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Abstract. We give a unified approach to trigonometric approximation and study its
interrelation with smoothness properties of functions. In the first part our concern
lies on convergence of the Fourier means, interpolation means and families of linear
trigonometric polynomial operators in the scale of the Lp-spaces with 0 < p ≤ +∞.
We establish a general convergence theorem which allows to determine the ranges of
convergence for approximation methods generated by classical kernels.

The second part will deal with the equivalence of the approximation errors for
families of linear polynomial operators generated by classical kernels in terms of K-
functionals generated by homogeneous functions and general moduli of smoothness. It
will also be shown that the results of the classical approximation theory on the Fourier
means and interpolation means in the case 1 ≤ p ≤ +∞, classical differential operators
and moduli of smoothness are direct consequences of our general approach.

1 Introduction

Problems related to various constructive methods of trigonometric approximation, their
convergence in the scale of Lp-spaces of 2π-periodic functions of one or several variables
with 1 ≤ p ≤ +∞ and the description of the decay of their approximation errors in
terms of smoothness quantities of a given function form an essential part of both classi-
cal and modern approximation theory. For detailed investigations, precise definitions,
key results we refer, for instance, to [6], [8], [21], [42], [43], [44], [39], [50], [51]. It is well
known (see, e. g., [23]) that in the case 0 < p < 1 non-trivial linear polynomial opera-
tors do not exist. For this reason constructive methods of trigonometric approximation
were not found in this case and some important problems as, for instance, the direct
Jackson type estimate and the inverse Bernstein type estimate in Lp with 0 < p < 1
were first proved by using some non-constructive special methods ([17], [45]-[47]). This
gap has been closed only by introducing the method of approximation by families of
linear polynomial operators in the papers [26] and [27].
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It is the aim of this survey to discuss the unified approach to trigonometric approx-
imation and smoothness in the scale of the Lp-spaces for all 0 < p ≤ +∞ described
in detail in our joint papers [24], [25], [28]-[38]. Within this approach we show, in
particular, that many both already solved and new problems of approximation theory
can be reduced to the study of three universal objects - families of linear polynomial
operators, generalized K-functionals and moduli of smoothness. We are able to deter-
mine the sharp ranges of convergence of families in terms of the Fourier transforms of
their generators. Moreover, it turns out that their approximation errors are equivalent
to the associated K-functionals and smoothness moduli if their generators satisfy some
natural conditions. As can be seen in the above mentioned papers our approach is
mainly based on the following crucial ideas:

• interpretation of a family of linear polynomial operators as an operator mapping
into a space of functions of doubled number of variables;

• representation of the objects listed above in (the Fourier) multiplier form and
their classification in dependence of multiplier properties;

• generation of generalized smoothness by homogeneous multipliers.

Our paper consists of two parts. The first part presented here is mainly concerned
with the convergence of approximation processes and the universality of our approach.
Recall that the classical methods of trigonometric approximation - the Fourier means
and interpolation means - are defined as follows. Let us consider the matrix of complex
numbers

Λ = {an,k}(n,k)∈N0×Zd , (1.1)

where 
an, 0 = 1 if , n ∈ N0

an,−k = an, k ∈ C , if |k| ≤ r(Λ)n, n ∈ N0

an,k = 0 if , |k| > r(Λ)n, n ∈ N0

and where r(Λ) is a real positive number. We put

Wn(Λ)(h) =
∑

| k | ≤ r(Λ)n

an, k e
ikh , n ∈ N0 . (1.2)

As special cases of (1.2) we mention, for example, the classical kernels of Dirichlet,
Fejér, de la Vallée-Poussin, Rogosinski, Jackson, Cesaro, Riesz, Bochner-Riesz, Zyg-
mund, and Favard. If f ∈ Lp(Td), 1 ≤ p ≤ +∞, (Td stands for the d-dimensional
torus; the case p = +∞ corresponds to the space C(Td) of continuous functions), then
the Fourier means are defined by the convolution integrals

F (Λ)
n (f ;x) = (2π)−d

∫
Td

f(h)Wn(Λ)(x− h) dh , n ∈ N0 , x ∈ Td . (1.3)

If f ∈ C(Td), then the interpolation means (or sampling operators) are defined as

I(Λ)
n (f ;x) = (2N + 1)−d ·

2N∑
ν=0

f (tνN) ·Wn(Λ) (x− tνN) , n ∈ N0 , x ∈ Td , (1.4)
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where

N = [rn] , r ≥ r(Λ) ; tνN =
2πν

2N + 1
, ν ∈ Zd ;

2N∑
ν=0

≡
2N∑
ν1=0

. . .
2N∑
νd=0

. (1.5)

From the historical point of view the convergence of these methods in Lp(Td) and
C(Td), respectively, in the sense that

lim
n→+∞

‖ f − L(Λ)
n (f) ‖p = 0 (1.6)

for all f ∈ Lp(Td) (C(Td)), where L is F or I, has been established first for special
kernels which are nowadays called classical ones (see, e. g., [6], [8], [21], [42]-[44]).
In the general case the convergence of F (Λ)

n in L1, C or in Lp for all 1 ≤ p ≤ +∞
and the convergence of I(Λ)

n in C is equivalent to the boundedness of the sequence
of the L1-norms of the kernels in view of the Banach-Steinhaus principle (see, e. g.,
[8], [21]). Moreover, applying the approach elaborated in [5] we could prove that the
approximation errors of these methods are equivalent to each other in C (see e.g. [31]).
If

Λ ≡ Λ(ϕ) =
{
an, k : a0, 0 = 1; an, k = ϕ

(
k

σ(n)

)
, k ∈ Zd , n ∈ N

}
, (1.7)

where (σ(n))n is a certain strictly increasing sequence of positive real numbers satisfying
σ(n) � n and ϕ is a complex-valued continuous function on Rd with compact support
satisfying ϕ(0) = 1 and ϕ(−ξ) = ϕ(ξ) for each ξ ∈ Rd, then the condition of the
uniform boundedness of the L1-norms of the kernels in the convergence criterion is
equivalent to the condition that the Fourier transform ϕ̂ of the generator ϕ belongs to
the space L1(Rd) (see, e. g., [31] or [15]).

In contrast to the classical methods of trigonometric approximation the method
of approximation by families of linear (trigonometric) polynomial operators which are
given by (λ ∈ Rd is a parameter and x ∈ Td)

L(Λ)
n;λ(f ;x) = (2N + 1)−d ·

2N∑
ν=0

f (tνN + λ) ·Wn(Λ) (x− tνN − λ) , n ∈ N0 , (1.8)

is comparatively new (see [26], [27]). Its systematical study (also in the non-periodic
case of approximation by band-limited functions) has been developed in [2]-[4], [14],
[24], [25], [28], [32], [33], [34] and further papers. In particular, it has been shown that
this method is universal in the sense that it is relevant for both p ≥ 1 and 0 < p < 1,
where the range of admissible parameters p depends on the properties of Λ. Moreover,
the averaged approximation error with respect to the parameter λ, that is, the quantity

‖ f − L(Λ)
n;λ(f) ‖p = (2π)−d/p

(∫
Td

‖ f(·)− L(Λ)
n;λ(f ; ·) ‖pp dλ

)1/p

(1.9)

(in the case p = +∞ the average is replaced by the maximum over all λ) is equivalent
to the approximation error of the corresponding Fourier means and the corresponding
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interpolation means in the cases 1 ≤ p ≤ +∞ and p = +∞, respectively. Let us
also mention that under the assumption ϕ̂ ∈ L1(Rd) the family {L(ϕ)

n;λ} generated
by the matrix Λ(ϕ) of type (1.7) converges in Lp, which means that the averaged
approximation error defined in (1.9) converges to 0, if and only if ϕ̂ ∈ Lp(Rd) ([24]).
This result enables us to find the sharp convergence ranges for families generated by
classical kernels as, for instance, the kernels of Fejér, de la Vallée-Poussin, Bochner-
Riesz, Riesz and others ([24], [32], [34]). The problem of convergence of families of linear
polynomial operators generated by general matrices of multipliers and their special
cases corresponding to the classical kernels of Cesaro, Jackson and Fejér-Korovkin has
been considered in [33]. For applications of the method, in particular, for the algorithm
of stochastic approximation we refer to [28].

Let us give an outlook to the topics considered in Part II which will be published in one
of forthcoming volumes. First we shall introduce a concept of generalized smoothness
(ψ - smoothness) associated with a symbol generated by a homogeneous function. We
define corresponding function spaces and investigate their interrelations with periodic
Sobolev (Triebel-Lizorkin) and Besov spaces. This will be important for the study of
generalized K - functionals. We briefly sketch the setting. Let ψ be a complex-valued
function which is continuous on Rd, infinitely differentiable on Rd \ {0}, homogeneous
of order s > 0 and satisfies ψ(ξ) 6= 0 for ξ 6= 0 and ψ(−ξ) = ψ(ξ) for each ξ ∈ Rd. The
ψ-derivative is formally defined as

D(ψ)g(x) =
∑
k∈Zd

ψ(k)g∧(k)eikx . (1.10)

If 1 ≤ p ≤ ∞ then we consider the space

Xp(ψ) =
{
g ∈ Lp(Td) : D(ψ)g ∈ Lp(Td)

}
(1.11)

equipped with the norm

‖g‖Xp(ψ) = ‖g‖p + ‖D(ψ)g‖p. (1.12)

(Recall that L∞(Td) = C(Td) by our convention.) Here we follow our paper [35]. On
the one hand, homogeneity of ψ seems to be a rather general assumption. Various
differential operators as, for instance, the classical derivatives, Weyl and Riesz deriva-
tives, mixed derivatives, the Laplace-operator and its (fractional) powers are generated
by homogeneous multipliers (symbols). On the other hand, taking into account that
the Fourier transform (in the sense of distributions) of a homogeneous function of order
s is also a homogeneous function of order −(d + s) (see e.g. [19], Theorem 7.1.6) one
can derive substantial statements concerning the corresponding operators and related
function spaces. It turns out that the spaces Xp(ψ) coincide with the periodic frac-
tional Sobolev spaces Hs

p(Td) for all ψ as above if 1 < p <∞. However, we obtain new
spaces in the limiting cases p = 1 and p = ∞ which will be of peculiar interest later
on.

The problem of describing the quality of approximation by the Fourier means and
interpolation means in terms of smoothness quantities of a given function has a long
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history. In the classical theory (one-dimensional case) one usually deals with moduli
of smoothness of order k ∈ N given by (f ∈ Lp(T) , δ ≥ 0)

ωk(f, δ)p = sup
0≤h≤ δ

∥∥∥∥∥
k∑
ν=0

(−1)k−νk(k − 1) . . . (k − ν + 1)

ν !
f(x+ νh)

∥∥∥∥∥
p

(1.13)

and K-functionals due to J. Peetre which are defined as

Kk(f, δ)p = inf
g∈Wk

p

{
‖ f − g ‖p + δk ‖ g(k) ‖p

}
, (1.14)

where the symbol (·)(k) stands for the usual derivative of order k and where W k
p =

W k
p (T) is the classical Sobolev space. It is well known (see, e. g., [8], Theorem 2.4, p.

177) that these quantities are equivalent in Lp with 1 ≤ p ≤ +∞. It holds

c1 ωk(f, δ)p ≤ Kk(f, δ)p ≤ c2 ωk(f, δ)p , (1.15)

where the positive constants c1 and c2 do not depend on f and δ. In the case 0 < p < 1
quantity (1.14) is equal to 0 (see [20]). More precisely we have

inf
g∈T

{
‖ f − g ‖p + δk ‖ g(k) ‖p

}
= 0

for all f ∈ Lp(T). For this reason a functional Kk(f, δ)p originally called "realization
of K-functional" was introduced, where the infimum over all functions g ∈ W k

p in
(1.14) was replaced by the infimum over the space T1/δ of all real-valued trigonometric
polynomials of order at most 1/δ ([12], [20]). It was proved in [20] that such a mod-
ification allows to extend equivalence (1.15) to the case of all admissible parameters
0 < p ≤ +∞. In what follows we shall use the notation "polynomial K-functional" in
place of "realization of K-functional". In the literature one can also find K-functionals
related to Riesz or Weyl derivatives ([10], [11], [48]) and a modulus of smoothness
related to the Weyl derivative which is obtained by replacing the natural parameter k
in (1.13) by an arbitrary positive real number α > 0 and by replacing the finite sum
by the sum over ν ∈ N0 (see [48]). Further modifications are, for example, the K-
functional related to the Laplace-operator ([7], [11], [13], [14], [32]), the mixed moduli
of smoothness [22] and the discrete modulus of smoothness related to the Laplace-
operator ([9], [14]) in the multivariate case. These smoothness quantities have been
used to characterize the approximation error of some concrete Fourier means. In par-
ticular, it could be shown that the approximation error of the Fejér means is equivalent
to the K-functional related to the Riesz derivative ([11]), that the approximation error
of the Rogosinski means is equivalent to the modulus of smoothness of second order
([49]). Moreover, the approximation error of the Bochner-Riesz means with index α
with respect to the norm in Lp(Td) is equivalent to the K-functional related to the
Laplace-operator provided that α > (d− 1)/2 (Bochner’s critical index) ([10], [32]).

In contrast to the just mentioned results concerning special cases, concrete meth-
ods and smoothness quantities restricted to Lp with p ≥ 1, our approach tackles the
problem of quality of approximation in a general form. We deal with families of lin-
ear polynomial operators generated by arbitrary kernels as universal approximation
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methods in the scale of the spaces Lp for all 0 < p ≤ +∞ and we intend to raise the
concepts of smoothness moduli and (polynomial) K-functionals at the same level. Here
we shall follow our recent papers ([25], [35], [36], [37], [38]), The K-functional and the
polynomial K-functional generated by a homogeneous function ψ of order s are given
by (f ∈ Lp , δ ≥ 0)

Kψ(f, δ)p = inf
g∈Xp(ψ)

{ ‖ f − g ‖p + δs ‖D(ψ)g ‖p } , (1.16)

K
(P)
ψ (f, δ)p = inf

T∈T1/δ

{ ‖ f − T ‖p + δs ‖D(ψ)T ‖p } , (1.17)

respectively, where the space Xp(ψ) had the meaning of (1.11) and D(ψ)g stands for
ψ-derivative of g defined in (1.10). For a systematic study we refer [35], [36], and [37].
In particular, it was shown that functionals (1.16) and (1.17) are equivalent in the case
1 ≤ p ≤ +∞.

As was shown in [25], the approximation error of the family of linear polynomial
operators generated by the function ϕ ∈ K is equivalent to the polynomialK-functional
generated by ψ ∈ Hs in Lp, if p belongs to the range of convergence of the family, if
the generator ϕ is sufficiently smooth and if the functions 1−ϕ(·) and ψ(·) are close
to each other in a certain sense in a neighbourhood of 0.

Let f ∈ Lp , n ∈ N0. The main result in [25] reads as

c1K
(P)
ψ (f, (n+ 1)−1)p ≤ ‖ f − L(ϕ)

n;λ(f) ‖p ≤ c2K
(P)
ψ (f, (n+ 1)−1)p , (1.18)

where the positive constants c1 and c2 do not depend on f and n. This general result
enables us, in particular, to characterize the approximation by families generated by
classical kernels. As a by-product we obtain some new results even in the classical
case of the Fourier means and 1 ≤ p ≤ +∞. For instance, in view of the above
mentioned equivalences of families and the corresponding Fourier means as well as of
K-functionals and polynomial K-functionals in the case 1 ≤ p ≤ +∞ we conclude that
the approximation error of the Riesz means (generated by ϕ(ξ) = (1− | ξ |β)α+) in the
multivariate case is equivalent to the K-functional related to the (fractional) power of
the Laplace operator (−∆)β/2 (ψ(ξ) = | ξ |β) ([34]).

The extension of the concept of a smoothness modulus (see [38] for a model case) is
based on the observation that an operator generated by a periodic multiplier (symbol)
admits a representation as an (infinite) linear combination of shift operators. More
precisely, in the one-dimensional case one has∑

ν ∈Z

θ(νh) f∧(ν) eiνx =
∑
ν ∈Z

θ∧(ν) f(x+ νh) (1.19)

for an appropriate periodic function θ. Assume that θ is complex-valued, 2π-periodic
and continuous satisfying θ(0) = 0, θ∧(0) = −1 and θ(−ξ) = θ(ξ) for each ξ ∈ R. The
modulus of smoothness generated by θ (θ-modulus) in Lp is now defined as

ωθ(f, δ)p = sup
0≤h≤ δ

∥∥∥∑
ν ∈Z

θ∧(ν) f(x+ νh)
∥∥∥
p
, δ ≥ 0 . (1.20)
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Clearly, if the sequence of the Fourier coefficints {θ∧(k)}k∈Zd belongs to lp̃, where
p̃ = min(1, p), then the θ-modulus is well defined in Lp in the sense that the series on
the right-hand side of (1.20) converges in Lp and

ωθ(f, δ)p ≤
(
‖ {θ∧(k)}k∈Z ‖lp̃

)
‖ f ‖p , f ∈ Lp , δ ≥ 0 . (1.21)

The θ-modulus (1.20) can be studied by the scheme elaborated in [38], where the
case θ(ξ) = −2/π| ξ | for ξ ∈ [−π, π] corresponding to the Riesz derivative has been
considered and the equivalence to the approximation error for the Fejér means has
been proved. We refer to Part II for details. Let us mention also that some work has
to be done in future research. In particular, the task is to prove the equivalence of
the θ-modulus and the polynomial K-functional generated by an appropriate ψ in the
multivariate case for all admissible values of the parameters p. In view of (1.18) this
result would enable us to characterize the approximation error in the case of general
methods also in terms of moduli of smoothness.

2 Preliminaries

2.1 Notations

The symbols N, N0, Z, R, Zd, Rd denote the sets of natural, non-negative integer,
integer, real numbers and d-dimensional vectors with integer and real components,
respectively. The symbol Td is reserved for the d-dimensional torus [0, 2π)d. We will
also use the notation

xy = x1y1 + . . .+ xdyd , |x |q =

{
(xq1 + . . .+ xqd)

1/q , 0 < q < +∞
max(|x1 |, . . . , |xd |) , q = +∞ ,

,

for the scalar product and the lq-norm of vectors. For brevity we put |x | ≡ |x |2.
Furthermore,

Br = {x ∈ Rd : |x | < r } , Br = {x ∈ Rd : |x | ≤ r }

stand for open and closed balls in Rd, respectively.
Unimportant positive constants, denoted by c (with subscripts and superscripts)

may have different values in different formulas (but not in the same formula).
By A . B we denote the relation A(j) ≤ cB(j), where c is a positive constant

independent of the parameter j belonging to a certain index set J . The symbol �
indicates equivalence. It means that A . B and B . A simultaneously.

2.2 Lp-spaces and spaces of trigonometric polynomials

Let Lp ≡ Lp(Td), where 0 < p < +∞, be the space of measurable real-valued functions
f which are 2π-periodic with respect to each variable and satisfy

‖ f ‖p =

 ∫
Td

|f(x)|p dx

1/p

< +∞ .
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As usual in the approximation theory we understand L∞(Td) as the space C ≡ C(Td)
of real-valued 2π-periodic continuous functions equipped with the Chebyshev norm

‖ f ‖C = max
x∈Td

|f(x)| .

For Lp-spaces of non-periodic functions defined on a measurable set Ω ⊆ Rd we shall
use the notation Lp(Ω).

In what follows we often deal with functions in Lp(T2d) depending on the “main”
variable x ∈ Rd and on the parameter λ ∈ Rd. The Lp-norm with respect to x is
denoted by ‖ · ‖p or ‖ · ‖p;x. We use the symbol ‖ · ‖p;λ for the Lp-norm with respect
to the parameter λ. For brevity the space Lp(T2d) equipped with the norm

‖ · ‖p = (2π)−d/p ‖ ‖ · ‖p;x ‖p;λ, (2.1)

is denoted by the symbol Lp. Clearly, Lp can be considered as a subspace of Lp.
Obviously, we have

‖ f ‖p = ‖ f ‖p , f ∈ Lp .

The functional ‖ · ‖p is a norm if and only if 1 ≤ p ≤ +∞. For 0 < p < 1
it is a quasi-norm and the “triangle” inequality is valid for its pth power. If we put
p̃ = min(1, p) then the inequality

‖ f + g ‖p̃p ≤ ‖ f ‖p̃p + ‖ g ‖p̃p , f , g ∈ Lp , (2.2)

is valid for all 0 < p ≤ +∞. Such a form of the “triangle” inequality is convenient,
because both cases can be treated uniformly. Moreover, for the sake of simplicity we
shall use the notation “norm” also in the case 0 < p < 1.

Let σ be a real non-negative number. Let us denote by Tσ the space of all real-valued
trigonometric polynomials of (spherical) order of at most σ. It means

Tσ =
{
T (x) =

∑
k∈Zd: | k |≤σ

ck e
ikx : c−k = ck

}
, (2.3)

where c is a complex conjugate to c. Further, T stands for the space of all real-valued
trigonometric polynomials of arbitrary order.

The space Tσ equipped with the Lp-norm, where 0 < p ≤ +∞, is denoted by Tσ, p.
Moreover, Tσ, p stands for the subspace of Lp which consists of all functions g(x, λ)
such that g(x, λ) belongs to Tσ for almost all λ if it is considered as a function of x.
Clearly, Tσ, p can be understood as a subspace of Tσ, p with coincidence of associated
norms. Thus, in our notation the line over the index p indicates that we are dealing
with functions of 2d variables.

Finally, we define the best approximation of f in Lp by trigonometric polynomials
of order at most σ as

Eσ(f)p = inf
t∈Tσ

‖ f − T ‖p , σ ≥ 0 . (2.4)

Here, 0 < p ≤ +∞.
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2.3 Fourier coefficients and Fourier transform

The Fourier coefficients of f ∈ L1 are defined by

f∧(k) = (2π)−d
∫
Td

f(x) e−ikx dx , k ∈ Zd . (2.5)

The Fourier transform and its inverse are given by

f̂(ξ) =

∫
Rd

f(x) e−ixξ dx , f∨(x) = (2π)−d
∫
Rd

f(ξ) eixξ dξ (2.6)

for f ∈ L1(Rd) . For the sake of clarity we shall sometimes use also the notations Ff
and F−1f in place of f̂ and f∨, respectively.

Suppose g is defined everywhere on Rd and belongs to L1(Rd). The equation∑
k∈Zd

g(k) =
∑
ν ∈Zd

ĝ(2πν) (2.7)

is called the Poisson summation formula. By elementary properties of the Fourier
transform it can be rewritten as∑

k∈Zd

g(k) eikx =
∑
ν ∈Zd

ĝ(x+ 2πν) , x ∈ Rd . (2.8)

As well known, formulas (2.7), (2.8) are valid pointwise if g satisfies some additional
conditions. In particular, if the function g is continuous and if

| g(ξ) | ≤ c1( 1 + | ξ | )−d−δ , | ĝ(x) | ≤ c2( 1 + |x | )−d−δ , ξ, x ∈ Rd , (2.9)

for some δ > 0, then (2.8) holds for each x ∈ Rd ([42], p. 252).
It was shown in [2] (Lemma 2.2, p. 681) that formula (2.8) holds almost everywhere

on Rd if g is continuous, compactly supported and if its Fourier transform belongs to
Lp(Rd) for some 0 < p ≤ 1. Moreover, in this case∥∥∥ ∑

k∈Zd

g(k) eikx
∥∥∥
p
≤ ‖ ĝ ‖Lp(Rd) . (2.10)

2.4 Polynomial operators in (quasi-)Banach spaces

As we shall see in Section 2 and already sketched in the Introduction (cf. formulae
(1.3), (1.4) and (1.8) ) all approximation methods we deal with can be understood as
linear operators of type

Lσ : Lp −→ Trσ, p ⊂ Lp , σ ∈ Ω , (2.11)

where 0 < p ≤ +∞, r > 0 and the set Ω is {σ ≥ 0} or {σn, n ∈ N0 : limn→+∞ σn =
+∞}. If p = +∞ then the operators are defined on C. Since Lp is a subspace of
Lp with coincidence of norms, the well-known linear polynomial operators of classical
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approximation theory are special cases of (2.11). It was already mentioned in the
Introduction that such operators do not make sense if 0 < p < 1. For this reason Trσ, p
can not be replaced by Trσ if 0 < p < 1.

Our unified and universal approach to treat the norm convergence of constructive
methods of trigonometric approximation is based on the application of standard con-
cepts and principles of classical functional analysis to linear and bounded operators
mapping from Lp into Lp. Recall that a linear operator Lσ : Lp → Lp is bounded if
its norm

‖Lσ ‖(p) = sup
‖ f ‖p ≤ 1

‖Lσ(f) ‖p (2.12)

is finite. A family (Lσ)σ is called bounded in Lp if their norms are uniformly bounded,
i. e. if

sup
σ ∈Ω

‖Lσ ‖(p) < +∞ . (2.13)

A family (Lσ)σ is said to be convergent in Lp if

lim
σ→+∞

‖ f − Lσ(f) ‖p = 0 (2.14)

for each f ∈ Lp. Obviously, for operators mapping into Lp this concept coincides with
Lp-convergence in the usual sense.

It turns out that some properties of approximation methods do not depend on their
specific structure. In particular, as direct consequences of classical theorems of func-
tional analysis (as, for example collected in [16], Appendix G) and interpolation theory
(see [1] or [16], Section 1.3) for quasi-normed spaces, the generalized Lebesgue theorem
for operators of de la Vallée-Poussin type (see, e. g., [2], [28]) and the comparison ideas
described in [5] we obtain the following general statements for families of type (2.11):

(i) (Banach-Steinhaus convergence principle) Let 0 < p ≤ ∞. A family of
linear bounded operators of type (1.25) converges in Lp if and only if the following
conditions are satisfied:

1) lim
σ→+∞

‖ eik· − Lσ(eik·) ‖p = 0 for all k ∈ Zd ;

2) (Lσ)σ is bounded in Lp (i.e. (2.13) holds).

(ii) (Riesz-Thorin interpolation theorem) Suppose that the family of linear
bounded operators of type (1.25) is bounded in Lp0 and in Lp1, where 1 ≤ p0 <
p1 ≤ +∞. Then it is bounded in Lp for all p0 ≤ p ≤ p1 and

‖Lσ ‖(p) ≤ ‖Lσ ‖1−θ
(p0) · ‖ Lσ ‖

θ
(p1) , σ ∈ Ω , 1/p = (1− θ)/p0 + θ/p1.

(iii) (Comparison principle) Let 0 < p ≤ ∞ and let (L(j)
σ )σ, j = 1, 2, be families

of linear bounded operators of type (1.25). If they are bounded in Lp and if
L(1)
σ (T ) = L(2)

σ (T ) for all T ∈ Trσ, then

‖ f − L(1)
σ (f) ‖p � ‖ f − L(2)

σ (f) ‖p , f ∈ Lp , σ ∈ Ω .
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(iv) (Generalized Lebesgue estimate) Let a family of linear bounded operators of
type (1.25) satisfy Lσ(T ) = T for all T ∈ Tρσ, where 0 < ρ < r. Let 0 < p ≤ ∞
and let p̃ = min(1, p). Then

‖ f − Lσ(f) ‖p ≤
(
1 + ‖Lσ ‖p̃(p)

)1/p̃
Eρσ(f)p , f ∈ Lp , σ ∈ Ω .

Note that statement(ii) remains true for 0 < p0 < p1 ≤ ∞ with a multiplicative
constant c, depending only on p0, p1, θ, in the right-hand side (the Marcinkiewicz
interpolation theorem).

Let us also mention that the general comparison principle established in (iii) has
been proved in [24]. Forerunners of comparing the rates of convergence of convolution
integrals and generalized sampling series generated by the same kernel in the space of
uniformly continuous and bounded functions on R can be found in the paper [5]. For a
trigonometric version we refer to [31], where the equivalence of the rates of convergence
of Fourier means (1.3) and interpolation means (1.4) generated by the same kernel has
been proved.

3 Approximation methods and their convergence

3.1 Generators and kernels

Generators of approximation methods. By definition the class K consists of
functions ϕ satisfying

1) ϕ : Rd −→ C is centrally symmetric (ϕ(−ξ) = ϕ(ξ) for each ξ ∈ Rd );

2) ϕ is continuous on Rd;

3) ϕ has a compact support;

4) ϕ(0) = 1.

Important characteristics of the generator ϕ are the radius of its support

r(ϕ) = sup { | ξ | : ϕ(ξ) 6= 0 } < +∞ (3.1)

and the set
Pϕ = { p ∈ (0,+∞] : ϕ̂ ∈ Lp(Rd) } . (3.2)

Since lim|x |→+∞ | ϕ̂(x) | = 0, we have ϕ̂ ∈ Lq(Rd) for p ≤ q ≤ +∞ if ϕ̂ ∈ Lp(Rd).
Hence, Pϕ is either (p0,+∞] or [p0,+∞], where p0 = inf Pϕ.

Kernels. Let
Λ = {an, k}n∈N0, k∈Z (3.3)

be a matrix of complex numbers satisfying an,−k = an,k if |k| ≤ r(Λ)n and an,k = 0
if |k| > r(Λ)n for some positve real number r(Λ) and for all n ∈ N0. Note, that in



Methods of trigonometric approximation and generalized smoothness. I. 109

contrast to (1.1) we do not assume that an,0 = 1 for all n ∈ N0. It generates the
real-valued trigonometric polynomials (kernels)

Wn(Λ)(h) =
∑

| k | ≤ r(Λ)n

an, k e
ikh , n ∈ N0 , (3.4)

of order at most r(Λ)n (see also (1.2)). Special cases are, in particular, the classical
kernels of Dirichlet, Fejér, de la Vallée-Poussin, Rogosinski, Jackson, Cesaro, Riesz,
Bochner-Riesz, Zygmund and Favard. For precise definitions see Subsection 2.5. For
basic properties and historical remarks we refer, for instance, to [6], [8], [42]-[44].

In classical approximation theory one traditionally deals with real-valued multipliers
(matrices) and even kernels. However, such a restriction does not enable us to describe
the smoothness of odd order (in particular, the classical first derivative and the modulus
of continuity) via approximation methods. Details will be discussed in Part II based
on our paper [25]. For this reason we have extended the set of generators admitting
complex-valued matrices (multipliers).

Following [33] we give a classification of kernels containing at least all classical ones.

Type (G). If Λ is generated by some function ϕ ∈ K in the sense that

Λ ≡ Λ(ϕ) = { an, k : a0, 0 = 1; an, k = ϕ

(
k

σ(n)

)
, k ∈ Zd , n ∈ N }, (3.5)

where σ(n) is a certain strictly increasing sequence of positive real numbers satisfying
σ(n) � n, then the kernels Wn(Λ) are said to be of type (G). In this situation we shall
replace the discrete parameter σ(n) by a continuous one and the notation Wn(Λ) by
the symbol Wσ(ϕ). Thus, kernels of type (G) generated by ϕ ∈ K are given by

W0(h) ≡ 1 , Wσ(h) =
∑
k∈Zd

ϕ

(
k

σ

)
eikh , σ > 0 . (3.6)

It is well known that the kernels of Fejér, de la Vallée-Poussin, Rogosinski, Riesz,
Bochner-Riesz, Zygmung, Favard belong are of this type. Their generators can be
found in the General Convergence Table in Subsection 2.5.

Type (GR). We say that the kernels Wn(Λ) are of type (GR) if the corresponding
matrix can be represented in the form

Λ = Λ(ϕ) +R , R = { rn, k} ; lim
n→+∞

rn, k = 0, k ∈ Zd, (3.7)

where Λ(ϕ) is of type (3.5) and representation (3.7) is unique. The kernels of Fejér-
Korovkin and Cesaro are of such a type (see [33] for further details).

The main idea to deal with kernels of type (GR) and corresponding approximation
methods in the spaces Lp with 0 < p < 1 consists in the replacement of the norms of
the kernels Wn(R) generated by the remainder-matrix of R by their L2-norms. This
has been pointed out in [33]. More precisely, if 0 < q < +∞ then we put

Mq; Λ(n) = (n+ 1)d(1/q−1) ‖Wn(Λ) ‖q , n ∈ N0 ; Mq; Λ = sup
n
Mq; Λ(n) ; (3.8)
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Mq; Λ(n) = (n+ 1)d(1/q−1) ‖Wn(Λ) ‖2, n ∈ N0 ; Mq; Λ = sup
n
Mq; Λ(n) . (3.9)

Clearly,

Mq;R(n) = (2π)d/2(n+ 1)d(1/q−1)

 ∑
| k |≤ r(Λ)n

| rn, k|2
1/2

, n ∈ N0 , (3.10)

by Parseval’s equality.
Let now 0 < q < 1. A kernel Wn(Λ) is said to be of type (GRq) and of type (GRq)

if its generating matrix is of type (3.7) with Mq;R < +∞, Mq;R < +∞ respectively.
Hölder’s inequality implies

Mq;R(n) ≤ (2π)d(1/q−1/2)Mq;R(n) , n ∈ N0 . (3.11)

Hence, each kernel of type (GRq) is also of type (GRq) and we have

GRq ⊂ GRq . (3.12)

Notation (3.8) turn out to be also convenient for kernels of type (G). In this
case we shall use the symbols Mq;ϕ(σ) and Mq;ϕ in place of Mq; Λ(n), Mq; Λ respectively.

Type (Gq). Let q ∈ N. By definition a kernel belongs to the class (Gq) if it can
be represented as

Wn(ϕ, q) = (γn(ϕ, q))
−1(Wn(ϕ))q(h) , (3.13)

where
γn(ϕ, q) = (2π)−d

∫
Td

(Wn(ϕ)(h))q dh (3.14)

is a normalizing factor. It is shown in [33] that γn(ϕ, q) 6= 0 if n ≥ n0, where n0 ≡
n0(ϕ, q) is a certain integer. Therefore, the functions Wn(ϕ, q)(h) are well defined
for n ≥ n0 and belong to Tqr(ϕ)σ. A typical example of a kernel of type (Gq) is
the generalized Jackson kernel introduced by S. Stechkin (see, e.g., [40]). We also
mention that kernels of type (Gq) are also of type (GR). They are generated by the
q-th convolution power of the function ϕ (see [33] for further details).

In contrast to the case of kernels of type (GR), where finding appropriate estimates
for Mq;R(n) can be a rather complicated problem, the Lp-norms of kernels of type (G)
can be exactly calculated applying a well-known scheme adapted to the case 0 < p < 1.
It is based on the Poisson summation formula as well as on the interpretation of the
kernels as integral sums of Riemann type for the function ϕ̂. For the classical case p = 1
we refer to [6], [18], [41], and [42]. Following [24] we present here the corresponding
general result.

Theorem 3.1. Let ϕ ∈ K and 0 < p ≤ 1. The set

{σd(1/p−1) ‖Wσ(ϕ) ‖p : σ ≥ 0 }

is bounded if and only if ϕ̂ ∈ Lp(Rd). Moreover, in this case

lim
σ→+∞

σd(1/p−1) ‖Wσ(ϕ) ‖p = sup
σ≥0

σd(1/p−1) ‖Wσ(ϕ) ‖p = ‖ ϕ̂ ‖Lp(Rd) . (3.15)
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Proof. Step 1. Applying (2.10) to ϕ(·/σ) and using the equality ϕ̂(σ−1·)(x) = σdϕ̂(σx)
we get

sup
σ≥0

σd(1/p−1) ‖Wσ(ϕ) ‖p ≤ ‖ ϕ̂ ‖Lp(Rd) . (3.16)

Step 2. Now we prove the following: if there exists a sequence (νn)n∈N of strictly
increasing natural numbers such that the sequence ν

d(1/p−1)
n ‖Wνn(ϕ)‖p is bounded,

then ϕ̂ ∈ Lp(Rd) and

‖ ϕ̂ ‖Lp(Rd) ≤ sup
n∈N

νd(1/p−1)
n ‖Wνn(ϕ)‖p . (3.17)

Consider the sequence of functions Fn(x) , n ∈ N, given by

Fn(x) =

 n−dp
∣∣∣∣Wνn(ϕ)

(
x

νn

)∣∣∣∣p , x ∈ [−πνn, πνn]d

0 , otherwise

. (3.18)

Clearly, the functions Fn(x), n ∈ N, are non-negative and measurable. Let x0 ∈ Rd.
Then there exists n0 ∈ N such that x0 ∈ [−πνn, πνn]d for n ≥ n0. The function
ϕ(·)eix0· is Riemann integrable on a cube Q ⊂ Rd containing its support. By definition
of the Riemann integral we get

lim
n→+∞

ν−dn
∑
k∈Zd

ϕ

(
k

νn

)
· e(ikx0)/νn =

∫
Q

ϕ(ξ) · eiξx0dξ = ϕ̂(−x0) .

Hence,
lim

n→+∞
Fn(x0) = | ϕ̂(−x0) |p . (3.19)

By the definition of Fn in (3.18) it follows

sup
n∈N

∫
Rd

Fn(x)dx = sup
n∈N

ν
d(1−p)
n

∫
[−πνn,πνn]d

∣∣∣∣Wνn(ϕ)

(
x

νn

)∣∣∣∣p dx
= sup

n∈N
ν
d(1−p)
n ‖Wνn(ϕ) ‖pp < +∞ .

(3.20)

Thus, we have proved that the sequence (Fn(x))n∈N satisfies all conditions of Fatou’s
lemma. Its combination with (3.19) and (3.20) yields ϕ̂ ∈ Lp(Rd) and (3.17).

Step 3. Now, the criterion and the second relation in (3.15) follow immediately
from the statements above. Suppose that the set {σd(1/p−1) ‖Wσ(ϕ) ‖p } is bounded
and let a be one of its accumulation points. By (3.16) a does not exceed the norm of
ϕ̂ in Lp(Rd). The inverse estimate follows from (3.17). As a consequence we get (3.15).

�



112 K. Runovski, H.-J. Schmeisser

3.2 Fourier means and interpolation means

Recall that the Fourier means generated by the matrix Λ as given in (1.1) are defined
as

F (Λ)
n (f ;x) = (2π)−d

∫
Td

f(h)Wn(Λ)(x− h) dh , n ∈ N0 (3.21)

for functions f ∈ L1. If the kernel Wn(Λ) is of type (G) then we use the notation
F (ϕ)
σ , σ ≥ 0. In this case the function Wn(Λ) is replaced by Wσ(ϕ) given in (3.6). The

Fourier means are well defined only in Lp for 1 ≤ p ≤ +∞. Their properties are well
known and can be found in the literature (see, e. g., [6], [8], [15], [31], [42], [50], etc.).
For the sake of completeness and better understanding we collect those, which are of
interest here, in the following theorem.

Theorem 3.2. Let 1 ≤ p ≤ ∞, n ∈ N0, and let Λ be a matrix given in (1.1). Then
the following statements hold true.

(i) F (Λ)
n is a linear polynomial operator mapping Lp into Tr(Λ)n. Moreover,

F (Λ)
n (f ;x) =

∑
| k | ≤ r(Λ)n

an, k f
∧(k) eikx , f ∈ Lp . (3.22)

(ii) F (Λ)
n is a bounded operator in Lp and

‖F (Λ)
n ‖(p) = sup

‖ f ‖p≤1

‖F (Λ)
n (f) ‖p ≤ (2π)−d ‖Wn(Λ) ‖1 . (3.23)

If p = 1 or p = +∞ then

‖F (Λ)
n ‖(p) = (2π)−d ‖Wn(Λ) ‖1 . (3.24)

(iii) The means F (Λ)
n converge in Lp, that is,

lim
n→+∞

‖ f − F (Λ)
n (f) ‖p = 0 , f ∈ Lp ,

for p = 1, p = +∞ or for all 1 ≤ p ≤ +∞ if and only if M1; Λ < +∞ (where the
numbers Mq; Λ are defined in (3.8)).

(iv) If an, k = 1 for | k | ≤ ρn, where 0 < ρ < r(Λ), then

‖ f − F (Λ)
n (f) ‖p ≤

(
1 + ‖F (Λ)

n ‖(p)

)
Eρn(f)p , f ∈ Lp . (3.25)

Note that part (i) follows directly from (2.5), (1.2) and (3.21). Inequality (3.23)
can be proved applying the generalized Minkowski inequality. For the proof of equality
(3.24) in the one-dimensional case we refer to [8]. In the multivariate case the proof is
similar. Part (iii) is a consequence of (i), (ii) and the Banach-Steinhaus convergence
principle. Combining (i) and the generalized Lebesgue estimate (iv) in Subsection 1.4
we obtain (3.25).
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For the Fourier means F (ϕ)
σ generated by ϕ ∈ K our Theorem 2.2 can be reformu-

lated in terms of the continuous parameter σ ≥ 0 and the generator ϕ with obvious
modifications. In particular, the condition in part (iv) should be rewritten in the form:
ϕ(ξ) = 1 for ξ ∈ Bρ, where 0 < ρ < r. Let us also emphasize that the convergence
criterion for the Fourier means related to kernels of type (G) takes a very simple and
clear form (see, for instance, [31] or [42]). As a consequence of part (iii) of Theorem
2.2 and Theorem 2.1 we find (see also [15]).

Theorem 3.3. Let ϕ ∈ K. Then the Fourier means F (ϕ)
σ converge in Lp for p = 1,

p = +∞ or for all 1 ≤ p ≤ +∞ if and only if 1 ∈ Pϕ.

This theorem enables us to give very simple proofs of the convergence of the means
generated by the kernels of Fejér, Vallée-Pousssin, Rogosinski and other classical kernels
which are based on direct calculation or estimates of the Fourier transforms of their
generators (see Subsection 2.5 for further details). In this respect we want to remind
that the original proofs of the convergence of classical means are based on the specific
properties of their kernels. Sometimes these proofs are very complicated (see [8], [43],
[44], [51], etc.). Let us also mention that Theorem 2.3 is a direct consequence of the
general result on the convergence of families of linear polynomial operators as will be
discussed in the next subsection.
Recall that the interpolation means generated by the matrix Λ read as (cf. (1.4))

I(Λ)
n (f ;x) = (2N + 1)−d ·

2N∑
ν=0

f (tνN) ·Wn(Λ) (x− tνN) , n ∈ N0 , (3.26)

where

N = [rn] , r ≥ r(Λ) ; tνN =
2πν

2N + 1
, ν ∈ Zd ;

2N∑
ν=0

≡
2N∑
ν1=0

. . .
2N∑
νd=0

. (3.27)

Again we use the notation I(ϕ)
σ , σ ≥ 0 if the kernel is of type (G). In this case the

function Wn(Λ) is replaced by Wσ(ϕ) given in (3.6) and the number r(Λ) is replaced
by r(ϕ).The function f in the right-hand side of (3.26) should be defined at all points
of the uniform grids, that is, on a set of measure 0. For this reason within the scale
of spaces Lp, 0 < p ≤ +∞ the interpolation means are well defined only in the space
C(Td) of 2π-periodic continuous functions. Their convergence properties are completely
studied in the literature (see, e.g., [31]). The main results read as follows.

Theorem 3.4. Let n ∈ N0, and Λ be a matrix of multipliers given in (1.1). Then the
following statements hold true.

(i) I(Λ)
n is a linear polynomial operator mapping C to Tr(Λ)n .

(ii) For each polynomial T ∈ Trn ( r ≥ r(Λ) is fixed, N = [rn] ) one has

I(Λ)
n (T ;x) =

∑
| k | ≤ r(Λ)n

an, k T
∧(k) eikx . (3.28)
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(iii) I(Λ)
n is a bounded operator in C and

‖ I(Λ)
n ‖(C) = sup

‖ f ‖C ≤ 1

‖ I(Λ)
n (f) ‖C � ‖Wn(Λ) ‖1 . (3.29)

(iv) The means I(Λ)
n converge in C, that is, it holds

lim
n→+∞

‖ f − I(Λ)
n (f) ‖C = 0 , f ∈ C , (3.30)

if and only if M1; Λ < +∞.

(v) If an, k = 1 for | k | ≤ ρn, where 0 < ρ < r(Λ), then

‖ f − I(Λ)
n (f) ‖C ≤

(
1 + ‖ I(Λ)

n ‖(C)

)
Eρn(f)C , f ∈ C . (3.31)

(vi) If M1; Λ < +∞ then

‖ f − I(Λ)
n (f) ‖C � ‖ f − F (Λ)

n (f) ‖C , f ∈ C , n ∈ N0 . (3.32)

Note that part (i) follows directly from the definition. The proof of (ii) is straight-
forward. The asymptotic formula for norms (3.29) follows from the classical estimate
of the discrete norm of a trigonometric polynomial by its continuous one (see, e.g.
[51], Vol. 2). For the complete proofs of (ii) and (iii) we refer to [31]. Part (iv) is a
consequence of (ii), (iii) and the Banach-Steinhaus convergence principle. Part (v) is
similar to part (iv) of Theorem 2.2. The equivalence of the approximation errors of
I(Λ)
n (f) and F (Λ)

n (f) in the space C follows immediately from the comparison principle
in combination with part (i) of Theorem 2.2 and part (ii) of Theorem 2.4.

In analogy to the case of the Fourier means Theorem 2.4 can be reformulated for
the interpolation means I(ϕ)

σ generated by ϕ ∈ K in terms of the continuous parameter
σ ≥ 0 and the generator ϕ with obvious modifications. In particular, in view of
Theorem 2.1 the convergence principle and the comparison principle take the following
form (see also [31]).

Theorem 3.5. Let ϕ ∈ K. Then the interpolation means I(ϕ)
σ converge in C if and

only if 1 ∈ Pϕ. Moreover, in this case we have

‖ f − I(ϕ)
σ (f) ‖C � ‖ f − F (ϕ)

σ (f) ‖C , f ∈ C , σ ≥ 0. (3.33)

As in the case of the Fourier means we immediately obtain the convergence of the
interpolation means generated by the Fejér, de la Vallée-Poussin, Rogosinski and other
classical kernels of type (G) from this result.
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3.3 Families of linear polynomial operators

Recall that the families of linear polynomial operators generated by a matrix Λ as given
in (1.1) are defined by

L(Λ)
n;λ(f ;x) = (2N + 1)−d ·

2N∑
ν=0

f (tνN + λ) ·Wn(Λ) (x− tνN − λ) , (3.34)

where the number N and the points tνN ∈ Td, ν ∈ Zd, are described in (3.27). This has
to be understood in the sense that L(Λ)

n (f) = L(Λ)
n;λ(f ;x) is considered as a function of

x and λ on Td × Td, or on Rd × Rd respectively. Here n ∈ N0 is fixed. If the kernel
is of type (G) then we use the notation {L(ϕ)

σ }σ≥0. In this case the function Wn(Λ) is
replaced by Wσ(ϕ) given in (3.6) and the number r(Λ) is replaced by r(ϕ).

In contrast to the classical methods of trigonometric approximation the method of
approximation by families is comparatively new. It has been introduced in [26] and
[27] as a constructive method for trigonometric approximation in Lp where 0 < p < 1.
Its systematical study was continued in [2]-[4], [14], [24], [25], [28], [32], [33], [34], [37]
and other papers. The main properties of families are given in the theorem below.

Theorem 3.6. Let 0 < p ≤ +∞, n ∈ N0, and Λ be a matrix as given in (1.1). Then
the following statements hold.

(i) If f ∈ Lp(Td) then for almost all λ the values f(tνN +λ), ν ∈ Zd, are well defined
and L(Λ)

n;λ(f ;x) belongs to Tr(Λ)n as a function of x.

(ii) We have
L(Λ)
n ;λ(T ;x) =

∑
| k | ≤ r(Λ)n

an, k T
∧(k) eikx (3.35)

for each polynomial T ∈ Trn ( r ≥ r(Λ) is fixed, N = [rn] ) and for each λ ∈ Rd.

(iii) The operator L(Λ)
n is a linear bounded mapping from Lp to Tr(Λ)n, p ⊂ Lp for each

number n ∈ N0. Moreover, it holds

Mp̂; Λ(n) . ‖L(Λ)
n ‖(p) . Mp̃; Λ(n) , n ∈ N0 , (3.36)

for its norm
‖L(Λ)

n ‖(p) = sup
‖ f ‖p ≤ 1

‖L(Λ)
n (f) ‖p , (3.37)

where Mq; Λ is defined by (3.8), p̃ = min(1, p), p̂ = p for 0 < p < +∞ and p̂ = 1
for p = +∞.

(iv) If M1; Λ < +∞, then the family {L(Λ)
n }n converges in Lp, that is,

lim
n→+∞

‖ f − L(Λ)
n (f) ‖p = 0 , f ∈ Lp , (3.38)

if and only if Mp; Λ < +∞.
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(v) If an, k = 1 for | k | ≤ ρn, where 0 < ρ < r(Λ), then

‖ f − L(Λ)
n (f) ‖p ≤

(
1 + ‖L(Λ)

n ‖p̃(p)
)1/p̃

Eρn(f)p , f ∈ Lp . (3.39)

(vi) If 1 ≤ p ≤ +∞ and if M1; Λ < +∞, then

‖ f − L(Λ)
n (f) ‖p � ‖ f − F (Λ)

n (f) ‖p , f ∈ Lp , n ∈ N0 . (3.40)

If p = +∞ then (3.40) holds with I(Λ)
n in place of F (Λ)

n for all f ∈ C and n ∈ N0.

Theorem 2.6 shows that the method of approximation by families of linear polyno-
mial operators is universal in the sense that it is relevant for both 1 ≤ p ≤ +∞ and
0 < p < 1 where the range of admissible parameters depends on the properties of the
generating matrix Λ and, moreover, their approximation errors are equivalent to the
approximation errors of the corresponding Fourier means in case of Lp, 1 ≤ p ≤ +∞
and to the approximation errors of the corresponding interpolation means in case of
the space C.

Complete proofs of statements (i)-(vi) can be found in [24] and [33]. The proof of
the “key”-statement in the theory of families polynomial operators on operator norms
(part (iii)) is also given below. Note that part (i) follows from the Fubini theorem and
the definition. Part (ii) is a consequence of part (ii) of Theorem 2.4 and the operator
equality

L(Λ)
n;λ = S−λ ◦ I(Λ)

σ ◦ Sλ , (3.41)

where Stf(·) = f(· + t) is the translation operator, which is valid on Trn. Part (iv)
follows from (ii), (iii) and the Banach-Steinhaus convergence principle. Part (v) is
a consequence of the generalized Lebesgue estimate (iv) in Susection 1.4. Part (vi)
follows immediately from the comparison principle (iii) in Subsection 1.4 combined
with part (i) of Theorem 2.2, part (ii) of Theorem 2.6 and part (iv) of Theorem 2.4.

Proof of part (iii). Step 1. First we prove the upper estimate for 0 < p ≤ 1. By (3.34)
and (2.1)-(2.2) we get the estimates

(2π)d/p ‖L(Λ)
n;λ(f ;x) ‖pp

≤ (2N + 1)−dp
2N∑
ν=0

‖ f(tkN + λ) ‖Wn(Λ)(x−−tkN − λ) ‖p;x ‖pp;λ

≤ (2N + 1)−dp ‖Wn(Λ) ‖pp ·
2N∑
ν=0

‖ f(tkN + λ) ‖pp

≤ (2N + 1)d(1−p) ‖Wn(Λ) ‖pp ‖ f ‖pp

for each f ∈ Lp. This implies

‖ L(Λ)
n ‖(p) ≤ (2π)−d/p (2N + 1)d(1/p−1) ‖Wn(Λ) ‖p , 0 < p ≤ 1 . (3.42)

Step 2. In order to prove the lower estimate in (3.36) for 0 < p < +∞ we consider the
2π-periodic function f∗ which is defined on [−π, π)d by (µ denotes the d-dimensional
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Lebesgue measure)

f∗(h) =

{
(µ(Bτ/2(0)))

−1/p , h ∈ Bτ/2(0)

0 , otherwise
,

(
τ =

2π

2N + 1

)
.

For each λ ∈ Bτ/2(0) and for each vector k ∈ Zd \ {0} with components 0 ≤ kj ≤ 2N ,
j = 1, . . . , d, we have

| tkN + λ | ≥ | tkN | − |λ | ≥ τ − τ/2 = τ/2 .

Hence, by the definition of f∗ we get

f∗(t
k
N + λ) = 0 for λ ∈ Bτ/2(0) , k ∈ Zd, k 6= 0 , 0 ≤ kj ≤ 2N , j = 1, . . . , d .

Therefore, in view of (3.34)

L(Λ)
n;λ(f∗;x) = (2N + 1)−d f∗(λ)Wn(Λ)(x− λ) , x ∈ Td , λ ∈ Bτ/2(0) . (3.43)

Since L(Λ)
n;λ(f∗;x) is τ -periodic with respect to each λj, j = 1, . . . , d as a function of

λ and since ‖f∗‖p = 1, we obtain

‖L(Λ)
n ‖p(p) ≥ ‖L(Λ)

n;λ(f∗;x) ‖
p
p = τ−d

∫
[−τ/2,τ/2]d

∫
Td

|L(Λ)
n;λ(f∗;x)|

p dx

 dλ

≥ τ−d
∫

Bτ/2(0)

∫
Td

| L(Λ)
n;λ(f∗;x)|

p dx

 dλ

= (2π)−d (2N + 1)d(1−p)
∫

Bτ/2(0)

| f∗(λ)|p
∫

Td

|Wn(Λ)(x− λ)|pdx

 dλ

= (2π)−d (2N + 1)d(1−p) ‖Wn(Λ) ‖pp .

from (3.43). Thus, we have

‖L(Λ)
n ‖(p) ≥ (2π)−d/p (2N + 1)d(1/p−1) ‖Wn(Λ) ‖p (3.44)

for 0 < p < +∞.

Step 3. Now, let p = +∞. Using (3.41) we obtain

‖ I(Λ)
n ‖(C) ≤ ‖L(Λ)

n ‖(C) = sup
‖ f ‖C ≤ 1

max
λ
‖S−λ ◦ I(Λ)

n ◦ Sλ(f) ‖C

= sup
‖ f ‖C ≤ 1

max
λ
‖ I(Λ)

n ◦ Sλ(f) ‖C

≤ sup
‖ f ‖C ≤ 1

max
λ
‖ I(Λ)

n ‖(C) · ‖Sλ(f) ‖C = ‖ I(Λ)
n ‖(C) .
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Hence,
‖L(Λ)

n ‖(C) = ‖ I(Λ)
n ‖(C) .

Applying the estimate for the norm of I(Λ)
n (see part (iii) of Theorem 2.4) we obtain

(3.36) for p = +∞.
Step 4. By the Riesz-Thorin interpolation theorem (ii) in Subsection 1.4 we get

‖L(Λ)
n ‖(p) ≤ ‖L(Λ)

n ‖1/p
(1) · ‖ L

(Λ)
n ‖1−1/p

(C) .

for 1 < p < +∞. This leads to the upper estimate in (3.36) for 1 < p < +∞ by Step
1 - Step 3. The proof is complete. �

Similarly to the case of the Fourier means and interpolation means Theorem 2.6 can
be reformulated for the families {L(ϕ)

σ }σ generated by ϕ ∈ K in terms of the continuous
parameter σ ≥ 0 and the generator ϕ with obvious modifications. In particular, in
view of Theorem 2.1 the convergence principle and the comparison principle read as
follows (see [24] for the complete proof and further details).

Theorem 3.7. Let ϕ ∈ K and assume 1 ∈ Pϕ. Then the family {L(ϕ)
σ }σ converges in

Lp, 0 < p ≤ +∞, if and only if p ∈ Pϕ.

This theorem has many applications. In particular, it enables us to find the sharp
ranges of convergence (range of convergence is by definition the set of p ∈ (0,+∞] for
which the method converges in Lp) for families related to classical kernels of type (G)
(see [24] and also Subsection 2.5 for details).

Combining part (iv) of Theorem 2.6, the Riesz-Thorin interpolation theorem and
the ideas described in Subsection 2.1 one can obtain some efficient criteria for the
convergence of families of linear polynomial operators related to kernels of type (GR).
Following [33] we give precise statements.

Theorem 3.8. Let Λ be of type (GRq) for some 0 < q < 1 and ϕ ∈ K. Assume
1 ∈ Pϕ and q /∈ Pϕ. Then the family {L(Λ)

n }n converges in Lp if and only if p ∈ Pϕ.

Theorem 3.9. Let Λ = Λ(ϕ) + R′ + R′′ with ϕ ∈ K. Suppose R′ = {r′n, k} satisfies
Mq;R′ < +∞ for some 0 < q < 1 and let R′′ = {r′′n, k} be a matrix satisfying

r′′n, k = λnψ

(
k

n

)
, n ∈ N ,

where ψ ∈ K , ψ̂(x) = O(|x |−δ) for x → +∞ , λn = O(nδ−d/q) and d < δ < d/q .
Assume 1 ∈ Pϕ and q /∈ Pϕ. Then the family {L(Λ)

n }n converges in Lp if and only if
p ∈ Pϕ.

Theorems 2.8 and 2.9 show that under some conditions the “remainder matrices” do
not affect the range of convergence determined by the first item Λ(ϕ) in (3.7). It turns
out that the classical kernels of type (GR), in particular, the Cesaro kernels, satisfy the
conditions of Theorem 2.9. This enables us to find their sharp ranges of convergence
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given in Subsection 2.5. For further details and for complete proofs of the statements
above we refer to [33].

To complete the description of convergence results for various types of kernels we
now deal with families generated by kernels of type (Gq) described in (3.13)-(3.14) (see
also [33]).
Theorem 3.10. Let q ∈ N and let ϕ ∈ K such that∫

Rd

( ϕ̂(x))q dx 6= 0 .

Assume 1 ∈ Pϕ. Then the family associated with the kernels Wn(ϕ, q) defined in
(3.13) converges in Lp if and only if p ∈ q−1Pϕ.

3.4 Stochastic approximation

As we have seen in Theorem 2.1 and parts (iii), (v) of Theorem 2.6, the averaged ap-
proximation error of the linear polynomial operators {L(ϕ)

σ } in Lp, 0 < p < +∞, with
respect to the parameter λ can be estimated up to a constant multiple by the best
approximation of order � n provided that the generator ϕ ∈ K satisfies the following
additional conditions: ϕ(ξ) = 1 in a neighborhood of 0 and the Fourier transform ϕ̂
belongs to Lp̃(Rd), where p̃ = min(1, p) (see Theorem 2.11 below). It was shown in [28]
that the same quality of approximation can be achieved, if the parameter λ is randomly
chosen. This result served as a theoretical background for the algorithm of stochas-
tic approximation which reduces the problem of trigonometric approximation for all
admissible parameters 0 < p ≤ +∞ to the problem of interpolation (sampling) with
randomly shifted nodes (see Theorem 2.12 below). For the description of all advantages
of this method, for the corresponding computational procedure as well as for examples
and complete proofs of the theoretical results we refer to [28]. In this subsection we
formulate the main statements, the algorithm of stochastic approximation is based on,
following [28]. Henceforth, the probability of an event A is denoted by P (A).
Theorem 3.11. Let 0 < p ≤ +∞, 0 < ρ < 1. Let ϕ ∈ K be real-valued with r(ϕ) ≤ 1
and let the parameter N in (3.27) be equal to [σ]. Assume that ϕ̂ belongs to Lp̃(Rd),
where p̃ = min(1, p), and ϕ(ξ) = 1 if |ξ| ≤ ρ. Then

‖ f − L(ϕ)
σ (f) ‖p ≤ c(d, p, ϕ)Eρσ(f)p , f ∈ Lp , σ ≥ 0 ,

where

c(d, p, ϕ) =


1 + (2π)−d 3d(1−1/p) ‖ ϕ̂ ‖L1(Rd) , 1 ≤ p ≤ +∞(
1 + (2π)−d 3d(1−p) ‖ ϕ̂ ‖p

Lp(Rd)

)1/p

, 0 < p < 1
.

Theorem 3.12. Let the conditions of Theorem 2.11 be satisfied. Let also γ > 1, m ∈ N
and let ηj, j = 1, . . . ,m, be independent random vectors uniformly distributed on the
unit cube [0, 1]d. Then for f ∈ Lp and σ ≥ 0

P

{
min

j=1,...,m
‖ f − Lϕσ; θj

(f) ‖p ≤ γ c(d, p, ϕ)Eρσ(f)p

}
≥ 1 − γ−pm ,

where θj = τηj, j = 1, . . . ,m, and τ = 2π/(2[σ] + 1).
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3.5 Methods generated by classical kernels

As already mentioned above, Theorems 2.7-2.10 show that in some cases the problem
of convergence can be reduced to the problem of finding the set Pϕ for the generator
ϕ. It turns out that the classical kernels satisfy these conditions and the sets Pϕ can
be determined exactly. Hence, we are able to find the sharp ranges of convergence for
the associated families of linear polynomial operators. The corresponding results will
be established in form of the General Convergence Table (GCT) presented below.

Type d Generator ϕ Range Pϕ

Fejér (G) 1 ( 1− | ξ | )+ (1/2,+∞]

Jackson (GR) 1 3/2 (1−| ξ |)+ ∗ (1−| ξ |)+ (1/4,+∞]

Korovkin (GR) 1 (1−| ξ |) cos πξ+(1/π) sinπ| ξ |,
(| ξ | ≤ 1)

(1/4,+∞]

de la Vallée-
Poussin (G) 1


1 , | ξ | ≤ 1

2− | ξ | , 1 < | ξ | ≤ 2
0 , | ξ | > 2

(1/2,+∞]

Rogosinski (G) 1 cos
πξ

2
, (| ξ | ≤ 1) (1/2,+∞]

Bochner-Riesz (G) ≥ 1 (1− | ξ |2)α+ , (α ≥ 0)

(
2d

d+ 2α+ 1
,+∞

]

Riesz (G) ≥ 1

(1− | ξ |β)α+, α > 0, β = 2k

or 0 < α < β + (d− 1)/2,

β 6= 2k

(
2d

d+ 2α+ 1
,+∞

]

Riesz (G) ≥ 1 α ≥ β + (d− 1)/2, β 6= 2k

(
d

d+ β
,+∞

]
Cesaro (GR) 1 (1− | ξ |)α+, (α > 0) (1/min(2, α+1),+∞]

Zygmund (G) 1 (1− | ξ |β)+, (β > 0) (1/(1+min(1, β)),+∞]

Table 1. General Convergence Table (GCT)

In this table a+ denotes max(a, 0). The symbol f ∗ g stands for the convolution
of functions f and g defined on Rd. The ranges of convergence of the families of
linear polynomial operators generated by Fejér, de la Vallée-Poussin, Rogosinski and
Bochner-Riesz kernels were obtained in [24], [32] applying Theorem 2.7 in combination
with direct formulas for the Fourier transforms of the corresponding generators. Upper
and lower estimates for the Fourier transform of the generators of the Riesz kernels,
which enable us to find Pϕ in this case, can be found in [34]. For representations of
the Korovkin and Cesaro kernels in form (3.7) and for the results on the ranges can be
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derived from Theorems 2.9 and 2.10, respectively, we refer to [33]. Let us also mention
that in view of parts (vi) of Theorems 2.4 and 2.6 all convergence results for families
automatically imply the classical results on convergence of the corresponding Fourier
means and the corresponding interpolation means in the spaces Lp, 1 ≤ p ≤ +∞, and
in the space C (p = +∞), respectively.
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