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Abstract. The two-sided estimates are obtained for two types of generalized Hardy
operators on cones of functions in weighted Lebesgue spaces with some properties of
monotonicity.

1. Let β and γ be nonnegative Borel measures on R+ = (0,∞); p, q ∈ R+ , Ω be a
certain cone of nonnegative Borel - measurable functions on R+, and A be a positive
operator. Let

HΩ(A) = sup
f∈Ω

[(∫ ∞

0

(Af)q dγ

)1/q (∫ ∞

0

fpdβ

)−1/p
]
. (1)

Here, we consider the cones of functions that are monotone with respect to pre-
scribed positive Borel functions k and m:

Ωk =

{
f ≥ 0 :

f(τ)

k(τ)
↓
}

; Ωm =

{
f ≥ 0 :

f(τ)

m(τ)
↑
}
. (2)

As operator A, we consider the generalized Hardy operators A = Aµ, and A = Bµ

where µ is a nonnegative Borel measure on R+;

(Aµf) (t) =

∫ t

0

fdµ; (Bµ) (t) =

∫ ∞

t

fdµ. (3)

2. First, we formulate the result for HΩk
(Bµ). For this purpose we need some notation:

ωp(t) =

(∫ t

0

kpdβ

)1/p

, t > 0; Ψ(t, τ) =

∫ τ

t

kdµ, t < τ ;

Vp(t) = sup
τ∈[t,∞)

[
Ψ(t, τ)

1

ωp(τ)

]
, p ∈ (0, 1];
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Vp(t) =

[∫ ∞

t

Ψp′(t, τ)

(
−d
[

1

ωp
′
p (τ)

])]1/p′

, p > 1 and
1

p
+

1

p′
= 1;

Wq(τ) =

(∫ τ

0

dγ

)1/q

; ξα(τ) = ω−1
p (αωp(τ)) , τ ∈ R+. (4)

Here α ∈ (0, 1) is fixed; ω−1
p is the right-continuous inverse function for the (non-

decreasing) continuous function ωp. Obviously, ξα(τ) < τ .

The criterion of the boundedness for HΩk
(Bµ) is determined by the following quan-

tities:

Epq = sup
τ∈R+

[(∫ τ

0

Ψq(t, τ)dγ(t)

)1/q
1

ωp(τ)

]
, p ≤ q;

Epq =

[∫ ∞

0

(∫ τ

ξα(τ)

Ψq(t, τ)dγ(t)

)s/q (
−d
[

1

ωsp(τ)

])]1/s

, p > q;

Fpq = sup
t∈R+

[Vp(t)Wq(t)] , p ≤ q;

Fpq =

[∫ ∞

0

V s
p (t)d

[
W s
q (t)

]]1/s

, p > q,

(5)

where s = pq/(p− q) for p > q. In addition, introduce the non-degeneracy condition
for measure the β:

β ∈ Np(k) ⇔
∫ 1

0

kpdβ = 1,

∫ ∞

1

kpdβ = ∞.

Theorem 1. Let β ∈ Np(k) and functions ωp and Wq be positive and continuous
on R+. Then there exists c0 = c0(p, q) ∈ [1,∞) such that

c−1
0 (Epq + Fpq) ≤ HΩk

(Bµ) ≤ c0 (Epq + Fpq) .

3. Now, we present the corresponding results concerning HΩm (Aµ) (see (1) – (3)). To
this end we denote

ωp(t) =

(∫ ∞

t

mpdβ

)1/p

, t > 0; Φ(τ, t) =

∫ t

τ

mdµ, τ < t;

V (0)
p (t) = sup

τ∈(0,t]

[
Φ(τ, t)

1

ωp(τ)

]
, p ∈ (0, 1];

V (0)
p (t) =

[∫ t

0

Φp′(τ, t)

(
−d

[
1

ωp
′
p (τ)

])]1/p′

, p > 1 and
1

p
+

1

p′
= 1;

W q(τ) =

(∫ ∞

τ

dγ

)1/q

; ζα(τ) = ω−1
p (αωp(τ)) , τ ∈ R+. (6)
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Here α ∈ (0, 1) is fixed; ω−1
p is the right-continuous inverse function for the (decreas-

ing) continuous function ωp. Obviously, τ < ζα(τ). Now, we introduce the following
quantities:

E
(0)
pq = sup

τ∈R+

[(∫ ∞

τ

Φq(τ, t)dγ(t)

)1/q
1

ωp(τ)

]
, p ≤ q;

E
(0)
pq =

∫ ∞

0

(∫ ζα(τ)

τ

Φq(τ, t)dγ(t)

)s/q (
−d
[

1

ωsp(τ)

])1/s

, p > q;

F
(0)
pq = sup

t∈R+

[
V (0)
p (t)W q(t)

]
, p ≤ q;

F
(0)
pq =

[∫ ∞

0

V (0)
p

s
(t)
(
−d
[
W

s

q(t)
])]1/s

, p > q.

(7)

Theorem 2. Let
∫ 1

0

mpdβ = ∞,
∫ ∞

1

mpdβ = 1 and functions ωp and W q be positive

and continuous on R+. Then there exists c1 = c1(p, q) ∈ [1,∞) such that

c−1
1

(
E(0)
pq + F (0)

pq

)
≤ HΩm (Aµ) ≤ c1

(
E(0)
pq + F (0)

pq

)
.

Remark 1. The results concerning HΩk
(Aµ) and HΩm (Bµ) were obtained in our paper

[4; Theorems 1.2 and 1.4], and in some other forms in [1, 2, 3]. The detailed comparison
for the corresponding results from [1, 2, 4] was made in [5].

Remark 2. It was found by A. Gogatishvili that for p > q the statements of Theo-
rems 1.1 and 1.3 in [4] were not correct (personal communication). Here we present
the corrected version of these results. This is done by inserting the function ξα defined
by (4) in (5), and by inserting the function ζα defined by (6) in (7). In the next paper
we will present the detailed proofs for Theorems 1 and 2.
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