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Abstract. We obtain sufficient conditions for continuity of the eigenvalues of semi-
bounded quasi-differential operators of order 2n on the half-axis with respect to the
parameters that appear in the corresponding differential expression. In addition we
obtain a generalization of the well-known result of M.G. Krein [9] concerning descrip-
tion of the quadratic form of a regular quasi-differential operator in the singular case,
when the deficiency indices of the minimal operator are equal to (n, n).

1 Introduction

Let Ω be an open set in Rk or Ck, L(ω), ω ∈ Ω, – a family of closed operators. It is well
known (see, for example, [6, p. 213]) that if for a certain z0 ∈ C the resolvent (L(ω)−
z0)

−1 exists and is continuous in a neighborhood of ω0 ∈ Ω, then the spectrum of the
operator L(ω) is continuous near ω0 in the following sense: if λ0 is an isolated eigenvalue
of multiplicity m of the operator L(ω0), then there exist m functions λ1(ω), . . . , λm(ω)
continuous at ω0 such that these functions are the only points of the spectrum of the
operator L(ω) near ω0. There are known sufficient conditions for generalized resolvent
continuity [13, p. 287] of a family of operators. However, in a given situation these
conditions might happen to be either inefficient or hard to verify. At the same time,
the issue of continuity and differentiability of eigenvalues and eigenfunctions gains
special relevance due to emergence of various software packages [1, 12, 5, 2] for their
approximate computation. This question has been resolved in the most comprehensive
form in [7] for a regular1 Sturm – Liouville operator. Later in [8] these results were
extended to regular ordinary differential operators of any order. A similar problem
for operators with partial derivatives (also in the regular case) has been studied in the
paper [4]. In the paper [10], a result concerning smooth dependence of a simple isolated
eigenvalue of an arbitrary Fredholm operator on a Banach space was obtained. There
were also given many applications of the derived results for various operators.

1In accordance with [11], a differential operator will be called regular, if the corresponding differ-
ential expression is defined in a bounded interval, and its coefficients are summable on this interval.
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In the paper we study one natural class of differential operators, where the standard
technique of [10] is not applicable (for more details see Example 2).

Consider the quasidifferential expression depending on k parameters:

L(y) = (−1)ny(2n) + (−1)n−1
(
p1y

(n−1)
)(n−1)

+ . . .+ pny, x > 0, (1.1)

pi = pi(x, ω), ω ∈ Ω, Ω is an open set in Rk.
We assume that for all ω ∈ Ω the following holds:
1) the functions pi(x, ω), i = 1, . . . , n, are real-valued and locally summable in

[0,∞);
2) the deficiency indices of the minimal operator L0(ω) generated in L2(0,∞) by

the expression L(ω)(y) are equal to (n, n).
Then (for details see [11, p. 213]) any self-adjoint extension of the operator L0(ω)

can be defined in terms of boundary conditions:

D(L(A(ω), ω)) = {y ∈ L2(0,∞) : y[k] (k = 0, 2n− 1) are absolutely continuous,
L(ω)(y) ∈ L2(0,∞), A(ω)Y2n(0) = 0}, (1.2)

L(A(ω), ω)y = L(ω)(y), y ∈ D(L(A(ω), ω)), (1.3)

where Y2n = (y, y[1], . . . , y[2n−1])T , y[k] is a k-th quasi-derivative (see [11, p. 182])
defined by the formula

y[k] =


dky

dxk
, k = 1, . . . , n;

pk−n
d2n−ky

dx2n−k −
d

dx

(
y[k−1]

)
, k = n+ 1, . . . , 2n.

(1.4)

Here the matrix A(ω) satisfies the requirements for boundary conditions to be self-
adjoint:

A = (A1, A2), (1.5)

where A1 = A1(ω), A2 = A2(ω) are square matrices of order n such that rank A = n,

A1JnA
∗
2 = A2JnA

∗
1, (1.6)

Jn =


0 . . . 0 1
0 . . . 1 0
. . . . . . . . . . . .
1 . . . 0 0

 , n ≥ 2, J1 = 1. (1.7)

We denote by L(ω) the operator L(A, ω), where A is a fixed matrix independent of
ω ∈ Ω. Let λ1(ω), λ2(ω), . . . be the eigenvalues of L(ω) numbered in non-decreasing
order of magnitude and repeated as many times as their multiplicities.2

The aim of this paper is to obtain sufficient conditions for continuity of any finite
collection of eigenvalues of L(ω). Our main results are follows.

2It follows from condition 4) of Theorem 1 that L(ω) is semi-bounded from below and for some
a > 0 and all ω ∈ Ω the resolvent (L(ω) + a)−1 is compact so that the spectrum has a unique limit
point +∞.
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Theorem 1. Let ω0 ∈ Ω and, in addition to the conditions 1) – 2), the following
conditions hold:

3) for any ω ∈ Ω the functions p1(x, ω), . . . , pn(x, ω) are bounded from below on
[a,∞) for some a > 0;

4) for all 0 < b <∞∫ b

0

| pi(x, ω)− pi(x, ω0) | dx→ 0, ω → ω0, i = 1, n;

5) the operator L(δ, ω), obtained from L(ω) by replacing the coefficients pi(x, ω) by

pi(x, δ, ω) ≡ inf
|ω′−ω|<δ

pi(x, ω
′), i = 1, n,

with some δ > 0, has compact resolvent.
Then the eigenvalues λk(ω) are continuous at ω0.

Theorem 2. Let the eigenvalue λ0 of the operator L(ω0) have multiplicity k and let
λi(ω)(i = 1, k) be the eigenvalues of L(ω) such that λi(ω) → λ0, ω → ω0, and ϕi(x, ω)
be corresponding normalized eigenfunctions. Furthermore, let P0 be the projector onto
the eigenspace corresponding to λ0.

Then, if the conditions of Theorem 1 are satisfied, we have

‖ϕi(·, ω)− (P0ϕi)(·, ω)‖ → 0, ω → ω0 (1.8)

for any i = 1, k, where ‖ · ‖ denotes the norm in L2(0,∞).
If λ0 is a simple eigenvalue, then ϕ(x, ω) can be chosen in such a way that

‖ϕ(·, ω)− ϕ(·, ω0)‖n−1 → 0, ω → ω0,

where

‖ϕ‖s = sup
x≥0

(
s∑

ν=0

∣∣ϕ(ν)(x)
∣∣) . (1.9)

The proofs of these theorems are based on application of the well-known min-max
principle (see, for instance, [14, p. 78]), for which there is an explicit description of
the quadratic form of the operator L(ω) ( Lemmas 2, 4). It turns out that the
domain of the quadratic form of the operator L(ω) is defined by the maximal set of
linear independent boundary conditions AY2n(0) = 0, which do not contain derivatives
of orders higher than n − 1. These conditions, according to the regular case [9], will
be called main. The other boundary conditions (more precisely: the matrix consisting
of the coefficients of these conditions) appear in the formula for the quadratic form.
Section 1 is devoted to proofs of these statements. In Sections 2 and 3 we give proofs
of Theorems 1, 2. In Section 4 we give several examples and build a counterexample
showing that condition 5) is essential.
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2 Sesquilinear forms and associated operators

It is known from [6, p. 308] that there is a one-to-one correspondence between closed
sectorial sesquilinear forms and m-sectorial operators. In this section we will give an
explicit description of this correspondence when the form is generated by the differential
expression (1.1). We assume till the end of the proof of Lemma 7 that a condition more
restrictive than condition 3) is satisfied, namely:

3′) for all ω ∈ Ω the functions p1(x, ω), . . . , pn(x, ω) are nonnegative on [a,∞) for
some a > 0.

We denote by Dl(ω) the set of all functions y ∈ L2(0,∞) satisfying the following
conditions:

a) y, y′, . . . , y(n−1) are absolutely continuous on (0,∞);
b) y(n) ∈ L2(0,∞), p

1/2
1 (·, ω)y(n−1), . . . , p

1/2
n (·, ω)y ∈ L2(a,∞),

c) CYn(0) = 0, where C is a fixed matrix of rank 0 ≤ r ≤ n independent of ω
and Yn(0) = (y(0), . . . , y(n−1)(0))T .

We define the following sesquilinear form on Dl(ω)×Dl(ω):

l(ω)[y, z] =

∫ ∞

0

(
y(n)(x)z(n)(x) + p1(x, ω)y(n−1)(x)z(n−1)(x) + . . . +

+ pn(x, ω)y(x)z(x)) dx− 〈A0Yn(0), Zn(0)〉,

where A0 is a self-adjoint matrix of order n independent of ω, 〈·, ·〉 denotes the
scalar product in the n-dimensional Euclidean space. Next, for brevity, we denote
the quadratic form l(ω)[y, y] by l(ω)[y] or l(ω).

Lemma 1. If conditions 1) and 3′) are satisfied, then for any ω ∈ Ω the quadratic
form l(ω) is bounded from below and closed in Dl(ω).

Proof. According to Sobolev’s inequalities (see, for example,[3, pp. 129, 142]), we have

sup
x∈[0,a]

|u(x)| ≤ Mε−1‖u‖L2(0,a) + ε‖u′‖L2(0,a), u ∈ W (1)
2 (0, a), (2.1)

‖u(k)‖L2(0,a) ≤ Ck(δ)‖u‖L2(0,a) + δ‖u(n)‖L2(0,a), u ∈ W (n)
2 (0, a), k = 1, n− 1,(2.2)

where W (n)
2 (0, a) is the Sobolev space, constants ε, δ can be arbitrarily small, constants

M,Ck(δ) are independent of u. Combining (2.1) for u = y(k) with (2.2) for u = y and
δ = ε2, we obtain

sup
x∈[0,a]

|y(k)(x)| ≤Mk(ε)‖y‖L2(0,a) +Nk(ε)ε‖y(n)‖L2(0,a), y ∈ W (n)
2 (0, a), k = 1, n− 1,

(2.3)
where

Mk(ε) =

{
MCk(ε

2)ε−1, k = 1, n− 2,
MCn−1(ε

2), k = n− 1;
Nk(ε) =

{
M + ε, k = 1, n− 2,
1, k = n− 1.

Consider the quadratic form

l0(ω)[y] =

∫ a

0

(
n−1∑

1

pk(x, ω) | y(n−k) |2
)
dx− 〈A0Yn(0).Yn(0)〉, y ∈ W (n)

2 (0, a),
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From inequality (2.3) we obtain the inequality

|l0(ω)[y]| ≤ K1(ω, ε)‖y‖2
L2(0,a) +K2(ω)ε2‖y(n)‖2

L2(0,a), y ∈ W (n)
2 (0, a), ω ∈ Ω, (2.4)

which holds for all sufficiently small positive ε, where K1(ω, ε), K2(ω) are independent
of y. It follows from this and condition 3′) that

l(ω)[y] ≥ (1−K2(ω)ε2)‖y(n)‖2 −K1(ω, ε)‖y‖2, y ∈ Dl(ω). (2.5)

Therefore, the form l(ω) is semi-bounded.
Now we prove that for all ω ∈ Ω the form l(ω) is closed. Let ω ∈ Ω and {yk} be a

sequence in Dl(ω) such that ||yk − ym|| → 0, l(ω)[yk − ym] → 0, k,m → ∞. Using
(2.5), we get

‖y(n)‖2 ≤ (1−K2(ω)ε2)−1
(
l(ω)[y] +K1(ω, ε)‖y‖2

)
, y ∈ W (n)

2 (0,∞),

where ε is a positive constant such that ε < K
−1/2
2 (ω), therefore, the sequence {yk}

converges inW (n)
2 (0,∞) to a certain function y ∈ W (n)

2 (0,∞). Hence, the limit function
y satisfies conditions a), c) and y ∈ L2(0,∞). So we only need to show that

p
1/2
1 (·, ω)y(n−1), . . . , p1/2

n (·, ω)y ∈ L2(a,∞). (2.6)

Since the sequence {l(ω)[yk]} is convergent, it is bounded and, therefore,∫ ∞

a

(
n∑
i=1

pi(x, ω)
∣∣∣y(n−i)
k (x)

∣∣∣2) dx ≤ C(ω),

where C(ω) > 0 is independent of k. Passing to the limit in this inequality as k →∞,
we obtain (2.6).

Remark 1. Lemma 1 allows us to assume without loss of generality that for any ω ∈ Ω
the quadratic form l(ω) is positive.

Remark 2. Suppose that in addition to the conditions of Lemma 1, condition 4)
of Theorem 1 holds. Then it follows from the proof of inequality (2.4) that for any
compact ∆ ⊂ Ω and any ε > 0 there are some constants K1(∆, ε) > 0 and K2(∆) > 0
such that for all ω ∈ ∆ the following inequality holds:

‖y(n)‖2 ≤ (1−K2(∆)ε)−1
(
l(ω)[y] +K1(∆, ε)‖y‖2

)
, y ∈ W (n)

2 (0,∞). (2.7)

Let L(ω) be the self-adjoint operator associated with the form l(ω) [6, p. 308].

Lemma 2. If conditions 1) – 2) and 3’) are satisfied, then L̃(ω) = L(ω), where

A =

(
C 0

B∗A0 B∗Jn

)
, (2.8)

B is a n× (n− r) matrix, the columns of which form a basis in the space of solutions
of the system CX = 0, and Jn is defined by (1.7).

If y ∈ D(L̃(ω)), then L̃(ω)y = L(ω)(y).
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Proof. Let y ∈ D(L̃(ω)) and L̃(ω)y = g. We will show that y is absolutely continuous
on [0,∞) together with quasi-derivatives of orders up to and including 2n−1, and that

AY2n(0) = 0. (2.9)

We will also show that L(ω)(y) ∈ L2(0,∞) and g = L(ω)(y).
Taking into account the representation theorem in [6, p. 322], we obtain

(g, z) = (L̃(ω)y, z) = l(ω)[y, z], ∀z ∈ Dl(ω). (2.10)

Let D′
l(ω) = Dl(ω)

⋂
C0[0,∞) and z ∈ D′

l(ω). Then the equalities in (2.10) show that,
assuming p0 ≡ 1,∫ ∞

0

g z dt =

∫ ∞

0

n∑
0

pk y
(n−k) z(n−k) dt− 〈A0Yn(0), Zn(0)〉. (2.11)

We denote by u1 an antiderivative of −g + pny so that

u′1 = pny − g. (2.12)

Therefore, ∫ ∞

0

(g − pn y) z dt = −
∫ b

0

u′1 z dt = u1(0) z(0) +

∫ b

0

u1 z
′ dt.

Here we integrate over the interval [0, b] such that the support of the function z ∈ D′
l

is contained in [0, b]. We obtain from (2.11) that∫ ∞

0

(
n−2∑

0

pk y
(n−k) z (n−k) + (pn−1 y

′ − u1) z
′

)
dt− 〈A0 Yn(0), Zn(0)〉 − u1(0) z(0) = 0.(2.13)

Next, we denote by uk antiderivatives of pn−k+1 y
(k−1) − uk−1 so that

u′k = pn−k+1 y
(k−1) − uk−1, k = 2, n. (2.14)

Then, iterating the previous equality, we obtain∫ ∞

0

(y(n) − un) z
(n) dt− 〈A0 Yn(0), Zn(0)〉 −

n∑
k=1

uk(0) z
(k−1)(0) = 0. (2.15)

We fix M > 0 and consider the set 4M = { y : y, y ′, . . . , y (n−1) are absolutely con-
tinuous on [0,∞), y(n) ∈ L2(0,∞), y(0) = y ′(0) = . . . = y(n−1)(0) = 0, y(x) =
0,∀x ≥ M}. It is obvious that equality (2.15) holds ∀z ∈ 4M . Moreover, for these z
we have ∫ M

0

(y(n) − un) z
(n) dt = 0,

so that the function y(n)−un is orthogonal to z (n) in L2(0,M). Therefore, the function
y(n) − un as an element of L2(0,M) is orthogonal to all functions that are orthogonal
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to polynomials of degree ≤ n−1. Thus y(n)−un coincides with a polynomial of degree
not higher than n− 1 almost everywhere on [0,M ]:

y(n) − un =
n−1∑

0

ck t
k

k!
. (2.16)

Since M is arbitrary then equality (2.16) holds on the entire interval [0,∞). It follows
from this and equalities (2.12) and (2.14) that y(n), y[n+1], . . . , y[2n−1] are absolutely
continuous on [0,∞), L(ω)y = g, and

un−k(0) = y[n+k](0) + (−1)k+1ck, k = 0, n− 1. (2.17)

Then from (2.15) and taking into account (2.16) and (2.17) we obtain

〈(A0, Jn)Y2n(0), Zn(0)〉 = 0 (2.18)

for all z ∈ D′
l(ω). However, z satisfies condition c) and thus Zn(0) = B C0, where

C0 = (c1, c2, . . . , cn)
T . Then using (2.18), we get

〈B∗(A0, Jn)Y2n(0), C0〉 = 0.

As z varies in D′
l(ω), C0 takes all possible values in Cn. This proves (2.9). Thus we

have shown that L̃(ω) ⊂ L(ω).
Conversely, if y ∈ D(L(ω)), then y ∈ D(L̃(ω)) and L̃(ω)y = L(ω)(y). Indeed,

integration by parts shows that l[y, z] = (Ly, z) for all z ∈ D′
l(ω). However, D′

l(ω) is
the essential domain of the quadratic form l(ω), and, therefore, the statement follows
directly from the representation theorem.

Lemma 3. Let A = (A1, A2), where A1, A2 are square matrices of order n such
that rank A = n, A1JnA

∗
2 = A2JnA

∗
1 . Then the system of equations AX = 0 is

equivalent to the system AX = 0, where A has the form (2.8).

Proof. Let rankA2 = n− r. Then we can assume that

A =

(
C 0
B1 B2Jn

)
,

where C is a r×n matrix, rankC = r, rankB2 = n−r. It follows from self-adjointness
of A1JnA

∗
2 that

CB∗
2 = 0, (2.19)

B1B
∗
2 = B2B

∗
1 . (2.20)

We can see from the first equation that the columns of matrix B∗
2 solve the system

CX = 0. Because rankB∗
2 = n − r then, first of all, the columns of matrix B∗

2 form
a basis in the space of solutions of the given system, and, secondly, there is a matrix
Ã such that B1 = B2Ã. Then from (2.20) we will obtain that B2(Ã − Ã∗)B∗

2 = 0.
Combining this with (2.19) we get that there exists a matrix M such that B2(Ã−Ã∗) =

MC. Therefore, B2Ã− 1
2
MC = B2A0, where A0 = 1

2
(Ã+ Ã∗).
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Remark 3. The proven lemma asserts that by doing algebraic transformations we can
single out those from self-adjoint boundary conditions that do not contain derivatives
of orders higher than (n− 1). They appear right in the domain of the quadratic form
associated with the operator L(ω). Following [9], we will call them the main boundary
conditions.

Lemma 4. If ω ∈ Ω and the conditions 1) – 2), 3’) are satisfied, then for all y ∈
D(L(ω)):

(i) y(n), p
1/2
1 (·, ω)y(n−1), . . . , p

1/2
n (·, ω)y ∈ L2(0,∞);

(ii) for all z from the domain of the quadratic form of the operator L(ω)

[y, z] ≡ lim
x→∞

n∑
0

y[2n−k](x) z[k−1](x) = 0.

Proof. Let ω ∈ Ω and y ∈ D(L(ω)). It follows by Lemma 3 that the system AY2n(0) = 0
satisfying condition (1.6) can be transformed to an equivalent system with a matrix A
having the form (2.8). Then it follows from Lemma 2 that L(ω) = L̃(ω). Combining
this with the inclusion D(L(ω)) ⊂ Dl(ω), we get (i).

Suppose that y ∈ D(L(ω)), z ∈ Dl(ω). Then

(L(ω)y, z) = lim
b→∞

∫ b

0

L(ω)y z dt = lim
b→∞

{∫ b

0

(
n∑
0

pk y
(n−k)z (n−k)

)
dt−

− 〈A0Yn(0), Zn(0)〉+
n∑
k=1

y[2n−k](b)z(k−1)(b)

}
.

On the other hand, taking into account the representation theorem, we have

(L(ω)y, z) = l(ω)[y, z] =

∞∫
0

(
n∑
0

pk y
(n−k)z (n−k)

)
dt−

− 〈A0Yn(0), Zn(0)〉, y ∈ D(L(ω)), z ∈ Dl(ω).

This implies (ii).

Lemma 5. Let D′(L(ω)) be the set of all functions from D(L(ω)) which have compact
support in [0,∞). Then D′(L(ω)) is the core for l(ω), i.e. for all v ∈ Dl(ω) and ε > 0
there exists a y ∈ D(L(ω)) such that ‖v − y‖+ l(ω)[v − y] < ε.

Proof. We set (see Remark 1)

(u, v)+1(ω) = l(ω)[u, v] + (u, v), ‖u‖+1(ω) =
√

(u, u)+1(ω), u, v ∈ Dl(ω). (2.21)

It is known [13, p. 278] that (·, ·)+1(ω) and ‖ · ‖+1(ω) are an inner product and a norm
in Dl(ω) respectively. Then the statement to prove means that D′

L(ω) is dense in Dl(ω)
in the norm ‖ · ‖+1(ω).
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Let y ∈ Dl(ω) and (y, ϕ)+1(ω) = 0 for all ϕ ∈ D′
L(ω). We will prove that y = 0.

Fix b > 0 and introduce the operator L0b(ω) generated in L2(0, b) by the differential
expression L(ω)(y) and the boundary conditions AY2n(0) = 0, Y2n(b) = 0. It is easy
to verify that the operator L0b(ω) is symmetric and L∗0b(ω) is the operator generated
in L2(0, b) by the expression L(ω)(y) and the boundary conditions AY2n(0) = 0. The
set D(L0b(ω)) can be embedded in D′

L(ω) assuming that the function ϕ ∈ D(L0b(ω))
vanishes outside [0, b]. Therefore, (y, ϕ)+1(ω) = 0 for all ϕ ∈ D(L0b(ω)). Yet for these
ϕ we have

(y, ϕ)+1(ω) = (y, L0b(ω)ϕ) + (y, ϕ) = (y, (L0b(ω) + 1)ϕ).

Hence, y⊥Ran(L0b(ω) + 1), which is equivalent to y ∈ Ker(L∗0b(ω) + 1). So

L(ω)(y) = −y, 0 ≤ x ≤ b;

AY2n(0) = 0.

Suppose that y 6= 0. Since b > 0 is arbitrary it follows that y is an eigenfunction
of the operator L(ω) corresponding to the eigenvalue −1, which is impossible (see
Remark 1).

3 Proof of Theorem 1

We can now proceed to a direct proof of Theorem 1. Assume that conditions 1), 2),
3′) are satisfied. Then for all ω ∈ Ω the minimal operator L0(ω) is bounded from
below and has deficiency indices equal to (n, n). Denote by d(ω) the bottom of the
essential spectrum of L(ω) = L(A, ω), where A is of the form (2.8). (If spectrum L(ω)
is discrete, then we set d(ω) = +∞.)

Lemma 6. Suppose that conditions 1), 2), 3’), 4) are satisfied and the operator L(ω0)
has k (1 ≤ k ≤ ∞) eigenvalues located to the left from

d−(ω0) ≡ lim
ω→ω0

d(ω).

Then there exists a neighborhood of ω0 Vk ⊂ Ω such that for ω ∈ Vk the operator L(ω)
has at least k eigenvalues below d(w) that satisfy the inequalities

lim
ω→ω0

λj(ω) ≤ λj(ω0), j = 1, . . . , k. (3.1)

Proof. Let σk = (d−(ω0) − λk(ω0))/3 and Uk = {ω ∈ Ω : d(ω) > d−(ω0) − σ}.
Furthermore, let f1(ω0), . . . , fk(ω0) be normalized eigenfunctions of the operator L(ω0)
corresponding to the eigenvalues λ1(ω0), . . . , λk(ω0). It follows from Lemma 5 that for
any ε > 0 there exist functions ϕ1(x, ε), . . . , ϕk(x, ε) in D′(L(ω0)) such that ‖ϕj‖ = 1
and

‖ϕj(·, ε)− fj(ω0)‖ < ε,

l(ω0)[ϕj(·, ε)] ≤ λj(ω0) + ε. (3.2)
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Since ϕj(·, ε) ∈ D′(L(ω0)), then ϕj(x, ε) ≡ 0, x ≥ b, j = 1, k, for some b > 0.
Therefore, according to (3.2) and condition 4) of Theorem 1, there exists a constant
δ(ε) > 0 such that for all ω ∈ Ω ∩ {|ω − ω0| < δ(ε)} we have

l(ω)[ϕj(·, ε)] < λj(ω0) + 2ε, j = 1, k. (3.3)

By definition (fm(ω0), fn(ω0)) = δmn, m, n = 1, k. Thus there exists a constant εk > 0
such that for all 0 < ε ≤ εk the functions ϕ1(·, ε), . . . , ϕk(·, ε) are linearly independent.
Let ε(k) = min{εk, σk} and Vk = Ω ∩ {|ω − ω0| < δ(ε(k))}. Then for any ω ∈ Vk we see
that

l(ω)[ϕj(·, ε(k))] < d(ω), j = 1, k.

Therefore, according to the min-max principle, for all ω ∈ Vk the operator L(ω0) has
at least k eigenvalues λ1(ω), . . . , λk(ω) located to the left from d(ω). Furthermore, by
the inequalities (3.3) we have

λj(ω) < λj(ω0) + 2ε, ε < ε(k), ω ∈ {|ω − ω0| < δ(ε)} ∩ Ω, j = 1, k.

This proves (3.1).

Remark 4. If, in addition to the conditions of Lemma 6, condition 5) of Theorem 1 is
also satisfied, then by the min-max principle the spectrum of L(ω) is discrete for any
ω ∈ Ω. Therefore, Lemma 6 will be true for all eigenvalues.

Lemma 7. If conditions 1), 2), 3’), 4), 5) are satisfied for any ε > 0 and any finite
k, then there exists a neighborhood V = V (k, ε) ⊂ Ω of ω0, where the inequalities
λk(ω) ≥ λk(ω0)− ε hold.

Proof. Assume to the contrary, that is λk(ωm) < λk(ω0) − σ for some sequence
ωm → ω0 and σ > 0. Let ϕj(x, ωm) ≡ fjm(x) be the normalized eigenfunctions of
L(ωm) that correspond to the eigenvalues λj(ωm). Then

l(ωm)[fjm] = (L(ωm)fjm, fjm) ≤ λk(ω0)− σ. (3.4)

According to condition 5) of Theorem 1, for any 0 < τ < δ there exists M(τ) ∈ N
such that for all j = 1, k and m ≥ M(τ) the functions fjm belong to the compact
set S = {ψ ∈ D(lτ ) : ‖ψ‖ ≤ 1, lτ [ψ] ≤ λk(ω0) − σ}, where lτ is the quadratic
form of the operator L(τ, ω0) occurring in condition 5). Without loss of generality we
can assume that for every j = 1, k ϕj(ωm) converges to some function fj ∈ S, then
lτ [fj] ≤ λk(ω0)− σ. Moreover, since ∀ m ∈ N (fjm, fkm) = δjk we see that

(fi, fj) = δij, i, j = 1, k. (3.5)

So ∀ b > 0 and 0 < τ < δ,∫ b

0

(
|f (n)
j (x)|2 +

n∑
1

pi(x, τ, ω0)|f (n−i)
j (x)|2

)
dx < λk(ω0)− σ, j = 1, k.
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Passing to the limit in this inequality as τ → 0+ and taking into account condition 4)
of Theorem 1, we obtain∫ b

0

(
|f (n)
j (x)|2 +

n∑
1

pi(x, ω0)|f (n−i)
j (x)|2

)
dx ≤ λk(ω0)− σ, j = 1, k, b > 0.

Since b > 0 is arbitrary, we have

l(ω0)[fj] ≤ λk(ω0)− σ, j = 1, k.

Hence, applying the min-max principle together with (3.5), we arrive at the inequality
λk(ω0) ≤ λk(ω0)− σ. The derived contradiction proves the lemma.

Conclusion of the proof of Theorem 1. If p1, . . . , pn are nonnegative for x ≥ a, then
Theorem 1 follows from Lemmas 6, 7 and the min-max principle.

It is clear from proofs of Lemmas 1, 2, 4 – 7 that nonnegativity of p1, . . . , pn for
x ≥ a is necessary only to guarantee boundedness from below of the quadratic form
l(ω). Therefore, it suffices to verify that the quadratic form l(ω) is also semi-bounded
if we replace condition 3’) by condition 3).

Suppose pi(x, ω) ≥ ci(ω), x ≥ a, where ci(ω) is independent of x. Then

l(ω)[y] = l1(ω)[y] + l2(ω)[y], where l2[y] =
n−1∑

0

ci(ω)‖y(n−i)‖2, l1(ω) satisfies (2.5)

for any sufficient by small ε > 0. According to the well-known inequality (see, for
example, [3, p. 129]), we have

‖y(k)‖ ≤ C(ε)‖y‖+ ε‖y(n)‖, y ∈ W (n)
2 (0,∞), k = 1, n− 1, (3.6)

where a constant ε can be chosen to be arbitrarily small and C(ε) > 0 is independent
of y. From this and (2.5) it follows that the form l(ω) is bounded from below. �

4 Proof of Theorem 2

First, we prove (1.8). Arguing similarly to the proof of Lemma 7, from any sequence
{ωm} converging to ω0 we can choose a subsequence {ωm}, which we will also denote
by {ωm}, such that there exists the limit

lim
m→∞

ϕi(·, ωm) ≡ fi,

where fi ∈ Dl(ω0), ‖fi‖ = 1 and l(ω0)[fi] ≤ λ0. We will show that l(ω0)[fi] = λ0,
whence (1.8) follows.

Suppose that there is a 1 ≤ i ≤ k such that

l(ω0)[fi] < λ0. (4.1)

Let the operator L(ω0) have exactly s eigenvalues to the left from λ0. We repeat the
same argument as above and find s functions g1, . . . , gs in Dl(ω0) satisfying (3.5), (4.1),
and (fi, gj) = 0, j = 1, . . . , k. Whence using the min-max principle, we conclude that
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the operator L(ω0) has at least s+1 eigenvalues to the left from λ0. This contradiction
proves (1.8).

Let us now prove (1.9). We first note that estimates (2.1) and (2.2) hold for a = ∞
(see [3, p. 142] and (3.6)). Therefore, inequality (2.3) is also satisfied for a = ∞. From
this and (2.7) it follows that for any compact ∆ ⊂ Ω there exists a constant K(∆) > 0
such that for all ω ∈ ∆ and y ∈ Dl(ω)

‖y‖n−1 ≤ K(∆)‖y‖+1(ω), (4.2)

where the norm ‖ · ‖+1 is defined by (2.21).
Let λ0 be a simple eigenvalue of the operator L(ω0), ϕ0(x) := ϕ(x, ω0). Then using

(1.8), we get |(ϕ(·, ω), ϕ0)| → 1, ω → ω0. We choose a normalizer ϕ(x, ω) such that for
all ω sufficiently close to ω0, (ϕ(·, ω), ϕ(·, ω0)) > 0. Then

‖ϕ(·, ω)− ϕ0)‖ → 0, ω → ω0. (4.3)

Taking into account Lemma 5 we see that there exists a sequence {ϕm}∞1 of functions
from D′(L(ω0)) such that

‖ϕ0 − ϕm‖+1(ω0) → 0, m→∞. (4.4)

We choose δ > 0 such that ∆ = {|ω− ω0| ≤ δ} ⊂ Ω. Then using (4.2) for ϕ(·, ω)− ϕm
and ϕm − ϕ0 with ω ∈ ∆, m ∈ N, we obtain

‖ϕ(·, ω)− ϕ0)‖n−1 ≤ K(∆) {‖ϕ(·, ω)− ϕm‖+1(ω) + ‖ϕm − ϕ0‖+1(ω0)} ≤
≤ K(∆) {l(ω)[ϕ(·, ω)− ϕm] + ‖ϕ(·, ω)− ϕ0‖+ 2‖ϕm − ϕ0‖+1(ω0)} .

Hence,
‖ϕ(·, ω)− ϕ0)‖n−1 ≤ K(∆)rm(ω), (4.5)

where

rm(ω) = λ(ω){1− 2Re(ϕ(·, ω), ϕm)}+ l(ω)[ϕm] + ‖ϕ(·, ω)− ϕ0‖+ 2‖ϕm − ϕ0‖+1(ω0).

By (4.3) and condition 4) it follows that for each m ∈ N rm(ω) → rm, ω → ω0, where
rm = λ0{1 − 2Re(ϕ0, ϕm)} + l(ω0)[ϕm] + 2‖ϕm − ϕ0‖+1(ω0). Moreover, (4.4) implies
that rm → 0, m → ∞. Combining this with (4.5), we get (1.9). This concludes the
proof.

5 Examples

In this section we consider several examples and one counterexample showing the im-
portance of assumption 5).

Example 1. Let L(y) = (−1)ny(2n) + qy, where

q =
m∑
k=1

akx
αk . (5.1)



On continuity of the spectrum of a singular quasi-differential operator . . . 79

Then there exist two “reasonable" choices of the parameters:
a) For a1 > 0 it is natural to consider the collection (α1, α2, . . . , αm) as a pa-

rameter ω and choose for Ω any domain whose closure belongs to the following set:
Ωa = {ω ∈ Rm : α1 > 0, −1 < αk < α1, k = 2,m};

b) If α1 > 0 and −1 < αk < α1, k = 2,m, then we set ω = (α1, α2, . . . , αm), and Ω
is a domain in Rm such that Ω ⊂ Ωb = {ω ∈ Rm : α1 > 0}.

In both cases conditions 1), 3) — 5) of Theorem 1 can be easily verified. Concerning
condition 2) we can apply Naimark’s theorem ([11, p. 336]) which shows that the
deficiency indices of the minimal operator with potential (5.1) are equal to (n, n) for
all ω from Ωa or Ωb.

Example 2. Let Lω(y) = −y′′ + q(ω, x)y, where

q(ω, x) = q0(x) + ωq1(x), (5.2)

ω ∈ R, functions q0 and q1 are locally summable on [0,∞), bounded from below on
[a,∞), a > 0, and q0 satisfies Molchanov’s criteria ([11, p. 393]). Let Ω = [0,∞).
Then all conditions of Theorem 1 are satisfied. Hence all eigenvalues of any self-
adjoint operator generated in L2(0,∞) by the differential expression Lω are continuous
on [0,∞).

We point out that there are no restrictions on the growth rate of q1. In particular,
the first term of the perturbation theory Ck = (q1ϕk(·, 0), ϕk(·, 0)) might be infinite.
However, if the integral Ck converges, then it can be proved under several additional
assumptions that λk(ω) is not only continuous (from the right) at 0 but also has a
finite right derivative at 0. In fact, multiplying scalarly both sides of the equation

−ϕ′′k(x, ω) + (q0 + ωq1)ϕk(x, ω) = λk(ω)ϕk(x, ω)

by ϕk(x, 0) and taking into account the boundary condition y′(0) − hy(0) = 0, we
obtain

λk(ω)− λk(0)

ω
=

(q1ϕk(·, ω), ϕ(·, 0))

(ϕk(·, ω), ϕ(·, 0))
. (5.3)

As the eigenvalues of l(ω) are simple, it then follows by Theorem 2 that
(ϕk(·, ω), ϕ(·, 0)) → 1, ω → 0. We require that (q1ϕk(·, ω), ϕ(·, 0)) → Ck, ω → 0.
Then from (5.3) follows the well-known formula λ′k(0) = Ck (see, for example, [10]).

Example 3. We will show that if condition 5) does not hold, then the statement of
Theorem 1 in general is not correct.

The first trivial example is as follows: in Example 2 we set q0 = 0 and choose for q1
any function satisfying, in addition the conditions of Example 2, Molchanov’s criteria.
Then all conditions except for 5) are satisfied, yet for ω0 = 0 the operator L(ω0) does
not have any eigenvalues.

Then consider an example where the limit operator does have an eigenvalue that lies
below the essential spectrum but does not possess continuity. We will again proceed
from Example 2. We choose for q0 a function which finite range such that the discrete
spectrum of the operator L(0) is not empty. For example, the function

q0(x) =

{
−m2 , 0 ≤ x ≤ 1,

0 , x > 1,
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where m > π, satisfies this condition if L(0) is the extension corresponding to the
Dirichlet condition. This is easy to verify if we apply the min-max principle to the
sample function

ϕ(x) =

{
sin(πx) , 0 ≤ x ≤ 1.

0 , x > 1.

Although this function does not belong to the domain of the operator L(0), it does
belong to the domain of the quadratic form l(0) of the operator and l(0)[ϕ] = −(m2−
π2)‖ϕ‖2. Then, since the essential spectrum of the operator L(0) is [0,∞), we conclude
that discrete spectrum L(0) is not empty and the least one eigenvalue is not greater
than −(m2 − π2).

The second term in (5.2) can be defined as follows:

q1(ω, x) =

{
0 , ω = 0,

p(x− 1/ω) , ω > 0,

where

p(x) =


0 , x < 0,

−n2 , 0 ≤ x ≤ 1,
p̃(x) , x > 1,

n > m, p̃(x) is any function satisfying conditions of Example 2. The function q(ω, x)
satisfies all conditions of Theorem 1 except 5). On the other hand, arguing as in the
analysis of the operator L(0), we obtain that for 0 < ω < 1 the least eigenvalue λ1(ω)
of the operator L(ω) is not greater than −(n2 − π2). Choosing sufficiently large n, we
can claim that λ1(ω) 9 λ1(0) for ω → 0.
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