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Abstract. The paper is devoted to solving extremal problems related to Kolmogorov-
type inequalities. All solutions are obtained with the help of the so-called Lagrange
principle, which is a generalization of the Lagrange multiplier rule.

1 Preliminaries

Extremal problems. Let X be a set, C a subset of X, f a function defined on X.
Minimization (maximization) of f(x) where x ∈ C will be formally written as

f(x) → min (max), x ∈ C. (P)

One says in this case that (P) is an extremal problem with constraint x ∈ C. If X = C,
problem (P) is called a problem without constraints. Any point of C is said to be
admissible in problem (P). An admissible point x̂ is a solution of problem (P) or
absolute minimum (maximum) in problem (P), if f(x) ≥ f(x̂) (f(x) ≤ f(x̂)) for all
x ∈ C. The maximum value of f in maximization problem (P) is called the value of
problem (P). We denote it by Smax(P).

The following family of extremal problems will be considered:

Kolmogorov-type inequalities on the whole line or half line. Let T be R
or R+, n ∈ N, 1 ≤ p, q, r ≤ ∞, Wn

pr(T ) the space all functions x(·) ∈ Lp(T ) with
(n − 1)th derivative locally absolutely continuous on T and x(n)(·) ∈ Lr(T ), k an
integer, 0 ≤ k < n. Consider the following family of problems defined on the space
Wn

pr(T ):

f0(x(·)) = ‖x(k)(·)‖Lq(T ) → max,f1(x(·)) = ‖x(·)‖Lp(T ) ≤ 1,f2(x(·)) = ‖x(n)(·)‖Lr(T ) ≤ 1.
(PT (k, n, p, q, r))

Problem (PT (k, n, p, q, r)) has an equivalent formalization as a problem without con-
straints:

f(x(·)) =
‖x(k)(·)‖Lq(T )

‖x(·)‖αLp(T )‖x(n)(·)‖βLr(T )

→ max, x(·) ∈ Wn
pr(T ),
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where α = (n−k−1/r+1/q)
(n−1/r+1/p)

,β = 1− α. The value of problem (PT (k, n, p, q, r)) we denote
by KT (k, n, p, q, r) and call Kolmogorov’s constant of (PT (k, n, p, q, r)).

Lemma. If p = r, q = ∞, then a solution of the problem (PT (k, n, p, q, r)) can be
reduced to the following problem with one constraint:

f0(x(·)) = x(k)(0) → max, f1(x(·)) = ‖x(·)‖pLp(T ) + ‖x(n)(·)‖pLp(T ) ≤ 1.

(P ′
T (k, n, p, q, r))

Let AT (k, n, p) denote the value of the problem (P ′
T (k, n, p, q, r)). Then the equality

KT (k, n, p,∞, p) = AT (k, n, p)

(( np

(n− k)p− 1

)1−k/n−1/(np)( np

kp+ 1

)k/n+1/(np)
)1/p

holds.

The first problem (namely the problem (PR+(1, 2,∞,∞,∞))) of the series
(PT (k, n, p, q, r)) was solved by E. Landau in 1913. Then in 1914 J. Hadamard solved
the problem (PR(1, 2,∞,∞,∞)). In 1938 A. Kolmogorov generalized the result of
Hadamard and found all constants KR(k, n,∞,∞,∞) for n ≥ 2, 0 < k < n. This
result remains one of the most remarkable in this area, and problems from family
(PT (k, n, p, q, r)) are usually called now Kolmogorov-type inequalities (or sometimes
Landau–Kolmogorov type inequalities) on the whole line or half line.

In this survey all problems from this family will be considered from the point of
view of only one general principle of the extremal theory.

Lagrange principle. The idea how to solve extremal problems with constraints was
first expressed by Lagrange. He wrote in [1], that a procedure of solution of a smooth
finite dimensional problem with equality constraints, can be reduced to the following
general principle: “If a function of several variables should attain maximum or mini-
mum, and these variables satisfy one or several equations, then it will suffice to add to
the proposed function the functions that should be zero, each multiplied by an undeter-
mined quantity and then to look for the maximum or the minimum as if the variables
were independent; the equations that one will find, combined with the given equations,
will serve to determine all the unknowns”.

Let us express this text in mathematical language. Consider the problem:

f0(x) → extr, fi(x) = 0, 1 ≤ i ≤ m, x ∈ N.

The function L(x, λ̄) =
m∑
i=0

λifi(x) is called the Lagrange function of the problem,

the vector λ̄ = (λ0, . . . , λm) is called a collection of the Lagrange multipliers. The
necessary condition of a local extremum at a point x̂ in the problem L(x, λ̄) → extr
(«when variables are independent») by virtue of the Fermat theorem is the following
stationarity condition

Lx(x̂, λ̄) = 0 ⇔
m∑
i=0

λif
′
i(x̂) = 0

for λ̄ 6= 0. There are n equations with (n +m + 1) unknowns (x ∈ N, λ̄ ∈ Rm+1, but
we can normalize the collection of the Lagrange multipliers, for example, as follows
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m∑
i=0

|λi| = 1). If these equations are completed by the “given equations” fi(x) = 0, 1 ≤

i ≤ m, we obtain (n + m + 1) equations with (n + m + 1) unknowns. Such systems
in general case has a finite number of solutions and one can find the solution of the
problem among them.

We will use below the following generalization of the Lagrange’s idea for more
general problems (which we call the Lagrange principle). According to this principle,
when one searches necessary conditions of an extremal problem, in which smoothness is
interlaced with convexity, it suffices to construct the Lagrange function of the problem
and then to apply necessary conditions for minimum of the Lagrange function as if the
variables were independent. Equations which we obtain by this procedure combined
with the given equations, nonnegativity conditions and conditions of complementary
slackness for the Lagrange multipliers corresponding to inequality constraints will serve
to determine all unknowns.

Now we begin with formulating necessary conditions for problems without con-
straints (Propositions 1 – 4, we formulate them exactly) and then we formulating the
Lagrange principle (LP) for problems with constraints. We shall use the LP as a rule
heuristically, so we formulate them not as theorems, but as principles. Exact formula-
tions and proofs the reader can find in [2].

Necessary conditions for problems without constraints

Proposition 1 (necessary conditions for smooth problems, [2]). Let X be a
normed space, V a neighborhood of x̂ ∈ X, f0 be a real-valued function on V differen-
tiable at x̂. If
hatx is a local minimum of the problem

f0(x) → extr,

then the stationarity condition

f ′0(x̂) = 0

holds.

Proposition 2 (necessary conditions for problems of calculus of variations
(Bolza problems), [2]). Let X be the space C1([t0, t1],Rn) of continuously dif-
ferentiable vector-functions, x̂(·) ∈ X, V1 be a neighborhood of the graph Γx̂(·) =

{(t, x̂(t), ˙̂x(t)) ∈ R× Rn × Rn | t ∈ [t0, t1]}, L : V1 → R2n+1 be a continuously differen-
tiable function, V2 be a neighborhood of the point (x(t0), x(t1)) ∈ R2n and l : V2 → R
be a continuously differentiable function. If x̂(·) is a local minimum in the space X of
the problem

f0(x(·)) =

∫ t1

t0

L(t, x(t), ẋ(t))dt+ l(x(t0), x(t1)) → min,

(Bolza problem), then L̂ẋ(·) ∈ C1([t0, t1],Rn) and
a) Euler equation − d

dt
L̂ẋ(t) + L̂x(t) = 0,
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b) transversality conditions L̂ẋ(ti) = (−1)il̂x(ti), i = 0, 1,
hold, where

L̂ẋ(t) = Lẋ(t, x̂(t), ˙̂x(t)), L̂x(t) = Lx(t, x̂(t), ˙̂x(t)), l̂x(ti) =
∂l(x̂(t0), x̂(t1))

∂(x(ti))
, i = 0, 1.

Proposition 3 (criterion of minimum for elementary optimal control prob-
lems, [2]). Let U ⊂ Rr, L : R× U → R be a continuous function, U be the set of all
piece-wise continuous functions from [t0, t1] to U . Then û(·) ∈ U is a solution of the
problem

f0(u(·)) =

∫ t1

t0

L(t, u(t))dt→ min, u(t) ∈ U,

if and only if the minimum condition

c) L(t, u) ≥ L(t, û(t)) ∀u ∈ U t ∈ [t0, t1] a.e.

holds.

Proposition 4 (criterion of minimum for convex problems, [2]). Let U be a
convex subset of Rn, f0 : Rn → R ∪ {+∞} be a convex function. Then û is a solution
of the problem

f0(u) → min, u ∈ U,
if and only if (by definition) c) minimum condition f0(u) ≥ f0(û) ∀u ∈ U holds, or if
U = Rn, then α) 0 ∈ ∂f0(û).

For solving our extremal problems we shall use the following conditions of ex-
tremum: α) stationarity conditions, β) nonnegativity conditions, γ) conditions of com-
plementary slackness, a) Euler equations, b) transversality conditions, and c) minimum
conditions.

Let us illustrate the Lagrange principle for a finite dimensional smooth problem
with equality and inequality constraints:

f0(x) → min, fi(x) ≤ 0, 1 ≤ i ≤ m′, fi(x) = 0, m′ + 1 ≤ i ≤ m. (PLagr)

The Lagrange function of this problem has the form: L(x, λ̄) =
m∑
i=0

λifi(x) where

λ̄ = (λ0, . . . , λm). Application of Proposition 1 to the problem of minimization of the
Lagrange function without constraints together with conditions of nonnegativity and
complementary slackness leads to the following relations:

α) Lx(x̂, λ̄) = 0 ⇔
m∑
k=0

λkf
′
k(x̂) = 0, β)λk ≥ 0, 0 ≤ k ≤ m′, γ)λkfk(x̂) = 0, 1 ≤ k ≤ m′.

Now we formulate the Lagrange principle for five classes of problems.

LP 1. Necessary conditions of extremum for a smooth problem with in-
equality and equality constraints. If an extremum to the problem

f0(x) → extr, fi(x) ≤ 0, 0 ≤ i ≤ m′, fi(x) = 0, m′ + 1 ≤ i ≤ m,
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where fi are smooth functions defined on a normed space is attained at an element
x̂, then the necessary conditions for this problem at the element x̂ correspond to the
Lagrange principle.

LP 2. Necessary and sufficient conditions of extremum for a convex problem
with inequality constraints. If X is a locally convex vector space and an minimum
to the problem

f0(x) → min, fi(x) ≤ 0, 0 ≤ i ≤ m, x ∈ A,

(where fi are convex functions defined on X and A ⊂ X is a convex set) is attained at
an element x̂, then the necessary conditions at the element x̂ for this problem correspond
to the Lagrange principle; the necessary conditions with λ0 6= 0 which correspond to
Lagrange principle are sufficient.

LP 3. Necessary conditions of extremum for a problem of calculus of vari-
ations. If an extremum to the problem

f0(x(·), u(·)) → extr, fi(x(·), u(·)) ≤ 0, 0 ≤ i ≤ m′,

fi(x(·), u(·)) = 0, m′+1 ≤ i ≤ m, ẋ = ϕ(t, x, u),

(where fi(x(·), u(·)) =
t1∫
t0

Li(t, x(t), u(t))dt + li(x(t0), x(t1)) and Li, ϕ, li are smooth

functions) is attained at a pair (x̂(·), û(·)), then the necessary conditions for this prob-
lem at the pair (x̂(·), û(·) correspond to the Lagrange principle.

The problem

f0(u(·)) → min, fi(u(·)) ≤ 0, 1 ≤ i ≤ m′, fi(u(·)) = 0, m′ + 1 ≤ i ≤ m,

where

fi(u(·)) =

t1∫
t0

Li(t, u(t)dt, 0 ≤ i ≤ m,

is called a Lyapunov problem.

LP 4. Necessary and sufficient conditions of extremum for a Lyapunov
problem. If the absolute minimum in the problem

f0(u(·)) → min, fi(u(·)) ≤ 0, 0 ≤ i ≤ m, u(t) ∈ U a.e.,

(where fi(u(·)) =
t1∫
t0

Li(t, u(t))dt are continuous functions defined on [t0, t1] × Rr and

U ⊂ Rr) is attained at a function û(·) ∈ L∞([t0, t1],Rr), then the necessary conditions
for this problem at the function û(·) correspond to the Lagrange principle; the necessary
conditions with λ0 6= 0 which correspond to Lagrange principle are sufficient.

We call the problem, posed in the LP 3 and completed by constraint u(t) ∈ U ⊂ Rr,
an elementary problem of optimal control.

LP 5. Necessary conditions of extremum for a problem of optimal control.
If an extremum to a problem of optimal control is attained at a pair (x̂(·), û(·)), then the
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necessary conditions for this problem at the pair (x̂(·), û(·) correspond to the Lagrange
principle.

In the problem of optimal control which is linear over phase coordinates
(
when the

differential constraints have the form

ẋ = A(t)x+ F (t, u(t))

and the functional is

f(x(·)) =

∫ t1

t0

(a(t)x(t) + L(t, u(t)))dt+ l0x(t0) + l1x(t1)
)

the necessary conditions with λ0 6= 0 which correspond to the Lagrange principle are
sufficient.

2 Solutions of problems from the family (PT (k, n, p, q, r))

Solving of any such problem consists of the following steps:
1. Formalization (with some commentaries and writing out the Lagrange function).
2. Application of one of Propositions 1–4 to the problem of minimization of the La-
grange function as the problem without constraints.
3. Solving the equations obtained at Step 2.
4. Verification of the fact that among solutions obtained at Step 3 there exists a
solution of the problem.

The first two examples have a propaedeutic character.
Problem 1: (PR+(0, 1, 2,∞, 2))

1. f0(x(·)) = x(0) → max, f1(x(·)) =

∫
R+

x2(t) ≤ 1, f2(x(·)) =

∫
R+

ẋ2(t) dt ≤ 1. (P1)

This is on one hand a smooth problem with inequality constraints and on the other
hand this is a problem of calculus of variations. The Lagrange function of problem
(P1) has the form (up to the constant (−λ1 − λ2)):

L(x(·), λ̄) = −x(0) +

∫
R+

(λ1x
2(t) + λ2ẋ

2(t))dt, λ̄ = (−1, λ1, λ2).

We denote a solution of problem (P1) by x̂(·).
2. Proposition 1 for minimization of the Lagrange function of smooth problem with
constraints consists of the stationarity condition α) Lx(·)(x̂(·), λ̄) = 0. After differenti-
ation of the Lagrange function we come to the identity:

−x(0) +

∫
R+

(2λ1x̂(t)x(t) + 2λ2
˙̂x(t)ẋ(t))dt = 0 ∀x(·).

After integrating by parts and writing out β), γ) conditions we obtain the following
collection of relations
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a) λ2
¨̂x(t)− λ1x̂(t) = 0, b) 2λ2

˙̂x(0) = −1, β) λi ≥ 0, γ) λi(fi(x̂(·))− 1) = 0, i = 1, 2.
(1)

They are a) Euler equations, b) transversality conditions, β) nonnegativity condi-
tions and γ) conditions of complementary slackness.
3. It can be easily shown that system (1) has the following (unique) solution: x̂(t) =√

2e−t, λi = 1
2
√

2
, i = 1, 2.

The identity, which was written above, has the following explicit form:

x(0) =

∫
R+

e−t(x(t)− ẋ(t))dt ∀x(·). (1′)

Of course, it was possible to prove this identity directly.
4. Application of the Cauchy inequality to (1′) leads to the following estimate from
above:

|x(0)| ≤ 2

√√√√∫
R+

e−2tdt =
√

2 .

On the other hand, the function x̂(t) =
√

2e−t is admissible in our problem. Conse-
quently,
KR+(0, 1, 2,∞, 2) ≥ x̂(0) =

√
2. Thus KR+(0, 1, 2,∞, 2) =

√
2.

Theorem 1. KR+(0, 1, 2,∞, 2) =
√

2.

Problem 2: (PR(0, 1, 2,∞, 2))

1. f0(x(·)) = x(0) → max, f1(x(·)) =

∫
R

x2(t) dt ≤ 1, f2(x(·)) =

∫
R

ẋ2(t) dt ≤ 1.

(P2)
2. Proposition 1 leads to relations similar to (1) (obtaining them is left to the reader).
Solving these relations leads to the following identity (which is possible to check directly,
moreover, it immediately follows from (1′)):

x(0) =
1

2

∫
R

e−|t|(x(t)− ẋ(t))dt ∀x(·). (2)

Application of the Cauchy inequality to (2) leads to the estimate from above and
the admissible function x̂(t) = e−|t| gives the estimate from below KR(0, 1, 2,∞, 2) ≥
x̂(0) = 1. Consequently,

Theorem 2. KR(0, 1, 2,∞, 2) = 1.

There exists another way of solving of (P2) based on the Fourier transform. Let
Fx(·) denote the Fourier transform of x(·). Parseval’s inequality leads to the following
reformulation of problem (P2):
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∫
R

Fx(τ)dτ → max,

∫
R

Fx2(τ)dτ ≤ 1,

∫
R

τ 2Fx2(τ)dτ ≤ 1. (P ′
2)

This is a Lyapunov problem, which has a very simple solution by means of the
Lagrange principle.
Problem 3: (PR+(1, 2,∞,∞,∞))

1. y(0) → max, |x(t)| ≤ 1, ẋ = y, ẏ = u, |u(t)| ≤ 1 ∀ t ∈ R+. (P3)

This is a problem of optimal control with phase constraints linear over the phase
coordinates. Assume that a solution x̂(·) attains its minimum at t = 0 and its maximum
at a point T . Then the Lagrange function has the following form

L(x(·), u(·), λ̄) = −y(0) +µ1x(T )−µ0x(0) +

T∫
0

(
q(t)(ẋ(t)− y(t)) + p(t)(ẏ(t)− u(t))

)
dt,

where λ̄ = (µ0, µ1, p(·), q(·)), µi ≥ 0, i = 0, 1.
2. Application of Proposition 1 to min{L(x(·), û(·), λ̄) | x(·)} leads to the following
identity

ẋ(0) = µ1x(T )− µ0x(0) +

T∫
0

(q(t)(ẋ(t)− y(t)) + p(t)ẏ(t))dt.

Application of Proposition 3 to min{L(x̂(·), u(·), λ̄) | |u(t)| ≤ 1} gives the identity
û(t) = sgn p(t).

After integrating by parts in the first identity one obtains the following relations:
a) Euler equation and b) transversality conditions, namely
a) ṗ =−q, q̇ = 0,
b) p(0)=−1, p(T )= 0, q(0)=−µ0, q(T )=−µ1 ⇒ p(t)= t

T
−1, 1

T
= µ1 = µ0.

Thus, the exact form of the identity is the following:

ẋ(0) =
x(T )− x(0)

T
+

T∫
0

p(t)ẍ(t)dt (3)

(one can check this identity directly).
3, 4. From the identity one obtains the following estimate:

KR+(1, 2,∞,∞,∞) ≤ min
T>0

(
2

T
+

T∫
0

(1− t

T
)dt) = min

T>0
(
2

T
+
T

2
) = 2, (T̂ = 2).

The equality is attained at the function x̂(t) = 1− (2−t)2+
2

.

Theorem 3 (Landau, 1913, [3]). KR+(1, 2,∞,∞,∞) = 2.
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Problem 4: (PR(1, 2,∞,∞,∞))

1. y(0) → max, |x(t)| ≤ 1, ẋ = y, ẏ = u, |u(t)| ≤ 1 ∀ t ∈ R. (P4)

2. Propositions 2 and 3 lead to an identity similar to (3)

ẋ(0) =
x(T )− x(−T )

2T
− 1

2

T∫
−T

(sgn t− t

T
) ẍ(t) dt. (4)

It is possible to check this identity directly.
3, 4. From this identity we obtain the following estimate

KR(1, 2,∞,∞,∞) ≤ min
T>0

(
1

T
+

1

2

T∫
−T

(1− |t|
T

)dt) = min
T>0

(
1

T
+
T

2
) =

√
2, (T̂ =

√
2).

The equality is attained at the function x̂(t)=(1− (
√

2−|t|)2+
2

) sgn t.

Theorem 4 (Hadamard, 1914, [4]). KR(1, 2,∞,∞,∞) =
√

2.

Problem 5: (PR+(1, 2, 2, 2, 2))
1. It is possible to formalize the problem (PR+(1, 2, 2, 2, 2)) in the following equivalent
form ∫

R+

ẋ2(t)dt→ max,

∫
R+

(
x2(t) + (ẍ(t))2

)
dt ≤ 1. (P5)

This is a problem of calculus of variations.
2. Proposition 2 leads to a) Euler–Poisson equation for the Lagrangian of the Lagrange
function of the problem (P5), b) transversality conditions, which must be complemented
by the conditions of β) nonnegativity and γ) complimentary slackness:

a) x(4) + µẍ+ x = 0, b) x(3)(0) + µẋ(0) = 0, ẍ(0) = 0,

β) µ ≥ 0, γ) µ(

∫
R+

(x2 + ẍ2)dt− 1) = 0. (5)

3. The characteristic polynomial z4 + µz2 + 1 of the Euler–Poisson equation is the
product of two factors one of which z2 + νz+1 (ν =

√
2− µ) has a root in the left half

plane. Hence equation a) is satisfied if ẍ+ νẋ+ x = 0.
Differentiating this equation and substituting t = 0, we obtain

(
using (5) b)

)
the

equality x(3)(0) + ẋ(0) = 0, thus µ = 1, and consequently ν = 1. Solving now the
equation ẍ + ẋ + x = 0 with the boundary condition ẋ(0) + x(0) = 0 we obtain a
family of solutions x(t) = Ae−t/2 cos

(√
3

2
t+ π

6

)
, where A can be calculated by using

the isoperimetric condition.
4. It is easy to check that the following identity takes place:∫

R+

(
ẍ2(t)− ẋ2(t) + x2(t)

)
dt =
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=

∫
R+

(ẍ(t) + ẋ(t) + x(t))2 dt+ (x(0) + ẋ(0))2 ∀x(·) ∈ W2
2 (R+).

(It is nothing else but the Weierstrass formula in calculus of variations). From this
identity it follows that the value of the problem (P5) is equal to 1. Application of
Lemma from Section 1 proves the inequality.

Theorem 5 (Hardy–Littlwood–Polya I, 1934, [5]). KR+(1, 2, 2, 2, 2) = 2.

Problem 6: (PR(k, n, 2, 2, 2))

1. ‖x(k)(·)‖L2(R) → max, ‖x(·)‖L2(R) ≤ 1, ‖x(n)(·)‖L2(R) ≤ 1. (P6)

Application of the Fourier transform leads to the following reformulation:∫
R

t2kdµ(t) → max,

∫
R

dµ(t) ≤ 1,

∫
R

t2ndµ(t) ≤ 1, dµ ≥ 0, dµ(t) = F 2x(t)dt. (P ′
6)

This is a Lyapunov problem. The Lagrange function of this problem is the function

L(µ(·), λ̄) =

∫
R

L(t, λ̄) dµ, where L(t, λ̄) = −t2k + λ0 + λ1t
2n.

2. Proposition 4 leads to the minimum condition:

c) min
µ

∫
R

L(t, λ̄) dµ =

∫
R

L(t, λ̄) dµ̂. (6)

3, 4. From (6) it follows that dµ̂(t) = Ĉδ(t − τ̂)dt, where constants Ĉ and τ̂ can be
found from the conditions of complementary slackness.

But the following direct proof is much more simple:

‖x(k)(·)‖2
L2(R) =

∫
R

(x(k)(t))2dt

Parseval
= (2π)

∫
R

t2k(F (x(t)))2dt = (2π)

∫
R

t2k(F (x(t)))
2k
n (F (x(t)))2− 2k

n dt

≤ (2π)(

∫
R

t2n(F (x(t)))2dt)
k
n (

∫
R

(F (x(t)))2dt)1− k
n =‖x(·)‖L2(R))

1− k
n‖x(n)(·)‖L2(R))

k
n .

Sharpness of this inequality is trivial.

Theorem 6 (Hardy–Littlwood–Polya II, 1934, [5]). KR(k, n, 2, 2, 2) = 1.

Problem 7: (PR(k, n,∞,∞,∞))

1. x(k)(0) → max, ‖x(·)‖C(R) ≤ 1, |x(n)(t)| ≤ 1 a. e. on R. (P7)
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Consider the problem (PR(k, n,∞,∞,∞)) where n = 4l and k = 1 (the case n ∈ N,
0 ≤ k ≤ n− 1 is considered analogously). Denote by

Kn =
4

π

∑
j∈N

(−1)(j+1)(n+1)

(2j − 1)n+1

the Favard constant and consider the problem

ẋ(0) → max, ‖x(·)‖C(R) ≤ Kn, |x(n)(t)| ≤ 1 a. e. on R. (P ′
7)

This is a problem of optimal control with phase constraints. It is natural to suppose
that the solution of (P ′

7) is a 2π-periodic Euler spline x̂(·) for which∫ π

−π
x̂(t) dt = 0, and x̂(n)(t) = sgn sin t (then ‖x̂(·)‖C(R) = Kn).

2. If the Lagrange principle is valid, then the following identity has to be fulfilled:

ẋ(0) =
∑
j∈Z

µjx(jπ + π/2) +

∫
R
p(t)x(n)(t) dt ∀x(·) (7)

where sgnp(t) = sgn sin t.
3, 4. Substituting x(·) = exp(iσ·), σ ∈ R, in (7) we obtain that

Fp(σ) =

∫
R
p(t)eiσtdt =

1

(iσ)n−1
− Fν(σ)

(iσ)n
,

where

ν(·) =
∑
j∈Z

µj δ(· − jπ − π/2), Fν(σ) =
∑
j∈Z

µj exp(iσ(jπ + π/2)).

Let p̃(σ) =
∑

s∈Z Fp(σ + 2s) be 2-periodization of Fp(·). Then (as is easy to check)
the Fourier coefficients of p̃(·) are equal to zero and hence p̃(·) = 0. Thus,

0 = p̃(σ) =
∑
s∈Z

i

(σ + 2s)n−1
−
∑
s∈Z

(−1)sFν(σ)

(σ + 2s)n
,

and consequently

Fν(σ) = 2πi(n− 1)
(cot πσ

2
)(n−2)

(csc πσ
2

)(n−1)
.

These formulae are obtained by Buslaev. It follows from this that

KR(1, n,∞,∞,∞) =
Kn−1

(Kn)(n−1)/n
.

Theorem 7 (Kolmogorov, 1938,[6]). KR(k, n,∞,∞,∞) = Kn−k/K
n−k

n
n .
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Problem 8: (PR+(0, 1, p,∞, r))

1. x(0) → max, ‖x‖Lp(R+) ≤ 1, ‖ẋ‖Lr(R+) ≤ 1. (P8)

This is a problem of calculus of variations. The Lagrange function has the following
form:

L(x(·), λ̄) = −x(0) + λ1

∫
R+

|x|p dt+ λ2

∫
R+

|ẋ|r dt, λ̄ = (−1, λ1, λ2).

2. Proposition 2 leads to a) Euler equation and b) transversality conditions:

a)
d

dt
rλ2( ˙̂x)r = pλ1(x̂)p, b) rλ2(x̂(0))r = −1. (8)

3. The integrand in the problem does not depend on t, thus the Euler equation has the
energy integral: (r−1)λ2| ˙̂x|r−pλ1|x̂|p = 0. After integrating these equations (selecting
solutions which tends to zero when t→∞) we find the following solution of the Euler
equations:

x̂(t) =

 p1/p · e−t , if p = r;(
p+r′

r′

) r′
p+r′

(
1 + p−r

pr−p+rat
) r

r−p

+
, if p 6= r,

where a = (1− s)−r
′s and s = (1 + r′/p)−1. After finding the Lagrange multiples and

substituting them in the Lagrange function we obtain the following identity:

x(0) = p(1− s)s/r′
∫

R+

(x̂)p · x dt+ (1− s)s
∫

R+

( ˙̂x)r · ẋ. dt

(This identity can be checked directly).
4. Application of the Hölder inequality gives the value of the problem.

Theorem 8 (S. Nagy, 1941, [7]). KR+(0, 1, p,∞, r, ) = (1− s)s−1, s = (1 + r′/p)−1.

Problem 9: (PR(k, n, 1, 1, 1))
This is a unique case when we do not know how to solve the problem by means of

general principles of the theory. We prove the appropriate inequality by reducing the
problem to the Kolmogorov inequality. Denote

Φ(t) :=

∫
R
x(t+ τ) sgn x(k)(τ) dτ.

Then the following relations are evidently satisfied:

‖Φ(·)‖C(R) ≤ ‖x(·)‖L1(R), ‖Φ(k)(·)‖C(R) ≥ Φ(k)(0) = ‖x(k)(·)‖L1(R),

‖Φ(n)(·)‖L∞(R) ≤ ‖x(n)(·)‖L1(R) (9)

Using (9) and the Kolmogorov inequality for the problem (PR(k, n,∞,∞,∞)) we ob-
tain

‖x(k)(·)‖L1(R) ≤ ‖Φ(k)(·)‖C(R) ≤
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≤ Kn−k

K
n−k

n
n

‖Φ(·)‖
n−k

n

C(R)‖Φ
(n)(·)‖

k
n

L∞(R) ≤
Kn−k

K
n−k

n
n

‖x(·)‖
n−k

n

L1(R)‖x
(n)(·)‖

k
n

L1(R),

where Ckn = Kn−k

K
n−k

n
n

. To complete the proof it suffices to prove the sharpness of this

inequality.

Theorem 9 (Stein, 1957, [8]). KR(k, n, 1, 1, 1) = Kn−k

K
n−k

n
n

.

Problem 10: (PR+(0, 2, 2,∞,∞))

1. x1(0) → max, ẋ1 = x2, ẋ2 = u,

∫
R+

|x1(t)|2 dt ≤ 1, |u(t)| ≤ 1 a. e. (P10)

This is a problem of optimal control. The Lagrange function has the following form:

L((x1(·), x2(·), u(·)), λ̄) =

∫
R+

(
x2

1

2
+ p1(ẋ1 − x2) + p2(ẋ2 − u)

)
dt− λx1(0),

λ̄ = (p1(·), p2(·), λ).

2. Proposition 2 applied to the problem L((x1(·), x2(·), û(·)), λ̄) → min leads to a)
Euler equation and b) transversality conditions; Proposition 3 applied to the problem
L((x̂1(·), x̂2(·), u(·)), λ̄) → min, |u| ≤ 1, leads to c) minimum condition:

a) − ṗ1 + x1 = 0, −ṗ2 − p1 = 0, b) p2(0) = 0, c) u = sgn p2.

If we denote (p2 = y), then we obtain the following equations which are satisfied only
by the function expected to be a solution of the problem:

ẍ = sgn y, ÿ = −x, y(0) = 0. (10)

We will solve equations (10) with the normalization x(0) = 1.
3. Solutions of (10) have an «energy integral»

ẏ · ẋ+ x2/2 = |y|, (⇒ ẏ(0)ẋ(0) = −x2(0)/2)

(one can check it by differentiation). When t is small we have:

x(t) =
t2

2
− αt+ 1, y(t) =

t

2α
− t2

2
+
αt3

6
− t4

24
.

Next by using the invariance of our equations with respect to the following transfor-
mations:
λ 7→ (xλ(·), yλ(·)), xλ(t) = λ2x(t/λ), yλ(t) = λ4y(t/λ), it is possible to find the solu-
tion

x(t) = x(τ)−1x(|x(τ)|1/2t+ τ), y(t) = −x(τ)−2y(|x(τ)|1/2t+ τ),(
⇒ ẋ(0) = ẋ(τ)

√
|x(τ)|
x(τ)

)
,
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where τ > 0 is the point where y(·) attains zero for the first time. Continuing this
process we shall construct an optimal process with countable number of switchings on
a finite segment of time. (This phenomenon is called «chattering regime».)

τ 2

2
− ατ + 1 + (

τ

α
− 1)2 = 0, τ − 2α(

τ 2

2
− ατ 3

6
+
τ 4

24
) = 0.

Excluding τ from these equations we obtain that

(α2−2)(2α8−3α4−36) = 0, α =

(
3(1 +

√
33)

4

)1/4

, τ =
α

4

(
7+
√

33−
√

26 + 6
√

33
)
.

This leads to the following result (which in this form was obtained by Kochurov):

Theorem 10 (Fuller, 1960, [9]). KR+(0, 2, 2,∞,∞) = 52/52−3/5(3
√

33 + 3)1/10.

Problem 11: (PR(k, n, 2,∞, 2))

1. ‖x(k)(·)‖Cb(R) → max, ‖x(·)‖L2(R) ≤ 1, ‖x(n)(·)‖L2(R) ≤ 1. (P11)

Let Fx(·) be the Fourier transform of x(·) and u(τ) be 2πFx(τ) (for x(·) ∈ L2(R)).
Then by the Parseval equality ‖x(·)‖2

L2(R) = 2π‖Fx(·)‖2
L2(R), we obtain the following

reformulation of the problem:∫
R

t2ku(t)dt→ max,

∫
R

u2(t) ≤ 1,

∫
R

t2nu2(t) ≤ 1. (P ′
11)

This is a Lyapunov problem. The Lagrange function of this problem is the function

L(u(·), λ̄) =

∫
R

L(t, u(t), λ̄)dt,

where L(t, u, λ̄) = −t2ku+ (λ0 + λ1t
2n)u2.

2. Proposition 3 applied to the problem of minimization of the Lagrange function leads
to the minimum condition:

c) min
u∈R

L(t, u, λ̄) = L(t, û(t), λ̄). (11)

3, 4. From (11) it follows that û(t) = t2k

2(λ0+λ1t2n)
.

Integrals
∫
R

t2k dt
λ0+λ1t2n are expressed via trigonometric functions. It gives possibility to

find the Lagrange multipliers λ0 and λ1 and then calculate
∫
R
û(t)dt and thus the value

of the problem.
The Cauchy inequality gives the solution very quickly:(

x(k)(0)
)2

=
∣∣∫
R

τ kFx(τ)dτ
∣∣2 =

∣∣∫
R

τ k√
1 + τ 2n

Fx(τ)
√

1 + τ 2ndτ
∣∣2

Cauchy

≤ Akn
2π

∫
R

(x2(τ) + (x(n))2(τ)) dτ ≤ Akn
2π

,

where Akn = π
(
n sin (2k+1)π

2n

)−1. This is a sharp estimate. Lemma from Section 1
immediately gives the expression for KR(k, n, 2,∞, 2).
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Theorem 11 (Taikov, 1968, [10]).

KR(k, n, 2,∞, 2) =

√
1

2n sin (2k+1)π
2n

(
2n

2(n− k)− 1

) 2(n−k)−1
4n

(
2n

2k + 1

) 2k+1
4n

.

Problem 12: (PR+(1, 2,∞,∞, r))

1. ẋ(0) → max, |x(t)| ≤ 1, t ∈ R+,

∫
R+

|ẍ(t)|r ≤ 1, r ≥ 1. (P12)

This is a problem of optimal control with phase constraints. Consider the case r > 1,
the case r = 1 will be obtained by passage to the limit.
2. The Lagrange principle leads to the following identity

ẋ(0) =
x(T )− x(0)

T
−
∫

R+

(1− t

T
)+ẍ(t)dt (13)

which was obtained when the Landau problem was solved. As a result we come to the
differential equation ẍ(t) = a(1− t

T
)r
′−1

+ with boundary conditions

x(0) = −1, x(T ) = 1, ẋ(T ) = 0,

∫ T

0

|ẍ(t)|rdt = 1.

3, 4. Solving these equations we obtain that

x̂(t) = 1− 2(1− t

T
)r
′+1

+ , T = (2r′)
r′

r′+1 (r′ + 1)
1

r′+1 .

For an estimate from below it suffices to calculate ˙̂x(0). For the estimate from above
it suffices to apply the Hölder inequality to the general identity.

Theorem 12 (Arestov, 1972, [11]). KR+(1, 2,∞,∞, r) = 21/(r′+1)
(
r′+1
r′

)r′/(r′+1).

Problem 13: (PR+(k, n, 2,∞, 2))

1.

∫
R+

(x2 + (x(n))2)dt→ min, x(k)(0) = 1. (P13)

This is one of possible formalizations of the problem. Problem (P13) belongs to the
class of convex problems of the calculus of variations (on an infinite interval).

The Lagrange function of the problem has the form:

L(x(·), λ̄) =

∫
R+

(x2(t) + (x(n)(t))2) dt+ λx(k)(0),

where λ̄ = (1, λ).
2. The Lagrange principle gives the a) Euler–Lagrange equation and b) transversality
conditions:

a) (−1)nx̂(2n) + x̂ = 0, b) x̂(n+l−1)(0) = (−1)n−kδl,n−k.
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3, 4. Admissible solutions of the Euler–Lagrange equation are represented in the form:
x̂(t) =

∑n
j=1 cje

λjt, where λj are the roots of (2n) th degree of +1 if n is even and of −1
if n is odd. Then we have to satisfy the transversality conditions. Thus it is necessary
to solve the system: ∑n

j=1
cjλ

n+l−1
j = (−1)n−kδl,n−k (13)

and to calculate

x̂(k)(0) =
n∑
j=1

cjλ
k
j .

The matrix of system (13) is the Vandermonde matrix A = (µlm) up to multiplication
by a constant with absolute value 1, where 0 ≤ l ≤ n − 1, n ≤ m ≤ 2n − 1. The
solution of system (13) has the form C · detAk

detA
, where the matrix Ak is obtained from

A by replacing the (n − k) row with the row (1, µk, . . . , µ
n−1
k ). The modulus of the

Vandermonde determinant generated by numbers w1, . . . , wn is equal to the product
of numbers |wj − wk|. In our case wk are roots of +1 or −1 of degree (2n). Thus,
|wj − wk| =

∣∣sin lπ
n

∣∣ or
∣∣sin lπ+π/2

n

∣∣. After simplification of the expression detAk

detA
we

obtain

Akn =

(
sin

π(2k + 1)

2n

)−1/2 k∏
j=1

cot
πj

2n
.

Applying now Lemma from Section I we conclude the proof.

Theorem 13 (Gabushin, 1969, [12], Kalyabin, 2002, [14]).

KR+(k, n, 2,∞, 2) = Akn ·
( 2n

2n− 2k − 1

) 2n−2k−1
4n

( 2n

2k + 1

) 2k+1
2n .

Problem 14: (PR+(0, 2, p,∞, 1))

After some reformulation of the problem (the inequality Var ẋ(·) ≤ 1 instead of∫
R+

|ẍ(t)|dt ≤ 1) we obtain the following formalization:

1. x(0) → max,

∫
R+

|x(t)|pdt ≤ 1, ẋ = u, Varu(·) ≤ 1. (P14)

This is a problem of optimal control with a nonstandard constraint of the control
parameter. The Lagrange function of the problem (P14) has the form:

−x(0) +

∫
R+

(λ|x(t)|p + q(t)(ẋ(t)− u(t)) dt.

2. The Lagrange principle leads to the identity

x(0) =

∫
R+

(λp(x̂(t))p x(t) + q(t)ẋ(t)) dt, (14)
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a) the Euler equation −q̇(t)+λp(x̂(t))p = 0, b) the transversality condition q(0) = −1
and c) the minimum condition:

min
Var u(·)≤1

−
∫

R+

q(t)u(t)dt = −
∫

R+

q(t)û(t)dt.

3, 4. From relations ẋ = u, x(·) ∈ Lp(R+) it follows that u(t) tends to zero when
t → ∞. If we assume that (−û(t)) is the characteristic function of [0, T ], where T is
to be found then our assumptions give possibility to define all unknowns:

x̂(t) = −
T∫
t

û(t) dt = (T − t)+, q̇(t) = λp(x̂(t))p ⇒ q(t) = −λ(T − t)p+, q(0) = −1

⇒ λ = 1
T p , ‖x̂(·)‖Lp(R+) = 1 ⇒ T = (p+ 1)

1
p+1 .

Thus KR+(0, 2, p,∞, 1) = (p+ 1)
1

p+1 . Returning to (14), we obtain the following iden-
tity:

x(0) =

∫
R+

(
p

T p
(T − t)p−1

+ x(t)− (1− t

T
)p+ ẋ(t))dt.

It is possible to check this identity directly (so we could start our investigation from
this identity). Using the admissible function t 7→ (T − t)+, we obtain the estimate from
below
KR+(0, 2, p,∞, 1) ≥ (p+ 1)

1
p+1 .

If we change in the identity (14) the expression

−
∞∫

0

(1− t

T
)p+ ẋ(t) dt by

∞∫
0

T

p+ 1
(1− (1− t

T
)p+1
+ ) dẋ(t),

then from Hölder inequality and inequalities ‖x(·)|Lp(R+) ≤ 1 and Varx(·) ≤ 1, we
obtain the estimate from above KR+(0, 2, p,∞, 1) ≤ (p + 1)

1
p+1 . Thus we proved the

following

Theorem 14 (Magaril-Il’yaev, 1983, [13]). KR+(0, 2, p,∞, 1) = (p+ 1)
1

p+1 .
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