A Note on Quasilinear Elliptic Systems with L∞-Data


Views: 29 / PDF downloads: 31

Authors

  • Farah Balaadich
  • Elhoussine Azroul

Keywords:

quasilinear elliptic systems, weak energy solution, Young measure

Abstract

Abstract. We prove the existence of a weak energy solution for the boundary value problem

$$-\text{div } a(x, u, Du) = f \quad \text{in } \Omega,$$ $$u = 0 \quad \text{on } \partial \Omega,$$

where \(\Omega\) is a smooth bounded open domain in \(\mathbb{R}^n\) (\(n \geq 3\)) and \(f \in L^\infty(\Omega; \mathbb{R}^m)\). The existence result is proved using the concept of Young measures.

Downloads

Published

2023-01-01

How to Cite

Balaadich, F., & Azroul, E. (2023). A Note on Quasilinear Elliptic Systems with L∞-Data. Eurasian Mathematical Journal, 14(1), 16–24. Retrieved from https://emj.enu.kz/index.php/main/article/view/277

Issue

Section

Articles