On Estimates for Norms of Some Integral Operators with Oinarov's Kernel
Views: 18 / PDF downloads: 20
Keywords:
integral operator, norm, weight function, Lebesgue space, integral inequality, kernelAbstract
In this work, we give estimates for the norm of the integral operator
\( H : L_{p,v} \to L_{q,u}, \quad (Hf)(x) := \int_a^x k(x,t)f(t) \, dt \) \quad (0.1)
with the so-called Oinarov's kernel \(k(x,t)\) in the weighted Lebesgue spaces
\( L_{p,v} = \left\{ f : \|f\|_{p,v}^p := \int_a^b |f(t)|^p v(t) \, dt < \infty \right\} \)
and
\( L_{q,u} = \left\{ f : \|f\|_{q,u}^q := \int_a^b |f(t)|^q u(t) \, dt < \infty \right\} \),
in the case \(1 < q < p < \infty\).
Downloads
Published
2022-01-01
How to Cite
Kuliev, K. (2022). On Estimates for Norms of Some Integral Operators with Oinarov’s Kernel. Eurasian Mathematical Journal, 13(3), 67–81. Retrieved from https://emj.enu.kz/index.php/main/article/view/265
Issue
Section
Articles