Rn) are replaced, respectively, by a certain abstract pair (A0, A1) and an interpolation space A
constructed from (A0, A1).

However, the converse result in general is not true. In 1995, Ruiz and Vega [32] proved that, when
n ≥ 2, u ∈ (0, n), θ ∈ (0, 1), 1 ≤ p2 < p3 <

n−1
u
< p1 <∞ and λ1 = 1

p1
− 1
u
, λ2 = 1

p2
− 1
u
, λ3 = 1

p3
− 1
u
for

any given C ∈ (0,∞), there exists a positive continuous linear operator T : Mλi,Lpi (Rn) → L1(Rn),
i ∈ {1, 2, 3}, with the operator norm satisfying ‖T |Mλi,Lpi (Rn) → L1(Rn)‖ ≤ Ki, i ∈ {1, 2}, but
‖T |Mλ,Lp3 (Rn) → L1(Rn)‖ ≥ CK1−θ

0 Kθ
1 for 1

p3
= 1−θ

p0
+ θ

p1
. This implies the lack of convexity of

operators on Morrey spaces.

In the case n = 1, Blasco, Ruiz and Vega [9] in 1999 proved that, for a particular u, if 1 < p0 <
p1 < u <∞ and λ1 = 1

p1
− 1

u
, λ2 = 1

p2
− 1

u
, then there exist q0, q1 ∈ (1,∞) and a positive continuous

linear operator T which is bounded from Mλi,Lpi (R) to Lqi(R), i ∈ {0, 1}, but not bounded from
Mλθ,L

pθ (R) to Lqθ(R) when conditions (1.1) are satis�ed. These counterexamples show that Morrey
spaces have no interpolation property in general.

Nevertheless, under some restriction, Morrey spaces also have some interpolation properties. Let
0 < λ0 <

n
p0
, 0 < λ1 <

n
p1
, θ ∈ (0, 1) and pθ, λθ be de�ned by (1.1). Recently, Lemarie-Rieusset [21],

[22] showed that for p0, p1, λ0, λ1, θ, pθ and λθ as above,

[Mλ0,Lp0 (Rn),Mλ1,Lp1 (Rn)]θ = Mλθ,L
pθ (Rn) (1.2)

if and only if

p0λ0 = p1λ1, (1.3)

holds, which gives a necessary and su�cient condition ensuring the interpolation property of Morrey
spaces on Rn. Here, [Mλ0,Lp0 (Rn),Mλ1,Lp1 (Rn)]θ denotes the space obtained using the �rst of Calder�on
interpolation methods [16] for a pair of Morrey spaces (Mλ0,Lp0 (Rn),Mλ1,Lp1 (Rn)).

Note that the situation changes radically for pairs of local Morrey spaces [13], [14], [15], [2],
[3], [6]. For example, if in (1.2) global Morrey spaces are replaced by local Morrey spaces, then
equality (1.2) will hold without restriction on the indices (1.3).

In this paper, we give a generalization of equality (1.2) to general Morrey spaces. Namely,
for any functions ϕi : R2

+ → R+ each of which is concave, positively homogeneous of degree one,
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nondecreasing and continuous in each variable and such that ϕi(0, 0) = 0, (i=0,1,2), the triple of
spaces

{ϕ0(M τ
l0,X0

,M τ
l1,X1

), ϕ1(M τ
l0,X0

,M τ
l1,X1

); ϕ(M τ
l0,X0

,M τ
l1,X1

)}.

has interpolation properties. Here, ϕ(t, s) ≡ ϕ2(ϕ0(t, s), ϕ1(t, s)), (t, s ≥ 0), (M τ
l0,X0

,M τ
l1,X1

) is a
pair of general Morrey spaces, and ϕ(X0, X1) denotes the space constructed from the pair of ideal
spaces (X0, X1) using the construction of Calder�on � Lozanovski��. In particular, we show that for
any concave function ϕ, the triple of spaces

{Mλ0,Lp0 (Rn), Mλ1,Lp1 (Rn), ϕ̃(Mλ,L1(Rn), L∞(Rn))} (1.4)

has interpolation properties, when condition (1.3) is met. Here, ϕ̃(t, s) ≡ ϕ(tθ0s1−θ0 , tθ1s1−θ1), (θ0 =
1/p0, θ1 = 1/p1, λ = λ0/θ0; t, s ≥ 0).

Note that if instead of the triplet of global Morrey spaces (1.4) we consider the corresponding
triplet of local Morrey spaces, then the triplet of local Morrey spaces will have the interpolation
property not only when (1.3) is satis�ed, but also in a much more general case [3], [6].

2 Basis constructions

We now replace the Lebesgue space Lp in the de�nition of the classical Morrey space by an ideal space
X, the outer sup-norm by the norm in an any ideal space L and replace the balls B(0, r) by homothetic
sets U(0, r) ⊂ Rn. Below, we always assume that 0 ∈ U(0, 1) and µ(U(0, 1))) ∈ (0,∞). Moreover,
we often assume that U(0, 1) is star-shaped with respect to the point 0, that is, if t ∈ U(0, 1), then
γt ∈ U(0, 1) for all γ ∈ (0, 1). In general, the star-shapedness assumption is not necessary, but
sometimes is useful.

We also need local Morrey spaces constructed from a family of sets {U(0, ri)} with discretely
varying parameter.

We denote by Υ the set of non-negative number sequences τ = {τi} each of which satis�es the
conditions

∀i : τi < τi+1,
⋃
i

(τi, τi+1] = R+.

When τi+1 =∞, we assume that (τi,∞] = (τi,∞).

De�nition 1. [2]. Let an ideal space X on Rn, an ideal space l of two-sided sequences with the
standard basis {ei} and a sequence τ ∈ Υ be given. By Morrey space M τ

l,X we mean the set of all

functions x ∈ L1,loc(Rn) for which the following norm is �nite:

‖x|M τ
l,X‖ = sup

t∈Rn
‖
∞∑

i=−∞

ei‖x(t+ .)χ(U(0, τi))|X‖|l‖.

The spaces introduced in De�nition 1 are called global discrete Morrey spaces.

Discrete spaces are more convenient to consider at least for the following reasons. Firstly, all
classical Morrey spaces can be realized as discrete Morrey spaces (see the example below), and
secondly, one does not need to think about the measurability of the function ‖x(t+ .)χ(B(0, r))|X‖.

Note that all discrete Morrey spaces are ideal.

The following example shows that most recently investigated Morrey spaces can be implemented
as discrete Morrey spaces.
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Example 1. Let U(0, 1) be a star-shaped set of a positive measure, λ > 0, p ∈ [1,∞], the ideal
space X and the space Mλ,p;X , the norm in which is given by the equality

‖x|Mλ,p;X‖ =

{
supt∈Rn(

∫∞
0

(r−λ‖x(t+ .)χ(U(0, r))|X‖)p dr
r

)1/p
, for p ∈ [1,∞);

supt∈Rn supr{r−λ‖x(t+ .)χ(U(0, r))|X‖}, for p =∞

be given.
If p ∈ [1,∞), then for each function x ∈Mλ,p;X the following inequalities hold:

sup
t∈Rn

2−λ(ln2)1/p(
∑
i

(2−iλ‖x(t+ .)χ(U(0, 2i))|X‖)p)1/p ≤ ‖x|Mλ,p;X‖

≤ sup
t∈Rn

2λ · (ln2)1/p(
∑
i

(2−iλ‖x(t+ .)χ(U(0, 2i))|X‖)p)1/p.

Thus, for p ∈ [1,∞) on the space Mλ,p;X we can introduce an equivalent norm

‖x|Mλ,p;X‖b = sup
t∈Rn

(
∑
i

(2−λi‖x(t+ .)χ(U(0, 2i))|X‖)p)1/p.

If p =∞, then for each x ∈Mλ,∞;X the following inequalities hold:

sup
t∈Rn

2−λ sup
i

2−iλ‖x(t+ .)χ(U(0, 2i))|X‖ ≤ ‖x|Mλ,∞;X‖

≤ sup
t∈Rn

2λ sup
i

2−iλ‖x(t+ .)χ(U(0, 2i))|X‖.

So on the space Mλ,∞;X

‖x|Mλ,∞;X‖b = sup
t∈Rn
{sup

i
2−iλ‖x(t+ .)χ(U(0, 2i))|X‖}

is an equivalent norm.
Put τi = 2i, (i ∈ Z), for the sequence of points {τi}∞−∞ consider the corresponding partition τ for

R+ and de�ne a weight sequence by setting ωλ(i) = 2−λi, (i ∈ Z). Then we get that for all p ∈ [1,∞]
up to equivalence of the norms:

M τ
lpωλ ,X

= Mλ,p;X .

Let Ccv denote the set of all functions ϕ : R2
+ → R+ concave, positively homogeneous of degree

one, nondecreasing and continuous in each variable and such that ϕ(0, 0) = 0.
The class Ccv is a cone with respect to the operations of addition and multiplication by a non-

negative number.
We recall the de�nition of the construction of Calder�on � Lozanovski��.

De�nition 2. Let a couple of ideal spaces (X0, X1) on Ω and ϕ ∈ Ccv be given. The space ϕ(X0, X1)
consists of all measurable functions x, for which there is a pair of functions x0 ∈ X0, x1 ∈ X1 such
that almost everywhere holds the inequality

|x(t)| ≤ ϕ(x0(t), x1(t)).

On the space ϕ(X0, X1) the norm is introduced by the equality

‖x|ϕ(X0, X1)‖

= inf{λ > 0 : |x(t)| ≤ λϕ(x0(t), x1(t)) (for a. e. t ∈ Ω),

xi ∈ Xi, ‖xi|Xi‖ ≤ 1; (i = 0, 1)}. (2.1)

The space ϕ(X0, X1) is an ideal Banach space equipped with this norm.
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If ϕθ(t, s) = tθ · s1−θ then the de�nition of the space ϕθ(X0, X1), which is usually denoted by
Xθ

0 ·X1−θ
1 , was proposed by A.P. Calder�on [16]; for an arbitrary ϕ ∈ Ccv the space ϕ(X0, X1) was

de�ned by G.Ya. Lozanovski�� [26].
The equality proposed below is well known

‖x|ϕθ(X0, X1)‖ = inf{‖x0|X0‖θ · ‖x1|X1‖1−θ : |x(t)| ≤ xθ0(t) · x1−θ
1 (t) a.e. on Ω}.

The Calder�on � Lozanovski�� construction of ϕ(X0, X1) has found many applications in the theory
of ideal spaces [27], in the theory of interpolation of linear operators [10], [19], [30], in the geometric
theory of Banach spaces [8].

In cases in which exact estimates of constants are important, we can introduce on the space
ϕ(X0, X1) norms di�erent from (2.1) as follows. Let ψ(a1, a2) : R2 → R+ be a norm on R2. Then on
ϕ(X0, X1) the norm is de�ned by the equality

‖x|{ϕ(X0, X1), ψ}‖ = inf{ψ(a1, a2) :

|x(t)| ≤ ϕ(x0(t), x1(t)), a.e. on Ω, xi ∈ Xi, ‖xi|Xi‖ = ai; (i = 0, 1)}. (2.2)

The space ϕ(X0, X1) is an ideal Banach space equipped with the norm ‖ . |{ϕ(X0, X1), ψ}‖.
Of course all the norms on ϕ(X0, X1), de�ned by equation (2.2), are equivalent. If we put

ψ∞(a1, a2) = max{|a1|, |a2|}, then the norm on the space {ϕ(X0, X1), ψ∞} coincide with the norm
de�ned in (2.1). For example (see [4]), using the introduced norms one can to de�ne the exact dual
space {ϕ(X0, X1), ψ}′ and exact dual norm on the space {ϕ(X0, X1), ψ}.

For each ϕ ∈ Ccv for all a, b, c, d > 0 the following inequality holds

ϕ(a+ b, c+ d) = (c+ d)ϕ(
a+ b

c+ d
, 1) = (c+ d)ϕ(

a

c

c

c+ d
+
b

d

d

c+ d
, 1) ≥

(c+ d){ c

c+ d
ϕ(
a

c
, 1) +

d

c+ d
ϕ(
b

d
, 1)} = ϕ(a, c) + ϕ(b, d). (2.3)

Now we will show that condition (1.3) is equivalent to the fact that the corresponding Morrey
spaces are obtained using Calder�on's constructions ϕθ0(., .), ϕθ1(., .) for one special pair of spaces.

Lemma 2.1. Let the space M τ
l,X be constructed from the spaces X, l, the sequence τ ∈ Υ and the

set U(0, 1). Let θ ∈ (0, 1). Then

(M τ
l,X)θ(L∞)1−θ = M τ

lθ,Xθ

and the norms on these spaces coincide.

Proof. Let x ∈ (M τ
l,X)θ(L∞)1−θ. This means that there exists x0 ∈ M τ

l,X with ‖x0|M τ
l,X‖ = 1 such

that the equality |x(t)| = λxθ0(t) · 11−θ, (t ∈ Rn) holds and λ = ‖x|(M τ
l,X)θ‖. Then the following

relations follow

‖|x
λ
|1/θ|(M τ

l,X)θ(L∞)1−θ‖ = 1 ⇔ sup
t
‖Σ∞−∞‖x1/θ(t+ .)χ(U(0, ri))|X‖ei|l‖θ = λ

⇔ sup
t
‖Σ∞−∞ ((‖x(t+ .)χ(U(0, ri))|X‖)θ) 1/θei|l‖θ = λ⇔ ‖x|M τ

lθ,Xθ‖ = λ.

Let us prove the reverse inequality. Let x ∈ M τ
lθ,Xθ , x ≥ 0 and ‖x|M τ

lθ,Xθ‖ = 1. This means that
the equality

sup
t
‖Σ∞−∞ ((‖x1/θ(t+ .)χ(B(0, ri))|X‖)θ) 1/θei|l‖θ = 1.
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Put x0(t) = x1/θ(t). Then obvious equality x(t) = xθ0(t) · (1)1−θ, t ∈ Ω holds. Let us check that the
equality ‖x0|M τ

l,X‖ = 1 holds. Indeed,

‖x0|M τ
l,X‖ = sup

t
‖Σ∞−∞‖x0(t+ .)χ(U(0, ri))|X‖ei|l‖

= sup
t
‖Σ∞−∞‖x1/θ(t+ .)χ(U(0, ri))|X‖ei|l‖

= sup
t
‖Σ∞−∞ ((‖x1/θ(t+ .)χ(U(0, ri))|X‖)θ) 1/θei|l‖ = 1.

Corollary 2.1. Let 0 < λ < n
p
and θ ∈ (0, 1) be given. We de�ne the numbers γ and q by the

equalities

ν = θλ, q =
p

θ
.

Then the space (M τ
λ,Lp)

θ(L∞)1−θ and the space M τ
γ,Lq coincide and the norms in these spaces are

equal.

Proof. If the inequalities |x(t)| ≤ γ|x0(t)|θ and ‖x0|M τ
λ,Lp‖ ≤ 1 are satis�ed for all t, then the

following relations are valid

sup
t
{sup
r>0

r−λ‖χ(U(0, r))(
|x(t+ .)|

γ
)1/θ|Lp‖} ≤ 1

⇔ sup
t
{sup
r>0

r−λθ‖χ(U(0, r))|x(t+ .)|1/θ|Lp‖θ} ≤ γ

⇔ sup
t
{sup
r>0

r−ν‖|χ(U(0, r))x(t+ .)||Lq‖} ≤ γ.

Corollary 2.2. Let a couple of Morrey spaces (Mλ0,Lp0 ,Mλ1,Lp1 ) be given. Condition (1.3) is satis�ed
if and only if there are numbers λ, p and θ0, θ1 ∈ (0, 1) for which the following equalities are satis�ed

Mλ0,Lp0 = (Mλ,L1)θ0(L∞)1−θ0 , Mλ1,Lp1 = (Mλ,L1)θ1(L∞)1−θ1

Proof. De�ne the parameters θ0, θ1 by the equalities θ0 = 1
p0
, θ1 = 1

p1
, λ = λ0

θ0
≡ λ1

θ1
. Then the

following equalities are valid

Mλ0,Lp0 = (Mλ,L1)θ0(L∞)1−θ0 , Mλ1,Lp1 = (Mλ,L1)θ1(L∞)1−θ1

and it su�ces to apply Corollary 2.1.

Let us note the connection between the Calder�on � Lozanovski�� construction and the generalized
Orlicz - Morrey space.

First we recall the de�nition of Young functions. A function N : R+ → R+ is called a Young
function ifN is convex, left-continuous, strictly increases and limt→0N(t) = N(0) = 0, limt→∞N(t) =
∞.

Let a Young function N be given, by which the Orlicz space LN(Rn) is constructed. A natural
generalization of the Lebesgue-Morrey space is the Orlicz-Morrey space, the norm in which is given
by the equality

‖x|M τ
l,LN‖ = sup

t
{‖
∑

ei‖χ(U(0, ri))x(t+ .)|LN‖|l‖}
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= sup
t
{‖
∑

ei{inf{λi > 0 : ‖χ(U(0, ri))N(
|x(t+ .)|

λi
)|L1‖ ≤ 1}}‖|l‖.

If we put l = l∞ω , then the formula for the norm in the space M τ
l∞ω ,L

N has the form

‖x|M τ
l∞ω ,L

N‖ = sup
t
{‖
∑

ei‖χ(U(0, ri))x(t+ .)|LN‖|l‖}

= sup
t
{sup

i
ω(i){inf{λi > 0 : ‖χ(U(0, ri))N(

|x(t+ .)|
λi

)|L1‖ ≤ 1}}. (2.4)

Let θ ∈ (0, 1), p = 1
θ
, Nθ(t) = t

1
θ , (t ∈ [0,∞)). Then from (2.4) follows the equality

M τ
l∞ω ,L

Nθ
= M τ

l∞ω ,L
p

and the norms in these spaces coincide.
Another natural generalization of the Lebesgue-Morrey space is the Orlicz-Morrey space

ϕN(M τ
l,L1 , L∞), constructed by the Calder�on � Lozanovski�� construction.

Let a Young function N be given. We de�ne the function ϕN(., 1) by the equality ϕN(s, 1) =
N−1(s), (s ∈ [0,∞)), and put ϕN(s, t) = tϕN(s/t, 1). Then ϕN ∈ Ccv.

Lemma 2.2. Let N be a Young function, and the function ϕN ∈ Ccv is constructed.
Then the following equality is true

‖x|ϕN(M τ
l,L1 , L∞)‖ = sup

t
{inf{λ > 0 : ‖

∑
ei‖χ(U(0, ri))N(

|x(t+ .)|
λ

)|L1‖|l‖ ≤ 1}}.

Proof. If |x(t)| ≤ γϕN(x0(t), 1) and ‖x0|M τ
l,L1‖ = 1, then

|x(t)| ≤ γϕN(x0(t), 1)⇔ |x(t)|
γ
≤ ϕN(x0(t), 1)⇔ ‖N(

|x(t)|
γ

)|M τ
l,L1‖ = ‖x0|M τ

l,L1‖

⇔ sup
t
{‖
∑

ei‖χ(U(0, 2i))N(
|x(t+ .)|

γ
)|L1‖|l‖} = ‖x0|M τ

l,L1‖

⇒ sup
t
{inf{λ > 0 : ‖

∑
ei‖χ(U(0, ri))N(

|x(t+ .)|
λ

)|L1‖|l‖ ≤ 1}} ≤ γ.

From here it follows that

‖x|ϕN(M τ
l,L1 , L∞)‖ ≥ sup

t
{inf{λ > 0 : ‖

∑
ei‖χ(U(0, ri))N(

|x(t+ .)|
λ

)|L1‖|l‖ ≤ 1}}.

On the other hand, if

sup
t
{inf{λ > 0 : ‖

∑
ei‖χ(U(0, ri))N(

|x(t+ .)|
λ

)|L1‖|l‖ ≤ 1}} < 1,

then

sup
t
{‖
∑

ei‖χ(U(0, ri))N(
|x(t+ .)|

1
)|L1‖|l‖} ≤ 1.

Therefore N(|x(.)|) ∈ M τ
l,L1 , ‖N(|x(.)|)|M τ

l,L1‖ ≤ 1 and |x(t)| ≡ ϕN(N(|x(t)|), 1). From here it
follows that

‖x|ϕN(M τ
l,L1 , L∞)‖ ≤ 1.
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If we put l = l∞ω , then the formula for the norm in the space ϕN(M τ
l∞ω ,L

1 , L∞) has the form

‖x|ϕN(M τ
l∞ω ,L

1 , L∞)‖ = sup
t
{inf{λ > 0 : sup

i
{ω(i)‖χ(U(0, ri))N(

|x(t+ .)|
λ

)|L1‖ ≤ 1}}}

= sup
t
{sup

i
{inf{λi > 0 : ‖χ(U(0, ri))N(

|x(t+ .)|
λi

)|L1‖ ≤ 1

ωi
}}}. (2.5)

Let θ ∈ (0, 1). We de�ne a Young function by the equality Nθ(t) = t
1
θ , (t ∈ [0,∞)) and put

p = 1
θ
, ωθ(i) = (ω(i))

1
θ , (i ∈ Z).

Then it follows from (2.5) that

ϕNθ(M
τ
l∞ω ,L

1 , L∞) = M τ
l∞ωθ

,Lp

and the norms in these spaces coincide.
Note that from (2.5) it turns out that the space ϕn(M τ

l∞ω ,L
1 , L∞) coincides with the Orlicz-Morrey

space introduced by E. Nakai [29]. It is for these spaces that interpolation theorems are formulated
below.

The following theorem is a basis for obtaining interpolation theorems for global Morrey spaces.

Theorem 2.1. Let X0, X1 be two ideal spaces, ϕ, ϕ0, ϕ1 ∈ Ccv and

ϕ(t, s) = ϕ(ϕ0(t, s), ϕ1(t, s)), t, s ∈ R+. (2.6)

Then ϕ ∈ Ccv, the following equality is true

ϕ(X0, X1) = ϕ(ϕ0(X0, X1), ϕ1(X0, X1)),

and for each x ∈ ϕ(X0, X1) the inequalities

‖x|ϕ(ϕ0(X0, X1), ϕ1(X0, X1))‖

≤ ‖x|ϕ(X0, X1)‖ ≤ 2‖x|ϕ(ϕ0(X0, X1), ϕ1(X0, X1))‖ (2.7)

hold.

Proof. Let us prove �rst that ϕ ∈ Ccv.
The positive homogeneity of �rst degree of the function ϕ is obvious. Let us check the concavity.

Indeed, using inequality (2.3), we obtain

ϕ(
t0 + t1

2
, 1) = ϕ(ϕ0(

t0 + t1
2

, 1), ϕ1(
t0 + t1

2
, 1))

≥ ϕ(
1

2
(ϕ0(t0, 1) + ϕ0(t1, 1)),

1

2
(ϕ1(t0, 1) + ϕ1(t1, 1)))

=
1

2
ϕ(ϕ0(t0, 1) + ϕ0(t1, 1), ϕ1(t0, 1) + ϕ1(t1, 1))

≥ 1

2
{ϕ(ϕ0(t0, 1), ϕ1(t0, 1)) + ϕ(ϕ0(t1, 1), ϕ1(t1, 1))} =

1

2
{ϕ(t0, 1) + ϕ(t1, 1)}.

Let us prove the left inequality in (2.7).
Let x ∈ ϕ(X0, X1) and ‖x|ϕ(X0, X1)‖ < 1. Then there are x0 ∈ X0, x1 ∈ X1 such that

|x(t)| ≤ ϕ(x0(t), x1(t)), (t ∈ Ω); ‖x0|X0‖ < 1; ‖x1|X1‖ < 1.



Calder�on � Lozanovski�� construction for a couple of global Morrey spaces 33

Let us de�ne new functions z0, z1 by the equalities:

z0(t) = ϕ0(x0(t), x1(t)), z1(t) = ϕ1(x0(t), x1(t)); (t ∈ Ω).

Then

z0 ∈ ϕ0(X0, X1), ‖z0|ϕ0(X0, X1)‖ < 1, z1 ∈ ϕ1(X0, X1), ‖z1|ϕ1(X0, X1)‖ < 1

and

ϕ(z0(t), z1(t)) = ϕ(ϕ0(x0(t), x1(t)), ϕ1(x0(t), x1(t))), (t ∈ Ω).

Therefore

x ∈ ϕ(ϕ0(X0, X1), ϕ1(X0, X1)), ‖x|ϕ(ϕ0(X0, X1), ϕ1(X0, X1))‖ < 1.

These relations prove the left inequality in (2.7).
Let us prove the right inequality in (2.7).
Let

x ∈ ϕ(ϕ0(X0, X1), ϕ1(X0, X1)), ‖x|ϕ(ϕ0(X0, X1), ϕ1(X0, X1))‖ < 1.

Then there are x0, x1 ∈ X0, y0, y1 ∈ X1 such that

‖x0|X0‖ < 1; ‖x1|X0‖ < 1; ‖y0|X1‖ < 1, ‖y1|X1‖ < 1

and

|x(t)| ≤ ϕ(ϕ0(x0(t), y0(t)), ϕ1(x1(t), y1(t))), (t ∈ Ω).

Let us de�ne new functions by the equalities: z0(t) = max{x0(t), x1(t)}, z1(t) = max{y0(t), y1(t)}.
Then

ϕ0(x0(t), y0(t)) ≤ ϕ0(z0(t), z1(t)), (t ∈ Ω); ϕ1(x1(t), y1(t)) ≤ ϕ1(z0(t), z1(t)), (t ∈ Ω);

‖z0|X0‖ < 2; ‖z1|X1‖ < 2.

For all t ∈ Ω holds the inequality

|x(t)| ≤ ϕ(ϕ0(z0(t), z1(t)), ϕ1(z0(t), z1(t))) = ϕ(z0(t), z1(t)), (t ∈ Ω).

Therefore ‖x|ϕ(X0, X1)‖ < 2. These relations prove the right inequality in (2.7).

Corollary 2.3. Let a couple ideal space Xi on Rn, a couple ideal space of sequence li, (i = 0, 1), a
set U(0, 1) ⊂ Rn, for which 0 ∈ U(0, 1) and µ(U(0, 1)) ∈ (0,∞), and a sequence τ ∈ Υ be given. Let
the spaces M τ

li,Xi
be constructed from the spaces Xi, li, (i = 0, 1), the set U(0, 1) and the sequence

τ ∈ Υ.
Let ϕ, ϕ0, ϕ1 ∈ Ccv be �xed, and the function ϕ ∈ Ccv is constructed by equality (2.6).
Then

ϕ(M τ
l0,X0

,M τ
l1,X1

) = ϕ(ϕ0(M τ
l0,X0

,M τ
l1,X1

), ϕ1(M τ
l0,X0

,M τ
l1,X1

))

and for all x ∈ ϕ(M τ
l0,X0

,M τ
l1,X1

) the following inequalities are valid

‖x|ϕ(ϕ0(M τ
l0,X0

,M τ
l1,X1

), ϕ1(M τ
l0,X0

,M τ
l1,X1

))‖ ≤ ‖x|ϕ(M τ
l0,X0

,M τ
l1,X1

)‖

≤ 2 ‖x|ϕ(ϕ0(M τ
l0,X0

,M τ
l1,X1

), ϕ1(M τ
l0,X0

,M τ
l1,X1

))‖.
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Corollary 2.4. Let 0 ≤ θ0, θ1 ≤ 1, ϕ ∈ Ccv be �xed, and the function ϕθ0,θ1 ∈ Ccv is constructed by
the equality

ϕθ0,θ1(t, s) = ϕ(tθ0s1−θ0 , tθ1s1−θ1). (2.8)

Then

ϕθ0,θ1(M
τ
l,X , L

∞) = ϕ((M τ
l,X)θ0(L∞)1−θ0 , (M τ

l,X)θ1(L∞)1−θ1)

and the following inequalities are valid

‖x|ϕ((M τ
l,X)θ0(L∞)1−θ0 , (M τ

l,X)θ1(L∞)1−θ1)‖ ≤ ‖x|ϕθ0,θ1(M τ
l,X , L

∞)‖

≤ 2 ‖x|ϕ((M τ
l,X)θ0(L∞)1−θ0 , (M τ

l,X)θ1(L∞)1−θ1)‖.

Corollary 2.5. Let 0 < λ0 <
n
p0
, 0 < λ1 <

n
p1
, θ ∈ (0, 1) and ϕ ∈ Ccv be given and condition (1.3)

be satis�ed. Let θ0 = 1
p0
, θ1 = 1

p1
, λ = λ0

θ0
, and the function ϕθ0,θ1 is de�ned by (2.8).

Then

ϕθ0,θ1(Mλ,L1 , L∞) = ϕ(Mλ0,Lp0 ,Mλ1,Lp1 )

and the following inequalities are valid

‖x|ϕ(Mλ0,Lp0 ,Mλ1,Lp1 )‖ ≤ ‖x|ϕθ0,θ1(Mλ,L1 , L∞)‖ ≤ 2 ‖x|ϕ(Mλ0,Lp0 ,Mλ1,Lp1 )‖.

To obtain interpolation theorems, we need one geometric property of an ideal space.

De�nition 3. Say (see, for example, [20], [24]) that an ideal space X ⊂ S(µ,Ω) has the Fatou
property if from 0 ≤ xn ↑ x; xn ∈ X and supn ‖xn|X‖ < ∞ it follows that x ∈ X and ‖x|X‖ =
supn ‖xn|X‖.

It is well known that the Lebesgue spaces Lpω, (l
p
ω) for p ∈ [1,∞] have the Fatou property, and

the space c0 has not the Fatou property.
The following theorem is not a very general fact for the Calder�on � Lozanovski�� construction on

a couple of ideal spaces. The question of when the space ϕ(X0, X1) has the Fatou property depends
on the properties of the couple of ideal spaces (X0, X1) and the function ϕ is discussed in more detail
in [5].

Theorem 2.2. [5]. Let ϕ ∈ Ccv and an interpolation couple of ideal spaces (X0, X1) be given. If
X0 and X1 have the Fatou property, then the space ϕ(X0, X1) has the Fatou property too.

The next theorem shows that if parameters of the global Morrey space have the Fatou property,
then the global Morrey space also has the Fatou property.

Theorem 2.3. [7]. Let an ideal space X on Rn, an ideal space of sequences l, a set U(0, 1) ⊂ Rn,
for which 0 ∈ U(0, 1) and µ(U(0, 1)) ∈ (0,∞), and a sequence τ ∈ Υ be given. Let the space M τ

l,X be
constructed from the spaces X, l, the set U(0, 1) and the sequence τ ∈ Υ.

If both ideal spaces l and X have the Fatou property, then the space M τ
l,X has the Fatou property

too.

We apply Theorems 2.1 - 2.3 to obtain interpolation theorems. Namely, we write out conditions
for the coincidence of the Calder�on � Lozanovski�� construction on a couple of Morrey spaces with the
value of the Gustavsson � Peetre � Ovchinnikov interpolation functor on a couple of Morrey spaces.

We recall [10] that a couple of normed spaces (A0, A1) is referred to as an interpolation couple
if both spaces are embedded in a separable topological linear space V .
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Let ϕ ∈ Ccv and a interpolation couple (A0, A1) be given. Denote by (A0, A1)ϕ the Gustavsson �
Peetre � Ovchinnikov interpolation functor [10], [19], [30] calculated for the couple (A0, A1):

a ∈ (A0, A1)ϕ ⇔ a =
∞∑
−∞

ai; ai ∈ A0

⋂
A1, the series converges in the spaceA0 + A1;

‖a|(A0, A1)ϕ‖

= inf{max{sup
n
{ sup
εi=±1

‖
n∑
−n

εi
ai

ϕ(1, 2i)
|A0‖, sup

εi=±1
‖

n∑
−n

εi
ai

ϕ(2i, 1)
|A1‖}} : a =

∞∑
−∞

ai} <∞.

Theorem 2.4. [10], [19], [30]. Let ϕ ∈ Ccv and an interpolation couple of ideal spaces (X0, X1)
on Ω be given. If X0 and X1 have the Fatou property, then

{ϕ(X0, X1), ψ} = (X0, X1)ϕ,

the norms in these spaces are equivalent, and the equivalence constant does not depend on X0, X1

and the function ϕ.

Thus, the triple of spaces {X0, X1; ϕ(X0, X1)} is an interpolation triple.
From Theorems 2.1 � 2.4 we obtain the following interpolation theorem.

Theorem 2.5. Let a couple of ideal spaces Xi on Rn, a couple of ideal spaces of sequence li, (i = 0, 1),
a set U(0, 1) ⊂ Rn, for which 0 ∈ U(0, 1) and µ(U(0, 1)) ∈ (0,∞), and a sequence τ ∈ Υ be given.
Let all spaces X0, X1, l0, l1 have the Fatou property. Let the spaces M τ

li,Xi
be constructed from the

spaces Xi, li, (i = 0, 1), the set U(0, 1) and the sequence τ ∈ Υ. Let ϕ, ϕ0, ϕ1 ∈ Ccv be given. De�ne
the function ϕ by equality (2.6). We form the triple of spaces

{ϕ0(M τ
l0,X0

,M τ
l1,X1

), ϕ1(M τ
l0,X0

,M τ
l1,X1

); ϕ(M τ
l0,X0

,M τ
l1,X1

)}.

Let an interpolation couple (A0, A1) be given.
1) If a linear operator S is bounded as an operator

S : Ai → ϕi(M
τ
l0,X0

,M τ
l1,X1

), (i = 0, 1),

then
S : (A0, A1)ϕ → ϕ(M τ

l0,X0
,M τ

l1,X1
)

and is bounded.
2) If a linear operator P is bounded as an operator

P : ϕi(M
τ
l0,X0

,M τ
l1,X1

)→ Ai, (i = 0, 1),

then
P : ϕ(M τ

l0,X0
,M τ

l1,X1
)→ (A0, A1)ϕ

and is bounded.

Proof. From Theorems 2.2 and 2.3 it follows that all spaces

M τ
l0,X0

, M τ
l1,X1

; ϕ0(M τ
l0,X0

,M τ
l1,X1

), ϕ1(M τ
l0,X0

,M τ
l1,X1

);

ϕ(ϕ0(M τ
l0,X0

,M τ
l1,X1

), ϕ1(M τ
l0,X0

,M τ
l1,X1

)); ϕ(M τ
l0,X0

,M τ
l1,X1

)
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have the Fatou property. Therefore, it follows from Theorem 2.4, that

ϕ(ϕ0(M τ
l0,X0

,M τ
l1,X1

), ϕ1(M τ
l0,X0

,M τ
l1,X1

))

= (ϕ0(M τ
l0,X0

,M τ
l1,X1

), ϕ1(M τ
l0,X0

,M τ
l1,X1

))ϕ (2.9)

and the norms in these spaces are equivalent.
From Theorem 2.1 it follows that

ϕ(M τ
l0,X)

,M τ
l1,X1

) = ϕ(ϕ0(M τ
l0,X0

,M τ
l1,X1

), ϕ1(M τ
l0,X0

,M τ
l1,X1

)) (2.10)

and the norms in these spaces are equivalent.
From (2.9) � (2.10) it follows that

ϕ(M τ
l0,X)

,M τ
l1,X1

) = (ϕ0(M τ
l0,X0

,M τ
l1,X1

), ϕ1(M τ
l0,X0

,M τ
l1,X1

))ϕ

and the norms in these spaces are equivalent.
From the latter relation we obtain statements 1) and 2).

Corollary 2.6. (An interpolation theorem for classical Morrey spaces.)
Let 0 < λ0 <

n
p0
, 0 < λ1 <

n
p1
, θ ∈ (0, 1) and ϕ ∈ Ccv be given and condition (1.3) be satis�ed.

Let θ0 = 1
p0
, θ1 = 1

p1
, λ = λ0

θ0
, and the function ϕθ0,θ1 is de�ned by (2.8).

Then statements 1) and 2) in Theorem 2.5 hold for the triple of spaces

{Mλ0,Lp0 , Mλ1,Lp1 ; ϕθ0,θ1(Mλ,L1 , L∞)}.

Corollary 2.7. (An interpolation theorem for generalized Orlicz � Morrey spaces.)
Let two Young functions N0, N1 be given, and the functions ϕNi(s, 1) = N−1

i (s) and ϕNi(s, t) =
tϕNi(s/t, 1) (i = 0, 1) are constructed.

Let ϕ ∈ Ccv be �xed, and the function ϕN0,N1 ∈ Ccv be de�ned by the formula

ϕN0,N1(t, s) = ϕ(tN−1
0 (

s

t
), tN−1

1 (
s

t
)); t, s > 0.

Then statements 1) and 2) in Theorem 2.5 hold for the triple of spaces

{ϕN0(M
τ
l∞ω ,L

1 , L∞), ϕN1(M
τ
l∞ω ,L

1 , L∞);ϕN0,N1(M
τ
l∞ω ,L

1 , L∞)}.

Remark 1. In the article we considered the Morrey space de�ned on Rn. If we consider the Morrey
space de�ned on a subset Ω ⊂ Rn, (0 ∈ Ω) then in De�nitions 1 it is necessary to replace U(0, τ) by
U(0, τ) ∩ Ω. All results will remain true.
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1 Introduction

The composition of two maps f and g is de�ned by (f ◦g)(x) := f(g(x)), if the range of g is contained
in the de�nition set of f . We denote by Tf the composition operator Tf (g) := f ◦ g.

De�nition 1. Let E be a set of real valued functions, and let f : R→ R. We say that f acts on E
by composition (or: superposition) if Tf (E) ⊆ E.

Here are some elementary examples :

• Let E be a vector space of functions, which means that g1 + g2 ∈ E and λg1 ∈ E, for all
g1, g2 ∈ E and all λ ∈ R. Then every linear function f : R→ R acts on E.

• Let E be an algebra of functions, which means that E is a vector space as above, and that
g1g2 ∈ E for all g1, g2 ∈ E. Then any polynomial f such that f(0) = 0 acts on E.

We have a list of natural problems concerning operators Tf .
In case E is a vector space of functions, a composition operator Tf is said trivial if the function

f is linear. Then we have the following questions :

Q1: Do nontrivial composition operators exist ?

In case E is an algebra of functions, the answer is positive. We will see that it is negative for
certain Sobolev spaces.

Q2 : Describe explicitly the set of functions which act on E.

For instance, if E is the set of all continuous functions from R to R, then a function f acts on E
if and only if f is itself continuous.
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In case E is endowed with a norm, then the following problems make sense :

Q3: Determine the functions f for which Tf : E → E is bounded.

Q4: Determine the functions f for which Tf : E → E is continuous.

We propose a wide survey on the answers to the above questions, in case E is the classical Sobolev
space Wm

p (Rn). Some results are given together with their proofs. Some proofs are simpler than the
original ones.

2 Notation

N denotes the set of all positive integers, including 0. Z denotes the set of all integers. For x ∈ Rn,
|x| denotes its euclidean norm.

If E,F are topological spaces, then E ↪→ F means that E ⊆ F , as sets, and the natural mapping
E → F is continuous. If B is a Lebesgue measurable subset of Rn, we denote by |B| its Lebesgue
measure. We denote by χA the characteristic function of a set A.

A multi-index is n-tuple α := (α1, . . . , αn) ∈ Nn. For such α, and for all h := (h1, . . . , hn) ∈ Rn,
we set |α| := α1 + · · ·+αn (this di�ers from the euclidean norm), α! := α1! · · ·αn!, hα := hα1

1 · · ·hαnn .
If f is a function de�ned on an open subset of Rn, and α ∈ Nn as above, we denote by f (α) the
partial derivative

∂|α|f

∂xα1
1 · · · ∂xαnn

.

If h ∈ Rn, the translation operator is de�ned by (τhf)(x) := f(x − h) for all function f on Rn.
The �nite di�erence operator is de�ned by ∆hf := τ−hf − f . The m-th power of ∆h satis�es the
following formula :

(∆m
h f)(x) =

m∑
k=0

(
m

k

)
(−1)m−kf(x+ kh) (2.1)

(easy proof by induction).

Let Ω be an open subset of Rn. We denote by L1,loc(Ω) the set of (equivalence classes of)
locally integrable functions on Ω, endowed with its natural topology (mean convergence on compact
subsets of Ω), and by D(Ω) the set of all inde�nitely many times di�erentiable compactly supported
functions on Ω, endowed with its natural topology, see [1, 1.56].

LetQ := [−1/2, 1/2]n. We �x some function ρ ∈ D(Rn) such that ρ(x) = 1 onQ and supp ρ ⊆ 2Q.

Let E be a subset of L1,loc(Rn). We say that a function f ∈ L1,loc(Rn) belongs locally to E if
ϕf ∈ E for all ϕ ∈ D(Rn) ; in case E is endowed with a norm, we say that a function f ∈ L1,loc(Rn)
belongs locally uniformly to E if

sup
a∈Rn
‖(τaϕ)f‖E < +∞ ,

for all ϕ ∈ D(Rn).

Through the paper, �ball� means �closed ball with nonzero radius� (we exclude balls reduced to
one point).
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3 Composition operators in Lebesgue spaces

Proposition 3.1. Let 1 ≤ p < +∞, and let f : R→ R be a Borel function. Then f acts on Lp(Rn)
if and only if there exists c > 0 such that

|f(t)| ≤ c|t| , for all t ∈ R . (3.1)

Proof. 1. If estimate (3.1) holds, it is easily seen that g ∈ Lp(Rn) implies f ◦ g ∈ Lp(Rn). Indeed,
the following holds :

‖f ◦ g‖p ≤ c ‖g‖p, for all g ∈ Lp(Rn) . (3.2)

2. Assume that f acts on Lp(Rn). Since the null function belongs to Lp(Rn), the same holds for
the constant function f(0). By condition p <∞ we deduce f(0) = 0. Arguing by contradiction, let us
assume that estimate (3.1) does not hold. Then, for some sequence (ak)k≥1, we have |f(ak)| > k|ak|
for all k ≥ 1. Consider a sequence (Bk)k≥1 of disjoint measurable sets in Rn such that

|ak|p|Bk| = k−p−1 . (3.3)

Let
g :=

∑
k≥1

akχBk .

By (3.3), it follows easily that g ∈ Lp(Rn). Since

f ◦ g =
∑
k≥1

f(ak)χBk ,

(3.3) implies again f ◦ g /∈ Lp(Rn), a contradiction.

Remark 1. The above proof works as well in case of Lp(A), for any measurable subset A of Rn such
that |A| = +∞. For the generalization of Proposition 3.1 to Lp spaces on abstract measure spaces,
we refer to [3, Theorem 3.1].

In case of linear operators on normed spaces, it is well known that boundedness is equivalent to
continuity. Of course that does not hold for nonlinear ones. In particular, composition operators can
be bounded but not continuous.

Proposition 3.2. Assume 1 ≤ p ≤ +∞. Let (X,µ) be a measure space. Assume that (X,µ) is non
trivial, i.e. there exists a measurable set A in X such that 0 < µ(A) < +∞. Let f : R→ R be such
that Tf takes Lp(X,µ) to itself. If Tf is continuous from Lp(X,µ) to itself, then f is continuous.

Proof. Assume that Tf is continuous from Lp(X,µ) to itself. Without loss of generality, assume
f(0) = 0. Let A be as in the above statement. For all real numbers u, v,

f ◦ uχA − f ◦ vχA = (f(u)− f(v))χA ,

hence
‖f ◦ uχA − f ◦ vχA‖p = |f(u)− f(v)|µ(A)1/p . (3.4)

Clearly
lim
v→u

vχA = uχA in Lp .

By continuity of Tf , and by (3.4), we obtain the continuity of f .
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By Propositions 3.1 and 3.2, it follows that, in case of Lp(Rn), there exist bounded composition
operators which are not continuous. Proposition 3.2 admits a converse statement :

Proposition 3.3. Let f : R → R be a continuous function such that, for some constant c > 0,
|f(t)| ≤ c |t|, for all t ∈ R. Let (X,µ) be a measure space and let 1 ≤ p < +∞. Then Tf is
continuous from Lp(X,µ) to itself.

Proof. It su�ces to prove the following : for all sequence (gj) converging to g in Lp(X,µ), there
exists a subsequence (gjk) such that (f ◦ gjk) converges to f ◦ g in Lp(X,µ). By the classical measure
theoretic result (see, for instance, the proof of Theorem 3.11 in [15]), there exists a subsequence (gjk)
and a function h ∈ Lp(X,µ) such that

gjk → g a.e. , |gjk | ≤ h .

By the continuity of f , it holds f ◦ gjk → f ◦ g a.e.. By the assumption on f ,

|f ◦ gjk − f ◦ g| ≤ 2c h .

By the Lebesgue dominated convergence Theorem, we conclude that ‖f ◦ gjk − f ◦ g‖p tends to 0.

Remark 2. If f : R → R is bounded and continuous, Tf is easily seen to be continuous from
L∞(X,µ) to itself. The details are left to the reader.

4 Automatic boundedness

De�nition 2. Let E be a normed space. A mapping T : E → E is said bounded if, for all bounded
set A of E, the set T (A) is bounded.

For instance, according to estimate (3.2), any composition operator, which sends Lp(Rn) to itself,
is bounded on Lp(Rn). More generally, for all �reasonable� function space, a weak form of boundedness
is satis�ed by composition operators. Thus we have a kind of automatic boundedness for a large
class of function spaces.

Proposition 4.1. Let E,F be vector subspaces of L1,loc(Ω). Assume that

• E and F are endowed with complete norms such that the embeddings of E and F into L1,loc(Ω)
are continuous.

• D(Ω) is embedded into E.

• ϕg ∈ F , for all ϕ ∈ D(Ω) and g ∈ F .

For all f : R → R such that f(0) = 0 and Tf (E) ⊆ F , there exist a closed ball B ⊂ Ω and two
numbers c1, c2 > 0 such that, for all g ∈ E,

‖g‖E ≤ c1 and supp g ⊆ B ⇒ ‖f ◦ g‖F ≤ c2 . (4.1)

Proof. By contradiction, assume that, for all B, c1, c2 there exists g ∈ E such that

‖g‖E ≤ c1 , supp g ⊆ B , ‖f ◦ g‖F > c2 . (4.2)

Consider a sequence (Bj)j≥1 of disjoint closed balls in Ω. Take functions ϕj ∈ D(Ω) such that
ϕj(x) = 1 on 1

2
Bj (the ball of the same center and half radius than Bj) and ϕj(x) = 0 out of Bj. It is



An introduction to composition operators in Sobolev spaces 43

easily seen (Closed Graph Theorem, see [17, Chapter II, �6, Theorem 1] or [14, Theorem 2.15]) that,
for ϕ ∈ D(Ω), the linear multiplication operator g 7→ ϕg is bounded on F . Thus we can consider

Mj := sup{‖ϕjg‖F : ‖g‖F ≤ 1} .
According to (4.2), there exist functions gj such that

‖gj‖E ≤ 2−j , supp gj ⊆
1

2
Bj , ‖f ◦ gj‖F > jMj .

Let g :=
∑

j gj. Clearly g ∈ E and, by the embedding E ↪→ L1,loc(Ω),

g(x) =
∑
j≥0

gj(x) a.e. .

By considering supports, ϕj(f ◦ g) = f ◦ gj, hence
jMj ≤ ‖ϕj(f ◦ g)‖F ≤Mj‖f ◦ g‖F

for any j ≥ 1, a contradiction.

Remark 3. If Ω = Rn, and if E is translation and dilation invariant, the conclusion of Proposition
4.1 can be improved : indeed for all balls or cubes B, there exist c1, c2 > 0 such that (4.1) holds for
all g ∈ E.

As an example of use of Proposition 4.1, we give the following variant of Proposition 3.1 :

Proposition 4.2. Let 1 ≤ p < +∞, let Ω be an open subset of Rn such that |Ω| < +∞, and let
f : R→ R be a Borel function. Then f acts on Lp(Ω) if and only if there exist α, β > 0 such that

|f(t)| ≤ α|t|+ β , for all t ∈ R . (4.3)

Proof. Since the su�ciency of condition (4.3) is clear, we deal only with necessity. Assume that f
acts on Lp(Ω). Without loss of generality, we can assume that f(0) = 0. By Proposition 4.1, there
exist a cube Q′ ⊂ Ω and two numbers c1, c2 > 0 such that, for all g ∈ Lp(Ω),

‖g‖p ≤ c1 and supp g ⊆ Q′ ⇒ ‖f ◦ g‖p ≤ c2 . (4.4)

Let b ∈ Ω and r > 0 be such that Q′ = b+ 2rQ. For any a ∈ R, and 0 < ε ≤ 1, let

ga,ε(x) := aρ

(
x− b
rε

)
.

Then the support of ga,ε is contained in Q′. We choose ε depending on a in the following way.
In the case of large a, more precisely if |a| ≥ R := r−n/pc1‖ρ‖−1

p , we choose ε such that

|a| rn/p‖ρ‖p εn/p = c1 . (4.5)

If |a| < R, we take ε = 1. In both cases, we obtain ‖ga,ε‖p ≤ c1, hence ‖f ◦ ga,ε‖p ≤ c2. Since

ρ

(
x− b
rε

)
= 1

on the cube b+ εrQ, this implies ∫
b+εrQ

|f(a)|p dx ≤ cp2 ,

hence |f(a)|pεn ≤ c3, for some constant c3.
If |a| ≥ R, by using (4.5), we obtain |f(a)| ≤ c4|a|, for some constant c4. If |a| < R, we obtain

|f(a)| ≤ c
1/p
3 .

Remark 4. The above proof can be viewed as a prototype of a number of results on composition
operators, as we will see further.
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5 De�nition and main properties of Sobolev spaces

De�nition 3. Let f ∈ L1,loc(Rn), and α ∈ Nn. We say that f has a weak derivative of order α if
there exists g ∈ L1,loc(Rn) such that∫

Rn
g(x)ϕ(x) dx = (−1)|α|

∫
Rn
f(x)ϕ(α)(x) dx

for all ϕ ∈ D(Rn).

If such g exists, it is easily seen to be unique, up to equality almost everywhere; then we denote
it by f (α) and we call it the weak derivative of f of order α.

De�nition 4. Let m ∈ N and 1 ≤ p ≤ +∞. The Sobolev space Wm
p (Rn) is the set of functions

f ∈ L1,loc(Rn) such that, for all |α| ≤ m, f (α) exists in the weak sense, and f (α) ∈ Lp(Rn).

Wm
p (Rn) is a vector subspace of Lp(Rn). It will be endowed with the following norm :

‖f‖Wm
p (Rn) :=

∑
|α|≤m

‖f (α)‖p . (5.1)

We give here some useful properties of Sobolev spaces.
First of all, Wm

p (Rn) is a function space which satis�es the assumptions of Proposition 4.1, see
[1, Theorem 3.3].

The behavior of (5.1) with respect to dilations is described in the following assertion, with a
simple proof :

Proposition 5.1. It holds

‖f(λ(.))‖Wm
p (Rn) ≤ λm−(n/p)‖f‖Wm

p (Rn) ,

for all λ ≥ 1.

Then we have the so-called Sobolev embedding theorems, see [1, Theorem 4.12] :

Proposition 5.2. If

m1 −m2 ≥
n

p1

− n

p2

> 0,

then Wm1
p1

(Rn) ↪→ Wm2
p2

(Rn).

In particular Wm
p (Rn) ↪→ L∞(Rn) if m > n/p. In fact, we have a more precise statement, where

Cb(Rn) denotes the space of bounded continuous functions on Rn :

Proposition 5.3. If m > n/p, or p = 1 and m = n, then Wm
p (Rn) ↪→ Cb(Rn).

The assumptions on the parameters are sharp : Wm
p (Rn) is not embedded in L∞(Rn) in the case

m < n/p, or m = n/p and p > 1.

Remark 5. The elements ofWm
p (Rn) are equivalence classes of functions with respect to the equality

almost everywhere. Thus the precise meaning of Proposition 5.3 is the following : all f ∈ Wm
p (Rn)

contains a (necessarily unique) bounded continuous representative such that ‖f‖∞ ≤ c‖f‖Wm
p
, for

some constant c > 0 depending only on m, p, n.

Proposition 5.4. If m > n/p, or m = n and p = 1, the Sobolev space Wm
p (Rn) is a subalgebra of

Cb(Rn).

See [1, Theorem 4.39] for the proof.
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6 Necessity of Lipschitz continuity

In case m ≥ 1, any function which acts onWm
p by composition is necessarily Lipschitz continuous, at

least locally. This is a major distinction with the case of Lp. To prove this property, we need some
preliminary results.

Lemma 6.1. Assume that Wm
p (Rn) is not embedded into L∞(Rn). There exists a sequence (θj)j≥1

in D(Rn) such that

θj(x) = 1 on 2−jQ , supp θj ⊆ Q , lim
j→+∞

‖θj‖Wm
p (Rn) = 0 .

Proof. In case m < n/p, we take θj(x) = ρ(2jx). By Proposition 5.1,

‖θj‖Wm
p (Rn) ≤ 2j(m−(n/p))‖ρ‖Wm

p (Rn) .

Thus the sequence (θj) has the desired properties.
Now assume that m = n/p and 1 < p < +∞. Let

θj(x) :=
1

j

j∑
k=1

ρ(2kx) .

If |α| = m, then the function x 7→ ρ(α)(2kx) has support in the set Sk := 2−k+1Q \ 2−kQ. Thus, for
all 1 ≤ k ≤ j and x ∈ Sk, ∣∣∣θ(α)

j (x)
∣∣∣ =

1

j
2mk

∣∣ρ(α)(2kx)
∣∣ ≤ cj−12mk .

Hence

‖θ(α)
j ‖pp =

j∑
k=1

∫
Sk

∣∣∣θ(α)
j (x)

∣∣∣p dx ≤ cj−p
j∑

k=1

2kmp2−nk = cj1−p .

Thus the sequence (‖θ(α)
j ‖p) tends to 0 for all |α| = m. The same holds, with a simple proof, for

|α| < m.

Lemma 6.2. De�ne the sequence of functions (Bm)m≥1 in L1(R) by B1 := 1[0,1] and Bm+1 := Bm∗B1

for all m. Then

∆m
h f(x) =

∫ +∞

−∞
Bm(t)

∑
|α|=m

m!

α!
f (α)(x+ th)hα

 dt , (6.1)

for almost all x ∈ Rn, all h ∈ Rn, all m ≥ 1 and all f ∈ Wm
p (Rn).

Proof. We consider the case of an m times continuously di�erentiable function f . An approximation
procedure will complete the proof in general case.

Step 1 : case n = 1. In this case, formula (6.1) reduces to

∆m
h f(x) =

∫ +∞

−∞
Bm(t)f (m)(x+ th)hmdt . (6.2)

We prove it by induction. The case m = 1 is well known. Assuming that (6.2) holds, we obtain

∆m+1
h f(x) = hm

∫ +∞

−∞
Bm(t)∆hf

(m)(x+ th) dt
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= hm+1

∫ +∞

−∞
Bm(t)

(∫ +∞

−∞
B1(s)f (m+1)(x+ (t+ s)h) ds

)
dt .

By Fubini, a change of variable, and the de�nition of Bm, we obtain formula (6.2) at rank m+ 1.
Step 2 : general case. We �x x, h in Rn, and set g(t) := f(x + t(h/|h|))) for all t ∈ R. Then

∆m
h f(x) = ∆m

|h|g(0). Applying Step 1 to the function g, we obtain (6.1). The details are left to the
reader.

Lemma 6.3. For all m ≥ 1, 1 ≤ p ≤ ∞, there exists c > 0 such that(∫
Rn
|∆m

h f(x)|p dx

)1/p

≤ c|h|m‖f‖Wm
p (Rn)

for all h ∈ Rn and all f ∈ Wm
p (Rn).

Proof. By de�nition of Bm, Bm ≥ 0 and
∫ +∞
−∞ Bm(t) dt = 1. Applying (6.1), we obtain

‖∆m
h f‖p ≤ |h|m

∑
|α|=m

m!

α!
‖f (α)‖p .

Theorem 6.1. Assume that m ≥ 1 and that Wm
p (Rn) is not embedded into L∞(Rn). Then any

function f : R→ R, such that Tf sends Wm
p (Rn) to itself, is Lipschitz continuous on R.

Proof. Throughout the proof, ‖.‖ will denote the norm in Wm
p (Rn).

Step 1 : construction of the comb-shaped function. This construction was �rst introduced by
S. Igari [11]. Let AN := Zn ∩ [−N,N ]n, for every positive integer N . We �x a real number s such
that

0 < s <
1

2m+ 1
. (6.3)

Let b, b′ be real numbers. Then we consider integers N, j ≥ 1, and a real number r > 0, whose
values will be �xed depending on b, b′. Our test function will be de�ned by

g(x) :=
∑
µ∈AN

ρ

(
1

s

(x
r
− µ

))
(b′ − b) + θj(x) b . (6.4)

The �rst condition on parameters will be

3rN ≤ 2−j . (6.5)

By inequality s < 1/2 and by condition (6.5), we deduce that the cubes r(2sQ+ µ) are disjoint, and
that r(2sQ+ µ) ⊂ r(Q+ µ) ⊂ 2−jQ, if µ ∈ AN . Hence

g(x) = b′ , if x ∈ r(sQ+ µ) for some µ ∈ AN , (6.6)

g(x) = b , if x ∈ 2−jQ \
⋃
µ∈AN

r(2sQ+ µ) . (6.7)

By (6.5), we have r ≤ 1. Then Proposition 5.1 gives us∥∥∥ ∑
µ∈AN

ρ
(1

s

( .
r
− µ

))∥∥∥ ≤ c1r
(n/p)−mNn/p , (6.8)
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for some constant c1.

Step 2 : adjustment of parameters. Now we assume that f acts on Wm
p (Rn) by composition. By

Proposition 4.1, we can �nd constants δ1, δ2 such that ‖f ◦ u‖ ≤ δ2 for every function u such that
‖u‖ ≤ δ1, and u has support in Q. In order to apply this property to u = g, we need the following
inequalities :

|b| ‖θj‖ ≤
δ1

2
, (6.9)

δ1

3c1|b− b′|
≤ r(n/p)−mNn/p ≤ δ1

2c1|b− b′|
. (6.10)

Now we discuss the choice of j,N, r with respect to b, b′, such that conditions (6.5), (6.9) and (6.10)
hold. First, we choose j = j(b) ≥ 1 such that (6.9) holds. This is possible by Lemma 6.1. In the
case m < n/p, we de�ne

r :=

(
δ1

2c1|b− b′|
N−n/p

) p
n−mp

,

which ensures condition (6.10) ; since

rN =

(
δ1

2c1|b− b′|

) p
n−mp

N
mp

pm−n ,

condition (6.5) holds for all su�ciently large N , depending on |b− b′|.
In the case m = n/p, we take N such that (6.10) holds. Such a choice is possible if |b− b′| ≤ c2,

where c2 > 0 depends only on p, n, δ1. Then we put r := 2−j/3N .

Step 3 : end of the proof. By combining inequalities (6.8), (6.9) and (6.10), we deduce ‖g‖ ≤ δ1.
Using Lemma 6.3, we obtain

‖∆m
h (f ◦ g)‖p ≤ δ3|h|m ,

for all h ∈ Rn, where δ3 depends only on δ2,m, n, p. Let Q
+ :=]0, 1/2]n and e1 := (1, 0, . . . , 0) ∈ Rn.

By condition (6.3) we have

x+ `rse1 ∈ r(Q+ µ) ⊂ 2−jQ (` = 0, . . . ,m) ,

x+ `rse1 /∈
⋃

µ′∈AN

r(2sQ+ µ′) , (` = 1, . . . ,m) ,

for all x ∈ r(sQ+ + µ); for such x, equalities (6.6) and (6.7), and formula (2.1), imply that∣∣∆m
rse1

(f ◦ g)(x)
∣∣ = |f(b′)− f(b)| .

Hence

δ3 ≥ c3r
−m

(∑
µ∈AN

∫
r(sQ++µ)

∣∣∆m
rse1

(f ◦ g)(x)
∣∣p dx

)1/p

≥ c4|f(b′)− f(b)|Nn/pr(n/p)−m .

By (6.10) we obtain the existence of a constant δ4 such that |f(b′)− f(b)| ≤ δ4|b− b′| for all b, b′ ∈ R
satisfying |b′ − b| ≤ c2. Thus f is uniformly Lipschitz continuous.

Theorem 6.2. Assume that m ≥ 1. Then any function f : R→ R, such that Tf sends Wm
p (Rn) to

itself, is locally Lipschitz continuous on R.
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Proof. Let f : R → R be a function which acts on Wm
p (Rn). Let a ∈ R. We introduce a localized

version of Tf with the help of the following statement :

Lemma 6.4. There exists a nonlinear operator Ua which sends Wm
p (Rn) to itself, such that, for all

g ∈ Wm
p (Rn),

Uag(x) = f(a+ g(x))− f(a) , for all x ∈ Q ,

‖g‖Wm
p (Rn) ≤ δ1 and supp g ⊆ Q ⇒ ‖Uag‖Wm

p (Rn) ≤ δ2 .

The proof is essentially the same as that of Proposition 4.1, see [6, Lemma 1] for details.
Returning to the proof of Theorem 6.2, we argue in the same way as in the proof of Theorem 6.1,

just replacing Tf by Ua. We de�ne g by (6.4), with θj(x) replaced by ρ(2x), s = 1/4 and r = 1/6N .
Inequality (6.9) becomes |b| ≤ δ3, for some constant δ3 depending only on δ1. The double inequality
(6.10) reduces to

δ4

|b− b′|
≤ Nm ≤ δ5

|b− b′|
, (6.11)

where δ4, δ5 depend on δ1 and c1. If |b − b′| ≤ δ4, we can choose N satisfying (6.11). We obtain a
constant δ6 such that

|f(a+ b)− f(a+ b′)| ≤ δ6|b− b′| ,

for b, b′ satisfying |b| ≤ δ3 and |b − b′| ≤ δ4. Thus f is Lipschitz continuous in a neighborhood of
a.

An easy modi�cation of the above proof gives us the following statement :

Proposition 6.1. Let us assume m ≥ 3, and de�ne p1 by :

2− n

p1

:= m− n

p
. (6.12)

Then every function f : R→ R, such that Tf sends Wm
p (Rn) to W 2

p1
(Rn), is locally H�older continuous

of order 2/m.

7 A case of degeneracy: Dahlberg Theorem

As announced in Introduction, Sobolev spaces provide simple examples of spaces for which the answer
to question Q1 is negative.

Theorem 7.1. Assume that m is an integer satisfying

1 +
1

p
< m <

n

p
. (7.1)

Then, for each function f : R → R which acts on Wm
p (Rn) by composition, there exists c ∈ R such

that f(t) = ct for all t ∈ R.

This theorem was �rst proved by B. Dahlberg [9] for smooth functions f . Indeed, we have a
slightly stronger property :

Proposition 7.1. Under condition (7.1), let us de�ne p1 by condition (6.12). Then, for each function
f : R → R such that Tf sends Wm

p (Rn) to W 2
p1

(Rn), there exists c ∈ R such that f(t) = ct for all
t ∈ R.

By Proposition 5.2, we have Wm
p (Rn) ↪→ W 2

p1
(Rn). Thus Theorem 7.1 follows by Proposition 7.1.
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Proof. Step 1. We assume �rst that f is of class C2. Since Wm
p (Rn) does not contain nonzero

constant functions, we have f(0) = 0. By Proposition 4.1, there exist two numbers c1, c2 > 0 such
that, for all g ∈ Wm

p (Rn),

‖g‖Wm
p (Rn) ≤ c1 and supp g ⊆ 2Q ⇒ ‖f ◦ g‖W 2

p1
(Rn) ≤ c2 . (7.2)

De�ne the function u ∈ D(Rn) by
u(x) := x1ρ(x) , (7.3)

where x1 denotes the �rst coordinate of x ∈ Rn. Let a > 0, and 0 < ε ≤ 1 (a number to be
determined with respect to a). Let us de�ne ga ∈ D(Rn) by

ga(x) := au
(x
ε

)
.

Then supp ga ⊂ 2Q, and ‖ga‖Wm
p (Rn) ≤ c1 if

a ε(n/p)−m‖u‖Wm
p (Rn) = c1 . (7.4)

Due to the condition m < n/p, the above equality determines ε as a function of a, if a is su�ciently
large. Hence it holds ‖f ◦ ga‖W 2

p1
(Rn) ≤ c2 for all large numbers a. Since

(f ◦ ga)(x) = f
(a
ε
x1

)
, x ∈ εQ ,

we deduce that (a
ε

)2p1
∫
εQ

∣∣∣f ′′ (a
ε
x1

)∣∣∣p1 dx ≤ cp12 .

By using (7.4) and a change of variable, we obtain a constant c3 > 0 such that

ap1−1

∫ +a/2

−a/2
|f ′′(t)|p1 dt ≤ c3 , (7.5)

for all large numbers a. By the assumption m > 1 + (1/p), we have p1 > 1. If we take a to +∞, we
deduce that ∫ +∞

−∞
|f ′′(t)|p1 dt = 0 .

Hence f ′′(t) = 0 almost everywhere. Since f ′′ is continuous, we conclude that f(t) = ct, for some
constant c.

Step 2. We turn now to the general case. By Theorem 6.2 and Proposition 6.1, we know that
f is continuous. Let ω ∈ D(R), with support in [−1,+1], even, such that

∫
ω(t) dt = 1. Let us

set ωj(t) := jω(jt) for all positive integers j. The convolution ωj ∗ f is de�ned, and it is a smooth
function. Let us de�ne

fj(t) := (ωj ∗ f)(t)− (ωj ∗ f)(0) .

For all function g with support in Q,

(fj ◦ g)(x) = ρ(x)

∫
R

(f((g(x) + t)ρ(x))− f(tρ(x)))ωj(t) dt

for all x ∈ Rn. In other words :

supp g ⊆ Q ⇒ fj ◦ g = ρ

∫
R

(f ◦ ((g + t)ρ)− f ◦ (tρ))ωj(t) dt . (7.6)
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Let M := sup{‖ρ h‖Wm
p (Rn) : ‖h‖Wm

p (Rn) ≤ 1}. Let j0 be the �rst integer such that

j0 ≥ 2c−1
1 ‖ρ‖Wm

p (Rn) .

Let g be such that supp g ⊆ Q and

‖g‖Wm
p (Rn) ≤

c1

2M
.

Then, for all j ≥ j0, and all |t| ≤ 1/j, it holds

‖(g + t)ρ‖Wm
p (Rn) ≤ c1 .

By (7.2), we obtain
‖fj ◦ g‖W 2

p1
(Rn) ≤ 2Mc2

for all j ≥ j0. All together, we have obtained constants c3, c4 > 0 such that

‖g‖Wm
p (Rn) ≤ c3 and supp g ⊆ Q ⇒ ‖fj ◦ g‖W 2

p1
(Rn) ≤ c4 , (7.7)

for all j ≥ j0. Reasoning as in Step 1, we conclude that, for some constants aj, j ≥ j0, we have
fj(t) = ajt for all t ∈ R. Thus we obtain

(ωj ∗ f)(t) = (ωj ∗ f)(0) + ajt

for all t ∈ R. Since f is continuous, we know that limj→+∞(ωj ∗ f)(t) = f(t) for all t ∈ R. Taking
t = 1, we obtain limj→+∞ aj = f(1). We conclude that f(t) = f(1)t for all t ∈ R.

8 Composition operators on W 1
p

First of all, we recall a classical result :

Theorem 8.1. For all f : R→ R, the following properties are equivalent :

(1) f is Lipschitz continuous,

(2) f has a weak derivative in L∞(R),

(3) There exists g ∈ L∞(R) and a constant c ∈ R such that

∀x ∈ R f(x) =

∫ x

0

g(t) dt+ c .

Proof. The implication (3) ⇒ (1) is straightforward. The equivalence (2) ⇔ (3) is easy to prove.
Concerning (1)⇒ (3), we refer to [10, Theorem 7.18] (Alternatively, we can observe that any Lipschitz
continuous function is absolutely continuous, then apply [15, Theorem 8.17]).

Theorem 8.2. Let f : R→ R, such that f(0) = 0. Then f acts on W 1
p (Rn) if and only if

• f is Lipschitz continuous, if W 1
p (Rn) 6⊂ L∞(R),

• f is locally Lipschitz continuous, if W 1
p (Rn) ⊂ L∞(R).

This theorem is due to Marcus and Mizel [12]. Roughly speaking, su�ciency result relies upon
the formula ∂j(f ◦ g) = (f ′ ◦ g)∂jg. In the case W 1

p (Rn) ⊂ L∞(Rn), we just need that f ′ belongs to
L∞ on the range of g. The necessity of the Lipschitz conditions follows by Theorems 6.1 and 6.2.
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9 Full description of acting functions in higher order Sobolev spaces

Let us give a su�cient condition for composition :

Theorem 9.1. Assume that m ≥ max(2, n/p), or m = 2, p = 1. If a function f : R → R satis�es
f(0) = 0 and f ′ ∈ Wm−1

p (R), then f acts on Wm
p (Rn).

Proof. A preliminary remark : under the assumptions of Theorem 9.1, it holds

Wm−1
p (R) ↪→ L∞(R) .

That follows by Proposition 5.3.
Here we restrict ourselves to the case m = 2. The method that we use is typical of the general

case. Also we assume that f is of class Cm, with bounded derivatives up to order m, and that g
is smooth, with derivatives tending to 0 at in�nity; see [4, 5] and [16, 5.2.4, Theorem 2] for the
approximation procedure to cover the general case.

Let g ∈ W 2
p (Rn). We have to prove that the second order derivatives of f ◦ g belongs to Lp(Rn).

It holds
∂j∂k(f ◦ g) = (f ′′ ◦ g)(∂jg)(∂kg) + (f ′ ◦ g)∂j∂kg . (9.1)

The second term belongs to Lp, because f
′ ∈ L∞. Thus we can concentrate on the �rst one. By the

applying Cauchy-Schwarz inequality, we obtain

‖(f ′′ ◦ g)∂jg ∂kg‖p ≤ U
1/2p
j U

1/2p
k , (9.2)

where

Uj :=

∫
Rn
|(f ′′ ◦ g)(x)|p|∂jg(x)|2p dx .

Let us introduce

h(x) :=

∫ +∞

x

|f ′′(t)|p dt .

Then −Uj is equal to∫
Rn

(h′ ◦ g)(x)∂jg(x)∂jg(x)|∂jg(x)|2p−2 dx =

∫
Rn
∂j(h ◦ g)(x) ∂jg(x)|∂jg(x)|2p−2 dx .

An integration by parts gives

Uj = (2p− 1)

∫
Rn

(h ◦ g)(x) ∂2
j g(x)|∂jg(x)|2p−2 dx .

Hence

Uj ≤ (2p− 1)‖f ′′‖pp
∫
Rn
|∂2
j g(x)| |∂jg(x)|2p−2 dx . (9.3)

In case p = 1, the above inequality becomes Uj ≤ ‖f ′′‖1 ‖∂2
j g‖1. That completes the proof of Theorem

in the case m = 2, p = 1.
In case p > 1, we use the H�older inequality to derive

Uj ≤ (2p− 1)‖f ′′‖pp ‖∂2
j g‖p

(∫
Rn
|∂jg(x)|2p dx

)1−(1/p)

.

By Proposition 5.2 and condition 2 ≥ n/p, W 2
p (Rn) ↪→ W 1

2p(Rn). That completes the proof of
Theorem 9.1.
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Remark 6. The above proof shows also that the composition operator is bounded under assumptions
of Theorem 9.1. More precisely, there exist a constant c = c(p, n) > 0 such that

‖f ◦ g‖W 2
p (Rn) ≤ c‖f ′′‖p

(
‖g‖W 2

p (Rn) + ‖g‖2−(1/p)

W 2
p (Rn)

)
. (9.4)

We turn now to the complete description of composition operators. Due to Theorems 7.1 and
8.2, we will consider only the case m ≥ 2, together with the three following subcases :

• m > n/p, or m = n and p = 1.

• m = n/p and p > 1.

• m = 2, p = 1 and n ≥ 3 .

Theorem 9.2. Let m ≥ 2, 1 ≤ p < +∞. If m > n/p, or if m = n and p = 1, then a function
f : R→ R acts on Wm

p (Rn) if and only if f(0) = 0 and f belongs locally to Wm
p (R).

Proof. 1- Assume that f belongs locally to Wm
p (R), and that g ∈ Wm

p (Rn). By Proposition 5.3, g
is bounded. Let ϕ ∈ D(R) such that ϕ(t) = 1 on the range of g. Then f ◦ g = (ϕf) ◦ g. Since
ϕf ∈ Wm

p (R), we can apply Theorem 9.1, and conclude that f ◦ g ∈ Wm
p (Rn).

2- Assume that Tf sends Wm
p (Rn) to itself. By considering f ◦ g, where g ∈ D(Rn) satis�es

g(x) = x1 on an arbitrary ball of Rn, we conclude that f , together with all its derivatives up to order
m, belongs to Lp on each bounded interval of R.

Theorem 9.3. Let m = n/p ≥ 2 and p > 1. Then a function f : R → R acts on Wm
p (Rn) if and

only if f(0) = 0 and f ′ belongs locally uniformly to Wm−1
p (R).

Proof. The su�ciency of the condition on f follows by a modi�cation of the proof of Theorem 9.1,
see [4, 5] or [16, 5.2.4, Theorem 2].

To prove the necessity, we use the same ideas as in the proof of Theorem 6.1. Let f : R→ R be
a function which acts on Wm

p (Rn). We introduce constants δ1, δ2 as in the proof of Theorem 6.1. Let
b be a real number. Let j = j(b) ≥ 1 such that (6.9) holds. Let us consider the function

gb(x) := λu(2jx) + θj(x) b ,

where u is the function introduced in (7.3), and λ is a constant, to be �xed below. By the assumption
m = n/p, it holds ‖u(2j(.))‖ ≤ ‖u‖. Thus, the choice of λ := δ1/2‖u‖ implies ‖gb‖ ≤ δ1. Hence we
have

‖f ◦ gb‖ ≤ δ2 . (9.5)

On the cube 2−jQ, it holds (f ◦ gb)(x) = f(λ2jx1 + b), hence

∂m1 (f ◦ gb)(x) = λm2jmf (m)(λ2jx1 + b) .

Then using (9.5), a change of variable, and condition m = n/p, we �nd a constant δ3 > 0 such that∫ b+(λ/2)

b−(λ/2)

|f (m)(y)|p dy ≤ δ3 ,

for every b ∈ R. Thus we have proved that f (m) belongs to Lp(R) locally uniformly. Since we know
yet that f ′ ∈ L∞, it follows easily that f ′ belongs to Wm−1

p (R) locally uniformly.

Theorem 9.4. If n ≥ 3, then a function f : R → R acts on W 2
1 (Rn) if and only if f(0) = 0 and

f ′′ ∈ L1(R).
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Proof. Su�ciency of f ′′ ∈ L1(R) follows by Theorem 9.1. To prove necessity, we proceed as in the
proof of Theorem 7.1. Then the estimate (7.5) becomes∫ +a/2

−a/2
|f ′′(t)| dt ≤ c3 ,

for all large a. By taking a→ +∞, we obtain f ′′ ∈ L1(R).

10 Continuity of composition on Sobolev spaces

The more precise versions of Theorems 9.1, 9.2, 9.3 show that all the composition operators which
send Wm

p (Rn) to itself are bounded. They are also continuous, according to the following :

Theorem 10.1. Let m be an integer ≥ 1, 1 ≤ p <∞, and let f : R→ R. If f acts by composition
on Wm

p (Rn), then the composition operator Tf is continuous from Wm
p (Rn) to itself.

This theorem was proved step by step between 1976 and 2019 :

• for m = 1 and p = 2, by Ancona [2],

• for m = 1 and any p, by Marcus and Mizel [13],

• for m > n/p and 1 < p <∞, by Lanza de Cristoforis and the author [6],

• in the general case by Moussai and the author [7], who proved also this �automatic� continuity
on the so-called Adams-Frazier spaces Wm

p ∩ Ẇ 1
mp(Rn), where Ẇ denotes the homogeneous

Sobolev space, and on the spaces Ẇm
p ∩ Ẇ 1

mp(Rn), conveniently realized.
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1 Introduction

The problem considered here is a linear version of the inverse potential problem, considered in [8].
The paper provides a solution to the problem of restoring the shape of the Newtonian potential
density carrier for bodies of constant thickness belonging to the Sretensky class, de�ned in [9], which
ensures the uniqueness of the solution of the inverse potential problem. In [9], the uniqueness of
the inverse potential problem is proved for bounded homogeneous bodies having a common secant
plane, such that every line perpendicular to it intersects the body at no more than two points lying
on di�erent sides of this plane. The problem is formulated in the framework of the odd-periodic
model [4], which allows us to obtain a solution in the form of a Fourier series, which is essential
for the application of numerical methods for solving the problem. The error of the periodic model
with respect to the non-periodic one is studied in [5]. In the problem considered in this paper,
information about the potential is given in the form of a potential �eld on a surface of a general
form. Both the �eld and the surface are given approximately. The idea of the method in [6] is the
basis for constructing a solution to the problem. The problem in this case, including for bounded
bodies of constant thickness with variable density, is reduced to a linear integral equation of the �rst
kind, the approximate solution of which, stable with respect to the error in data on the potential
and the surface, is constructed on the basis of the Tikhonov regularization method [10], [11]. As an
approximate solution, we consider the extremal of the Tikhonov functional, obtained as a solution of
the Euler equation for this functional. The approximate solution is obtained in the form of a Fourier
series with a regularizing factor. The convergence theorem of the approximate solution to the exact
one is proved. The linear problem of reconstructing the distribution density function of sources with
an in�nitely thin carrier in the model of a heat-conducting body with convective heat exchange at
the boundary, solved in [1], is closely related to the problem considered here.
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2 Problem statement

In an in�nite cylinder of rectangular cross-section

D∞ = {(x, y, z) : 0 < x < lx, 0 < y < ly,−∞ < z <∞} ⊂ R3 (2.1)

we consider the following model for the Newtonian potential

∆v(M) = −4πρ(M), M ∈ D∞,
v|x=0,lx = 0, v|y=0,ly = 0,
v → 0 when z → ±∞.

(2.2)

We assume that the support of the density ρ is located in the domain z > H > 0 in the cylinder D∞.
Let ϕ(M,P ) be the source function of problem (2.2) in the domain D∞ of form (2.1). The

function ϕ(M,P ) can be obtained as a series

ϕ(M,P ) =
2

lxly

∞∑
n,m=1

e−knm|zP−zM |

knm
sin

πnxP
lx

sin
πmyP
ly

sin
πnxM
lx

sin
πmyM
ly

, (2.3)

where

knm =

√(πn
lx

)2

+
(πm
ly

)2

.

If zP > H, series (2.3) converges uniformly with respect to the variable M in the domain

D(−∞, H − ε) = {(x, y, z) : 0 < x < lx, 0 < y < ly,−∞ < z < H − ε}, ε > 0. (2.4)

In the domain of D(−∞, H − ε) the solution of problem (2.2) can be represented as

v(M) = 4π

∫
suppϕ

ρ(P )ϕ(M,P )dVP =
8π

lxly

∫
suppϕ

dVPρ(P )
∞∑

n,m=1

e−knm(zP−zM )

knm

× sin(
πnxP
lx

) sin(
πmyP
ly

) sin(
πnxM
lx

) sin(
πmyM
ly

). (2.5)

It can be shown [4] that such a potential corresponds to a Newtonian potential with an odd-periodic
source distribution function ρ in R3.

In the domain of D(−∞, H − ε) the �eld of potential (2.5) has the form

E(M) = iEx + jEy + kEz = −∇v(M) = − 8π

lxly

∫
suppϕ

dVPρ(P )

×
∞∑

n,m=1

e−knm(zP−zM ) sin
πnxP
lx

sin
πmyP
ly

(
i
πn

lxknm
cos

πnxM
lx

sin
πmyM
ly

+ j
πm

lyknm
sin

πnxM
lx

cos
πmyM
ly

+ k sin
πnxM
lx

sin
πmyM
ly

)
. (2.6)

Thus, within the framework of model (2.2), if the density ρ is given, then the potential of density ρ
and the potential �eld can be calculated using formulas (2.5) and (2.6), respectively.

Let us formulate the inverse problem. We assume that the source density ρ in problem (2.2)
corresponds to a body of constant thickness h, located on the plane z = H:

ρ(x, y, z) = σ(x, y)θ(z −H)θ(H + h− z), (2.7)
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where θ(z) is the Heaviside function. According to (2.7), we consider the source distribution density
functions as constants along the z axis and variables in the (x, y) plane inside the density carrier.

THE INVERSE PROBLEM. Let in the framework of model (2.2) on the surface

S = {(x, y, z) : 0 < x < lx, 0 < y < ly, z = F (x, y) < H}, F ∈ C2(Π), (2.8)

Π = {(x, y) : 0 < x < lx, 0 < y < ly, } . (2.9)

the �eld E of form (2.6) of potential (2.5) be given as a vector function E0:

E|S = E0, (2.10)

and the density ρ of form (2.7) is unknown. Let us set the problem of restoring the function ρ of
form (2.7) for the �eld E0 given on S. Assuming that the parameters H and h are known, in fact,
the inverse problem consists in reconstructing the function σ(x, y) in (2.7) for the known function
E0 on the surface S.

3 Reducing the inverse problem to an integral equation in the case of a
�at surface S

Let us consider the z−component of a �eld (2.6) with a density (2.7) in the domain D(−∞, H − ε)
of form (2.4). The value of ε is arbitrarily small and can be chosen so that the surface S of form
(2.8) is located in the domain D(−∞, H − ε), that is, ε < H −max

(x,y)
F (x, y).

Given formula (2.7) for the density ρ, and also given that zM < zP − ε if M ∈ D(−∞, H − ε),
for the component Ez of �eld (2.6), we obtain

Ez(M) = − 8π

lxly

lx∫
0

ly∫
0

σ(xP , yP )

H+h∫
H

dzP

∞∑
n,m=1

e−knm(zP−zM )

× sin
πnxP
lx

sin
πmyP
ly

sin
πnxM
lx

sin
πmyM
ly

dxPdyP

=
16π

lxly

lx∫
0

ly∫
0

∞∑
n,m=1

e−knm(H+h
2
−zM ) sh knm

h
2

knm
sin

πnxM
lx

sin
πmyM
ly

× σ(x, y) sin
πnx

lx
sin

πmy

ly
dxdy =

lx∫
0

ly∫
0

Kz(xM , yM , zM , x, y)σ(x, y)dxdy, (3.1)

where

Kz(xM , yM , zM , x, y) =
16π

lxly

∞∑
n,m=1

e−knm(H+h
2
−zM ) sh knm

h
2

knm

× sin
πnxM
lx

sin
πmyM
ly

sin
πnx

lx
sin

πmy

ly
, knm =

√(πn
lx

)2

+
(πm
ly

)2

. (3.2)

So, if the function σ in (2.7) is known, then we obtain the component of the �eld Ez in form (3.1).
If now, in accordance with the inverse problem, the �eld E, or only its component Ez on a �at

surface (2.8) when F (x, y) ≡ a < H, is known, i.e. according to (2.10)

Ez
∣∣
z=a

= E0
z ,
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from (3.1) we obtain an integral equation of the �rst kind, linear with respect to the desired function
σ:

lx∫
0

ly∫
0

K(xM , yM , x, y)σ(x, y)dxdy = E0
z (xM , yM), (xM , yM) ∈ Π, (3.3)

where the kernel of the integral operator according to representation (3.2) has the form

K(xM , yM , x, y) = Kz(xM , yM , a, x, y)

=
16π

lxly

∞∑
n,m=1

e−knm(H+h
2
−a) sh knm

h
2

knm
sin

πnxM
lx

sin
πmyM
ly

sin
πnx

lx
sin

πmy

ly
. (3.4)

We shall now obtain an equation similar to (3.3) in the case when the surface S has form (2.8)
with the function F of general form.

4 Reducing the inverse problem to an integral equation in the case of a
surface S of general form

We note that the z-component, like every component of �eld (2.6) of potential (2.5), is a harmonic
function in the domain D(−∞, H). It also follows from (2.6) that the component Ez satis�es the
conditions

Ez|x=0,lx = 0 Ez|y=0,ly = 0,
Ez → 0 when z → −∞.

Taking into account condition (2.10) of the inverse problem for Ez of form (2.6), we obtain the
problem

∆Ez(M) = 0, M ∈ D(−∞, H),
Ez|S = E0

z ,
Ez|x=0,lx = 0 Ez|y=0,ly = 0,
Ez → 0 when z → −∞.

(4.1)

If E0
z is z-component of �eld (2.6) on the surface S of form (2.8), then problem (4.1) is the Dirichlet

problem in the domain

D(−∞, F ) = {(x, y, z) : 0 < x < lx, 0 < y < ly,−∞ < z < F (x, y)} (4.2)

which has an unique solution, represented with formula (2.6).

From condition (2.10) of the inverse problem for �eld (2.6), an additional condition for the normal
derivative on the surface S can be obtained. Indeed, �eld (2.6) is potential, and in the domain
D(−∞, H) satis�es the equations

rotE(M) = 0, M ∈ D(−∞, H),
divE(M) = 0.

For the normal derivative of the component Ez on the surface S of form (2.8), given by the
equation z = F (x, y) < H, we obtain

n1
∂Ez
∂n

∣∣∣
S

= (n1,∇Ez)
∣∣
S

= (
∂Ez
∂x

F ′x +
∂Ez
∂y

F ′y −
∂Ez
∂z

)
∣∣∣
S
,



On a linear inverse potential problem 59

where n1 = (F ′x, F
′
y,−1) is the inner normal with respect to the domain D(−∞, F ) of form (4.2).

Then, extracting from the equation divE = 0, valid at the points of the surface S ⊂ D(−∞, H), the
derivative with respect to the variable z, we obtain

n1
∂Ez
∂n

∣∣∣
S

= (n1,∇Ez)
∣∣
S

= (
∂Ez
∂x

F ′x +
∂Ez
∂y

F ′y +
∂Ex
∂x

+
∂Ey
∂y

)
∣∣∣
S
. (4.3)

Using the equations rotE = 0 at the points of the surface S ⊂ D(−∞, H), namely

∂Ez
∂x

∣∣∣
S

=
∂Ex
∂z

∣∣∣
S
,

∂Ez
∂y

∣∣∣
S

=
∂Ey
∂z

∣∣∣
S
,

from (4.3) we obtain

n1
∂Ez
∂n

∣∣∣
S

= (
∂Ex
∂z

F ′x +
∂Ey
∂z

F ′y +
∂Ex
∂x

+
∂Ey
∂y

)
∣∣∣
S
. (4.4)

We shall consider the �eld E0 in (2.10), given on S, as a function of the variables x and y on the
rectangle Π of form (2.9). Di�erentiating the components of the �eld E0 by the arguments x and y,
we obtain

∂

∂x
E0
x =

∂

∂x
Ex(x, y, F (x, y)) = (

∂Ex
∂x

+
∂Ex
∂z

F ′x)
∣∣∣
S
,

∂

∂y
E0
y =

∂

∂y
Ey(x, y, F (x, y)) = (

∂Ey
∂y

+
∂Ey
∂z

F ′y)
∣∣∣
S
.

Substituting these derivatives in (4.4), we obtain the expression for the normal derivative in terms
of the derivatives of the components of the vector E0:

n1
∂Ez
∂n

∣∣∣
S

= (
∂Ex
∂x

+
∂Ex
∂z

F ′x +
∂Ey
∂y

+
∂Ey
∂z

F ′y)
∣∣∣
S

=
∂

∂x
E0
x +

∂

∂y
E0
y . (4.5)

If we add condition (4.5) to (4.1), then the component Ez of �eld (2.6) in the domain D(−∞, F ) ⊂
D(−∞, H) of form (4.2) is a solution of the problem

∆Ez(M) = 0, M ∈ D(−∞, F ),
Ez|S = E0

z ,
∂Ez
∂n
|S =

1

n1

(∂E0
x

∂x
+
∂E0

y

∂y

)
, n1 = (Fx, Fy,−1),

Ez|x=0,lx = 0, Ez|y=0,ly = 0,
Ez → 0 ïðè z → −∞,

(4.6)

where the vector E0 = (E0
x, E

0
y , E

0
z ) is �eld (2.10) in the formulation of the inverse problem.

We shall show now that, following the scheme in [6], the inverse problem can be reduced to an
integral equation.

The source function ϕ(M,P ) of problem (2.2) can be represented as the sum of the fundamental
solution and the function W (M,P ), harmonic in P :

ϕ(M,P ) =
1

4πrMP

+W (M,P ), (4.7)

where rMP is the distance between points M and P . Let us put the point M in the domain

D(R,F ) = {(x, y, z) : 0 < x < lx, 0 < y < ly, R < z < F (x, y), R = Const < 0}
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and apply Green formula in the domain D(R,F ) to the solution of problem (4.6) Ez(P ) and to
functions (4πrMP )−1 and W (M,P ). Then we obtain

Ez(M) =

∫
∂D(R,F )

[∂Ez
∂n

(P )
1

4πrMP

− Ez(P )
∂

∂nP

1

4πrMP

(M,P )
]
dσP , M ∈ D(R,F ) (4.8)

and

0 =

∫
∂D(R,F )

[∂Ez
∂n

(P )W (M,P )− Ez(P )
∂W

∂nP
(M,P )

]
dσP , M ∈ D(R,F ) (4.9)

Here the normal is external to the domain D(R,F ). Summing (4.8) and (4.9) and taking into account
(4.7), we obtain

Ez(M) =

∫
∂D(R,F )

[∂Ez
∂n

(P )ϕ(M,P )− Ez(P )
∂ϕ

∂nP
(M,P )

]
dσP , M ∈ D(R,F ).

Given the boundary conditions for Ez and ϕ in problems (4.6) and (2.2), as well as replacing the
external normal with the internal one, we obtain the representation of the component of the �eld Ez
as the sum of the surface integrals

Ez(M) =

∫
S

[
− 1

n1

(∂E0
x

∂x
(P ) +

∂E0
y

∂y
(P )
)
ϕ(M,P ) + E0

z (P )
∂ϕ

∂nP
(M,P )

]
dσP

−
∫

Π(R)

[∂Ez
∂nP

(P )ϕ(M,P )− Ez(P )
∂ϕ

∂nP
(M,P )

]
dσP , M ∈ D(R,F ), (4.10)

where the rectangle Π(R) has the form

Π(R) = {(x, y, z) : 0 < x < lx, 0 < y < ly, z = R} , R < min
(x,y)

F (x, y). (4.11)

The integral over the rectangle Π(R), due to the representation of �eld (2.6) and the representation
of the source function for a �xed point zM > zP = R in accordance with (2.3)

ϕ(M,P ) =
2

πlxly

∞∑
n,m=1

e−knm(zM−R)

knm
sin

πnxM
lx

sin
πmyM
ly

sin
πnxP
lx

sin
πmyP
ly

,

converges to zero when R→ −∞.

The integral over the surface S in (4.10) is reduced to the integral with respect to the variables xP

and yP , given that
∂ϕ

∂n
(M,P ) = (n,∇Pϕ(M,P )), n =

n1

n1

, n1 = (F ′x, F
′
y,−1), and dσP = n1dxPdyP ,

Ez(M) =

lx∫
0

ly∫
0

[
−
(∂E0

x

∂xP
(xP , yP ) +

∂E0
y

∂yP
(xP , yP )

)
ϕ(M,P )

+ E0
z (xP , yP )(n1,∇Pϕ(M,P ))

]
P∈S

dxPdyP .
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Integrating by parts, taking into account the boundary conditions for ϕ, we obtain

Ez(M) =

lx∫
0

ly∫
0

[
E0
x(xP , yP )

∂

∂xP
ϕ(M,P )

∣∣
P∈S + E0

y(xP , yP )
∂

∂yP
ϕ(M,P )

∣∣
P∈S

+ E0
z (xP , yP )(n1,∇Pϕ(M,P ))

∣∣
P∈S

]
dxPdyP . (4.12)

Let us introduce the notation

Φ(xM , yM) = Ez(M)
∣∣
zM=a

, a < min
(x,y)

F (x, y), (4.13)

where Ez is the function of form (4.12). Since the �eld E0 is given, Φ is a known function, and the
source function ϕ(M,P ) for M ∈ Π(a) of form (4.11) where z = a and P ∈ S of form (2.8) can be
represented as an uniformly convergent series (2.3).

On the other hand, since Ez of form (4.12) is a component of �eld (2.6) of the potential, integral
representation (3.1) is valid for Ez. Then, from integral representation (3.1) in order to determine
the unknown density of σ, we obtain the Fredholm integral equation of the �rst kind with respect to
the desired function σ, similar to (3.3)

lx∫
0

ly∫
0

K(xM , yM , x, y)σ(x, y)dxdy = Φ(xM , yM), (xM , yM) ∈ Π. (4.14)

where the kernel of the integral operator has form (3.4) and the rectangle Π has form (2.9).

5 Exact solution of the inverse problem

When solving the inverse potential problem, we assume that the �eld E0 in (2.10) is �eld (2.6) on
surface (2.8), so the solution of equation (4.14) exists in L2(Π). Since the system of eigenfunctions
of the Dirichlet problem for the Laplace equation in the rectangle Π{

sin
πnx

lx

}
·
{

sin
πmy

ly

}∣∣∣n,m=∞

n,m=1

is complete, the kernel of integral equation (4.14) is closed and the equation has an unique solution.
The solution of integral equation (4.14) can be obtained as a Fourier series

σ(x, y) =
∞∑

n,m=1

σ̃nm sin
πnx

lx
sin

πmy

ly
=

∞∑
n,m=1

Φ̃nmKnm sin
πnx

lx
sin

πmy

ly
, (5.1)

where Φ̃nm are the Fourier coe�cients

Φ̃nm =
4

lxly

lx∫
0

ly∫
0

Φ(x, y) sin
πnx

lx
sin

πmy

ly
dxdy (5.2)

of the function Φ of form (4.13), and

Knm = eknm(H+h
2
−a) knm

4π sh knm
h
2

, knm =

√(πn
lx

)2

+
(πm
ly

)2

. (5.3)
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Since, when solving equation (4.14), we consider that the function Φ of form (4.13) corresponds
to the density σ of form (2.7), the coe�cients Φ̃nm(a) = σnm/Knm decrease faster than the value
eknm(H−a)knm increases and series (5.1) converges to σ in L2(Π).

In the case when σ(M) = σ0χD(M), where χD(M) is the characteristic function of some domain
D ⊂ Π and σ0 is a known constant, the solution of the inverse problem is reduced to �nding the
support D of the source density function. To do this, we can use the formula

D = {(x, y) ∈ Π :
1

σ0

σ(x, y) > λ = Const, 0 < λ < 1}. (5.4)

As it is known [10, 11], the Fredholm equation of the �rst kind is an ill-posed problem. Its
approximate solution is unstable with respect to the error of the right part and requires the use of
regularizing algorithms. Let us construct an approximate right-hand side of the integral equation in
the case of an inaccurate data on the �eld E0 and the surface S and estimate its error.

6 Approximate calculation of the normal to an inaccurately de�ned sur-
face

As follows from (4.13), (4.12), when forming the right-hand side of integral equation (4.14), it is
necessary to calculate the vector function of the normal n1 to the surface S of form (2.8), which is
the gradient of the function F (x, y)− z,

n1 = grad (F (x, y)− z) = ∇xyF − k. (6.1)

Let the surface S is given with an error, namely, instead of the exact function F in (2.8), the
function F µ is known, given on a rectangle Π of form (2.9), such that

‖F µ − F‖L2(Π) 6 µ. (6.2)

For the approximate calculation of integral (4.12), it is necessary to calculate the normal to the
surface given approximately, which is also an ill-posed problem, since the calculation of the normal
n1 is associated with the calculation of the derivatives of the function F.

To obtain a stable solution to this problem, we use the approach of [7], that is, we consider the
problem of calculating the gradient of a function as the problem of calculating values of an unbounded
operator [2].

As an approximation to the function ∇xyF in (6.1) calculated from the known function F µ,
associated with the function F by condition (6.2), we consider the gradient of the extremal of the
functional

Nβ
[
W
]

=
wwwW − F µ

www2

L2(Π)
+ β

www∇Wwww2

L2(Π)
, β > 0. (6.3)

For simplicity of calculating the extremal, we consider such surfaces S, for which

F |x=0,lx = 0, F |y=0,ly = 0.

This condition, in particular, occurs in the case when S can be considered as a perturbation of the
plane z = 0. Then the extremal of functional (6.3) is the solution of the following problem for the
Euler equation

−β∆W +W = F µ,
W |x=0,lx = 0, W |y=0,ly = 0.
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The solution of this problem is

W µ
β (x, y) =

∞∑
n,m=1

F̃ µ
nm

1 + βk2
nm

sin
πnx

lx
sin

πmy

ly
, (6.4)

where the Fourier coe�cients F̃ µ
nm are calculated by formulas of form (5.2) and knm has form (5.3).

It is easy to see that series (6.4) converges uniformly on Π.
As an approximate value of the gradient of the function F µ, we consider the vector function

∇xyW
µ
β (x, y) =

∞∑
n,m=1

F̃ µ
nm

1 + βk2
nm

×
(
i
πn

lx
cos

πnx

lx
sin

πmy

ly
+ j

πm

ly
cos

πmy

ly
sin

πnx

lx

)
.

(6.5)

Series (6.5) converges in L2(Π).
Let F− be an odd-periodic continuation of the function F, given on the rectangle Π of form (2.9),

with a period of 2lx for the variable x and with a period of 2ly for the variable y, i.e.

F−(x, y) = F (x, y), (x, y) ∈ Π,
F−(−x, y) = −F (x, y), (x, y) ∈ Π,
F−(x,−y) = −F (x, y), (x, y) ∈ Π,
F−(−x,−y) = F (x, y), (x, y) ∈ Π,
F−(x+ 2lxn, y + 2lym) = F−(x, y), (x, y) ∈ R2, n,m = ±1,±2, ....

Theorem 6.1. [7] Let F− ∈ C2(R2), β = β(µ) > 0, β(µ)→ 0 and µ/
√
β(µ)→ 0 when µ→ 0.

Then ww∇xyW
µ
β(µ) −∇xyF

ww
L2(Π)

6
µ

2
√
β

+

√
β

2

ww∆F
ww
L2(Π)

→ 0 when µ→ 0.

Based on the theorem, we can use formula (6.5) to approximate the normal to the surface using
formula (6.1):

nµ1,β = ∇xyW
µ
β − k. (6.6)

With a known estimate ww∆F
ww
L2(Π)

6M,

it follows from the statement of the theorem thatwwnµ1,β − n1

ww
L2(Π)

=
ww∇xyW

µ
β −∇xyF

ww
L2(Π)

6
µ

2
√
β

+

√
β

2
M.

The maximum for the β expression on the right is achieved when

β(µ) =
µ

M
(6.7)

and, thus denoting in accordance with (6.6) and (6.7)

nµ1 = nµ1,β(µ) = ∇xyW
µ
β(µ) − k, (6.8)

we shall obtain: wwnµ1 − n1

ww
L2(Π)

6
√
Mµ −−→

µ→0
0. (6.9)

It is also not di�cult to obtain the estimatewwW µ
β(µ) − F

ww
L2(Π)

6 2µ. (6.10)

The surface de�ned by the equation z = W µ
β(µ)(x, y), we denote as

Sµ = {(x, y, z) : 0 < x < lx, 0 < y < ly, z = W µ
β(µ)(x, y)}. (6.11)
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7 Solution of the inverse problem in the case of an approximately given
�eld E0 on an approximately given surface

Let instead of the exact vector function E0 in condition (2.10) of the inverse problem, the function
E0,δ = (E0,δ

x , E0,δ
y , E0,δ

z ) is known, given as a function on the rectangle Π of form (2.9), such that

‖E0,δ − E0‖L2(Π) 6 δ. (7.1)

In this case, we assume that the surface S of form (2.8) is given approximately by condition (6.2).
We assume that we also know that

a1 < F (x, y) < a2. (7.2)

In this case using the results of the previous paragraph, the right part Φ(M) of form (4.13) in integral
equation (4.14) will be calculated approximately on a rectangle

Π(a) = {(x, y, z) : 0 < x < lx, 0 < y < ly, z = a} , a < min
(x,y)

W µ
β(µ)(x, y), a < a1 (7.3)

in accordance with formula (4.12) and (4.13) as a function

Eδ,µ
z (M) =

lx∫
0

ly∫
0

[E0,δ
x (xP , yP )

∂

∂xP
ϕ(M,P )|P∈Sµ + E0,δ

y (xP , yP )
∂

∂yP
ϕ(M,P )|P∈Sµ

+ E0,δ
z (xP , yP )(nµ1 ,∇Pϕ(M,P ))|P∈Sµ ]dxPdyP , M ∈ Π(a), (7.4)

where the surface Sµ has form (6.11), the approximate normal nµ1 is calculated by formula (6.8) and
the function

ϕ(M,P ) =
2

lxly

∞∑
n,m=1

e−knm(zP−a)

knm
sin

πnxM
lx

sin
πmyM
ly

sin
πnxP
lx

sin
πmyP
ly

is source function (2.3) of problem (2.2).
Let us estimate the error in calculating the function Eδ,µ

z of form (7.4) with respect to the function
Ez of form (4.12) on the rectangle Π(a) � the right-hand side of integral equation (4.14), i.e. we
estimate the di�erenceEδ,µ

z (M)− Ez(M)
 6 Eδ,µ

z (M)− Eδ,µ,1
z (M)

+
Eδ,µ,1

z (M)− Eδ
z(M)


+
Eδ

z(M)− Ez(M)
, M ∈ Π(a). (7.5)

where Π(a) has form (7.3). In this estimate the function Eδ,µ,1
z of form (7.4) is introduced, where

formally the approximate normal nµ1 is replaced by the exact normal n1 (note that n1(xP , yP )|P∈Sµ =
n1(xP , yP )|P∈S):

Eδ,µ,1
z (M) =

lx∫
0

ly∫
0

[E0,δ
x (xP , yP )

∂

∂xP
ϕ(M,P )|P∈Sµ + E0,δ

y (xP , yP )
∂

∂yP
ϕ(M,P )|P∈Sµ

+ E0,δ
z (xP , yP )(n1,∇Pϕ(M,P ))|P∈Sµ ]dxPdyP , n1 = (F

′

x, F
′

y,−1), (7.6)
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and is also introduced the function Eδ
z of form (7.4), which is calculated on an exactly speci�ed

surface

Eδ
z(M) =

lx∫
0

ly∫
0

[E0,δ
x (xP , yP )

∂

∂xP
ϕ(M,P )|P∈S + E0,δ

y (xP , yP )
∂

∂yP
ϕ(M,P )|P∈S

+ E0,δ
z (xP , yP )(n1,∇Pϕ(M,P ))|P∈S]dxPdyP , n1 = (F

′

x, F
′

y,−1). (7.7)

Let us estimate the di�erence between functions (7.4) and (7.6) in the right-hand side of inequality
(7.5):Eδ,µ

z (M)− Eδ,µ,1
z (M)


M∈Π(a)

=
∣∣∣ lx∫

0

ly∫
0

E0,δ
z (xP , yP )((nµ1 − n1),∇Pϕ(M,P ))|P∈SµdxPdyP

∣∣∣
6

lx∫
0

ly∫
0

[E0,δ
z (xP , yP )

 · nµ1(P )− n1(P )
 · ∇Pϕ(M,P )

]
P∈Sµ

dxPdyP

6 max
M∈Π(a)
P∈Sµ

∇Pϕ(M,P )
 lx∫

0

ly∫
0

E0,δ
z (xP , yP )

 · nµ1(P )− n1(P )

P∈SµdxPdyP .

Using the Cauchy-Bunyakovsky inequality, estimate (6.9) and estimate ‖E0,δ
z ‖ 6 ‖E0‖ + δ,

we obtainEδ,µ
z (M)− Eδ,µ,1

z (M)

M∈Π(a)

= max
M∈Π(a)
P∈Sµ

∇Pϕ(M,P )
‖E0,δ

z ‖ · ‖n
µ
1 − n1‖

6 max
M∈Π(a)
P∈Sµ

∇Pϕ(M,P )
(‖E0‖+ δ) ·

√
Mµ 6 C1

√
µ. (7.8)

Let us estimate the di�erence between functions (7.6) and (7.7) in the right-hand side of inequality
(7.5) using the Lagrange formulaEδ,µ,1

z (M)− Eδ
z(M)


M∈Π(a)

=
 lx∫

0

ly∫
0

[
E0,δ
x (xP , yP )

( ∂

∂xP
ϕ(M,P )|P∈Sµ −

∂

∂xP
ϕ(M,P )|P∈S

)
+ E0,δ

y (xP , yP )
( ∂

∂yP
ϕ(M,P )|P∈Sµ −

∂

∂yP
ϕ(M,P )|P∈S

)
+ E0,δ

z (xP , yP )
(
n1,∇Pϕ(M,P )|P∈Sµ −∇Pϕ(M,P )|P∈S

)]
dxPdyP


=
 lx∫

0

ly∫
0

[
E0,δ
x (xP , yP )

( ∂2

∂xP zP
ϕ(M,P1)(zP

∣∣
P∈Sµ − zP

∣∣
P∈S)

)
+ E0,δ

y (xP , yP )
( ∂2

∂yP zP
ϕ(M,P2)(zP

∣∣
P∈Sµ − zP

∣∣
P∈S)

)
+ E0,δ

z (xP , yP )
(
n1,

∂

∂zP
∇Pϕ(M,P3)

)
(zP
∣∣
P∈Sµ − zP

∣∣
P∈S)

]
dxPdyP

, M ∈ Π(a).
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Since according to (6.11) zP
∣∣
P∈Sµ = W µ

β(µ)(xP , yP ) and zP
∣∣
P∈S = F (xP , yP ), we obtain

Eδ,µ,1
z (M)− Eδ

z(M)

M∈Π(a)

=
 lx∫

0

ly∫
0

[
E0,δ
x (xP , yP )

( ∂2

∂xP zP
ϕ(M,P1)(W µ

β(µ)(xP , yP )− F (xP , yP ))
)

+ E0,δ
y (xP , yP )

( ∂2

∂yP zP
ϕ(M,P2)(W µ

β(µ)(xP , yP )− F (xP , yP ))
)

+ E0,δ
z (xP , yP )

(
n1,

∂

∂zP
∇Pϕ(M,P3)

)
(W µ

β(µ)(xP , yP )− F (xP , yP ))
]
dxPdyP

. (7.9)

We introduce the following notation using (7.2)

z1(xP , yP ) = min{W µ
β(µ)(xP , yP ), a1},

z2(xP , yP ) = max{W µ
β(µ)(xP , yP ), a2}.

(7.10)

Now from (7.9) using (7.10) we obtain

Eδ,µ,1
z (M)− Eδ

z(M)

M∈Π(a)

6 max
M∈Π(a)

P :z1<zP<z2

 ∂2

∂xP zP
ϕ(M,P )

 lx∫
0

ly∫
0

|E0,δ
x (x, y)

 · W µ
β(µ)(x, y)− F (x, y)

dxdy
+ max

M∈Π(a)
P :z1<zP<z2

 ∂2

∂yP zP
ϕ(M,P )

 lx∫
0

ly∫
0

|E0,δ
y (x, y)| ·

W µ
β(µ)(x, y)− F (x, y)

dxdy
+ max

M∈Π(a)
P :z1<zP<z2

(n1,
∂

∂zP
∇Pϕ(M,P )

) lx∫
0

ly∫
0

|E0,δ
z (x, y)| ·

W µ
β(µ)(x, y)− F (x, y)

dxdy.
Applying the Cauchy-Bunyakovsky inequality, assuming that δ < δ0, and using the estimate (6.10),
we obtain

Eδ,µ,1
z (M)− Eδ

z(M)

M∈Π(a)

= max
M∈Π(a)

P :z1<zP<z2

 ∂2

∂xP zP
ϕ(M,P )

‖E0,δ
x ‖ · ‖W

µ
β(µ) − F‖

+ max
M∈Π(a)

P :z1<zP<z2

 ∂2

∂yP zP
ϕ(M,P )

‖E0,δ
y ‖ · ‖W

µ
β(µ) − F‖

+ max
M∈Π(a)

P :z1<zP<z2

(n1,
∂

∂zP
∇Pϕ(M,P )

)‖E0,δ
z ‖ · ‖W

µ
β(µ) − F‖

6 C‖E0,δ‖µ 6 C(‖E0‖) + δ)µ 6 C2µ. (7.11)

Let us estimate the di�erence between functions (7.7) and (4.12) in the right-hand side of in-



On a linear inverse potential problem 67

equality (7.5):

Eδ
z(M)− Ez(M)


M∈Π(a)

=
 lx∫

0

ly∫
0

[(
E0,δ
x (xP , yP )− E0

x(xP , yP )
)( ∂

∂xP
ϕ(M,P )|P∈S

)
+
(
E0,δ
y (xP , yP )− E0

y(xP , yP )
)( ∂

∂yP
ϕ(M,P )|P∈S

)
+
(
E0,δ
z (xP , yP )− E0

z (xP , yP )
)(
n1,∇Pϕ(M,P )

)
P∈S

]
dxPdyP

.
Using the Cauchy-Bunyakovsky inequality, as well as (7.1), we obtain from here

Eδ
z(M)− Ez(M)

 = max
M∈Π(a)
P∈S

 ∂

∂xP
ϕ(M,P )|P∈S

 lx∫
0

ly∫
0

|E0,δ
x (x, y)− E0

x(x, y)|dxdy

+ max
M∈Π(a)
P∈S

 ∂

∂yP
ϕ(M,P )|P∈S

 lx∫
0

ly∫
0

|E0,δ
y (x, y)− E0

y(x, y)|dxdy

+ max
M∈Π(a)
P∈S

(n1,∇Pϕ(M,P ))P∈S

 lx∫
0

ly∫
0

|E0,δ
z (x, y)− E0

z (x, y)|dxdy

6 C3‖E0,δ − E0‖ 6 C3δ, M ∈ Π(a). (7.12)

Collecting estimates (7.8), (7.11), (7.12) and assuming that µ < µ0, from (7.5) we obtainEδ,µ
z (M)− Ez(M)


M∈Π(a)

6 C1
√
µ+ C2µ+ C3δ 6 C4

√
µ+ C3δ. (7.13)

Denoting, similarly to (4.13), the approximate right-hand side of integral equation (4.14)

Φδ,µ(xM , yM) = Eδ,µ
z (M)

∣∣
M∈Π(a)

, (7.14)

from (7.13) we obtain an estimate in L2 of the error of the approximate right-hand side of integral
equation (4.14) ∥∥Φδ,µ − Φ

∥∥
L2(Π)

6 C4
√
µ+ C3δ = γ(µ, δ) −−→

µ→0
δ→0

0, (7.15)

where C4, C3 are some constants.
Let us now construct an approximate solution of integral equation (4.14) with right-hand side

(7.14) by the Tikhonov regularization method [10, 11]. As an approximate solution, we consider the
extremal of the Tikhonov functional

M [w] =
∥∥Kw − Φδ,µ

∥∥2

L2(Π)
+ α ‖w‖2

L2(Π) , α > 0, (7.16)

where K is the integral operator in (4.14). The extremal σδ,µα can be obtained as a solution of the
Euler equation

K∗Kw + αw = K∗Φδ,µ

for functional (7.16) and has the form

σδ,µα (x, y) =
∞∑

n,m=1

Φ̃δ,µ
nmKnm

1 + αK2
nm

sin
πnx

lx
sin

πmy

ly
, α > 0. (7.17)
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Here Φ̃δ,µ
nm are the Fourier coe�cients

Φ̃δ,µ
nm =

4

lxly

lx∫
0

ly∫
0

Φδ,µ(x, y) sin
πnx

lx
sin

πmy

ly
dxdy (7.18)

of the function Φδ,µ of form (7.14). The value Knm in formula (7.17) has form (5.3).
Let us note that for δ = 0, µ = 0 and α = 0, formula (7.17) turns into an explicit representation

of exact solution (5.1). When δ > 0, µ > 0 and α = 0, (7.17), generally speaking, may diverge in
accordance with the fact that the inverse problem is ill-posed. For δ > 0, µ > 0 and α > 0, the
convergence is provided by the regularizing factor (1 + αK2

nm)−1.
The following theorem proves the convergence of approximate solution (7.17) in L2(Π) to the

exact solution of the integral equation.

Theorem 7.1. For any α = α(γ) > 0 such that α(γ) → 0, γ/
√
α(γ) → 0 when γ → 0, the

function σδ,µα(γ) of form (7.17), where according to (7.15) γ = γ(µ, δ) = C4
√
µ+C3δ, converges to the

exact solution of integral equation (4.14) in L2(Π) when δ → 0, µ→ 0.

Proof. Following the general scheme [2] of estimating an approximate solution of a linear integral
equation, introducing a function σα of form (7.17) when δ = 0, µ = 0, we obtain

‖σδ,µα − σ‖L2 6 ‖σδ,µα − σα‖L2 + ‖σα − σ‖L2 . (7.19)

To estimate the �rst di�erence in the right-hand side of inequality (7.19), we use estimate (7.15)

‖σδ,µα − σα‖L2 6
[ lxly

4

∞∑
n,m=1

( Knm

1 + αK2
nm

)2|Φ̃δ,µ
nm − Φ̃nm|2

]1/2

6 max
x

( x

1 + αx2

)
‖Φδ,µ − Φ‖L2 6

γ

2
√
α(γ)

. (7.20)

We estimate the second di�erence in the right-hand side of inequality (7.19). We note that according
to (5.1) Φ̃nmKnm = σ̃nm, so we obtain

‖σα − σ‖L2 6
[ lxly

4

∞∑
n,m=1

( αK2
nm

1 + αK2
nm

)2|Φ̃nmKnm|2
]1/2

=
[ lxly

4

∞∑
n,m=1

( αK2
nm

1 + αK2
nm

)2
σ̃2
nm

]1/2

.

Since the series depending on the parameter α is majorized by a converging numerical series with
coe�cients σ̃2

nm it is possible to pass to the limit in α, and hence

‖σα − σ‖L2 → 0, when α→ 0. (7.21)

It follows from (7.19), (7.20), (7.21), and the assumptions of the theorem that

‖σδ,µα(γ) − σ‖L2 → 0, when δ → 0, µ→ 0.
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In the case when σ(M) = σ0χD(M), where χD(M) is the characteristic function of the domain
D in accordance with (5.4), we construct an approximation Dδ,µ

λ to the support D of the density σ
based on the approximate density function of sources (7.17)

Dδ,µ
λ = {(x, y) ∈ Π :

1

σ0

σδ,µα(γ)(x, y) > λ = Const, 0 < λ < 1}. (7.22)

A criterion for the quality of the approximation can be the measure of the symmetric di�erence
between domain (7.22) and the domain D of form (5.4).

Theorem 7.2. Under the conditions of Theorem 7.1 the measure of the symmetric di�erence
mes(Dδ,µ

λ ∆D)→ 0 when δ → 0, µ→ 0.

Proof. It follows from theorem 7.1,

‖ 1

σ0

σδ,µα − χD‖L2(Π) → 0 when δ → 0, µ→ 0.

From the convergence of
1

σ0

σδα to χD in L2, the convergence in measure follows (see [3]). Further,

the proof repeats verbatim the proof of the theorem in [1].

Formulas (7.4), (7.14), (7.17), (7.18), (7.22) give the solution to the inverse problem.

8 Conclusions

The inverse problem of the Newtonian potential for bodies of constant thickness is posed and solved in
the case when the potential �eld on the surface of the general form is known. In this case, the density
function of the distribution of potential sources is found as an approximate regularized solution of
the linear integral Fredholm equation of the �rst kind, which is stable both with respect to the error
in setting the potential and to the error in the surface.
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Abstract. In this paper, the initial and boundary value problems for the Swift-Hohenberg equa-
tion as over the �nite spatial interval x ∈ [0, l] and �nite time interval t ∈ [0, t∗] are considered.
Approximate solutions for the initial and boundary value problems are obtained via the di�erential
transform method and reduced di�erential transform method. Finally, several numerical examples
are presented in order to demonstrate the e�ectivity of the methods and clarify the in�uence of the
parameters on the solution.
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1 Introduction

The Swift-Hohenberg equation is a model pattern-forming equation which was introduced by Jack
Swift and Pierre Hohenberg as a model for a �uid which is thermally convecting [24]. The Swift-
Hohenberg equation is one of important equations for describing localized structures in the modern
physics. This equation occurs in �uid dynamics, optical physics and other �elds [4, 11, 22]. The
Swift-Hohenberg equation with dispersion has the form [9]

ut + 2uxx − σuxxx + uxxxx = αu+ βu2 − γu3, (1.1)

where α, β, γ and σ are parameters of the equation. At σ = 0 equation (1.1) is reduced to the
standard Swift-Hohenberg equation. We consider the problem with the boundary conditions

u = 0, uxx = 0, at x = 0, l, ∀t, t > 0,

u(x, 0) = u0(x), ∀x, 0 < x < l,
(1.2)

so that solutions can be extended as periodic functions over the real line. For σ = β = 0 and
α = 1− a, a ∈ R, equation (1.1) and (1.2) were solved by the homotopy analysis method in [3] and
the di�erential transform method as time-fractional derivative in [19].

The aim of this paper is to �nd an approximate analytical solution of (1.1) and (1.2) with the
help of powerful analytic methods. We use the di�erential transform method (DTM) and reduced
di�erential transform method (RDTM) to obtain the solutions and compare them with each other.
We know that the DTM is based on the use of Taylor series in all variables, while RDTM does not
require Taylor series in all variables and therefore it reduces signi�cantly the numerical computation.
For the standard cases, comparing the methodology with some known techniques, shows that these
approaches are e�ective and powerful.
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2 Methods

In this section, the techniques are explained for the two-dimensional di�erential transform.

2.1 The DTM

The DTM was �rst proposed by Zhou [25], who solved linear and nonlinear initial value problems in
electric circuit analysis, then was widely used in the literature and was successfully applied to frac-
tional di�erential equations [5], integro-di�erential equations [6], higher-order initial value problems
[1], systems of di�erential equations [2, 7, 12], partial di�erential equation [10, 13, 21, 23], high index
di�erential-algebraic equations [20].

In [8, 14] the basic de�nitions and fundamental operations are introduced for the two-dimensional
di�erential transform as the following

U(k, h) =
1

k!h!

[
∂k+h

∂xk∂th
u(x, t)

]
(0,0)

, (2.1)

where u(x, t) is the original function and U(k, h) is the transformed function. The di�erential inverse
transform of U(k, h) is of the form

u(x, t) =
∞∑
k=0

∞∑
h=0

U(k, h)xkth, (2.2)

and from equations (2.1) and (2.2) can be concluded that

u(x, t) =
∞∑
k=0

∞∑
h=0

1

k!h!

[
∂k+h

∂xk∂th
u(x, t)

]
(0,0)

xkth. (2.3)

In Table 2.1 the fundamental mathematical operations of the two-dimensional di�erential transform
are listed. The proofs are available in [8].

Table 2.1. Two-dimensional di�erential transformation

Original Function Transformed Function
u(x, t)± v(x, t) U(k, h)± V (k, h)
cu(x, t) cU(k, h)
∂u(x,t)
∂x

(k + 1)U(k + 1, h)
∂u(x,t)
∂t

(h+ 1)U(k, h+ 1)
∂r+su(x,t)
∂xr∂ts

(k+r)!
k!

(h+s)!
h!

U(k + r, h+ s)

u(x, t)v(x, t)
∑k

r=0

∑h
s=0 U(r, h− s)V (k − r, s)

u(x, t)v(x, t)w(x, t)
∑k

r=0

∑k−r
s=0

∑h
q=0

∑h−q
p=0 U(r, h− q − p)V (s, q)W (k − r − s, p)

2.2 The RDTM

The basic de�nitions and operations of the RDTM [15, 16, 17, 18] are de�ned as follows.
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De�nition 1. If a function u(x, t) is analytic with respect to time t and space x in the domain of
interest, then let

Uk(x) =
1

k!

[
∂k

∂tk
u(x, t)

]
t=0

, (2.4)

where the t-dimensional spectrum function Uk(x) is the transformed function. In this paper, the
lowercase u(x, t) represent the original function while the uppercase Uk(x) stands for the transformed
function.

De�nition 2. The reduced di�erential transform of the sequence {Uk(x)}∞k=0 is introduced as follows:

u(x, t) =
∞∑
k=0

Uk(x)tk. (2.5)

By combining equation (2.4) and (2.5), we have

u(x, t) =
∞∑
k=0

1

k!

[
∂k

∂tk
u(x, t)

]
t=0

tk. (2.6)

Some basic properties of the reduced di�erential transformation obtained from de�nitions (2.4)
and (2.6) are summarized in Table 2.2. The proofs and the basic de�nitions of the RDTM are
available in [15].

Table 2.2. Basic operations of RDTM

Original Function Transformed Function
u(x, t) Uh(x)
u(x, t)± v(x, t) Uh(x)± Vh(x)
cu(x, t) cUh(x) c is a cons.
xmtn xmδ(h− n)
xmtnu(x, t) xmUh−n(x)
∂
∂x
u(x, t) U

′

h(x)
∂r

∂tr
u(x, t) (h+r)!

h!
Uh+r(x)

u(x, t)v(x, t)
∑h

r=0 Ur(x)Vh−r(x)

u(x, t)v(x, t)w(x, t)
∑h

r=0

∑h−r
s=0 Ur(x)Vs(x)Wh−r(x)

3 The Swift-Hohenberg equation

In this section, we consider two methodologies DTM and RDTM for the Swift-Hohenberg equa-
tion. To illustrate the capability, reliability and simplicity of the methods, several di�erent cases for
parameters of the equation will be discussed here.

3.1 Solution of the problem by the DTM

We apply the DTM to equation (1.1), the resulting transformed version of equation (1.1) is

(h+ 1)U(k, h+ 1) = −2 (k+2)!
k!

U(k + 2, h) + σ (k+3)!
k!

U(k + 3, h)− (k+4)!
k!

U(k + 4, h)

+αU(k, h) + β
∑k

r=0

∑h
s=0 U(r, h− s)U(k − r, s)

−γ
∑k

r=0

∑k−r
s=0

∑h
q=0

∑h−q
p=0 U(r, h− q − p)U(s, q)U(k − r − s, p).

(3.1)
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From the boundary conditions given by (1.2), we have

U(k, 0) = 1
k!
u

(k)
0 (0), k = 0, 1, 2, . . .

U(0, h) = 0, h = 0, 1, 2, . . .

U(2, h) = 0, h = 0, 1, 2, . . .∑∞
k=0 U(k, h)lk = 0, h = 0, 1, 2, . . .∑∞
k=0

(k+2)!
k!

U(k + 2, h)lk = 0, h = 0, 1, 2, . . . .

(3.2)

In real applications, the function u(x, t) is given by a �nite series of equations (3.1) and (3.2) can be
written as follows

u(x, t) ≈ ũ(x, t) =
n−2h∑
k=0

m∑
h=0

U(k, h)xkth,

where the value of the parameter m should not be greater than n
2
.

By using equations (3.1) and (3.2), the corresponding U(k, h) can be calculated for arbitrary
di�erent selections of n and m. In real applications, we seek obtain an excellent approximate solution
of the di�erential equation. Therefore the selection n andm i.e. iterations continue until the absolute
value of the error function de�ned as follows

EDTM(x, t) = |ũt + 2ũxx − σũxxx + ũxxxx − αũ− βũ2 + γũ3|, (3.3)

becomes very small for each x, t in the domain, in other words |EDTM(x, t)| < tolerance for all
x ∈ [0, l], t ∈ [0, t∗].

Then the corresponding U(k, h) can be obtained as follows

U(0, 0) = u0(0), U(1, 0) = u′0(0), . . . , U(n, 0) = 1
n!
u

(n)
0 (0), . . . ,

U(0, 0) = 0, U(0, 1) = 0, . . . , U(0,m) = 0, . . . ,

U(2, 0) = 0, U(2, 1) = 0, . . . , U(2,m) = 0, . . . .

If h = 0, then from (3.1) for k = 1 and k = 3, . . . , n− 4 we have

U(k, 1) = −2 (k+2)!
k!

U(k + 2, 0) + σ (k+3)!
k!

U(k + 3, 0)− (k+4)!
k!

U(k + 4, 0)

+αU(k, 0) + β
∑k

r=0 U(r, 0)U(k − r, 0)

−γ
∑k

r=0

∑k−r
s=0 U(r, 0)U(s, 0)U(k − r − s, 0),

and by the �nal two relations of (3.2) also can obtain

U(n− 3, 1) = 1
l(n−3)

∑n−4
k=0 l

kU(k, 1),

U(n− 2, 1) = 1
(n−3)(n−2)l(n−4)

∑n−5
k=0(k + 1)(k + 2)lkU(k + 2, 1).

If h = 1, then for k = 1 and k = 3, . . . , n− 6 we have

U(k, 2) = 1
2
(−2 (k+2)!

k!
U(k + 2, 1) + σ (k+3)!

k!
U(k + 3, 1)− (k+4)!

k!
U(k + 4, 1)

+αU(k, 1) + β
∑k

r=0

∑1
s=0 U(r, 1− s)U(k − r, s)

−γ
∑k

r=0

∑k−r
s=0

∑1
q=0

∑1−q
p=0 U(r, 1− q − p)U(s, q)U(k − r − s, p)),
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and

U(n− 5, 2) = 1
l(n−5)

∑n−6
k=0 l

kU(k, 2),

U(n− 4, 2) = 1
(n−5)(n−4)l(n−6)

∑n−7
k=0(k + 1)(k + 2)lkU(k + 2, 2).

If h = 2, then for k = 1 and k = 3, . . . , n− 8 we have

U(k, 3) = 1
3
(−2 (k+2)!

k!
U(k + 2, 2) + σ (k+3)!

k!
U(k + 3, 2)− (k+4)!

k!
U(k + 4, 2)

+αU(k, 2) + β
∑k

r=0

∑2
s=0 U(r, 2− s)U(k − r, s)

−γ
∑k

r=0

∑k−r
s=0

∑2
q=0

∑2−q
p=0 U(r, 2− q − p)U(s, q)U(k − r − s, p)),

and

U(n− 7, 3) = 1
l(n−7)

∑n−8
k=0 l

kU(k, 3),

U(n− 6, 3) = 1
(n−7)(n−6)l(n−8)

∑n−9
k=0(k + 1)(k + 2)lkU(k + 2, 3).

By using the recursive scheme of equation (3.1) and conditions (3.2), the rest values of U(k, h) can
be obtained.

3.2 Solution of the problem by the RDTM

To solve equation (1.1) by the RDTM, we consider di�erential transformation of Table 2 and have

(h+ 1)Uh+1(x) = −2U
′′

h (x) + σU
(3)
h (x)− U (4)

h (x) + αUh(x)+

β
∑h

r=0 Ur(x)Uh−r(x)− γ
∑h

r=0

∑h−r
s=0 Ur(x)Us(x)Uh−r(x).

(3.4)

We can obtain the initial and boundary conditions as follows

U0(x) = u0(x),

Uh(0) = 0, h = 0, 1, . . .

Uh(l) = 0, h = 0, 1, . . .

U
′′

h (0) = 0, h = 0, 1, . . .

U
′′

h (l) = 0, h = 0, 1, . . . .

(3.5)

By substituting (3.5) into (3.4) and by a straight forward iterative calculations, we obtain the all
required values of Uh(x). Therefore, the inverse transformation of the set of values {Uh(x)}mh=0 gives
the approximate solution as

u(x, t) ≈ û(x, t) =
m∑
h=0

Uh(x)th.

Similarly to the previous case, let us consider the error functional for approximate solution

ERDTM(x, t) = |ût + 2ûxx − σûxxx + ûxxxx − αû− βû2 + γû3|, (3.6)

and the iterations continue until |ERDTM(x, t)| < tolerance for all x ∈ [0, l], t ∈ [0, t∗].



76 H. Rouhparvar

4 Numerical results and discussion

The convergence of the proposed methods will depend on α, β, γ, σ, l and on the number of terms
employed in a series approximation. These methods consist in building a sequence of numerical
approximations of u(x, t) via the generated sequence. To �nd the solution of equation (1.1), an error
analysis is performed. Here, EDTM(x, t) and ERDTM(x, t) show the error functions of the proposed
method for �xed n,m, α, β, γ, σ and l.

To see the e�ects of the parameters on the solutions, we �x u0(x) = 1
10
sin(πx

l
) and l = 10,

consider solutions u(x, t) for various values of parameters. To avoid a three-dimensional plot, we plot
two-dimensional cross sections. The qualitative properties of such solutions are displayed in �gures
1, 3 and 5. A comparison of the �gures allows one to see the in�uence of the parameters on the
solution pro�les.

A clear conclusion from the numerical results is that the DTM and RDTM provide highly accu-
rate numerical solutions without the need for spatial discretizations in solving the Swift-Hohenberg
equation.

Because of memory problem, we only increase the number of iterations until we achieve that the
modulus of the error function is less than 0.05 (tolerance). The results show that in the memory
problem and boundary conditions the DTM acts better than the RDTM, and in the number of
iterations and careful of solutions the RDTM is better than the DTM.

Here, we take di�erent values of the parameters to compare the results of DTM and RDTM in
the form of two dimensional �gures for each case, we would see that DTM and RDTM solutions are
in excellent agreement.
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Fig. 1: (a) Pro�les of u(x, t) versus x at α = −0.3, σ = −1, β = 0.1 and γ = 0.2

for t = 0 (Upper), 2 (Middle), 4 (Lower) with n = 15 and m = 4 by DTM.

(b) Pro�les of u(x, t) versus x at α = −0.95, σ = −1, β = 0.1 and γ = 0.2

for t = 0 (Upper), 2 (Middle), 4 (Lower) with n = 20 and m = 5 by DTM.

(c) Pro�les of u(x, t) versus x at α = −0.3, σ = −1, β = 0.1 and γ = 0.2

for t = 0 (Upper), 1 (Middle), 2 (Lower) with m = 4 by RDTM.

Fig. 2: (a) Pro�les of EDTM (x, t) for Fig. 1 (a). (b) Pro�les of EDTM (x, t)

for Fig. 1 (b). (c) Pro�les of ERDTM (x, t) for Fig. 1 (c).
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Fig. 3: (a) Pro�les of u(x, t) versus x at α = 0.25, σ = 0.2, β = −0.04 and γ = 1.1

for t = 0 (Lower), 2 (Middle), 4 (Upper) with n = 14 and m = 6 by DTM.

(b) Pro�les of u(x, t) versus x at α = 0.25, σ = −0.15, β = −0.04 and γ = 1.1

for t = 0 (Lower), 2 (Middle), 4 (Upper) with n = 15 and m = 6 by DTM.

(c) Pro�les of u(x, t) versus x at α = 0.25, σ = 0.2, β = −0.04 and γ = 1.1

for t = 0 (Lower), 1 (Middle), 2 (Upper) with m = 3 by RDTM.

Fig. 4: (a) Pro�les of EDTM (x, t) for Fig. 3 (a). (b) Pro�les of EDTM (x, t)

for Fig. 3 (b). (c) Pro�les of ERDTM (x, t) for Fig. 3 (c).
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Fig. 5: (a) Pro�les of u(x, t) versus x at α = 0.1, σ = 0.4, β = 0.1 and γ = −2.3

for t = 0 (Lower), 2 (Middle), 4 (Upper) with n = 16 and m = 6 by DTM.

(b) Pro�les of u(x, t) versus x at α = 0.1, σ = 0.4, β = −0.16 and γ = −2.3

for t = 0 (Lower), 2 (Middle), 4 (Upper) with n = 16 and m = 6 by DTM.

(c) Pro�les of u(x, t) versus x at α = 0.1, σ = 0.4, β = −0.16 and γ = −2.3

for t = 0 (Lower), 1 (Middle), 2 (Upper) with m = 3 by RDTM.

Fig. 6: (a) Pro�les of EDTM (x, t) for Fig. 5 (a). (b) Pro�les of EDTM (x, t)

for Fig. 5 (b). (c) Pro�les of ERDTM (x, t) for Fig. 5 (c).
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5 Conclusion

Application of the DTM and RDTM to the Swift-Hohenberg equation with dispersion have been
presented. The results show that the DTM and RDTM are powerful and e�cient methods for
�nding analytic approximate solutions to the Swift-Hohenberg equation. Also, not many iterations
are required to achieve fairly accurate solutions of the equation by the DTM and RDTM.
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1 Introduction

Let 0 < q, p, θ < ∞ and 1
p

+ 1
p′

= 1. Let ϕ = {ϕi}∞i=1 be a sequence of non-negative numbers,

u = {ui}∞i=1 and w = {wi}∞i=1 be sequences of positive numbers, which will be called the weight
sequences. We consider the Hardy operator Hϕ de�ned for any f ∈ l1 by

(Hϕf)k := ϕk

k∑
i=1

fi,

where k ∈ N. Let us denote by lp,u the space of all sequences f = {fi}∞i=1 of real numbers such that

‖f‖p,u =

(
∞∑
i=1

|uifi|p
) 1

p

<∞, 1 ≤ p <∞.

For any f ∈ lp,u we characterize the following iterated discrete Hardy-type inequality with three
weights  ∞∑

n=1

wθn

(
n∑
k=1

∣∣∣∣∣ϕk
k∑
i=1

fi

∣∣∣∣∣
q) θ

q


1
θ

≤ C

(
∞∑
i=1

|uifi|p
) 1

p

, (1.1)

where C is a positive constant independent of f . The dual discrete version of inequality (1.1) has
the form  ∞∑

n=1

wθn

(
∞∑
k=n

∣∣∣∣∣ϕk
∞∑
i=k

fi

∣∣∣∣∣
q) θ

q


1
θ

≤ C

(
∞∑
i=1

|uifi|p
) 1

p

. (1.2)

The continuous analogue of inequality (1.1) can be written as follows ∞∫
0

wθ(x)

 x∫
0

∣∣∣∣∣∣ϕ(t)

t∫
0

f(s) ds

∣∣∣∣∣∣
q

dt


θ
q

dx


1
θ

≤ C

 ∞∫
0

|u(x)f(x)|p dx

 1
p

. (1.3)
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The boundedness of the Hardy-type operator in Morrey-type spaces, weighted Sobolev spaces
was studied in many papers (see, [6], [9], [15]). In paper [3], the problem of boundedness of the
Hardy operator from a Lebesgue space to a local Morrey-type space has been reduced to the validity
of inequality (1.3). The results of paper [3] have aroused the interest to study inequalities of form
(1.3). We believe that the relation between p and θ is more important than between p and q because
we have found out that inequalities of form (1.3) are easier to characterize for p ≤ θ rather than
for θ < p, as for the standard Hardy inequalities. Paper [14] has covered all possible relations
between p, θ and q for characterizations of inequalities of form (1.3), but the obtained results require
some auxiliary function and are not given explicitly. Paper [3], where inequality (1.3) was �rstly
considered and explicitly characterized, has completely covered the case p ≤ θ, in sense that q can
be any positive number, and partially covered the case θ < p only for 0 < q < θ. In paper [12],
discrete Hardy-type inequality (1.1) have been characterized for the same relations between p, θ and
q, namely, for the cases p ≤ θ < ∞, 0 < q and θ < p < ∞, 0 < q < θ. Here we consider the most
di�cult case θ < p < ∞ and 0 < θ < q or, equivalently, 0 < θ < min{p, q} < ∞, which has no
explicit characterizations even in the continuous case.

In the relations between p, θ and q listed above, for the continuous case it is assumed that
p > 1, since for the interval 0 < p < 1 inequalities of form (1.3) hold only in the trivial cases.
For the discrete case the interval 0 < p < 1 is not excluded, so in this paper we consider the case
0 < θ < min{p, q} <∞ for both p > 1 and 0 < p ≤ 1. Paper [11] also contains results for inequality
(1.2) for the case 0 < p ≤ 1, but when p ≤ min{q, θ} <∞. In order to complete the relation p ≤ θ,
we include the case 0 < q < p ≤ θ <∞, 0 < p ≤ 1, as an auxiliary result.

The iterated operator K+f(x) =

(
x∫
0

∣∣∣∣ϕ(t)
t∫

0

f(s) ds

∣∣∣∣q dt)
1
q

in inequality (1.3) has the same types

of integrals as well as the operator K−f(x) =

(∞∫
x

∣∣∣∣ϕ(t)
∞∫
t

f(s) ds

∣∣∣∣q dt) 1
q

in the continuous analogue

of dual inequality (1.2). We can also write two inequalities with the iterated operators T+f(x) =(
x∫
0

∣∣∣∣ϕ(t)
∞∫
t

f(s) ds

∣∣∣∣q dt) 1
q

and T−f(x) =

(∞∫
x

∣∣∣∣ϕ(t)
t∫

0

f(s) ds

∣∣∣∣q dt)
1
q

, which have di�erent types of

integrals. In paper [8], the problems of boundedness of the conjugate Hardy operator from a Lebesgue
space to a Morrey-type space and boundedness of the Hardy operator from a Lebesgue space to a
complementary Morrey-type space have been reduced to the validity of the inequalities with the
operators T+f and T−f , respectively. The inequalities with the operators T+f and T−f have been
studied more fully than the inequalities with the operators K+f and K−f (see, [2], [4], [5], [10],
[13] and [16]). On the contrary, the study of (1.1) and (1.2), which are discrete analogues of the
inequalities for the operatorsK+f andK−f , is almost completed in this paper, while the investigation
of inequalities for the discrete versions of the operators T+f and T−f has only started.

Note that the interest in inequalities with iterated operators has been caused not only by their
applicability to Morrey-type spaces shown in [3] and [8], but also by the fact that their character-
izations can be applied to obtain characterizations for the bilinear Hardy inequalities (see, [2] and
[7]).

The work is organized as follows. Section 2 contains all statements and de�nitions, which are
needed to characterize inequalities (1.1) and (1.2). The main results for 0 < θ < min{p, q} < ∞,
p > 1, are presented in section 3. The main results for 0 < θ < min{p, q} <∞, 0 < p ≤ 1, are given
in section 4. Section 5 contains the auxiliary result for 0 < q < p ≤ θ <∞, 0 < p ≤ 1.
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2 Preliminaries

In the proofs of our main results for the case 0 < q < p ≤ θ <∞, 0 < p ≤ 1, we need the following
theorem. This theorem proved in [1, Theorem 1 (iv)] presents characterizations of the following
weighted discrete Hardy-type inequality.

Theorem 2.1. Let 0 < p ≤ 1, p ≤ q <∞. The inequality(
∞∑
k=1

vqk

∣∣∣ k∑
i=1

fi

∣∣∣q)
1
q

≤ C

(
∞∑
i=1

|uifi|p
) 1

p

, ∀f ∈ lp,u, (2.1)

holds for some C > 0 if and only if A <∞, where

A = sup
j≥1

(
∞∑
i=j

vqi

) 1
q

u−1
j .

Moreover, C ≈ A, where C is the best constant in (2.1).

For the proofs we also need the following lemma.

Lemma 2.1. Let r > 0, 1 ≤ n < N ≤ ∞. Then

N∑
k=n

ak

(
N∑
j=k

aj

)r−1

≈

(
N∑
i=n

ai

)r

≈
N∑
k=n

ak

(
k∑
j=n

aj

)r−1

. (2.2)

Convention: The symbol N �M means N ≤ CM with some positive constant C, depending on
the parameters p, θ and q. Moreover, the notation N ≈M means N �M � N .

For the estimations we use various classical inequalities such as the Minkowski inequality, the
H�older inequality and the following elementary inequalities.

If ai > 0, i = 1, 2, ..., k, then (
k∑
i=1

ai

)α

≤
k∑
i=1

aαi , 0 < α ≤ 1, (2.3)

and (
k∑
i=1

ai

)α

≥
k∑
i=1

aαi , α ≥ 1. (2.4)

3 Main results for 0 < θ < min{p, q} <∞, p > 1

Theorem 3.1. Let 0 < θ < min{p, q} < ∞, p > 1. Then inequality (1.2) holds if and only if
B1 <∞, where

B1 =

 ∞∑
i=1

u−p
′

i

(
∞∑
j=i

u−p
′

j

) p(θ−1)
p−θ

 i∑
n=1

wθn

(
i∑

k=n

ϕqk

) θ
q


p
p−θ

p−θ
pθ

.

Moreover, C ≈ B1, where C is the best constant in (1.2).
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Proof. Necessity. Suppose that inequality (1.2) holds with the best constant C > 0. Let us show

that B1 <∞. For an arbitrary 1 ≤ r < N <∞ we take a test sequence f̃r = {f̃r,i}∞i=1 such that

f̃r,i =


0, 1 ≤ i < r, i > N,

u−p
′

i

(
N∑
j=i

u−p
′

j

) θ−1
p−θ
(

i∑
n=r

wθn

(
i∑

s=n

ϕqs

) θ
q

) 1
p−θ

, r ≤ i ≤ N <∞.

Then

‖f̃r‖p,u =

(
∞∑
i=1

|f̃r · ui|p
) 1

p

=

 N∑
i=r

u−p
′

i

(
N∑
j=i

u−p
′

j

) p(θ−1)
p−θ

 i∑
n=r

wθn

(
i∑

s=n

ϕqs

) θ
q


p
p−θ


1
p

=: B̃
1
p <∞. (3.1)

Substituting f̃r in the left-hand side I = I(f) of inequality (1.2), we derive that

I(f̃) =

 ∞∑
n=1

wθn

(
∞∑
k=n

∣∣∣∣∣ϕk
∞∑
i=k

f̃i

∣∣∣∣∣
q) θ

q


1
θ

≥

 N∑
n=r

wθn

(
N∑
k=n

ϕqk

(
N∑
i=k

f̃i

)q) θ
q


1
θ

.

By applying Lemma 2.1, we obtain

I(f̃)�

 N∑
n=r

wθn

 N∑
k=n

ϕqk

N∑
i=k

f̃i

(
N∑
j=i

f̃j

)(q−1)
 θ

q


1
θ

.

Next, changing the orders of sums and using Lemma 2.1, we get

I(f̃)�

 N∑
n=r

wθn

N∑
i=n

f̃i

(
N∑
j=i

f̃j

)(q−1)

×
i∑

k=n

ϕqk

 N∑
m=i

f̃m

(
N∑
s=m

f̃s

)(q−1) m∑
z=n

ϕqz


θ−q
q


1
θ

=

 N∑
i=r

f̃i

(
N∑
j=i

f̃j

)(q−1)
 N∑
m=i

f̃m

(
N∑
s=m

f̃s

)(q−1)


θ−q
q i∑

n=r

wθn

(
i∑

k=n

ϕqk

) θ
q


1
θ

�

 N∑
i=r

f̃i

(
N∑
j=i

f̃j

)(θ−1) i∑
n=r

wθn

(
i∑

k=n

ϕqk

) θ
q


1
θ

. (3.2)

First we estimate

N∑
j=i

f̃j =
N∑
j=i

u−p
′

j

(
N∑
s=j

u−p
′

s

) θ−1
p−θ
 j∑

n=r

wθn

(
j∑

k=n

ϕqk

) θ
q


1
p−θ
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�

(
N∑
j=i

u−p
′

j

) p−1
p−θ
 i∑

n=r

wθn

(
i∑

k=n

ϕqk

) θ
q


1
p−θ

. (3.3)

Now, we put (3.3) into (3.2), then substitute f̃r and �nd

I(f̃)�

 N∑
i=r

u−p
′

i

(
N∑
j=i

u−p
′

j

) p(θ−1)
p−θ

 i∑
n=r

wθn

(
i∑

k=n

ϕqk

) θ
q


p
p−θ


1
θ

= B̃
1
θ . (3.4)

From (3.1), (3.4) and (1.2) it follows that

B̃
p−θ
pθ � C, for all 1 ≤ r < N <∞. (3.5)

Since r ≥ 1 is arbitrary, taking the supremum on both sides of inequality (3.5) with respect to r (C
is independent of r) and passing to the limit N →∞, we get that

B1 � C <∞. (3.6)

Su�ciency. Suppose that B1 < ∞. Now, we prove that inequality (1.2) holds. Let 0 ≤ f ∈ lp,u
be such that

∞∑
i=1

fi <∞.

Let

k1 := sup{k ∈ Z :
∞∑
i=1

fi ≤ 2−k},

then

2−k1−1 <
∞∑
i=1

fi ≤ 2−k1 .

We consider the sequence {jk}, where jk are de�ned by

jk := min{j ≥ 1 :
∞∑
i=j

fi ≤ 2−k1−k+1}.

We note that

j1 := min{j ≥ 1 :
∞∑
i=j

fi ≤ 2−k1} = 1.

For all k ≥ 1 it yields that
∞∑
i=jk

fi ≤ 2−k1−k+1 <

∞∑
i=jk−1

fi. (3.7)

Therefore, the set of natural numbers N can be written

N =
⋃
k≥1

[jk, jk+1 − 1] .

Furthermore,

2−k1−m+1 <

∞∑
i=jm−1

fi =

jm+1−1∑
i=jm−1

fi +
∞∑

i=jm+1

fi
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<

jm+1−1∑
i=jm−1

fi + 2−k1−(m+1)+1, m ≥ 2.

2−k1−m <

jm+1−1∑
i=jm−1

fi, m ≥ 2.

2−k1−m+2 < 4

jm+1−1∑
i=jm−1

fi, m ≥ 2.

Substituting m by m+ 1, we obtain

2−k1−m+1 < 4

jm+2−1∑
i=jm+1−1

fi, m ≥ 1. (3.8)

Hence, taking into account (3.7), we get

Iθ(f) :=
∞∑
n=1

wθn

(
∞∑
s=n

∣∣∣∣∣ϕs
∞∑
i=s

fi

∣∣∣∣∣
q) θ

q

≤
∞∑
k=1

jk+1−1∑
n=jk

wθn

 ∞∑
m=k

jm+1−1∑
s=max{n,jm}

ϕqs

(
∞∑

i=jm

fi

)q
 θ

q

.

Therefore, using (3.7) and (3.8), we have

Iθ(f) ≤ 4θ
∞∑
k=1

jk+1−1∑
n=jk

wθn

 ∞∑
m=k

jm+1−1∑
s=max{n,jm}

ϕqs

 jm+2−1∑
i=jm+1−1

fi

q
θ
q

.

Using inequality (2.3), we get

Iθ(f) ≤ 4θ
∞∑
k=1

jk+1−1∑
n=jk

wθn

∞∑
m=k

 jm+1−1∑
s=max{n,jm}

ϕqs

 θ
q
 jm+2−1∑
i=jm+1−1

fi

θ

.

Next, changing the orders of sums, we have

Iθ(f) ≤ 4θ
∞∑
m=1

 jm+2−1∑
i=jm+1−1

fi

θ
m∑
k=1

jk+1−1∑
n=jk

wθn

 jm+1−1∑
s=max{n,jm}

ϕqs

 θ
q

= 4θ
∞∑
m=1

 jm+2−1∑
i=jm+1−1

fi

θm−1∑
k=1

jk+1−1∑
n=jk

wθn

(
jm+1−1∑
s=jm

ϕqs

) θ
q

+

jm+1−1∑
n=jm

wθn

(
jm+1−1∑
s=n

ϕqs

) θ
q


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≤ 4θ
∞∑
m=1

 jm+2−1∑
i=jm+1−1

fi

θ
m∑
k=1

jk+1−1∑
n=jk

wθn

(
jm+1−1∑
s=n

ϕqs

) θ
q

.

Hence,

Iθ(f) ≤ 4θ
∞∑
m=1

 jm+2−1∑
i=jm+1−1

fi

θ
jm+1−1∑
n=1

wθn

(
jm+1−1∑
s=n

ϕqs

) θ
q

. (3.9)

Using the H�older inequality with powers p and p′ in (3.9), we have

Iθ(f) ≤ 4θ
∞∑
m=1

 jm+2−1∑
i=jm+1−1

|fiui|p
 θ

p
 jm+2−1∑
i=jm+1−1

u−p
′

i

 θ
p′

×
jm+1−1∑
n=1

wθn

(
jm+1−1∑
s=n

ϕqs

) θ
q

. (3.10)

For the outer sum in (3.10) again using the H�older inequality with the parameters p
θ
and p

p−θ , we get

Iθ(f) ≤ 4θ

 ∞∑
m=1

jm+2−1∑
i=jm+1−1

|fiui|p
 θ

p

 ∞∑
m=1

 jm+2−1∑
i=jm+1−1

u−p
′

i


θ(p−1)
(p−θ)

×

jm+1−1∑
n=1

wθn

(
jm+1−1∑
s=n

ϕqs

) θ
q


p
p−θ


p−θ
p

. (3.11)

Now, applying Lemma 2.1 to (3.11), we �nd that

Iθ(f)� 2θ(2+ 1
p

)

(
∞∑
i=1

|fiui|p
) θ

p

 ∞∑
m=1

jm+2−1∑
i=jm+1−1

u−p
′

i

(
jm+2−1∑
j=i

u−p
′

j

) p(θ−1)
p−θ

×

 i∑
n=1

wθn

(
i∑

s=n

ϕqs

) θ
q


p
p−θ


p−θ
p

= 2θ(2+ 1
p

)

(
∞∑
m=1

(
u−p

′

jm+1−1

×

 jm+2−1∑
j=jm+1−1

u−p
′

i


p(θ−1)
p−θ

jm+1−1∑
n=1

wθn

(
jm+1−1∑
s=n

ϕqs

) θ
q


p
p−θ

+

jm+2−1∑
i=jm+1

u−p
′

i

(
jm+2−1∑
j=i

u−p
′

j

) p(θ−1)
p−θ

 i∑
n=1

wθn

(
i∑

s=n

ϕqs

) θ
q


p
p−θ



p−θ
p

‖f‖θp,u

≤ 2θ(2+ 1
θ

)


 ∞∑

i=1

u−p
′

i

(
∞∑
j=i

u−p
′

j

) p(θ−1)
p−θ

 i∑
n=1

wθn

(
i∑

s=n

ϕqs

) θ
q


p
p−θ


p−θ
pθ


θ
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×‖f‖θp,u ≤ 2θ(2+ 1
θ

)Bθ
1‖f‖θp,u.

Hence,

I(f)� B1‖f‖p,u (3.12)

and C � B1, where C is the best constant in (1.2). Inequalities (3.6) and (3.12) give that C ≈ B1.

Theorem 3.2. Let 0 < θ < min{p, q} < ∞, p > 1. Then inequality (1.1) holds if and only if
B2 <∞, where

B2 =

 ∞∑
i=1

u−p
′

i

(
i∑

j=1

u−p
′

j

) p(θ−1)
p−θ

 ∞∑
n=i

wθn

(
n∑
k=i

ϕqk

) θ
q


p
p−θ

p−θ
pθ

.

Moreover, C ≈ B2, where C is the best constant in (1.1).

The proof of Theorem 3.2 is similar to the proof of Theorem 3.1.

4 Main results for 0 < θ < min{p, q} <∞, 0 < p ≤ 1

Theorem 4.1. Let 0 < θ < min{p, q} < ∞, 0 < p ≤ 1. Then inequality (1.2) holds if and only if
B3 <∞, where

B3 =

 ∞∑
i=1

u
− θp
p−θ

i

 i∑
n=1

wθn

(
i∑

k=n

ϕqk

) θ
q


p
p−θ

p−θ
pθ

.

Moreover, C ≈ B3, where C is the best constant in (1.2).

Proof. Necessity. Suppose that inequality (1.2) holds with the best constant C > 0. Let

1 ≤ r < N <∞. We take a test sequence f̃r = {f̃r,i}∞i=1 such that f̃r,i = 0 for 1 ≤ i < r, i > N and

f̃r,i = u
− p
p−θ

i

(
i∑

n=r

wθn

(
i∑

s=n

ϕqs

) θ
q

) 1
p−θ

for r ≤ i ≤ N <∞ .

Then

‖f̃r‖p,u =

(
∞∑
i=1

|f̃r · ui|p
) 1

p

=

 N∑
i=r

u
− pθ
p−θ

i

 i∑
n=r

wθn

(
i∑

s=n

ϕqs

) θ
q


p
p−θ


1
p

=: B
1
p <∞. (4.1)

In the same way as in the proof of Theorem 3.1, we substitute f̃r in the left-hand side of inequality
(1.2) and obtain inequality (3.2). Now, let us estimate

N∑
j=i

f̃j ≥ u
− p
p−θ

i

 i∑
n=r

wθn

(
i∑

k=n

ϕqk

) θ
q


1
p−θ

. (4.2)
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We put (4.2) into (3.2), then we have

I(f̃)�

 N∑
i=r

u
− pθ
p−θ

i

 i∑
n=r

wθn

(
i∑

s=n

ϕqs

) θ
q


p
p−θ


1
θ

= B
1
θ . (4.3)

From (4.1), (4.3) and (1.2), as a result we get

B
p−θ
pθ � C, for all 1 ≤ r < N <∞.

Since r ≥ 1 is arbitrary, passing to the limit N →∞, we have

B3 � C <∞. (4.4)

Su�ciency. We start to prove the su�cient part of Theorem 4.1 in the same way as the su�cient
part of Theorem 3.1. Since in this case 0 < p ≤ 1, we can not use the H�older inequality in (3.9).
Therefore, we continue the proof in the following way

Iθ(f) ≤ 4θ
∞∑
m=1

 jm+2−1∑
i=jm+1−1

fiuiu
−1
i

p θ
p jm+1−1∑

n=1

wθn

(
jm+1−1∑
s=n

ϕqs

) θ
q

.

Applying (2.3) with 0 < p ≤ 1, we obtain that

Iθ(f) ≤ 4θ
∞∑
m=1

(
jm+2−1∑
i=jm+1−1

|fiui|p
) θ

p

× sup
jm+1−1≤k≤jm+2−1

u−θk

jm+1−1∑
n=1

wθn

(
jm+1−1∑
s=n

ϕqs

) θ
q

.

Using the H�older inequality for the outer sum, we get

Iθ(f) ≤ 2θ(2+ 1
p

)

(
∞∑
i=1

|fiui|p
) θ

p

×

 ∞∑
m=1

jm+2−1∑
k=jm+1−1

u
− pθ
p−θ

k

jm+1−1∑
n=1

wθn

(
jm+1−1∑
s=n

ϕqs

) θ
q


p
p−θ


p−θ
p

≤ 2θ(2+ 1
θ

)

 ∞∑
k=1

u
− pθ
p−θ

k

 k∑
n=1

wθn

(
k∑
s=n

ϕqs

) θ
q


p
p−θ


p−θ
p

‖f‖θp,u.

Hence,
Iθ(f) ≤ 2θ(2+ 1

θ
)Bθ

3‖f‖θp,u,
so that

I(f)� B3‖f‖p,u. (4.5)

Therefore, from inequalities (4.4) and (4.5), we get C ≈ B3, where C is the best constant in (1.2).
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Theorem 4.2. Let 0 < θ < min{p, q} < ∞, 0 < p ≤ 1. Then inequality (1.1) holds if and only if
B4 <∞, where

B4 =

 ∞∑
i=1

u
− θp
p−θ

i

 ∞∑
n=i

wθn

(
n∑
k=i

ϕqk

) θ
q


p
p−θ

p−θ
pθ

.

Moreover, C ≈ B4, where C is the best constant in (1.1).

The proof of Theorem 4.2 is similar to the proof of Theorem 4.1.

Remark 1. Theorems 3.1 and 4.1 mean that inequality (1.2) holds for both cases 0 < θ < q < p <∞
and 0 < θ < p < q <∞.

5 Auxiliary result for 0 < q < p ≤ θ <∞, 0 < p ≤ 1

Theorem 5.1. Let 0 < q < p ≤ θ < ∞, 0 < p ≤ 1. Then inequality (1.1) holds if and only if
B = max{B5, B6} <∞, where

B5 = sup
i≥1

 ∞∑
n=i

wθn

(
n∑
k=i

ϕqk

) θ
q


1
θ

u−1
i ,

B6 = sup
i≥1

(
∞∑
n=i

wθn

) 1
θ
(

i∑
k=1

ϕqk

) 1
q

sup
j≤i

u−1
j .

Moreover, C ≈ B, where C is the best constant in (1.1).

Proof. Necessity. Assume that inequality (1.1) holds with the best constant C > 0. First, we prove

that B5 < ∞. Let j ≥ 1. We take a test sequence f̃j = {f̃j,i}∞i=1 such that f̃j,i = u−1
i for i = j and

f̃j,i = 0 for i 6= j. Then

‖f̃j‖p,u =

(
∞∑
i=1

|f̃j · ui|p
) 1

p

= 1. (5.1)

Substituting f̃j in left-hand side of inequality (1.1), we deduce that

I(f̃) :=

 ∞∑
n=1

wθn

(
n∑
k=1

∣∣∣∣∣ϕk
k∑
i=1

f̃j,i

∣∣∣∣∣
q) θ

q


1
θ

≥

 ∞∑
n=j

wθn

(
n∑
k=j

∣∣∣∣∣ϕk
k∑
i=1

f̃j,i

∣∣∣∣∣
q) θ

q


1
θ

≥

 ∞∑
n=j

wθn

(
n∑
k=j

ϕqk

) θ
q


1
θ

u−1
j . (5.2)

From (5.1), (5.2) and (1.1) it follows that ∞∑
n=j

wθn

(
n∑
k=j

ϕqk

) θ
q


1
θ

u−1
j ≤ C, ∀j ≥ 1.
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Since j ≥ 1 is arbitrary, we have

B5 = sup
j≥1

 ∞∑
n=j

wθn

(
n∑
k=j

ϕqk

) θ
q


1
θ

u−1
j ≤ C <∞. (5.3)

Now, let us show that B6 < ∞. For 1 < r ≤ j < ∞, we take a test sequence ṽk = {ṽk,r}∞r=1 such
that ṽk,r = u−1

r for r = k and ṽk,r = 0 for r 6= k. Then

‖ṽr‖p,u = 1. (5.4)

Substituting ṽk in the left-hand side of inequality (1.1), we �nd that

I(ṽ) ≥

 ∞∑
n=j

wθn

(
n∑
k=1

∣∣∣∣∣ϕk
k∑
i=1

ṽi,r

∣∣∣∣∣
q) θ

q


1
θ

≥

 ∞∑
n=j

wθn

(
j∑

k=1

∣∣∣∣∣ϕk
k∑
i=1

ṽi,r

∣∣∣∣∣
q) θ

q


1
θ

≥

(
∞∑
n=j

wθn

) 1
θ
(

j∑
k=1

ϕqk

) 1
q

u−1
r , ∀r ≤ j. (5.5)

From (5.4), (5.5) and (1.1), we obtain(
∞∑
n=j

wθn

) 1
θ
(

j∑
k=1

ϕqk

) 1
q

u−1
r ≤ C, ∀r ≤ j.

(
∞∑
n=j

wθn

) 1
θ
(

j∑
k=1

ϕqk

) 1
q

sup
r≤j

u−1
r ≤ C, ∀j ≥ 1.

Therefore,

B6 = sup
j≥1

(
∞∑
n=j

wθn

) 1
θ
(

j∑
k=1

ϕqk

) 1
q

sup
r≤j

u−1
r ≤ C <∞. (5.6)

Su�ciency. Let B <∞. Without loss of generality, we assume that 0 ≤ f ∈ lp,u.
Let inf ∅ =∞ and

k∞ = inf
{
k ∈ Z :

∞∑
s=1

(
ϕs

s∑
i=1

fi

)q
< 2q(k+1)

}
.

Assume that k ≤ k∞ if k∞ <∞ and

jk = inf
{
j ≥ 1 :

j∑
s=1

(
ϕs

s∑
i=1

fi

)q
≥ 2qk

}
.

Then
jk−1∑
s=1

(
ϕs

s∑
i=1

fi

)q
< 2qk ≤

jk∑
s=1

(
ϕs

s∑
i=1

fi

)q
.

Therefore, the set of natural numbers N can be written

N =
⋃
k≥1

[jk, jk+1 − 1] .
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Since in this case 0 < q < 1, we have

2q(k−1) =
2qk − 2q(k−1)

2q − 1
≤ 1

2q − 1

(
jk∑
s=1

(
ϕs

s∑
i=1

fi

)q

−
jk−1−1∑
s=1

(
ϕs

s∑
i=1

fi

)q)
≤ 1

2q − 1

 jk∑
s=jk−1

(
ϕs

s∑
i=1

fi

)q


≤ 1

2q − 1

 jk∑
s=jk−1

(
ϕs

jk−1∑
i=1

fi

)q

+

jk∑
s=jk−1

ϕs s∑
i=jk−1

fi

q .

Hence,

2(k−1) ≤ 2
1
q
−1

(2q − 1)q


 jk∑
s=jk−1

(
ϕs

jk−1∑
i=1

fi

)q
 1

q

+

 jk∑
s=jk−1

ϕs s∑
i=jk−1

fi

q
1
q

 . (5.7)

For the left-hand side I(f) of inequality (1.1) we have

I(f) =

∑
k

jk+1−1∑
n=jk

wθn

(
n∑
s=1

(
ϕs

s∑
i=1

fi

)q) θ
q


1
θ

≤ 4

(∑
k

2θ(k−1)

jk+1−1∑
n=jk

wθn

) 1
θ

. (5.8)

Combining (5.7) with (5.8), we have

I(f)�

∑
k

jk+1−1∑
n=jk

wθn


 jk∑
s=jk−1

(
ϕs

jk−1∑
i=1

fi

)q
 1

q

+

 jk∑
s=jk−1

ϕs s∑
i=jk−1

fi

q
1
q


θ


1
θ

.

In both cases θ > 1 and 0 < θ ≤ 1, we get that

I(f)�

∑
k

jk+1−1∑
n=jk

wθn

 jk∑
s=jk−1

ϕqs

 θ
q (jk−1∑

i=1

fi

)θ


1
θ

+

∑
k

jk+1−1∑
n=jk

wθn

 jk∑
s=jk−1

ϕqs

 s∑
i=jk−1

fi

q
θ
q


1
θ

= I1 + I2. (5.9)

Let us estimate I1

I1 =

 ∞∑
j=1

(
j∑
i=1

fi

)θ

µ(j)

 1
θ

, (5.10)



Iterated discrete Hardy-type inequalities 93

where

µ(j) =
∑
k

jk+1−1∑
n=jk

wθn

 jk∑
s=jk−1

ϕqs

 θ
q

δ(j − jk−1)

and δ(·) is the Dirac delta-function. By Theorem A from (5.10) we have

I1 ≤

sup
r≥1

(
∞∑
j=r

µ(j)

) 1
θ

u−1
r

 ‖f‖p,u. (5.11)

Since
∞∑
j=r

µ(j) =
∑
jk−1≥r

jk+1−1∑
n=jk

wθn

 jk∑
s=jk−1

ϕqs

 θ
q

≤
∞∑
n=r

wθn

(
n∑
s=r

ϕqs

) θ
q

,

we have

sup
r≥1

 ∞∑
n=r

wθn

(
n∑
s=r

ϕqs

) θ
q


1
θ

u−1
r � B5. (5.12)

From (5.11) and (5.12) we obtain
I1 ≤ B5‖f‖p,u. (5.13)

Let us estimate I2:

I2 ≤

∑
k

jk+1−1∑
n=jk

wθn

 jk∑
s=jk−1

ϕqs

 θ
q
 jk∑
i=jk−1

fi

θ


1
θ

≤

∑
k

 jk∑
i=jk−1

fiuiu
−1
i

p θ
p ∞∑
n=jk

wθn

(
jk∑
s=1

ϕqs

) θ
q


1
θ

.

Using the condition (2.3), we get

I2 �

∑
k

 jk∑
i=jk−1

|fiui|p
 θ

p

sup
i≤jk

u−θi

∞∑
n=jk

wθn

(
jk∑
s=1

ϕqs

) θ
q


1
θ

≤

∑
k

 jk∑
i=jk−1

|fiui|p
 θ

p


1
θ

sup
k

(
∞∑

n=jk

wθn

) 1
θ
(

jk∑
s=1

ϕqs

) 1
q

sup
i≤jk

u−1
i .

Therefore, by applying (2.4) with α = θ
p
, we obtain that

I2 �

(
∞∑
i=1

|fiui|p
) 1

p

sup
r≥1

(
∞∑
n=r

wθn

) 1
θ
(

r∑
s=1

ϕqs

) 1
q

sup
i≤r

u−1
i ,

so that
I2 ≤ B6‖f‖p,u. (5.14)
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From (5.9), (5.13) and (5.14) we have

I(f)� max{B5, B6}‖f‖p,u. (5.15)

Therefore, from inequality (5.15), we get C � B. The latter together with (5.6) gives that C ≈ B,
where C is the best constant in (1.1).
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Stepanov Vladimir Dmitrievich
Stolyarov Dmitry Mikhailovich
Ushakova Elena Pavlovna
Shkalikov Andrey Andreevich
Yang Dachun

Feel free to distribute this information to those who may be interested.

Best regards,

V.I. Burenkov (RUDN University), Editor-in-chief of the EMJ
T.V. Tararykova (RUDN University), Deputy editor-in-chief of the EMJ
A.I. Tyulenev (MIAN), member of the Organizing Committee
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