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Abstract. In this paper we define the Nikol’skii-Besov and Lizorkin-Triebel spaces
(B-Nikol’skii-Besov and B-Lizorkin-Triebel spaces) in the context of the Fourier-Bessel
harmonic analysis. We establish some basic properties of the B-Nikol’skii-Besov and
B-Lizorkin-Triebel spaces such as embedding theorems, the lifting property, and char-
acterizing of the Bessel potentials in terms of the B-Lizorkin-Triebel spaces. We prove
the inclusion and the density of the Schwartz space in the B-Nikol’skii-Besov and B-
Lizorkin-Triebel spaces and prove an interpolation formula for these spaces by the real
method. We also prove the Young inequality for the B-convolution operators in the B-
Bessel potential spaces. Finally, we give some applications involving the Laplace-Bessel
differential operator.

1 Introduction

Let Ry, = (0, 00)¥ x R"* be the part of the euclidean space R™ of points r =
(1, ..., zp) = (2',2") defined by the inequalities z; > 0,...,z, > 0, 1 < k < n, where
v’ = (v1,...,21), and 2" = (Tgy1, ..., 7). Let E(x,t) = {y € Ry, ; [vr —y| <t} and
CE(x,t) = Ry \E(z,t). For any measurable set A C R}, define |A], = [,(2')dx,
where (2/)7 = «]" - ... - 2F, v = (m,...,7%) is a vector consisting of fixed positive
numbers, also |y| =71 + ... + Y.

Let B = (Bi,....By), Bi= 25+ 22 5 >0, i=1...k 1<k<n,be
the (multidimensional) Bessel differential operator, and Sy, y = S(R} , ) be the Schwarz
space of all functions which are the restrictions to Ry | of test functions that are even
with respect to 1, ..., z; and decreasing sufficiently rapidly at infinity, together with
all derivatives of the form

DY = B DS, := B ... Bp* DY ..Da if 1<k <n—1,

and
DS =B*:=B"...By" if k=n,

~
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ie, for all ¢ € Sy, SUD,ery EX DSp(x )] < c0if 1 < k < n—1, and
SUD R |2’ Bp(z)| < oo if k = n, where D; = 8/0z;, k+1 < i < n, a and f3

are multi-indices and 2 = :L‘f Lo xP
The closure of the space Sy 4 in the norm

1/p
16l = ([ W@P@yar) <o

is denoted by L,, = L,,(R},), 1 < p < oo. The space of the essentially bounded
measurable function on R} | is denoted by Lo, (R} ).

The space Sy, 1 is equipped with the usual topology. We denote by S} | = S'(R}. ),
the collection of all tempered distributions on R} ,, equipped with the strong topology
The Fourier-Bessel transform and its inverse on Sk,+ (see |9, 13]) are defined by

k
F f(x) = . f(y) HIMT—I(%%) e~ (y')dy, 0
ko4 = 1
Fy_lf(l’) = Ay By f (=),

where j,(¢) (t > 0, v > —1/2) is connected with the Bessel function of the first kind
J,(t) as follows

jult) = 27 + 1) 240 )

and
— 9Nl H 2 1)/2).

It is well known that the Fourler—Bessel transform is closely related to the Laplace-
Bessel differential operator

0? % 0
A ‘ ..
, = 890 + E mzaa?, 7 >0,...,7% >0.

The expression (1) is a hybrid of the Hankel transform with respect to the variables
x1, ..., 2 and the ordinary Fourier transform with respect to the variables zj1, ..., z,.
These transforms and related problems for singular PDE and integral operators were
studied by B.M. Levitan, I.A. Kipriyanov and his collaborators, K. Trimeche and his
collaborators, K. Stempak, A.D. Gadjiev, [.A. Aliev, V.S. Guliyev, and others.

The generalized convolution (B-convolution) f® g associated with the A, is defined
by

(f@g)(r) = fy) TVg(x) (v')dy,

Ry +

where TV is the generalized shift operator (B-shift) defined by

T f o,w/ /f 2 y)o 2" — y") du(6),
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with

LT (wrl) k
=T H I (’i) ) dU(@) = HSiHWﬁl szﬁl, 1 S k S n,

i=1 2 i=1

@y = (1, v1)01, - (Thy Uk)ay)s (@i, yi)o, = \/96‘22 — 2y; cos b; + y?

(see for example [7, 8, 11]).
For the B-convolution f ® g the Young inequality

1 1 1
Hf®g|‘r;y§ “f”p;y”g”q,»ya 1§pa977°§00a 5+5:;+1

holds. The B-convolution f®g plays an important role in the study of the B-Nikol’skii-
Besov and B-Lizorkin-Triebel spaces.
It is well known that (see [1, 7, 11, 12])

Fy (B ) () = (~ad)" Fyf(a), i=1....k
Fy (DEf) (1) = (=) Fyf(@). i=k+1...n
F, (DY) (@) = (~1)la* P, f ()

Fy (Ayf) () = —[al’F, f(x) and  F(f®g) = F,f Fyg,

Fy (M = A, f) (@) = (A + [of?) B, £(2) 3)
and
1T F O, <, ., forally €RE,, € Ly (RL,), 1<p<o.
In this paper, we study the Nikol’skii-Besov and Lizorkin-Triebel spaces B; , . and

F, .~ (B-Nikol’skii-Besov and B-Lizorkin-Triebel spaces) defined on the basis of the
Fourier-Bessel transform F, given by the equality (1.1). Such spaces were studied
by Altenburg [2], Assal and Ben Abdallah [3], Baez and Rodriguez [6], Betancor and
Rodruguez-Mesa [5], and Pathak and Pandey [14]| associated with the Fourier-Bessel
transform (Hankel transform) on the interval I = (0,00). We prove embedding theo-
rems between By and F; . We show the inclusion and the density of the Schwartz
space in B- leol’sku Besov and B-Lizorkin-Triebel spaces and we prove an interpola-
tion formula for these spaces by the real method. We prove the Young inequality for
the B-convolution operators in B-Bessel potential spaces. Then, we prove a one-to-one

mapping property of the B-Bessel potential spaces H,  and of the B-Nikol’ skii-Besov

B]‘jm Some properties of the Rademacher functions are used to characterize H
in terms of the B-Lizorkin-Triebel spaces [} _; in particular, we characterize the B-

Sobolev space W . Finally, we give some applications to regularity results and to
solving differential equations involving the Laplace-Bessel operator A,.

We use the letter C' for a positive constant, independent of appropriate parameters
and not necessarily the same at each occurrence.
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2 Preliminaries

Definition 1. Let m € §) . A generalized function m is called a Fourier-Bessel
multiplier (B-multiplier) in L, ., if for all f € Sy 4 the B-convolution (F;lm(f)) ® f
belongs to L, , and if

sup || (7 m) @ f|,,

1fllzp=1

is finite. The linear space of all such m is denoted by M, = M, (R} ,); the norm on
M, is the above supremum, we denote it by || . ||a, ., -

Theorem A (Mikhlin’s theorem on B-multipliers [12]). Let m € C;, . (R} ,)

even
(i.e., m € C* and m is even with respect to the variables x1,...,xy), where s is the

least even number, larger than 5(n + |y|). Assume that there exists a constant C such
that for all £ € Ry, and for all multi-indices o satisfying 2|a| < s

g7t DI m(g)| < €.

Then m € M, for 1 <p < oo.

Lemma 1. If1 <p <q <2, then M,,, C M,,. Also, if 1/p+1/p'=1,1<p < o0,
then M, ., = M, ., (with equality of norms).

Lemma 2. Let | be an even number such that | > (n+ |v])/2, and let m € L., and
DS‘” 20 € Ly, 2lal =1. Thenm € M,,, 1 <p < oo, and

2|ar|=l

0
Imllag, , < Cllmliz (Sup | DS 2 )mHLZv) , 0= (n+])/2
Proof. Let t > 0. Applying Holder’s and Parseval’s inequalities, we obtain

A |E tm(a)| (2f)de = A %z |F m(a)| (2f)da
E(0,t) E(0,t)

1/2 , 1/2
< (/ a:_Qo‘(x’)de> (/ * |F ()| (a:’)”d:c)
®5(0,1) “B(0.)

1/2

_ Ct(n+|’y|fl)/2 . (/ 72a ‘F;lm(l’)|2 (Q}l)’ydﬁ) :
r(0,t)

where "E(0,t) = R \E(0,1).
Taking into account that z**F.'m(z) = (1)l F ! (D,(Ya,’wl)m) (r) and

1/2
(ﬁ x2a|Fw_1m(as)|2(x')7dz) = (ﬁ
E(0,t) E(0,t)
oy
Cp(0,t)

1/2

, p 2 1/2 ’ "
Dyt m(a) (@yar) <0 o 1Dl
2|al=
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we get

/ |[F; ()| (@) da < C R up | D2 |,
r(0,t) 2|a|=l 7

Similarly, we prove that

[Fyim()] (o) e < (2')"dx " |F ()| (o) de v
B(0.) ron o

1/2
< Ctmthr2 ( / |F () | (x')vczx)
E(0,t)
< Ct("“”‘)/szHLM-

We choose t so that
_ / "
Imllz,, =t sup [[D***m]|,
2|a|=l

and by virtue of Lemma 1, we conclude that for 1 < p < 2,

Il . < lImllas. = / [F ()| (o) de

kot
0
— / 17
< Clm|L° (;Upl | Dl 20 )mHL2,7> .
o=

For 2 < p < o0, by virtue of Lemma 1, we have

lmllas,., = lImlla, , < lmllas,

0
— / 17
< Cllml|;,° (;upl | Die’ 2a )mHsz) .
ol=

3 Characterization of the B-Nikol’skii-Besov spaces

In this section, we define the B-Nikol’skii-Besov and B-Lizorkin-Triebel spaces and we
prove some relations between them. We give a characterization of B’ _ in terms of

p,q,Y
S ] S S
by 4~ and an embedding theorem between B, . and £ .

Definition 2. Let s € R, for 1 < p < oo we define the sequence spaces I as

= {u s u= ke = (E @7wn) " <) @

j=0

and for p = oo
= {u ru = {u;}52, [lulliy, = sup 27%|u;| < oo}
J

In the case of s = 0 we denote lg by L.
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Definition 3. Let ¢ be the collection of all systems {p;(x)} 2, C Sy,+ with the follow-
g properties

i) 0;(2) € S, Fopj(w) >0 forj=0,1,2,3,...;

i) supp Fyp; C Ay ={r € Ry | : V271 =1 < |z| < V2L =1} for j =1,2,3, ...
and supp Fypo C{z € R}, |z] <1},

iii) exists a positive number C' such that

D2 E o) < Cla| ™ for j=1,2,..., 0<|a|<[(Jy]—1)/2] +2

w) Y Fypi(x) =1 for every v € R} |
j=0

It is clear that ® is not empty.
In what follows we define the B-Nikol’skii-Besov spaces B, , . and by, , . on the basis
of the Fourier-Bessel transform F,.

Definition 4. Let 1 < p < 00, 1 < ¢ < 0 and s € R. Then for any system of
functions {¢}32, € @, the B-Nikolskii-Besov spaces are defined by

B;#L’YEB;Q’Y( i ):{fGS 1

o 1/q
I = (Z 271 ||Lm)q> :

J=0

5ga = 1425 ® FHligea, < o0}

where

|| : ||l;(LP7"/) = |||| : ||Lp'y

Definition 5. For s e R, 1 <p < o0, 1 < g < oo, we define

[e.e]

Opary = Up o (RE 1) = {f f € Spt, f N Z i(@),

1=0

[{ai}

s 1/q
l(Lp) = (Z (25"||az‘('>||Lp,w)q> < 00

=0

and for ¢ = oo, we set

{f fE€Sus, [ = Zaz > [Haitls, Lm)—supflllaz()lle,y <OO},

where suppFya; C A; fori=1,2,3,... and suppF,ag C {{ € R} , + [{| < 1}.

[e.o]

By f(x) = Zaj (x) it is meant that Zoaj(a:) converges in Sj , to f. The norm
]:

S
k+]0

of the function f in by . is defined by

1 fllss,., = _%f . 1{a

p

va)'

Now, we can state the following theorem.
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Theorem 1. Let {¢;}52,€®, s€R, 1 <p<ooandl<q<oo. Then
Bygn = Upasy

and the corresponding norms are equivalent.

Proof. First, we prove that By _ Cb; . Let {p;}32, € @, then we have

(imm -

Thus, for f € B

PQW

f:F'y_lF’Yf:F"/_l (iFVSOj'va)
i=0

ZFl 790] wa)ZZSOj@f-
=0

/:

If we take a; = ¢; ® f, then we get

< Has}

S S
Hence, we have Bp(” C bpm

ti(tp) = 125 @ FHligqa,,) =

Conversely, we show that b _ C B? Let f € b and f = > a; in the sense

gy Pay P =
of the convergence in Sj,
Let {¢;}52y € ®. Then
0o J+1
(@) = (p®a) ()= ) (¢;®a)()
Skt i i=j—1

since @; ® a; = F' (Fyp; - Fya;) =0, for i > j+ 1 and i < j — 1. Furthermore, if we
define p; = a; = 0 for j < 0, then we have

1
Bs,y {e; ® f}ng(Lm) < Z {e; ® ajr}

r=—1

(L) (5)

On the other hand, by Theorem A with 1 < p < co we get

les @ asrtly, . < Cllasely, - (6)

where C' is a suitable positive constant.
Now, by taking the norm of [ in (6) it follows that

{e; ® ajertlisr, ) < Cllagerllisw,
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Then from (5) we obtain

1
15(Lp,) <C Z [{aj+r}

r=—1

1l = I{es @ f}

(e < €Aty @, - (0

Taking the infimum on the right-hand side of (7) we get
flla;, < Cls

bhan
[l

Remark 1. Note that by Theorem 1, the spaces B, . are independent of systems
{e; };io € Q.
We define the B-Lizorkin-Triebel spaces as follows.

Definition 6. Let 1 < p < 00,1 < g < o0 and s € R,. For any system of functions
{goj};io € ®, we define the B-Lizorkin-Triebel spaces by

FIiQ"Y = FI;Q:’Y( TkL+) = {f S S?ﬂ,‘i’ I f]

s 1/q

ws, = e ® Uy, g <o0f, )

where

Iz, ap = ||I

13
=0 LP,’Y
Theorem 2. Let 1 < p,q < oo and s € R, then
B;,min(pvq)ﬁ C FIiQﬁ C B;7maX(p7q),v (9)

where C means continuous embedding.
Proof. We must show that

By C oy C Bpgy (10)
for p < ¢, and

B;#L'Y C FIin’Y C B;apv’Y (11)

for ¢ < p. We will use the monotonicity of the [ spaces and the trivial equality
By =F;
First we shall prove the left-hand-side embedding in (10). Let f € F$_ _ and

p,qyy
{pj};2 € @, then we have

oo y . 1/q
105, = 1425 @ FHlgr,y = [ D0 (27 M5 @ £,
=0
— ZQqu (/
§=0 Ry

i

1/q

q/p
H%®fwwww>
v+
1/p

www®fwwV“}

n
k,+ 18

q/p
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By using Minkowski’s inequality, we obtain

1/p
5 ($/)7d37>
a/p

s, < | [ {27 o 717}
R% +
o0 1/q
_ (2(2”||90j®f||)q)
7=0 Ly

= {es ® £, ) = I
= {es ® Flyir, ) = 1]

FSqn < ||{90j ® f}HLP,V(l;)

s .
Bp,p,"{

Now, we prove the right-hand-side embedding in (10). Let f € B, .. Applying
Minkowski’s inequality we have

1055, = 1403 ® PHlgaa, ) = 103 ® FHle, ) < 1K @ S,
(o) 1/4 [e’¢] 1/p
_ 9 1|, “ 1 |lg; ® fII°
= |22 @7 lles ® 1) S(ZQ llies & £l ||Lp/w>
Jj=0 Ly~ 7=0
= {e; ® sz, = 115, -

4 A new characterization of the B-Bessel potential spaces

In this section we prove a lifting property, a classical equality for the Fourier-Bessel
transform, characterizing the Bessel potentials (B-Bessel potentials) associated with
the Laplace-Bessel differential operator in terms of the B-Lizorkin-Triebel spaces. For
this we need to recall the definition of the Bessel potentials given in [1, 7, 11].

The B-Bessel potentials J3, s > 0, generated by the multidimensional Fourier-Bessel
transform are defined as negative fractional powers of the differential operator

I—a,—1-S"2L i
7 ;0x3+;xiﬁxi’

where [ is the identity operator. With the help of the Fourier-Bessel transform F,
negative fractional powers of I — A, may be defined by

([—Aoému:Ff(ﬂ+KPY”ﬂEW@)

The B-Bessel potentials
—s/2
J=(1-a,) "

Y
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initially defined in terms of the Fourier—Bessel transform by (1), can be represented as
integral operators of B-convolution type

Fula) = Gu @ ule) = [ TG )utu)y )y
k,+
with the kernels

p(n—k)/2 K

_ i+ 1) F 2 gy Gt
Gs,’y(l’) = Ak,»y F(S/Z) HF( 9 A € it /

=1

(A, is the same as that in (2)).
For s € R and 1 < p < oo we define the B-Bessel potential spaces as

H,, = Hy (Rp.) = {¢ € S;wr c %9 € Lpﬁ} )

The norm in H,_ is defined by

11l 5 = [1€]

=1 °0|, -
Hp.y || v ¢ Lp.~

Moreover, Sy, 4 is dense in H _ (see [1]).
In view of the Parseval formula

iz, = [[Fyvllzs (12)
it follows that

0 _
HQ”Y — L2,'Y‘

The following lemma shows that the Young inequality in the B-Bessel potential
spaces is valid.

Lemma 3. Let 1 <p,q<o0,s, s €R, fe H, , g€ H, . If

= 4+2>0,
p q

1 1 1
”
then f® g € Hﬁ;s/ and the following inequality is valid
1 @ gll e < 17z, gl

Proof.

If & gll oo = 1777 (f @ 9.,
=1 f® J; gL,
<55 ey 1957 Ly,

= [I/1

5o Mallay -
HPy’Y g H(}S,'y
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Lemma 4. Let f € S, and ¢, ® f € L., k > 1. Then for 1 <p < oo, s € R we
have
[S5ee @ fll, < C2%llop@ fly,, dan k>1, (13)

where the constant C does not depend on p and k.
If, furthermore, ¥ ® f € Ly, then

|Fvefl, <Clvefl,, (14)

where the constant C' does not depend on p and k.

Proof. Note, that for all k the following equality is satisfied

1
o f= Z@k+l®¢k®f~
I=—1

If we prove, that
17, (5one) lag,., < C2%, 1=10,-1,1, (15)

Py —

then we obtain (13). In order to prove (15), observe that the function

Fy{ Lok} (&) = (L4 1€7) P Fypra(€)
= (14 [£[*)*?p (2 *H¢)

has the same norm in M, ,, as the function 2(k*0s (272(k+0) |§|2)S/2 ©(€). Indeed,

Py

17y {Tonsi} g, = N +]- ) P02 s, ,
= @+ 2511220 ( )| as,
— HQ(kJrl)s (272(k+l) +- |2)S/2 ‘P(')HMW,,

and by virtue of Lemma 1 it can be shown that the above function belongs to M, .,
and also its norm does not exceed 2%* (k > 1). Thus inequality (15) is proved.
In order to prove (14) observe that

Ve f=W+p)ye f,
and the fact F,(J5¢) € M, follows obviously, in view of Lemma 2. ]
Definition 7. Let s € N and 1 < p < oco. We define the B-Sobolev space by

Wy = Wia(RE L)
—{fesi,  fely, Bif €Ly 1<i<h DFfel,, k+1<j<n],

and the norm in W7 is given by

k n
1 lwg, = 11y, + SUBE N, + S D26, - (16)
=1

1=k+1
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Theorem 3. For s; < sy and 1 < p < co we have Hy2 C H,%. Further, if s € N and

1 <p<oo, then Hy, =W, _, and the norm || f||ms_ is equwalent to || fllws,, or

a2a f‘

HfH%/V;’,Y = HfHLp,w + sup

o |42 |=s Ly~

Finally, Sy 1 is dense in H, (1 < p < 00).

Proof. Let f € H; . We show that J5'7°2 maps L, to L.
In order to verify, that J° : L,, — L,,, applying Lemma 1 and taking into

account that f =v ® f+ > vr ® f we get
k=1

128, < Wee rll, + Y 5 eee £,

k=1

=€ (Hw & flln + 3 2o @ fuw) = (1 ¥ Zﬂ) T

where € = s9 — 51 > 0.
Thus the first conclusion of the theorem follows, since

1Az, = 075 fllz,, = 195722052 flle,., < C||J52f| = Cuall fll sz,

Next, we prove the second conclusion of the theorem. By using Theorem A we
obtain £* (1+1£°)™" € My, (1 < p < 00), hence for |o/| + 2|a”] = s

ZHB ey + Z 1D Fll, < 30 IDE 0

i=k+1 |/ |[42]a’|=5

- HF’;1 {£2aF7f}||pr
= |EPHe @+ 6P B,
< C fllg,, = CIS]

s .
HP:’Y

Now we prove the inverse inequality. Once more we apply Theorem A. Further,
let x be an infinitely differentiable nonnegative function on R, such that y(z) = 1 for
|z| > 2 and x(x) = 0 for |z| < 1. Then we obtain

(1+[¢[*) ( + ZX &) |€]|28> € My, (§J)|€J|285_25 My, 1<p<oo.

=1
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Thus,
ey = 1381, < { (1 e s},
i—1 Py
k
<c (nfan C e E (B,
i=1
.+§;uﬁf{w@g%ﬁvxu&ﬂ}mw)
i=k+1
<C (HfHLM + Z B 1, + > IIDQSfIILM> -
i=k+1
Finally we prove that the space Sy 4 is dense in the space H . Let f € H,_, ie.,

J5f € Ly,. Since Sy 1 is dense in L, (1 < p < oo) (see [7]), we can find a sequence
Jm € Sgy satistying || J5f — gmllr,, < % for all m € N. Then

—S S 1
I1F = gl = 127 =, <~

m
Since J°g € S 4, then we conclude, that Sy ; is dense in H,, .. O

The results obtained for the B-Besov spaces B, , . correspond in part to the previous
theorem for the B-Bessel potential spaces H, ..

Theorem 4. If s; < sy we have

B» _C B! (1<p,q1,q0 < 0). (17)

pQ27 p,q1,y

If 1 < q1 < g2 < 00 we have

By CBy s, (sERT<p<00) (18)
Moreover,
By,,CH, CB, . B (seR1<p<oo). (19)

If sq # s1 we also have

(Hy% 3y, = Bhay (L<pgSoc, 0<6<1), (20)

p,Y? Py p,ayy

where s = (1 — 0)so + 0s1. Finally, if 1 <p,q < oo then Sy 1 is dense in B, , .

Proof. Formulas (17) and (18) follow immediately by the definition of B; _. The
density statement is a consequence of (20), Theorem 3, and Theorem 3. 4 2 in [4].
Inclusions (19) are obviously implied by the inequalities in Lemma 4.

It remains to prove (20). Let f € (H;"L{, H )9 ,and put f = fo+ f1, fi € Hyi,
1 =0,1. By Lemma 4 we obtain

low @ fllz,, < ek ® follz,., + [lex ® fillz,.
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< C 27N ol + 2715 fill,.,)

and, taking the infimum,

o @ fllz,., < C270FK (2K 0= frps Ho ),

Py’

where K (. f; Hit, Hyt) = inf ([ follgs, + el fill g, )

This gives

o 1/q
(Z (2% |lox ® fIILm)q> < Clifl e, ), -

k=1
Similarly, we see that

1® fllz,., < CELFHR H32) < CU o i),

Y

and thus
Bz, < C N30, 30,
Let f € B, .. The converse inequality follows easily by the inequalities in Lemma 4
2k(s—so)K(2k(s1—so)7 oK f; H;‘?W H’;}W) < C2ks||s0k ® f||Lp,’y7
KLy fiHp HyY) <Ol @ [,

It remains to show that

f=v@f+> @@f in HY +H.

k=1

But if, say, so < s; then H° + H;. = H;° , and

I @ f

S0
HPa’Y

mo, T Z lor @ f]
k=1

S
By

<C (W ® fllz,, + Z lor ® fHLm> <C|f]
=1

by Holder’s inequality, since sg < s7. O

For0 <60 <1, 59,51 €R,1<p,q,q0,¢1 < oo the real interpolation B-Nikol’skii-

Bespv space denoted by (B,%, ., Byl - )o.q is a subspace of functions f € BS ~+ Bl
satisfying

>0 dt\
([ @K @t B ) F) < i a<

and

sup t 'K (t,f;BS0 B ) <oo if ¢q=o0,

P,90,Y7 P41,y
te(0,00)
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51
Bplg1 v } ’

where the infinimum is taken over all representations of f of the form

f = fO + fla fO € B;Oqo,’y? fl = B;»IQM"/'

Theorem 5. Let 0 <0 <1 and 1 < p,q,q,q1 < oo. Furthermore, let sg,s1 € R, sg #
sy and s = (1 — 0)sg + Os;.
(i) If 1 < p < oo, then

with K being the Peetre K-functional given by

+ A

S0
BPa‘ZOa’Y

K (t7 I B;?qo,'w B;,lqhv) = inf {Hfo’

(B;?qo,w B;}(Ih’}’)‘g»q - B;,tm' (21)
(i) If 1 < p < oo, then
(ng(()]()v’y, F;i]lv'y)€7q = B;QKY’ (22)

Proof. We start with the proof of the inclusion (B, ., Byl )og C B, ,.,. We may

assume that so > s1. Let ¢ < oo, for f = fo + f1 with fo € B and f1 € B!, we
get by Definition 4

oo oo q
Z 2Ql8q||90j ® f||%p,'y < CZ 2—sql(so—51) <2lso||¢j ® fOHLp,n, + 21(80—51)251 ||§Ol ® lepr)
=0 =0
q
B;,loow) ’
00

<oy o5
1=0
Then we deduce that
[e%¢] q
P S CL L)
1=0 1=0

+ 21| fy

S0
By oo,y

o) th
<0 [T (FR (B B ) <o
0

which proves the result. When ¢ = oo, we make the usual modification. For 1 < r <
qo, @1 Theorem 4 gives

(BSO Bt )H,q C (BSO B! )9,q C (BSO B! )qu C B;J’W'

PTyY? TP TyY D,q0,Y? T Pyq1yY P,00,7Y7 TP, 00,7y

Then in order to complete the proof of the theorem we have to show only that
Byro © (Byis Bpigloq for 1<r<gq
Suppose that again sy > s;. Let ¢ < oo, we have

o0 q 1/e 1 1/q 1/q
dt dt < dt
—0 . DS s
/(t K(t,f,Bp?m,Bp}m)> -] < (/0 7) +</1 7)
0

== [1 +IQ
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Since s > s1, by Theorem 4 we get
K(t f;Be .. B) <Ct|f]

DY TTPTYY

Byl <C tHﬂ

s
BPLZ’Y

dt c
S,y t(l 0 = S,
By </0 + ) ((1 — e)q)l/q HfHprq

l 00

To estimate I, take fo = > a; and f; = > a;, where a; = ¢; ® f. Using the
=0 j=lt1

properties of the sequence (¢,);en we obtain

hence we deduce

L <O

+1 00

Vol <32 aylln, . and Al < 3277l
§=0

Hence we can write

1/q
00 q
]2 S C (Z 2_Sql(80_81) (K (2l(80_50)7 f B;O’I"y’ Bng"/) ) >
=0
0o I+1 ° . L/rpay\ Ve
C(Zqul(so s1) [(szsos |CL]|| pw) +2l(som)(ZZ]sﬂHC@HZPN) :| )

g=l

IA

I+1

a/r\ 1/a
SC(Z?Q’S[ZW " gumzw ol )

For r = ¢ it is easy to see that [, < CHf”Bg,q,w- For r < g we take u > r such that

T4+ IZ=1ands; <a; <s<ay< sy, then by Holder’s inequality we have
¢ u Yy

+1 q/u s I+1 ' 1/q
I2 S C’(ZQ'H 5—350 (ZQ(SO @0)j ) (Zzaojquaj”%pﬁ>)

j=0

q/u y X 1/q
+ c( Z 9al(s—s1) < Z 2(51—041)Ju) ( Z 20‘”q||aj HQLM))

j=l

+1 1/q © >
(qul s—ap) ZQ(ao)qua ||q ) +C<22jl(s—a1)Z2a1j‘I||aj||quﬁ>
j=0 J=l

1/q

00 00 1/q 00 J 1/q
apj l(s—a arj l(s—a
< C(ZQ oitlage 3 o 0)> +C<ZQ a3 o 1>>
§=0 l=j—1 J=0 =0
< Cllf1s

P4,

Hence it follows that

00 0 th 1/q
([ (roxermg.6)) 7) <clf
0

When g = co we make the usual modification.
This proves (21). Finally, (22) follows in the same way by (21) and (3). O

s
BPQW
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In the following theorem we state a lifting property.

Theorem 6. Let 0,s € R and 1 < g < co. Then JVU 1s a bounded one-to-one linear

operator from By onto Byt? if 1 < p < oo and from F;, _ onto F;77, if 1 < p < oo.

Proof. Consider {¢;}72 € ®. We define {¢;}7~ as follows

Vi = (5 ® Fy) ((1+]af?)7227).

A straightforward argument leads to {wj};io € ®. Thus

(J9h @) = F7H(Eay- (7 f))
= EN (P (L4 E7) 7 F, f)
= Fv_l (27 Fyps - Fyf) =27 (f ®@ ¢5) -
Now, the proof follows immediately as in [15], pp. 180 — 181. O

By using the methods given in [10], Theorem 6.2.4, and by Theorems 1 and 2 we
can get the following statement.

Theorem 7. If s; < sy we have

Flfilzﬁ C Flii]h’y <1 <p<oo, 1<q1,q < OO)

If 1 < g1 < qa < 00 we have

F. CF; (seR, 1<p<o0).

Psq1,Y p,q2,Y

Let s€e R, 1 <p<ooandl <q<oo. Then Sy, is dense in I, ..

We need the following lemma to obtain a new characterization of the B-Bessel
potential spaces. Note that the Rademacher functions defined as follows: r;(t) =
r0(27t), where ro(t) =1 for ¢t € [0,1/2], and ro(t) = —1, for t € (1/2,1]; ry is extended
outside the unit by periodicity, that is ro(t + 1) = 7o(t).

(see [17], p. 104 or [18], Chaptei’:V, Theorem 8.4, p. 213). Then, for every p with
1 <p<ooand for allt € (0,1), there are some constants C;, i = 1,2, such that

Lemma 5. Let s € R, let {¢;}7°) € ® and {r;}}2 be the Rademacher functions

1 ks ), < Gl £, -

where

J=0

@) = 32O+ o) PEee)  and () = (3 (P @)
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Proof. We can see without difficulty that m; satisfies the inequalities

o 20" —|a

D,(7 Ym;(z)| < Cylz|~l,
for k = 0,1,...[(Jy] = 1)/2] + 2 and i = 1,2. Then applying the methods in [12| we
obtain the desired result. O

Next, we prove that for ¢ = 2 the B-Lizorkin-Triebel spaces are reduced to the
B-Bessel potentials spaces.

Theorem 8. Ifs € R and 1 < p < oo, then we have

2s _ s
F 9y = H

p, by’

and || f|

: . R
ms,, 1S an equivalent norm in FJ, ..

Proof. We will show that there exist ¢q, ¢ positive constants such that

oo 1/2
is 2
Hy, S <Z 2%° [lp; @ £ > <o fl

=0

¢ || f]

. (23)
Lpﬂ'Y

By Theorem 7 we know that Sy ; is dense in F}, . for 1 < p < oco. Then, it is not
difficult to see that functions f € L, with compact supp F, f are dense both in H,
and in F5, _, for 1 < p < oo. Therefore it is enough to prove (23) for functions of this
type. Note that in this case the infinite sum in (23) is actually finite.

First, we shall prove the estimate on the right-hand side. Let f € H,_, then

[=Jsn®g,9€ Ly, ie, F.f(§)=(1+ \§|2)_8/2 F,g(¢). Applying Lemma 5 we have
for all t € (0,1)

|z er| <cilgl,, =i,
]:0 DY
Thus, it follows that
1 o )
[ Znwzeeof] dascir, . (24
0 j=0 D,y !

Using the right-hand inequality of ([17], p. 104 or [18|, Chapter V, Theorem 8.4,
p. 213) with p = 1 and the Minkowski’s inequality we obtain

LP"‘/

H(f; 2w ft) ), <] [ f;rj(t)%wj @

<o [ neme e
o 950

dt.
LPv'Y
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Now, by (24) we have

N js 2\ 1/2
H(; 127°¢; @ £ ) HLM <Cflly,

where C' a suitable positive constant. Therefore we obtain f € F5

D,2,7°
Next, we shall prove the converse inequality. For this we use duality. Let f € FpQS2 N
and
o 2
K=F' (Y (Fws) - ). (25)
§=0
-1
Applying Lemma 5 with ma(z) = ( Z (Fyp;)° ) we obtain
H9||1:1m = ’ ((Z Eyp;) ) <Z 7901 79)) .
=0 =0 o
<G| (Y (Bes) - Bg) | =Gl - (26)
]:0 P,y

Consider v € Ly, to be a function such that |ul|, = 1, suppF,u is compact
Py
(I/p+1/p'=1), and

| w@r@Ey = 3 K, (27)

Let w be the function defined by F,w(€) = (1 + |£]?)*/2F,u(é), i.e., u = J,, ® w and
f=Js,® g, as above, so that F, f - F,w = F,g- F,u. Then by (25) — (27) we obtain

= gl <G KL, <20, / u(@)K (2) (o) de
k,+

o0

- 20, / - Fu(§F,K(§)8dg =20, / . Z E,p;)° Fyg(€)€de
=20 [ S (RO (R ©) QRO (Fe) (9) §'ds

Hence, by Plancharel’s formula and the Cauchy and Holder inequalities we get

g, <265 [ 3 (2 (R (@) (27 (5, 0 0) (@) (0

k+j =0
1/2

oo 1/2 o0
<20, [ (Z(2js(soj®f)(as))2> (Z(z-j8<wj®w><x>)2> (&) da

k,+ 7=0
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00 1/2 00 1/2
< 20, (Z 29 s ® fHZ) (Z 27 g, @ wu2> e
J=0 Ly I N70 Ly,
Then by the right-hand side of inequality (23) we get
~ 1/2
(Z 27 |lp; ® IUH2> < elwlly =elluly, =c (29)
7=0 L., ,
Therefore, combining (28) and (29) the proof is completed. O

As a consequence of Theorem 8 we obtain the following results.
Corollary 1. If se N and 1 < p < oo, then

2s o s
Fp,2,~/ =W

by’

and the corresponding norms are equivalent.

Proof. By Theorems 3 and 8, we have H, = W _ and the corresponding norms are
equivalent. O

Moreover, by Theorem 8 and Theorem 2 we can obtain results similar to those
previously obtained in [16], Theorem 15 and [17], p. 155, Theorem 5 for the Fourier
transform. Namely, for s € R, we have

BQS

o C Hy . C B 2 <p< oo,

p,p,7Y?

B* C Hy C B>

& 2% D2, 1< p= 2.

5 Some applications

First, we give a global regularity result.

Theorem 9. Let P(A,) = > a; A%, m € N, be a differential operator with constant
j=0
coefficients a;, and symbol

P(r) = ZajTj #0 V7€ (0,00).

Jj=0

Ifué€ Ly, P(=A)u=f, and f € Ly, then u € H3.
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Proof. First we show that there exists C' > 0 such that |P(7)| > C7™ for all 7 € (0, 00)
(see [14]). We have

m
|P(7)| = |Zaj T > am|T™ = |am-1 |7 — ... — |ag|
7=0

> |am|T™ — C’l(Tm_l +...4+1),

where Cy = max{|ag|, |ai|, ..., |am|}
Ifr>R>1and k=0,1,...,m — 1, then we get 7% < (1/R)7™, and so

[P(7T)| = (lam| = mCy/R)T™.
Therefore, by choosing sufficiently large R one can find C' > 0 such that for all 7 > R
|P(T)| > C1™. (30)
Now let v € S; . Then
lollag = 175" 0] sy ) = 11 + |€|2)mF’YU(£)HL2ﬁ(RZ’+)
<111+ 612" Fyo(©)l ooy + 1+ 1P B0, ooy

where R > 1. For £ € B(0,R), (14 |¢2)™ < (14 R%)™ and for ¢ € “B(0, R), we have
(14 €)™ < 2m|¢f*. Thus

I+ €)™ Fyo(O)ll o vy )

< (1 + RQ)m/QHF’YUHLQ,V(B(O,R)) + 2m/2H ’f‘mFyv(é‘) “LQ,—y(CB(O,R)).

Using the Parseval formula (12) and inequality (30) we obtain

1+ €)™ Fyo(O)ll o v )

< (14 B0l 1y @y )+ 272C7H |1 P(E) Fyv(E) | ey -

Since

Fy (P(Ay)v) (§) = P(=[¢[*) Fyv(9),

the Parseval formula (12) yields

Il g ) < C (1P(=2)0lrariig ) + lollzanceg )

where C' > 0. Since Sy 1 dense in H3" (R} ), the assertion of the theorem follows. [

Now, we give an application to solving a differential equation.

Theorem 10. Let f € B, .,

+2m !
u € By o™ C Sy, such that

seR, 1<p<oo,andl < q<oo. Then there exists

(I =A)"u=f, (31)

where m is a positive integer.
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Proof. Consider f € By .. We need to find a distribution u € S;C,Jr satisfying (31).
Applying the Fourier-Bessel transform and by (1) we obtain

(1+EP)" Fu=FfinS,,.
Then u = F7 ' (1+]£)?)"™F, f = J2™ f and by Theorem 6 we have that u € B5t>™. [

p.q,y

We state also the following theorem which can be proved analogously.

Theorem 11. Let f € F; ., s € R, 1 <p < oo, and 1 < q < co. Then there exists

ue F5i2m C Sk+ satisfying (31).

Finally, we give another application in the context of the Poisson semigroup asso-
ciated with A,. This semigroup is an integral operator of convolution type generated
by the Fourier-Bessel transform. The kernel of this operator is defined as the Fourier-
Bessel transform of the function exp(—s|z|), s > 0 and z € R}, ;. We define the Poisson
kernel as el

Pro(@) = Crn t (8 4+ [o) 55
It can be easily verified that the following properties of P, , are valid:

1) P, > 0 is a radial function;

2) Fy(Py(4))(2) = et

3) Py € L1y and ||P, |, , = 1 for all £ > 0;

4) Pt1+t2,’7(x) = (Ptlﬁ ® Ptz/y) (x)a t,t2 > 0.

Now, we define the Poisson integral (semigroup) generated by the generalized shift
operator as

u,t) = (Pry @ f) (z) = f(y) TV (Py () () dy.

n
Rk7+

By using the Fourier-Bessel transform, it is not difficult to verify (see [1, 19]) that the
Poisson integral u(x,t) is a solution of the following boundary value problem

{ <8t2 + Av) u(z,t) =0 (32)
u(z,0) = f(z)

for f € Sﬁc’ .. Now we give the following applications to solving the boundary value

problem (32) in the spaces B, and F} .

Theorem 12. Let f € ;qw s eR 1 < p<oo, andl < g < oo. Then

u(-,t) = (Py®f)() € By, C S;C,Jr for all t > 0 is a solution to the boundary
value problem (32).

Proof. Consider f € B3 . We need to find distributions u(-,¢) = (P, ® f) () € S;,,
which for all £ > 0 are solutlons to the boundary value problem (32). By applying the
Fourier-Bessel transform and by using property 2) of the Poisson kernel we obtain

Fou(r,t) = e M E f(2)
in S;CJF. Then u(z,t) = F;* (e'MF, f) (z) and by Theorem 6 we have that u €
B3 [l

p,q,Y"
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Theorem 13. Let f € Fj, , s € R, 1 < p < o0, and 1 < q < oo. Then

u(,t) = (P, f)() € F),, C S;CHF for all t > 0 is a solution to the boundary
value problem (32).

The proof of this theorem is similar to the proof of Theorem 12.
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