Hardy Inequalities for p-Weakly Monotone Functions


Views: 39 / PDF downloads: 19

Authors

  • Miquel Saucedo

Keywords:

Hardy-type inequality, generalized monotonicity

Abstract

We prove Hardy-type inequalities

\[ \left( \int_d^\infty \left| \int_d^s f(x) \, dx \right|^p s^{\beta} \, ds \right)^{1/p} \leq C \left( \int_d^\infty \left| f(s) \right|^q s^{\alpha} \, ds \right)^{1/q} \]

for the class of \(p\)-weakly monotone functions with \(q\) or \(p\) smaller than 1 and \(d \geq 0\).

Downloads

Published

2023-01-01

How to Cite

Saucedo, M. (2023). Hardy Inequalities for p-Weakly Monotone Functions. Eurasian Mathematical Journal, 14(2), 94–106. Retrieved from https://emj.enu.kz/index.php/main/article/view/288

Issue

Section

Articles