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Abstract. In this paper we define the Nikol’skii-Besov and Lizorkin-Triebel spaces
(B-Nikol’skii-Besov and B-Lizorkin-Triebel spaces) in the context of the Fourier-Bessel
harmonic analysis. We establish some basic properties of the B-Nikol’skii-Besov and
B-Lizorkin-Triebel spaces such as embedding theorems, the lifting property, and char-
acterizing of the Bessel potentials in terms of the B-Lizorkin-Triebel spaces. We prove
the inclusion and the density of the Schwartz space in the B-Nikol’skii-Besov and B-
Lizorkin-Triebel spaces and prove an interpolation formula for these spaces by the real
method. We also prove the Young inequality for the B-convolution operators in the B-
Bessel potential spaces. Finally, we give some applications involving the Laplace-Bessel
differential operator.

1 Introduction

Let Rn
k,+ ≡ (0,∞)k × Rn−k be the part of the euclidean space Rn of points x =

(x1, ..., xn) = (x′, x′′) defined by the inequalities x1 > 0, . . . , xk > 0, 1 ≤ k ≤ n, where
x′ = (x1, ..., xk), and x′′ = (xk+1, ..., xn). Let E(x, t) = {y ∈ Rn

k,+ ; |x − y| < t} and
{
E(x, t) = Rn

k,+\E(x, t). For any measurable set A ⊂ Rn
k,+, define |A|γ =

∫
A
(x′)γdx,

where (x′)γ = xγ11 · . . . · xγk

k , γ = (γ1, ..., γk) is a vector consisting of fixed positive
numbers, also |γ| = γ1 + ...+ γk.

Let B = (B1, . . . , Bk), Bi = ∂2

∂x2
i

+ γi

xi

∂
∂xi
, γi > 0, i = 1, . . . , k, 1 ≤ k ≤ n, be

the (multidimensional) Bessel differential operator, and Sk,+ ≡ S(Rn
k,+) be the Schwarz

space of all functions which are the restrictions to Rn
k,+ of test functions that are even

with respect to x1, . . . , xk and decreasing sufficiently rapidly at infinity, together with
all derivatives of the form

Dα
γ ≡ Bα′Dα′′

x′′ := Bα1
1 . . . Bαk

k D
αk+1

k+1 ...D
αn
n if 1 ≤ k ≤ n− 1,

and
Dα
γ ≡ Bα := Bα1

1 . . . Bαn
n if k = n,
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i.e., for all ϕ ∈ Sk,+, supx∈Rn
k,+

∣∣xβDα
γϕ(x)

∣∣ < ∞ if 1 ≤ k ≤ n − 1, and
supx∈Rn

n,+

∣∣xβBαϕ(x)
∣∣ < ∞ if k = n, where Di = ∂/∂xi, k + 1 ≤ i ≤ n, α and β

are multi-indices and xβ = xβ1

1 . . . xβn
n .

The closure of the space Sk,+ in the norm

||f ||Lp,γ =

(∫
Rn

k,+

|f(x)|p(x′)γdx
)1/p

<∞

is denoted by Lp,γ ≡ Lp,γ(Rn
k,+), 1 ≤ p < ∞. The space of the essentially bounded

measurable function on Rn
k,+ is denoted by L∞,γ(Rn

k,+).
The space Sk,+ is equipped with the usual topology. We denote by S′k,+ ≡ S′(Rn

k,+),
the collection of all tempered distributions on Rn

k,+, equipped with the strong topology.
The Fourier-Bessel transform and its inverse on Sk,+ (see [9, 13]) are defined by

Fγf(x) =

∫
Rn

k,+

f(y)
k∏
i=1

j γi−1

2
(xiyi) e

−i(x′′y′′) (y′)γdy,

F−1
γ f(x) = Ak,γFγf(−x),

(1)

where jν(t) (t > 0, ν > −1/2) is connected with the Bessel function of the first kind
Jν(t) as follows

jν(t) = 2νΓ(ν + 1)
Jν(t)

tν
(2)

and

Ak,γ = 2−|γ|
k∏
i=1

Γ−2((γi + 1)/2).

It is well known that the Fourier-Bessel transform is closely related to the Laplace-
Bessel differential operator

∆γ =
n∑
i=1

∂2

∂x2
i

+
k∑
i=1

γi
xi

∂

∂xi
, γ1 > 0, . . . , γk > 0.

The expression (1) is a hybrid of the Hankel transform with respect to the variables
x1, . . . , xk and the ordinary Fourier transform with respect to the variables xk+1, . . . , xn.
These transforms and related problems for singular PDE and integral operators were
studied by B.M. Levitan, I.A. Kipriyanov and his collaborators, K. Trimeche and his
collaborators, K. Stempak, A.D. Gadjiev, I.A. Aliev, V.S. Guliyev, and others.

The generalized convolution (B-convolution) f⊗g associated with the ∆γ is defined
by

(f ⊗ g)(x) =

∫
Rn

k,+

f(y) T yg(x) (y′)γdy,

where T y is the generalized shift operator (B-shift) defined by

T yf(x) = Ck,γ

∫ π

0

. . .

∫ π

0

f ((x′, y′)θ, x
′′ − y′′) dν(θ),
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with

Ck,γ = π−
k
2

k∏
i=1

Γ
(
γi+1

2

)
Γ
(
γi

2

) , dν(θ) =
k∏
i=1

sinγi−1 θidθi, 1 ≤ k ≤ n,

(x′, y′)θ = ((x1, y1)θ1 , . . . , (xk, yk)θk
), (xi, yi)θi

=
√
x2
i − 2xiyi cos θi + y2

i

(see for example [7, 8, 11]).
For the B-convolution f ⊗ g the Young inequality

‖f ⊗ g‖r,γ ≤ ‖f‖p,γ ‖g‖q,γ , 1 ≤ p, q, r ≤ ∞,
1

p
+

1

q
=

1

r
+ 1

holds. The B-convolution f⊗g plays an important role in the study of the B-Nikol’skii-
Besov and B-Lizorkin-Triebel spaces.

It is well known that (see [1, 7, 11, 12])

Fγ (Bαi
i f) (x) = (−x2

i )
αiFγf(x), i = 1, . . . , k,

Fγ
(
D2αi
i f

)
(x) = (−x2

i )
αiFγf(x), i = k + 1, . . . , n,

Fγ

(
D(α′,2α′′)
γ f

)
(x) = (−1)|α|x2αFγf(x),

Fγ (∆γf) (x) = −|x|2Fγf(x) and Fγ(f ⊗ g) = Fγf Fγg,

Fγ (λI −∆γf) (x) =
(
λ+ |x|2

)
Fγf(x) (3)

and

‖T yf(·)‖Lp,γ
≤ ‖f‖Lp,γ

, for all y ∈ Rn
k,+, f ∈ Lp,γ(Rn

k,+), 1 ≤ p ≤ ∞.

In this paper, we study the Nikol’skii-Besov and Lizorkin-Triebel spaces Bs
p,q,γ and

F s
p,q,γ (B-Nikol’skii-Besov and B-Lizorkin-Triebel spaces) defined on the basis of the

Fourier-Bessel transform Fγ given by the equality (1.1). Such spaces were studied
by Altenburg [2], Assal and Ben Abdallah [3], Baez and Rodriguez [6], Betancor and
Rodrнguez-Mesa [5], and Pathak and Pandey [14] associated with the Fourier-Bessel
transform (Hankel transform) on the interval I = (0,∞). We prove embedding theo-
rems between Bs

p,q,γ and F s
p,q,γ. We show the inclusion and the density of the Schwartz

space in B-Nikol’skii-Besov and B-Lizorkin-Triebel spaces and we prove an interpola-
tion formula for these spaces by the real method. We prove the Young inequality for
the B-convolution operators in B-Bessel potential spaces. Then, we prove a one-to-one
mapping property of the B-Bessel potential spaces Hs

p,γ and of the B-Nikol′skĭi-Besov
Bs
p,q,γ. Some properties of the Rademacher functions are used to characterize Hs

p,γ

in terms of the B-Lizorkin-Triebel spaces F s
p,q,γ; in particular, we characterize the B-

Sobolev space W s
p,γ. Finally, we give some applications to regularity results and to

solving differential equations involving the Laplace-Bessel operator ∆γ.
We use the letter C for a positive constant, independent of appropriate parameters

and not necessarily the same at each occurrence.
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2 Preliminaries

Definition 1. Let m ∈ S′k,+. A generalized function m is called a Fourier-Bessel
multiplier (B-multiplier) in Lp,γ, if for all f ∈ Sk,+ the B-convolution

(
F−1
γ m(ξ)

)
⊗ f

belongs to Lp,γ, and if
sup

‖f‖Lp,γ =1

∥∥(F−1
γ m

)
⊗ f

∥∥
Lp,γ

is finite. The linear space of all such m is denoted by Mp,γ ≡Mp,γ(Rn
k,+); the norm on

Mp,γ is the above supremum, we denote it by ‖ . ‖Mp,γ .

Theorem A (Mikhlin’s theorem on B-multipliers [12]). Let m ∈ Cs
even(Rn

k,+)
(i.e., m ∈ Cs and m is even with respect to the variables x1, . . . , xk), where s is the
least even number, larger than 1

2
(n+ |γ|). Assume that there exists a constant C such

that for all ξ ∈ Rn
k,+ and for all multi-indices α satisfying 2|α| ≤ s

|ξ|2|α|
∣∣∣D(α′,2α′′)

γ m(ξ)
∣∣∣ ≤ C.

Then m ∈Mp,γ for 1 < p <∞.

Lemma 1. If 1 ≤ p ≤ q ≤ 2, then Mp,γ ⊂ Mq,γ. Also, if 1/p + 1/p′ = 1, 1 ≤ p ≤ ∞,
then Mp,γ = Mp′,γ (with equality of norms).

Lemma 2. Let l be an even number such that l > (n + |γ|)/2, and let m ∈ L2,γ and
D

(α′,2α′′)
γ m ∈ L2,γ, 2|α| = l. Then m ∈Mp,γ, 1 ≤ p ≤ ∞, and

‖m‖Mp,γ ≤ C‖m‖1−θ
L2,γ

(
sup

2|α|=l
‖D(α′,2α′′)

γ m‖L2,γ

)θ

, θ = (n+ |γ|)/2l.

Proof. Let t > 0. Applying Hölder’s and Parseval’s inequalities, we obtain∫
{E(0,t)

∣∣F−1
γ m(x)

∣∣ (x′)γdx =

∫
{E(0,t)

x−αxα
∣∣F−1

γ m(x)
∣∣ (x′)γdx

≤
(∫

{E(0,t)

x−2α(x′)γdx

)1/2(∫
{
E(0,t)

x2α
∣∣F−1

γ m(x)
∣∣2 (x′)γdx

)1/2

= Ct(n+|γ|−l)/2 ·
(∫

{
E(0,t)

x2α
∣∣F−1

γ m(x)
∣∣2 (x′)γdx

)1/2

,

where {
E(0, t) = Rn

k,+\E(0, t).

Taking into account that x2αF−1
γ m(x) = (−1)|α|F−1

γ

(
D

(α′,2α′′)
γ m

)
(x) and

(∫
{E(0,t)

x2α|F−1
γ m(x)|2(x′)γdx

)1/2

=

(∫
{E(0,t)

∣∣∣F−1
γ

(
D(α′,2α′′)
γ m(x)

)∣∣∣2 (x′)γdx

)1/2

≤ C

(∫
{
E(0,t)

∣∣∣D(α′,2α′′)
γ m(x)

∣∣∣2 (x′)γdx

)1/2

≤ C sup
2|α|=l

‖D(α′,2α′′)
γ m‖L2,γ ,
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we get ∫
{E(0,t)

∣∣F−1
γ m(x)

∣∣ (x′)γdx ≤ C t(n+|γ|−l)/2 sup
2|α|=l

‖D(α′,2α′′)
γ m‖L2,γ .

Similarly, we prove that∫
E(0,t)

∣∣F−1
γ m(x)

∣∣ (x′)γdx ≤ (∫
E(0,t)

(x′)γdx

)1/2(∫
E(0,t)

∣∣F−1
γ m(x)

∣∣2 (x′)γdx

)1/2

≤ Ct(n+|γ|)/2
(∫

E(0,t)

∣∣F−1
γ m(x)

∣∣2 (x′)γdx

)1/2

≤ Ct(n+|γ|)/2‖m‖L2,γ .

We choose t so that
‖m‖L2,γ = t−l sup

2|α|=l
‖D(α′,2α′′)

γ m‖L2,γ ,

and by virtue of Lemma 1, we conclude that for 1 ≤ p ≤ 2,

‖m‖Mp,γ ≤ ‖m‖M1,γ =

∫
Rn

k,+

∣∣F−1
γ m(x)

∣∣ (x′)γdx
≤ C‖m‖1−θ

L2,γ

(
sup

2|α|=l
‖D(α′,2α′′)

γ m‖L2,γ

)θ

.

For 2 < p ≤ ∞, by virtue of Lemma 1, we have

‖m‖Mp,γ = ‖m‖Mp′,γ
≤ ‖m‖M1,γ

≤ C‖m‖1−θ
L2,γ

(
sup

2|α|=l
‖D(α′,2α′′)

γ m‖L2,γ

)θ

.

3 Characterization of the B-Nikol’skii-Besov spaces

In this section, we define the B-Nikol’skii-Besov and B-Lizorkin-Triebel spaces and we
prove some relations between them. We give a characterization of Bs

p,q,γ in terms of
bsp,q,γ and an embedding theorem between Bs

p,q,γ and F s
p,q,γ.

Definition 2. Let s ∈ R, for 1 ≤ p <∞ we define the sequence spaces lsp as

lsp =
{
u : u = {uj}∞j=0, ‖u‖lsp =

( ∞∑
j=0

(
2jsp|uj|p

) )1/p

<∞
}
, (4)

and for p = ∞

ls∞ =
{
u : u = {uj}∞j=0, ‖u‖ls∞ = sup

j
2js|uj| <∞

}
.

In the case of s = 0 we denote l0p by lp.
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Definition 3. Let Φ be the collection of all systems {ϕj(x)}∞j=0 ⊂ Sk,+ with the follow-
ing properties

i) ϕj(x) ∈ Sk,+, Fγϕj(x) ≥ 0 for j = 0, 1, 2, 3, ...;
ii) supp Fγϕj ⊂ Aj ≡ {x ∈ Rn

k,+ :
√

2j−1 − 1 ≤ |x| ≤
√

2j+1 − 1} for j = 1, 2, 3, ...
and supp Fγϕ0 ⊂ {x ∈ Rn

k,+ : |x| ≤ 1};
iii) exists a positive number C such that∣∣∣D(α′,2α′′)

γ Fγϕj(x)
∣∣∣ ≤ C|x|−|α| for j = 1, 2, ..., 0 ≤ |α| ≤ [(|γ| − 1)/2] + 2 ;

iv)
∞∑
j=0

Fγϕj(x) = 1 for every x ∈ Rn
k,+.

It is clear that Φ is not empty.
In what follows we define the B-Nikol’skii-Besov spaces Bs

p,q,γ and bsp,q,γ on the basis
of the Fourier-Bessel transform Fγ.

Definition 4. Let 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞ and s ∈ R. Then for any system of
functions {ϕ}∞j=0 ∈ Φ, the B-Nikol’skii-Besov spaces are defined by

Bs
p,q,γ ≡ Bs

p,q,γ(Rn
k,+) =

{
f ∈ S′k,+ : ‖f‖Bs

p,q,γ
= ‖{ϕj ⊗ f}‖lsq(Lp,γ) <∞

}
,

where

‖ · ‖lsq(Lp,γ) = ‖‖ · ‖Lp,γ‖lsq =

(
∞∑
j=0

(
2sj‖ · ‖Lp,γ

)q)1/q

.

Definition 5. For s ∈ R, 1 ≤ p ≤ ∞, 1 ≤ q <∞, we define

bsp,q,γ ≡ bsp,q,γ(Rn
k,+) =

{
f : f ∈ Sk,+, f =

Sk,+

∞∑
i=0

ai(x),

‖{ai}‖lsq(Lp,γ) =

(
∞∑
i=0

(
2si‖ai(·)‖Lp,γ

)q)1/q

<∞


and for q = ∞, we set

bsp,∞,γ =

{
f : f ∈ Sk,+, f =

Sk,+

∞∑
i=0

ai(x), ‖{ai}‖ls∞(Lp,γ) = sup
i

2si‖ai(·)‖Lp,γ <∞

}
,

where suppFγai ⊂ Ai for i = 1, 2, 3, . . . and suppFγa0 ⊂ {ξ ∈ Rn
k,+ : |ξ| ≤ 1}.

By f(x) =
Sk,+

∞∑
j=0

aj(x) it is meant that
∞∑
j=0

aj(x) converges in S′k,+ to f . The norm

of the function f in bsp,q,γ is defined by

‖f‖bsp,q,γ
= inf

f=
∑
ai

‖{ai}‖lsq(Lp,γ).

Now, we can state the following theorem.
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Theorem 1. Let {ϕj}∞j=0 ∈ Φ, s ∈ R, 1 < p <∞ and 1 ≤ q ≤ ∞. Then

Bs
p,q,γ = bsp,q,γ

and the corresponding norms are equivalent.

Proof. First, we prove that Bs
p,q,γ ⊂ bsp,q,γ. Let {ϕj}∞j=0 ∈ Φ, then we have

( ∞∑
j=0

Fγϕj

)
(ξ) = 1.

Thus, for f ∈ Bs
p,q,γ

f = F−1
γ Fγf = F−1

γ

(
∞∑
j=0

Fγϕj · Fγf

)

=
S′k,+

∞∑
j=0

F−1
γ (Fγϕj · Fγf) =

∞∑
j=0

ϕj ⊗ f.

If we take aj = ϕj ⊗ f , then we get

‖f‖bsp,q,γ
≤ ‖{aj}‖lsq(Lp,γ) = ‖{ϕj ⊗ f}‖lsq(Lp,γ) = ‖f‖Bs

p,q,γ
.

Hence, we have Bs
p,q,γ ⊂ bsp,q,γ.

Conversely, we show that bsp,q,γ ⊂ Bs
p,q,γ. Let f ∈ bsp,q,γ and f =

∞∑
j=0

aj in the sense

of the convergence in S′k,+.
Let {ϕj}∞j=0 ∈ Φ. Then

(ϕj ⊗ f) (x) =
S′k,+

∞∑
i=0

(ϕj ⊗ ai) (x) =

j+1∑
i=j−1

(ϕj ⊗ ai) (x)

since ϕj ⊗ ai = F−1
γ (Fγϕj · Fγai) = 0, for i > j + 1 and i < j − 1. Furthermore, if we

define ϕj = aj = 0 for j < 0, then we have

‖f‖Bs
p,q,γ

= ‖{ϕj ⊗ f}‖lsq(Lp,γ) ≤
1∑

r=−1

‖{ϕj ⊗ aj+r}‖lsq(Lp,γ) . (5)

On the other hand, by Theorem A with 1 < p <∞ we get

‖{ϕj ⊗ aj+r}‖Lp,γ
≤ C ‖aj+r‖Lp,γ

, (6)

where C is a suitable positive constant.
Now, by taking the norm of lsq in (6) it follows that

‖{ϕj ⊗ aj+r}‖lsq(Lp,γ) ≤ C ‖aj+r‖lsq(Lp,γ) .



Nikol’skii-Besov and Lizorkin-Triebel spaces constructed on the base of . . . 49

Then from (5) we obtain

‖f‖Bs
p,q,γ

= ‖{ϕj ⊗ f}‖lsq(Lp,γ) ≤ C
1∑

r=−1

‖{aj+r}‖lsq(Lp,γ) ≤ C ‖{aj}‖lsq(Lp,γ) . (7)

Taking the infimum on the right-hand side of (7) we get

‖f‖Bs
p,q,γ

≤ C ‖f‖bsp,q,γ
.

Remark 1. Note that by Theorem 1, the spaces Bs
p,q,γ are independent of systems

{ϕj}∞j=0 ∈ Φ.

We define the B-Lizorkin-Triebel spaces as follows.

Definition 6. Let 1 < p < ∞, 1 ≤ q ≤ ∞ and s ∈ R+. For any system of functions
{ϕj}∞j=0 ∈ Φ, we define the B-Lizorkin-Triebel spaces by

F s
p,q,γ ≡ F s

p,q,γ(Rn
k,+) =

{
f ∈ S′k,+ : ‖f‖F s

p,q,γ
= ‖{ϕj ⊗ f}‖Lp,γ(lsq) <∞

}
, (8)

where

‖·‖Lp,γ(lsq) =
∥∥∥‖·‖lsq∥∥∥Lp,γ

=

∥∥∥∥∥∥
(

∞∑
j=0

(
2sj(·)

)q)1/q
∥∥∥∥∥∥
Lp,γ

.

Theorem 2. Let 1 ≤ p, q ≤ ∞ and s ∈ R, then

Bs
p,min(p,q),γ ⊂ F s

p,q,γ ⊂ Bs
p,max(p,q),γ (9)

where ⊂ means continuous embedding.

Proof. We must show that
Bs
p,p,γ ⊂ F s

p,q,γ ⊂ Bs
p,q,γ (10)

for p ≤ q, and
Bs
p,q,γ ⊂ F s

p,q,γ ⊂ Bs
p,p,γ (11)

for q ≤ p. We will use the monotonicity of the lsq spaces and the trivial equality
Bp,p,γ ≡ F s

p,p,γ.
First we shall prove the left-hand-side embedding in (10). Let f ∈ F s

p,q,γ and
{ϕj}∞j=0 ∈ Φ, then we have

‖f‖Bs
p,q,γ

= ‖{ϕj ⊗ f}‖lsq(Lp,γ) =

(
∞∑
j=0

(
2sj ‖{ϕj ⊗ f}‖Lp,γ

)q)1/q

=

 ∞∑
j=0

2sjq

(∫
Rn

k,+

‖ϕj ⊗ f‖p (x′)γdx

)q/p
1/q

=

∥∥∥∥∥
{∫

Rn
k,+

2sjp ‖ϕj ⊗ f‖p (x′)γdx

}∥∥∥∥∥
1/p

ls
q/p

.
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By using Minkowski’s inequality, we obtain

‖f‖Bs
p,q,γ

≤

(∫
Rn

k,+

∥∥{2sjp ‖ϕj ⊗ f‖p
}∥∥

ls
q/p

(x′)γdx

)1/p

=

∥∥∥∥∥∥
(

∞∑
j=0

(
2sj ‖ϕj ⊗ f‖

)q)1/q
∥∥∥∥∥∥
Lp,γ

= ‖{ϕj ⊗ f}‖Lp,γ(lsq) = ‖f‖F s
p,q,γ

≤ ‖{ϕj ⊗ f}‖Lp,γ(lsp)

= ‖{ϕj ⊗ f}‖lsp(Lp,γ) = ‖f‖Bs
p,p,γ

.

Now, we prove the right-hand-side embedding in (10). Let f ∈ Bs
p,q,γ. Applying

Minkowski’s inequality we have

‖f‖Bs
p,p,γ

= ‖{ϕj ⊗ f}‖lsp(Lp,γ) = ‖{ϕj ⊗ f}‖Lp,γ(lsp) ≤ ‖{ϕj ⊗ f}‖Lp,γ(lsq)

=

∥∥∥∥∥
∞∑
j=0

(
2sj ‖ϕj ⊗ f‖

)q∥∥∥∥∥
1/q

Lp/q,γ

≤

(
∞∑
j=0

2sjq ‖‖ϕj ⊗ f‖q‖Lp/q,γ

)1/p

= ‖{ϕj ⊗ f}‖lsq(Lp,γ) = ‖f‖Bs
p,q,γ

.

4 A new characterization of the B-Bessel potential spaces

In this section we prove a lifting property, a classical equality for the Fourier-Bessel
transform, characterizing the Bessel potentials (B-Bessel potentials) associated with
the Laplace-Bessel differential operator in terms of the B-Lizorkin-Triebel spaces. For
this we need to recall the definition of the Bessel potentials given in [1, 7, 11].

TheB-Bessel potentials Jsγ , s > 0, generated by the multidimensional Fourier-Bessel
transform are defined as negative fractional powers of the differential operator

I −∆γ = I −
n∑
i=1

∂2

∂x2
i

+
k∑
i=1

γi
xi

∂

∂xi
,

where I is the identity operator. With the help of the Fourier-Bessel transform Fγ
negative fractional powers of I −∆γ may be defined by(

I −∆γ

)−s/2
u = F−1

γ

(
(1 + |ξ|2)−s/2

)
Fγu(x).

The B-Bessel potentials

Jsγ =
(
I −∆γ

)−s/2
,
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initially defined in terms of the Fourier–Bessel transform by (1), can be represented as
integral operators of B-convolution type

Jsγu(x) = Gs,γ ⊗ u(x) =

∫
Rn

k,+

T yGs,γ(x)u(y)(y
′)γdy

with the kernels

Gs,γ(x) = Ak,γ
π(n−k)/2

Γ(s/2)

k∏
i=1

Γ
(γj + 1

2

)∫ ∞

0

e−t−
|x|2
4t t−(n+|γ|−s)/2 dt

t

(Ak,γ is the same as that in (2)).
For s ∈ R and 1 ≤ p <∞ we define the B-Bessel potential spaces as

Hs
p,γ ≡ Hs

p,γ(Rn
k,+) =

{
φ ∈ S′k,+ : J−sγ φ ∈ Lp,γ

}
.

The norm in Hs
p,γ is defined by

‖φ‖s,p,γ = ‖φ‖Hs
p,γ

=
∥∥J−sγ φ

∥∥
Lp,γ

.

Moreover, Sk,+ is dense in Hs
p,γ (see [1]).

In view of the Parseval formula

‖v‖L2,γ = ‖Fγv‖L2,γ (12)

it follows that

H0
2,γ = L2,γ.

The following lemma shows that the Young inequality in the B-Bessel potential
spaces is valid.

Lemma 3. Let 1 ≤ p, q ≤ ∞, s, s′ ∈ R, f ∈ Hs
p,γ, g ∈ Hs

q,γ. If

1

r
=

1

p
+

1

q
≥ 0,

then f ⊗ g ∈ Hs+s′
r,γ and the following inequality is valid

‖f ⊗ g‖
Hs+s′

r,γ
≤ ‖f‖Hs

p,γ
‖g‖Hs′

q,γ
.

Proof.

‖f ⊗ g‖
Hs+s′

r,γ
= ‖J−s−s′γ (f ⊗ g)‖Lr,γ

= ‖J−sγ f ⊗ J−s
′

γ g‖Lr,γ

≤ ‖J−sγ f‖Lp,γ ‖J−s
′

γ g‖Lq,γ

= ‖f‖Hs
p,γ
‖g‖Hs′

q,γ
.
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Lemma 4. Let f ∈ S′k,+ and ϕk ⊗ f ∈ Lp,γ, k ≥ 1. Then for 1 ≤ p ≤ ∞, s ∈ R we
have ∥∥Jsγϕk ⊗ f

∥∥
Lp,γ

≤ C2ks ‖ϕk ⊗ f‖Lp,γ
для k ≥ 1, (13)

where the constant C does not depend on p and k.
If, furthermore, ψ ⊗ f ∈ Lp,γ, then∥∥Jsγψ ⊗ f

∥∥
Lp,γ

≤ C ‖ψ ⊗ f‖Lp,γ
, (14)

where the constant C does not depend on p and k.

Proof. Note, that for all k the following equality is satisfied

ϕk ⊗ f =
1∑

l=−1

ϕk+l ⊗ ϕk ⊗ f.

If we prove, that
‖Fγ(Jsγϕk+l)‖Mp,γ ≤ C2ks, l = 0,−1, 1, (15)

then we obtain (13). In order to prove (15), observe that the function

Fγ
{
Jsγϕk+l

}
(ξ) = (1 + |ξ|2)s/2Fγϕk+l(ξ)

= (1 + |ξ|2)s/2ϕ
(
2−(k+l)ξ

)
has the same norm in Mp,γ, as the function 2(k+l)s

(
2−2(k+l) + |ξ|2

)s/2
ϕ(ξ). Indeed,

‖Fγ
{
Jsγϕk+l

}
‖Mp,γ = ‖(1 + | · |2)s/2ϕ(2−(k+l)·)‖Mp,γ

= ‖(1 + 2(k+l)|ξ|2)s/2ϕ(·)‖Mp,γ

= ‖2(k+l)s
(
2−2(k+l) + | · |2

)s/2
ϕ(·)‖Mp,γ ,

and by virtue of Lemma 1 it can be shown that the above function belongs to Mp,γ,
and also its norm does not exceed 2ks (k ≥ 1). Thus inequality (15) is proved.

In order to prove (14) observe that

ψ ⊗ f = (ψ + ϕ1)⊗ ψ ⊗ f,

and the fact Fγ(Jsγψ) ∈Mp,γ follows obviously, in view of Lemma 2.

Definition 7. Let s ∈ N and 1 ≤ p ≤ ∞. We define the B-Sobolev space by

W s
p,γ ≡ W s

p,γ(Rn
k,+)

=
{
f ∈ S′k,+ : f ∈ Lp,γ, Bs

i f ∈ Lp,γ, 1 ≤ i ≤ k, D2s
j f ∈ Lp,γ, k + 1 ≤ j ≤ n

}
,

and the norm in W s
p,γ is given by

‖f‖W s
p,γ

= ‖f‖Lp,γ +
k∑
i=1

‖Bs
i f‖Lp,γ

+
n∑

i=k+1

∥∥D2s
i f
∥∥
Lp,γ

. (16)
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Theorem 3. For s1 < s2 and 1 ≤ p ≤ ∞ we have Hs2
p,γ ⊂ Hs1

p,γ. Further, if s ∈ N and
1 < p <∞, then Hs

p,γ = W s
p,γ, and the norm ‖f‖Hs

p,γ
is equivalent to ‖f‖W s

p,γ
or

‖f‖1
W s

p,γ
= ‖f‖Lp,γ + sup

|α′|+2|α′′|=s

∥∥∥D(α′,2α′′)
γ f

∥∥∥
Lp,γ

.

Finally, Sk,+ is dense in Hs
p,γ (1 ≤ p <∞).

Proof. Let f ∈ Hs
p,γ. We show that Js1−s2γ maps Lp,γ to Lp,γ.

In order to verify, that J−εγ : Lp,γ → Lp,γ, applying Lemma 1 and taking into

account that f = ψ ⊗ f +
∞∑
k=1

ϕk ⊗ f we get

∥∥J−εγ f
∥∥
Lp,γ

≤
∥∥J−εγ ψ ⊗ f

∥∥
Lp,γ

+
∞∑
k=1

∥∥J−εγ ϕk ⊗ f
∥∥
Lp,γ

≤ C

(
‖ψ ⊗ f‖Lp,γ +

∞∑
k=1

2−εk‖ϕk ⊗ f‖Lp,γ

)
≤ C

(
1 +

∞∑
k=1

2−εk

)
‖f‖Lp,γ ,

where ε = s2 − s1 > 0.
Thus the first conclusion of the theorem follows, since

‖f‖Hs1
p,γ

= ‖Js1γ f‖Lp,γ = ‖Js1−s2γ Js2γ f‖Lp,γ ≤ C
∥∥Js2γ f∥∥ = C12‖f‖Hs2

p,γ
.

Next, we prove the second conclusion of the theorem. By using Theorem A we
obtain ξ2s

j (1 + |ξ|2)−s ∈Mp,γ (1 < p <∞), hence for |α′|+ 2|α′′| = s

k∑
i=1

‖Bs
i f‖Lp,γ +

n∑
i=k+1

‖D2s
i f‖Lp,γ ≤

∑
|α′|+2|α′′|=s

‖D(α′,2α′′)
γ f‖Lp,γ

=
∥∥F−1

γ

{
ξ2αFγf

}∥∥
Lp,γ

=
∥∥F−1

γ

{
ξ2α(1 + |ξ|2)−2sFγJ

s
γf
}∥∥

Lp,γ

≤ C‖Jsγf‖Lp,γ = C‖f‖Hs
p,γ
.

Now we prove the inverse inequality. Once more we apply Theorem A. Further,
let χ be an infinitely differentiable nonnegative function on R, such that χ(x) = 1 for
|x| > 2 and χ(x) = 0 for |x| < 1. Then we obtain

(1 + |ξ|2)s
(
1 +

n∑
j=1

χ(ξj)|ξj|2s
)−1

∈Mp,γ, χ(ξj)|ξj|2sξ−2s
j ∈Mp,γ, 1 < p <∞.
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Thus,

‖f‖Hs
p,γ

=
∥∥Jsγf∥∥Lp,γ

≤ C
∥∥∥F−1

γ

{(
1 +

n∑
i=1

χ(ξi)ξ
2s
i

)
Fγf

}∥∥∥
Lp,γ

≤ C

(
‖f‖Lp,γ +

k∑
i=1

∥∥F−1
γ

{
χ(ξi)ξ

2s
i ξ

−2s
i Fγ (Bs

i f)
}∥∥

Lp,γ

+
n∑

i=k+1

∥∥F−1
γ

{
χ(ξi)ξ

2s
i ξ

−2s
i Fγ

(
D2s
i f
)}∥∥

Lp,γ

)

≤ C

(
‖f‖Lp,γ +

k∑
i=1

‖Bs
i f‖Lp,γ

+
n∑

i=k+1

∥∥D2s
i f
∥∥
Lp,γ

)
.

Finally we prove that the space Sk,+ is dense in the space Hs
p,γ. Let f ∈ Hs

p,γ, i.e.,
Jsγf ∈ Lp,γ. Since Sk,+ is dense in Lp,γ (1 ≤ p < ∞) (see [7]), we can find a sequence
gm ∈ Sk,+ satisfying ‖Jsγf − gm‖Lp,γ <

1
m

for all m ∈ N. Then

∥∥f − J−sγ gm
∥∥
Hs

p,γ
=
∥∥Jsγf − gm

∥∥
Lp,γ

<
1

m
.

Since J−sγ g ∈ Sk,+, then we conclude, that Sk,+ is dense in Hs
p,γ.

The results obtained for the B-Besov spaces Bs
p,q,γ correspond in part to the previous

theorem for the B-Bessel potential spaces Hs
p,γ.

Theorem 4. If s1 < s2 we have

Bs2
p,q2,γ

⊂ Bs1
p,q1,γ

(1 ≤ p, q1, q2 ≤ ∞). (17)

If 1 ≤ q1 < q2 ≤ ∞ we have

Bs
p,q1,γ

⊂ Bs
p,q2,γ

(s ∈ R, 1 ≤ p ≤ ∞). (18)

Moreover,
Bs
p,1,γ ⊂ Hs

p,γ ⊂ Bs
p,∞,γ (s ∈ R, 1 ≤ p ≤ ∞). (19)

If s0 6= s1 we also have(
Hs0
p,γ, H

s1
p,γ

)
θ,q

= Bs
p,q,γ (1 ≤ p, q ≤ ∞, 0 < θ < 1), (20)

where s = (1− θ)s0 + θs1. Finally, if 1 ≤ p, q <∞ then Sk,+ is dense in Bs
p,q,γ.

Proof. Formulas (17) and (18) follow immediately by the definition of Bs
p,q,γ. The

density statement is a consequence of (20), Theorem 3, and Theorem 3.4.2 in [4].
Inclusions (19) are obviously implied by the inequalities in Lemma 4.

It remains to prove (20). Let f ∈
(
Hs0
p,γ, H

s1
p,γ

)
θ,q

, and put f = f0 + f1, fi ∈ Hsi
p,γ,

i = 0, 1. By Lemma 4 we obtain

‖ϕk ⊗ f‖Lp,γ ≤ ‖ϕk ⊗ f0‖Lp,γ + ‖ϕk ⊗ f1‖Lp,γ
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≤ C
(
2−s0k‖Js0γ f0‖Lp,γ + 2−s1k‖Js1γ f1‖Lp,γ

)
,

and, taking the infimum,

‖ϕk ⊗ f‖Lp,γ ≤ C2−s0kK(2k(s0−s1), f ;Hs0
p,γ, H

s1
p,γ),

where K(t, f ;Hs0
p,γ, H

s1
p,γ) = inf

f=f0+f1

(
‖f0‖Hs0

p,γ
+ t‖f1‖Hs1

p,γ

)
.

This gives (
∞∑
k=1

(
2sk‖ϕk ⊗ f‖Lp,γ

)q)1/q

≤ C‖f‖(Hs0
p,γ , H

s1
p,γ)

θ,q

.

Similarly, we see that

‖ψ ⊗ f‖Lp,γ ≤ CK(1, f ;Hs0
p,γ, H

s1
p,γ) ≤ C ‖f‖(Hs0

p,γ , H
s1
p,γ)

θ,q

and thus
‖f‖Bs

p,q,γ
≤ C ‖f‖(Hs0

p,γ , H
s1
p,γ)

θ,q

.

Let f ∈ Bs
p,q,γ. The converse inequality follows easily by the inequalities in Lemma 4

2k(s−s0)K(2k(s1−s0), ϕk ⊗ f ;Hs0
p,γ, H

s1
p,γ) ≤ C 2ks‖ϕk ⊗ f‖Lp,γ ,

K(1, ψ ⊗ f ;Hs0
p,γ, H

s1
p,γ) ≤ C ‖ψ ⊗ f‖Lp,γ .

It remains to show that

f = ψ ⊗ f +
∞∑
k=1

ϕk ⊗ f in Hs0
p,γ +Hs1

p,γ.

But if, say, s0 < s1 then Hs0
p,γ +Hs1

p,γ = Hs0
p,γ, and

‖ψ ⊗ f‖Hs0
p,γ

+
∞∑
k=1

‖ϕk ⊗ f‖Hs0
p,γ

≤ C

(
‖ψ ⊗ f‖Lp,γ +

∞∑
k=1

‖ϕk ⊗ f‖Lp,γ

)
≤ C ‖f‖Bs

p,q,γ
,

by Hölder’s inequality, since s0 < s1.

For 0 < θ < 1 , s0, s1 ∈ R, 1 ≤ p, q, q0, q1 ≤ ∞ the real interpolation B-Nikol’skii-
Besov space denoted by (Bs0

p,q0,γ
, Bs1

p,q1,γ
)θ,q is a subspace of functions f ∈ Bs0

p,q0,γ
+Bs1

p,q1,γ

satisfying (∫ ∞

0

(
t−θK

(
t, f ;Bs0

p,q0,γ
, Bs1

p,q1,γ

))q dt
t

)1/q

<∞ if q <∞,

and

sup
t∈(0,∞)

t−θK
(
t, f ;Bs0

p,q0,γ
, Bs1

p,q1,γ

)
<∞ if q = ∞,
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with K being the Peetre K-functional given by

K
(
t, f ;Bs0

p,q0,γ
, Bs1

p,q1,γ

)
= inf

{
‖f0‖Bs0

p,q0,γ
+ t‖f1‖Bs1

p,q1,γ

}
,

where the infinimum is taken over all representations of f of the form

f = f0 + f1, f0 ∈ Bs0
p,q0,γ

, f1 ∈ Bs1
p,q1,γ

.

Theorem 5. Let 0 < θ < 1 and 1 ≤ p, q, q0, q1 ≤ ∞. Furthermore, let s0, s1 ∈ R, s0 6=
s1 and s = (1− θ)s0 + θs1.

(i) If 1 ≤ p ≤ ∞, then

(Bs0
p,q0,γ

, Bs1
p,q1,γ

)θ,q = Bs
p,q,γ. (21)

(ii) If 1 ≤ p <∞, then

(F s0
p,q0,γ

, F s1
p,q1,γ

)θ,q = Bs
p,q,γ. (22)

Proof. We start with the proof of the inclusion (Bs0
p,∞,γ, B

s1
p,∞,γ)θ,q ⊂ Bs

p,q,γ. We may
assume that s0 > s1. Let q <∞, for f = f0 + f1 with f0 ∈ Bs0

p,∞,γ and f1 ∈ Bs1
p,∞,γ we

get by Definition 4
∞∑
l=0

2qlsq‖ϕj ⊗ f‖qLp,γ
≤ C

∞∑
l=0

2−sql(s0−s1)

(
2ls0‖ϕj ⊗ f0‖Lp,γ + 2l(s0−s1)2s1‖ϕl ⊗ f1‖Lp,γ

)q
≤ C

∞∑
l=0

2−sql(s0−s1)

(
‖f0‖Bs0

p,∞,γ
+ 2l(s0−s1)‖f0‖Bs1

p,∞,γ

)q
.

Then we deduce that
∞∑
l=0

2qlsq‖ϕl ⊗ f‖qLp,γ
≤ C

∞∑
l=0

2−sql(s0−s1)

(
K
(
2l(s0−s0), f ;Bs0

p,∞,γ, B
s1
p,∞,γ

))q
≤ C

∫ ∞

0

(
tθK

(
t, f ;Bs0

p,∞,γ, B
s1
p,∞,γ

))q dt
t
<∞.

which proves the result. When q = ∞, we make the usual modification. For 1 ≤ r ≤
q0, q1 Theorem 4 gives

(Bs0
p,r,γ, B

s1
p,r,γ)θ,q ⊂ (Bs0

p,q0,γ
, Bs1

p,q1,γ
)θ,q ⊂ (Bs0

p,∞,γ, B
s1
p,∞,γ)θ,q ⊂ Bs

p,r,γ.

Then in order to complete the proof of the theorem we have to show only that

Bs
p,r,γ ⊂ (Bs0

p,r,γ, B
s1
p,r,γ)θ,q for 1 ≤ r ≤ q.

Suppose that again s0 > s1. Let q <∞, we have ∞∫
0

(
t−θK

(
t, f ;Bs0

p,r,γ, B
s1
p,r,γ

))q dt
t

1/q

≤
(∫ 1

0

. . .
dt

t

)1/q

+

(∫ ∞

1

. . .
dt

t

)1/q

= I1 + I2.



Nikol’skii-Besov and Lizorkin-Triebel spaces constructed on the base of . . . 57

Since s > s1, by Theorem 4 we get

K
(
t, f ;Bs0

p,r,γ, B
s1
p,r,γ

)
≤ C t‖f‖Bs1

p,q,γ
≤ C t‖f‖Bs

p,q,γ
,

hence we deduce

I1 ≤ C‖f‖Bs,γ
p,q

(∫ 1

0

t(1−θ)q
dt

t

)1/q

=
c

((1− θ)q)1/q
‖f‖Bs,γ

p,q
.

To estimate I2 take f0 =
l∑

j=0

aj and f1 =
∞∑

j=l+1

aj, where aj = ϕj ⊗ f . Using the

properties of the sequence (ϕj)j∈N we obtain

‖f0‖rBs0
p,r,γ

≤
l+1∑
j=0

2js0r‖aj‖rLp,γ
and ‖f1‖rBs1

p,r,γ
≤

∞∑
j=l

2js1r‖aj‖rLp,γ
.

Hence we can write

I2 ≤ C

(
∞∑
l=0

2−sql(s0−s1)

(
K
(
2l(s0−s0), f ;Bs0

p,r,γ, B
s1
p,r,γ

))q)1/q

≤ C

( ∞∑
l=0

2−sql(s0−s1)

[( l+1∑
j=0

2js0s‖aj‖rLp,γ

)1/r

+ 2l(s0−s1)

( ∞∑
j=l

2js1r‖aj‖rLp,γ

)1/r]q)1/q

≤ C

( ∞∑
l=0

2qls
[ l+1∑
j=0

2(j−l)s0r‖aj‖rLp,γ
+

∞∑
j=l

2(j−1)s1r‖aj‖rLp,γ

]q/r)1/q

.

For r = q it is easy to see that I2 ≤ C‖f‖Bs
p,q,γ

. For r < q we take u > r such that
r
q

+ r
u

= 1 and s1 < α1 < s < α0 < s0, then by Hölder’s inequality we have

I2 ≤ C

( ∞∑
l=0

2ql(s−s0)

( l+1∑
j=0

2(s0−α0)ju

)q/u( l+1∑
j=0

2α0jq‖aj‖qLp,γ

))1/q

+ c

( ∞∑
l=0

2ql(s−s1)

( ∞∑
j=l

2(s1−α1)ju

)q/u( ∞∑
j=l

2α1jq‖aj‖qLp,γ

))1/q

≤ C

( ∞∑
l=0

2ql(s−α0)

l+1∑
j=0

2(α0)jq‖aj‖qLp,γ

)1/q

+ c

( ∞∑
j=0

2jl(s−α1)

∞∑
j=l

2α1jq‖aj‖qLp,γ

)1/q

≤ C

( ∞∑
j=0

2α0jq‖aj‖qLp,γ

∞∑
l=j−1

2ql(s−α0)

)1/q

+ c

( ∞∑
j=0

2α1jq‖aj‖qLp,γ

j∑
l=0

2ql(s−α1)

)1/q

≤ C‖f‖Bs
p,q,γ

.

Hence it follows that(∫ ∞

0

(
t−θK

(
t, f ;Bs0

p,r,γ, B
s1
p,r,γ

))q dt
t

)1/q

≤ C‖f‖Bs
p,q,γ

.

When q = ∞ we make the usual modification.
This proves (21). Finally, (22) follows in the same way by (21) and (3).
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In the following theorem we state a lifting property.

Theorem 6. Let σ, s ∈ R and 1 ≤ q ≤ ∞. Then Jσγ is a bounded one-to-one linear
operator from Bs

p,q,γ onto Bs+σ
p,q,γ, if 1 ≤ p ≤ ∞ and from F s

p,q,γ onto F s+σ
p,q,γ, if 1 ≤ p <∞.

Proof. Consider {ϕj}∞j=0 ∈ Φ. We define {ψj}∞j=0 as follows

ψj = (ϕj ⊗ Fγ)
(
(1 + |x|2)σ/22jσ

)
.

A straightforward argument leads to {ψj}∞j=0 ∈ Φ. Thus(
(Jσγ f)⊗ ψj

)
= F−1

γ

(
Fγψj · Fγ(Jσγ f)

)
= F−1

γ

(
Fγψj · (1 + |ξ|2)−σ/2Fγf

)
= F−1

γ

(
2jσFγϕj · Fγf

)
= 2jσ (f ⊗ ϕj) .

Now, the proof follows immediately as in [15], pp. 180 – 181.

By using the methods given in [10], Theorem 6.2.4, and by Theorems 1 and 2 we
can get the following statement.

Theorem 7. If s1 < s2 we have

F s2
p,q2,γ

⊂ F s1
p,q1,γ

(1 ≤ p <∞, 1 ≤ q1, q2 ≤ ∞).

If 1 ≤ q1 < q2 ≤ ∞ we have

F s
p,q1,γ

⊂ F s
p,q2,γ

(s ∈ R, 1 ≤ p <∞).

Let s ∈ R, 1 < p <∞ and 1 < q <∞. Then Sk,+ is dense in F s
p,q,γ.

We need the following lemma to obtain a new characterization of the B-Bessel
potential spaces. Note that the Rademacher functions defined as follows: rj(t) =
r0(2

jt), where r0(t) = 1 for t ∈ [0, 1/2], and r0(t) = −1, for t ∈ (1/2, 1]; r0 is extended
outside the unit by periodicity, that is r0(t+ 1) = r0(t).

Lemma 5. Let s ∈ R, let {ϕj}∞j=0 ∈ Φ and {rj}∞j=0 be the Rademacher functions
(see [17], p. 104 or [18], Chapter V, Theorem 8.4, p. 213). Then, for every p with
1 < p <∞ and for all t ∈ (0, 1), there are some constants Ci, i = 1, 2, such that∥∥F−1

γ (miFγf)
∥∥
Lp,γ

≤ Ci ‖f‖Lp,γ
,

where

m1(x) =
∞∑
j=0

2jsrj(t)(1 + |x|2)−s/2Fγϕj(x) and m2(x) =
( ∞∑
j=0

(Fγϕj)
2 (x)

)−1

.
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Proof. We can see without difficulty that mi satisfies the inequalities∣∣∣D(α′,2α′′)
γ mi(x)

∣∣∣ ≤ Ci|x|−|α|,

for k = 0, 1, ...[(|γ| − 1)/2] + 2 and i = 1, 2. Then applying the methods in [12] we
obtain the desired result.

Next, we prove that for q = 2 the B-Lizorkin-Triebel spaces are reduced to the
B-Bessel potentials spaces.

Theorem 8. If s ∈ R and 1 < p <∞, then we have

F 2s
p,2,γ = Hs

p,γ,

and ‖f‖Hs
p,γ

is an equivalent norm in F s
p,2,γ.

Proof. We will show that there exist c1, c2 positive constants such that

c1 ‖f‖Hs
p,γ
≤

∥∥∥∥∥∥
(

∞∑
j=0

22js ‖ϕj ⊗ f‖2

)1/2
∥∥∥∥∥∥
Lp,γ

≤ c2 ‖f‖Hs
p,γ
. (23)

By Theorem 7 we know that Sk,+ is dense in F s
p,2,γ for 1 < p <∞. Then, it is not

difficult to see that functions f ∈ Lp,γ with compact suppFγf are dense both in Hs
p,γ

and in F s
p,2,γ, for 1 < p <∞. Therefore it is enough to prove (23) for functions of this

type. Note that in this case the infinite sum in (23) is actually finite.
First, we shall prove the estimate on the right-hand side. Let f ∈ Hs

p,γ, then
f = Js,γ ⊗ g, g ∈ Lp,γ, i.e., Fγf(ξ) = (1 + |ξ|2)−s/2 Fγg(ξ). Applying Lemma 5 we have
for all t ∈ (0, 1) ∥∥∥ ∞∑

j=0

rj(t)2
jsϕj ⊗ f

∥∥∥
Lp,γ

≤ C1 ‖g‖Lp,γ
= C1 ‖f‖Hs

p,γ
.

Thus, it follows that ∫ 1

0

∥∥∥ ∞∑
j=0

rj(t)2
jsϕj ⊗ f

∥∥∥
Lp,γ

dt ≤ C1 ‖f‖Hs
p,γ
. (24)

Using the right-hand inequality of ([17], p. 104 or [18], Chapter V, Theorem 8.4,
p. 213) with p = 1 and the Minkowski’s inequality we obtain

∥∥∥( ∞∑
j=0

∥∥2jsϕj ⊗ f
∥∥2
)1/2∥∥∥

Lp,γ

≤ C
∥∥∥∫ 1

0

∥∥∥ ∞∑
j=0

rj(t)2
jsϕj ⊗ f

∥∥∥dt∥∥∥
Lp,γ

≤ C

∫ 1

0

∥∥∥ ∞∑
j=0

rj(t)2
jsϕj ⊗ f

∥∥∥
Lp,γ

dt.
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Now, by (24) we have∥∥∥( ∞∑
j=0

∥∥2jsϕj ⊗ f
∥∥2
)1/2∥∥∥

Lp,γ

≤ C ‖f‖Hs
p,γ
,

where C a suitable positive constant. Therefore we obtain f ∈ F 2s
p,2,γ.

Next, we shall prove the converse inequality. For this we use duality. Let f ∈ F 2s
p,2,γ

and

K = F−1
γ

( ∞∑
j=0

(
Fγϕj

)2

· Fγg
)
. (25)

Applying Lemma 5 with m2(x) =
( ∞∑
j=0

(Fγϕj)
2
)−1

we obtain

‖g‖Lp,γ
=
∥∥∥F−1

γ

(( ∞∑
j=0

(Fγϕj)
2
)−1

FγF
−1
γ

( ∞∑
j=0

(Fγϕj)
2 · Fγg

))∥∥∥
Lp,γ

≤ C2

∥∥∥F−1
γ

( ∞∑
j=0

(Fγϕj)
2 · Fγg

)∥∥∥
Lp,γ

= C2 ‖K‖Lp,γ
. (26)

Consider u ∈ Lp′,γ to be a function such that ‖u‖Lp′,γ
= 1, suppFγu is compact

(1/p+ 1/p′ = 1), and ∫
Rn

k,+

u(x)K(x)(x′)γdx ≥ 1

2
‖K‖Lp,γ

. (27)

Let w be the function defined by Fγw(ξ) = (1 + |ξ|2)s/2Fγu(ξ), i.e., u = Js,γ ⊗ w and
f = Js,γ ⊗ g, as above, so that Fγf · Fγw = Fγg · Fγu. Then by (25) – (27) we obtain

‖f‖Hs
p,γ

= ‖g‖Lp,γ
≤ C2 ‖K‖Lp,γ

≤ 2C2

∫
Rn

k,+

u(x)K(x)(x′)γdx

= 2C2

∫
Rn

k,+

Fγu(ξ)FγK(ξ)ξγdξ = 2C2

∫
Rn

k,+

Fγu(ξ)
∞∑
j=0

(Fγϕj)
2 Fγg(ξ)ξ

γdξ

= 2C2

∫
Rn

k,+

∞∑
j=0

(
2jsFγf(ξ) (Fγϕj) (ξ)

) (
2−js(Fγw)(ξ) (Fγϕj) (ξ)

)
ξγdξ.

Hence, by Plancharel’s formula and the Cauchy and Hölder inequalities we get

‖f‖Hs
p,γ
≤ 2C2

∫
Rn

k,+

∞∑
j=0

(
2js (Fγϕj) (x)

) (
2−js (ϕj ⊗ w) (x)

)
(x′)γdx

≤ 2C2

∫
Rn

k,+

(
∞∑
j=0

(
2js (ϕj ⊗ f) (x)

)2)1/2( ∞∑
j=0

(
2−js (ϕj ⊗ w) (x)

)2)1/2

(x′)γdx
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≤ 2C2

∥∥∥∥∥∥
(

∞∑
j=0

22js ‖ϕj ⊗ f‖2

)1/2
∥∥∥∥∥∥
Lp,γ

∥∥∥∥∥∥
(

∞∑
j=0

2−2js ‖ϕj ⊗ w‖2

)1/2
∥∥∥∥∥∥
Lp′,γ

. (28)

Then by the right-hand side of inequality (23) we get∥∥∥∥∥∥
(

∞∑
j=0

2−2js ‖ϕj ⊗ w‖2

)1/2
∥∥∥∥∥∥
Lp′,γ

≤ c2 ‖w‖H−s
p′,γ

= c2 ‖u‖Lp′,γ
= c2 (29)

Therefore, combining (28) and (29) the proof is completed.

As a consequence of Theorem 8 we obtain the following results.

Corollary 1. If s ∈ N and 1 < p <∞, then

F 2s
p,2,γ = W s

p,γ,

and the corresponding norms are equivalent.

Proof. By Theorems 3 and 8, we have Hs
p,γ ≡ W s

p,γ and the corresponding norms are
equivalent.

Moreover, by Theorem 8 and Theorem 2 we can obtain results similar to those
previously obtained in [16], Theorem 15 and [17], p. 155, Theorem 5 for the Fourier
transform. Namely, for s ∈ R, we have

B2s
p,2,γ ⊂ Hs

p,γ ⊂ B2s
p,p,γ, 2 ≤ p <∞,

B2s
p,p,γ ⊂ Hs

p,γ ⊂ B2s
p,2,γ, 1 < p ≤ 2.

5 Some applications

First, we give a global regularity result.

Theorem 9. Let P (∆γ) =
m∑
j=0

aj ∆j
γ, m ∈ N, be a differential operator with constant

coefficients aj, and symbol

P (τ) =
m∑
j=0

aj τ
j 6= 0 ∀τ ∈ (0,∞).

If u ∈ L2,γ, P (−∆γ)u = f , and f ∈ L2,γ, then u ∈ Hm
2,γ.
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Proof. First we show that there exists C > 0 such that |P (τ)| ≥ Cτm for all τ ∈ (0,∞)
(see [14]). We have

|P (τ)| = |
m∑
j=0

aj τ
j| ≥ |am|τm − |am−1|τm−1 − . . .− |a0|

≥ |am|τm − C1(τ
m−1 + . . .+ 1),

where C1 = max{|a0|, |a1|, . . . , |am|}.
If τ > R ≥ 1 and k = 0, 1, . . . ,m− 1, then we get τ k ≤ (1/R)τm, and so

|P (τ)| ≥ (|am| −mC1/R)τm.

Therefore, by choosing sufficiently large R one can find C > 0 such that for all τ > R

|P (τ)| ≥ Cτm. (30)

Now let v ∈ Sk,+. Then

‖v‖Hm
2,γ

= ‖J−mγ v‖L2,γ(Rn
k,+) = ‖(1 + |ξ|2)mFγv(ξ)‖L2,γ(Rn

k,+)

≤ ‖(1 + |ξ|2)mFγv(ξ)‖L2,γ(B(0,R)) + ‖(1 + |ξ|2)mFγv(ξ)‖L2,γ( {B(0,R))
,

where R ≥ 1. For ξ ∈ B(0, R), (1 + |ξ|2)m ≤ (1 + R2)m and for ξ ∈ {
B(0, R), we have

(1 + |ξ|2)m ≤ 2m|ξ|2m. Thus

‖(1 + |ξ|2)mFγv(ξ)‖L2,γ(Rn
k,+)

≤ (1 +R2)m/2‖Fγv‖L2,γ(B(0,R)) + 2m/2‖|ξ|mFγv(ξ)‖L2,γ( {B(0,R))
.

Using the Parseval formula (12) and inequality (30) we obtain

‖(1 + |ξ|2)mFγv(ξ)‖L2,γ(Rn
k,+)

≤ (1 +R2)m/2‖v‖L2,γ(Rn
k,+) + 2m/2C−1‖|P (ξ2)Fγv(ξ)‖L2,γ(Rn

k,+).

Since
Fγ (P (∆γ)v) (ξ) = P (−|ξ|2)Fγv(ξ),

the Parseval formula (12) yields

‖v‖Hm
2,γ(Rn

k,+) ≤ C
(
‖P (−∆γ)v‖L2,γ(Rn

k,+) + ‖v‖L2,γ(Rn
k,+)

)
,

where C > 0. Since Sk,+ dense in Hm
2,γ(Rn

k,+), the assertion of the theorem follows.

Now, we give an application to solving a differential equation.

Theorem 10. Let f ∈ Bs
p,q,γ, s ∈ R, 1 ≤ p ≤ ∞, and 1 ≤ q ≤ ∞. Then there exists

u ∈ Bs+2m
p,q,γ ⊂ S′

k,+ such that

(I −∆γ)
m u = f, (31)

where m is a positive integer.
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Proof. Consider f ∈ Bs
p,q,γ. We need to find a distribution u ∈ S′

k,+ satisfying (31).
Applying the Fourier-Bessel transform and by (1) we obtain(

1 + |ξ|2
)m

Fγu = Fγf in S′

k,+.

Then u = F−1
γ (1+ |ξ|2)−mFγf = J2m

γ f and by Theorem 6 we have that u ∈ Bs+2m
p,q,γ .

We state also the following theorem which can be proved analogously.

Theorem 11. Let f ∈ F s
p,q,γ, s ∈ R, 1 ≤ p < ∞, and 1 ≤ q < ∞. Then there exists

u ∈ F s+2m
p,q,γ ⊂ S′

k,+ satisfying (31).

Finally, we give another application in the context of the Poisson semigroup asso-
ciated with ∆γ. This semigroup is an integral operator of convolution type generated
by the Fourier-Bessel transform. The kernel of this operator is defined as the Fourier-
Bessel transform of the function exp(−s|x|), s > 0 and x ∈ Rn

k,+. We define the Poisson
kernel as

Pt,γ(x) = Cn,k,γ t (t
2 + |x|2)−

n+|γ|+1
2 .

It can be easily verified that the following properties of Pt,γ are valid:
1) Pt,γ > 0 is a radial function;
2) Fγ(Pt,γ(·))(x) = e−t|x|;
3) Pt,γ ∈ L1,γ and ‖Pt,γ‖L1,γ = 1 for all t > 0;
4) Pt1+t2,γ(x) = (Pt1,γ ⊗ Pt2,γ) (x), t1, t2 > 0.
Now, we define the Poisson integral (semigroup) generated by the generalized shift

operator as

u(x, t) = (Pt,γ ⊗ f) (x) =

∫
Rn

k,+

f(y) T y (Pt,γ(x)) (y′)γdy.

By using the Fourier-Bessel transform, it is not difficult to verify (see [1, 19]) that the
Poisson integral u(x, t) is a solution of the following boundary value problem{ (

∂2

∂t2
+ ∆γ

)
u(x, t) = 0

u(x, 0) = f(x)
(32)

for f ∈ S′k,+. Now we give the following applications to solving the boundary value
problem (32) in the spaces Bs

p,q,γ and F s
p,q,γ.

Theorem 12. Let f ∈ Bs
p,q,γ, s ∈ R, 1 ≤ p ≤ ∞, and 1 ≤ q ≤ ∞. Then

u(·, t) = (Pt,γ ⊗ f) (·) ∈ Bs
p,q,γ ⊂ S′

k,+ for all t > 0 is a solution to the boundary
value problem (32).

Proof. Consider f ∈ Bs
p,q,γ. We need to find distributions u(·, t) = (Pt,γ ⊗ f) (·) ∈ S′

k,+

which for all t > 0 are solutions to the boundary value problem (32). By applying the
Fourier-Bessel transform and by using property 2) of the Poisson kernel we obtain

Fγu(x, t) = e−t|x|Fγf(x)

in S′

k,+. Then u(x, t) = F−1
γ

(
e−t|·|Fγf

)
(x) and by Theorem 6 we have that u ∈

Bs
p,q,γ.
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Theorem 13. Let f ∈ F s
p,q,γ, s ∈ R, 1 ≤ p < ∞, and 1 ≤ q ≤ ∞. Then

u(·, t) = (Pt,γ ⊗ f) (·) ∈ F s
p,q,γ ⊂ S′

k,+ for all t > 0 is a solution to the boundary
value problem (32).

The proof of this theorem is similar to the proof of Theorem 12.
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