Characterization of Subdiagonal Algebras on Noncommutative Lorentz Spaces
Views: 2 / PDF downloads: 0
Keywords:
noncommutative Lorentz space, tracial subalgebra, subdiagonal algebraAbstract
Let \((M, \tau)\) be a finite von Neumann algebra, \(A\) be a tracial subalgebra of \(M\). We prove that \(A\) has \(L^{p,q}\)-factorization if and only if \(A\) is a subdiagonal algebra. We also obtain some characterizations of subdiagonal algebras.
Downloads
Published
2015-09-30
How to Cite
Bekjan, T., & Kairat, A. (2015). Characterization of Subdiagonal Algebras on Noncommutative Lorentz Spaces. Eurasian Mathematical Journal, 6(3), 6–12. Retrieved from https://emj.enu.kz/index.php/main/article/view/612
Issue
Section
Articles