Optimal cubature formulas for Morrey type function classes on multidimensional torus


Views: 10 / PDF downloads: 21

Authors

  • Sholpan Balgimbayeva
  • Daurenbek Bazarkhanov

Keywords:

Nikol'skii–Besov/Lizorkin–Triebel smoothness spaces related to Morrey space, multidimensional torus, optimal cubature formula

Abstract

In the paper, we establish estimates, sharp in order, for the error of optimal cubature formulas for the smoothness spaces \( B^s_{p,q,\tau}(\mathbb{T}^m) \) of Nikol’skii–Besov type and \( F^s_{p,q}(\mathbb{T}^m) \) of Lizorkin–Triebel type, both related to Morrey spaces, on multidimensional torus, for some range of the parameters \( s, p, q, \tau \) \( (0 < s < \infty, 1 \leq p, q \leq \infty, 0 \leq \tau \leq 1/p) \). In particular, we obtain those estimates for the isotropic Lizorkin–Triebel function spaces \( F^s_{\infty, q}(\mathbb{T}^m) \).

Downloads

Published

2024-11-17

How to Cite

Balgimbayeva, S., & Bazarkhanov, D. (2024). Optimal cubature formulas for Morrey type function classes on multidimensional torus. Eurasian Mathematical Journal, 15(3), 25–37. Retrieved from https://emj.enu.kz/index.php/main/article/view/413

Issue

Section

Articles