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Abstract. Applying the two-operator approach, the mixed (Dirichlet-Neumann)
boundary value problem for a second-order scalar elliptic differential equation with
variable coefficients is reduced to several systems of Boundary Domain Integral Equa-
tions, briefly BDIEs. The two-operator BDIE system equivalence to the boundary
value problem, BDIE solvability and the invertibility of the boundary-domain integral
operators are proved in the appropriate Sobolev spaces.

1 Introduction

Partial differential equations (PDEs) with variable coefficients often arise in math-
ematical modelling of inhomogeneous media (e.g. functionally graded materials or
materials with damage induced inhomogeneity) in solid mechanics, electromagnetics,
thermo-conductivity, fluid flows trough porous media, and other areas of physics and
engineering.

Generally, explicit fundamental solutions are not available if the PDE coefficients
are not constant, preventing reduction of Boundary Value Problems (BVPs) for such
PDEs to explicit boundary integral equations, which could be effectively solved numer-
ically. Nevertheless, for a rather wide class of variable-coefficient PDEs it is possible to
use instead an explicit parametrix (Levi function) associated with the fundamental so-
lution of the corresponding frozen-coefficient PDEs, and reduce BVPs for such PDEs to
systems of Boundary-Domain Integral Equations for further numerical solution of the
latter, see e.g. [2, 3, 8, 9, 10, 12] and references therein. However this (one-operator)
approach does not work when the fundamental solution of the frozen-coefficient PDE
is not known explicitly (as e.g. in the Lamé system of anisotropic elasticity).

To overcome this difficulty, one can apply the so-called two-operator approach, for-
mulated in [11] for a certain non-linear problem, that employs a parametrix of another
(second) PDE, not related with the PDE in question, for reducing the BVP to a BDIE
system. Since the second PDE is rather arbitrary, one can always chose it in such a
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way, that its parametrix is known explicitly. The simplest choice for the second PDE
is the one with an explicit fundamental solution.

The corresponding BVPs are well studied nowadays, see e.g. [6, 5, 7], but this
is not the case for the two-operator Boundary-Domain Integral Equations associated
with the BVPs. The BDIE analysis is useful for discretisation and numerical solution
of the BDIE and thus of the associated BVP. The BDIE numerical applications are
beyond the scope of this paper being however the subject of other publications, see e.g.
[18, 19, 17, 15, 8, 9, 16].

To analyse the two-operator approach, we apply in this paper one of its linear
versions to the mixed (Dirichlet-Neumann) BVP for a linear second-order scalar elliptic
variable-coefficient PDE and reduce it to four different BDIE systems. Although the
considered BVP can be reduced to some other BDIE systems also by the one-operator
approach, it can be considered as a simple “toy” model showing the main features of
the two-operator approach arising also in reducing more general BVPs to BDIEs. The
two-operator BDIE systems are nonstandard systems of equations containing integral
operators defined on the domain under consideration and potential type and pseudo-
differential operators defined on open sub-manifolds of the boundary. Using the results
of [2], we give a rigorous analysis of the two-operator BDIEs and show that the BDIE
systems are equivalent to the mixed BVP and thus are uniquely solvable, while the
corresponding boundary domain integral operators are invertible in the appropriate
Sobolev-Slobodetski (Bessel-potential) spaces. This paper extends our publication [1].

2 Function spaces and BVP

Let Ω = Ω+ be a bounded open three-dimensional region of R3, Ω−:=R3\Ω+ and
the boundary ∂Ω be a simply connected, closed, infinitely smooth surface. Moreover,
∂Ω = ∂DΩ

⋃
∂NΩ where ∂DΩ and ∂NΩ are open, non-empty, non-intersecting, simply

connected sub-manifolds of ∂Ω with an infinitely smooth boundary curve ∂DΩ
⋂
∂NΩ ∈

C∞. Let us denote ∂j := ∂/∂xj (j = 1, 2, 3), ∂x = (∂1, ∂2, ∂3).We consider the following
PDE with a scalar variable coefficient a ∈ C∞(R3), a(x) ≥ C > 0,

Lau(x) := La(x, ∂x)u(x) :=
3∑
i=1

∂

∂xi

[
a(x)

∂u(x)

∂xi

]
= f(x), x ∈ Ω±, (2.1)

where u is the unknown function and f is a given function in Ω±.

In what follows, Hs(Ω+) = Hs
2(Ω

+), Hs
loc(Ω

−) = Hs
2, loc(Ω

−), Hs(∂Ω) = Hs
2(∂Ω)

denote the Bessel potential spaces (coinciding with the Sobolev-Slobodetski spaces if
s ≥ 0). For S1 ⊂ ∂Ω, we shall use the subspace H̃s(S1) = {g : g ∈ Hs(∂Ω), supp(g) ⊂
S1} of Hs(∂Ω), while Hs(S1) = {r

S1
g : g ∈ Hs(∂Ω)}, where r

S1
denotes the restriction

operator on S1.

By the trace theorem (see, e.g., [6]) for u ∈ H1(Ω±), it follows that u|±∂Ω := γ±u ∈
H

1
2 (∂Ω), where γ± is the trace operator on ∂Ω from Ω±. We shall write γu for γ±u if

γ+u = γ−u. We shall also use the notation u± for the traces u|±∂Ω, when this will cause
no confusion.
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For a linear operator L∗, we introduce the following subspace of Hs(Ω±) [5, 4]:

Hs,0(Ω±;L∗) := {g ∈ Hs(Ω±) : L∗g ∈ L2(Ω
±)},

‖g‖2
Hs,0(Ω±;L∗)

:= ‖g‖2
Hs + ‖L∗g‖2

H0(Ω±) = ‖g‖2
Hs + ‖L∗g‖2

L2(Ω±).

In this paper, we will particularly use the space H1,0(Ω±;L∗) for L∗ being either the
operator La defined in (2.1) or the Laplace operator ∆, and one can see that these
spaces coincide.

For u ∈ H1,0(Ω±; ∆), we can correctly define the (canonical) co-normal derivative
T±a u ∈ H− 1

2 (∂Ω), cf. [4, 7, 13], as

〈T±a u,w〉∂Ω
:= ±

∫
Ω±

[
γ±−1w · Lau+ Ea(u, γ

±
−1w)

]
dx ∀ w ∈ H1/2(∂Ω), (2.2)

where γ±−1 : H1/2(∂Ω) → H1(Ω±) is a right inverse to the trace operator γ±,

Ea(u, v) :=
3∑
i=1

a(x)
∂u(x)

∂xi

∂v(x)

∂xi
= a(x)∇u(x) · ∇v(x)

and 〈·, ·〉
∂Ω

denotes the duality brackets between the spaces H− 1
2 (∂Ω) and H

1
2 (∂Ω),

which extend the usual L2(∂Ω) inner product; to simplify notation we shall also write
sometimes the duality brackets as integral. Then for u ∈ H1,0(Ω±; ∆), v ∈ H1(Ω) the
first Green identity holds, [4, Lemma 3.4], [13, Theorem 3.9],∫

Ω±
v(x)Lau(x)dx = ±

∫
∂Ω

γ+v(x)T+
a u(x)dS(x)−

∫
Ω±
Ea(u, v)dx . (2.3)

If u ∈ H2(Ω±), the canonical co-normal derivative T±a u defined by (3.6) reduces to
its classical form

T±a u :=
3∑
i=1

a(x)ni(x)γ
±
[
∂u(x)

∂xi

]
= a(x)γ±

[
∂u(x)

∂n(x)

]
, (2.4)

where n(x) is the exterior (to Ω±) unit normal at the point x ∈ ∂Ω.
We shall derive and investigate the two-operator boundary-domain integral equation

systems for the following mixed boundary value problem.

Lau = f in Ω, (2.5)
γ+u = ϕ0 on ∂DΩ, (2.6)
T+
a u = ψ0 on ∂NΩ, (2.7)

where ϕ0 ∈ H
1
2 (∂DΩ), ψ0 ∈ H− 1

2 (∂NΩ) and f ∈ L2(Ω). Equation (3.7) is understood
in the distributional sense, condition (2.6) in the trace sense, while equality (2.7) in
functional sense (3.6).

Let us consider the auxiliary linear elliptic partial differential operator Lb defined
by

Lbu(x) := Lb(x, ∂x)u(x) :=
3∑
i=1

∂

∂xi

[
b(x)

∂u(x)

∂xi

]
, (2.8)
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where b ∈ C∞(R3), b(x) ≥ C > 0. Then for u ∈ H1,0(Ω±; ∆) = H1,0(Ω±; ∆) the
associate co-normal derivative operator T±b is defined by (3.6) (and for u ∈ H2(Ω±) by
(2.4)) with a replaced by b. If v ∈ H1,0(Ω±; ∆), u ∈ H1(Ω), then for the operator Lb
holds the first Green identity,∫

Ω±
u(x)Lbv(x)dx = ±

∫
∂Ω

γ+u(x)T±b v(x)dS −
∫

Ω±
Eb(u, v)dx. (2.9)

If u, v ∈ H1,0(Ω±; ∆), then subtracting (2.3) from (2.9), we obtain the two-operator
second Green identity, cf. [11],∫

Ω±
{u(x)Lbv(x)− v(x)Lau(x)} dx =

±
∫
∂Ω

{
γ±u(x)T+

b v(x)− γ±v(x)T+
a u(x)

}
dS +

∫
Ω±

[a(x)− b(x)]∇v(x) · ∇u(x)dx.

(2.10)

Note that if a = b, then, the last domain integral disappears, and the two-operator
Green identity reduces to the classical second Green identity.

3 Parametrix and potential type operators

As follows from [14, 8, 2], the function

Pb(x, y) = − 1

4πb(y)|x− y|
, x, y ∈ R3 (3.1)

is a parametrix (Levi function) for the operator Lb(x; ∂x) from (2.8), i.e., it satisfies
the equation

Lb(x, ∂x)Pb(x, y) = δ(x− y) +Rb(x, y)

with

Rb(x, y) =
3∑
i=1

xi − yi
4πb(y)|x− y|3

∂b(x)

∂xi
, x, y ∈ R3. (3.2)

The parametrix given by (3.1) is obtained as Pb(x, y) = Fb(x, y; y), where

Fb(x, y
′; y) = − 1

4πb(y)|x− y′|
, x, y ∈ R3

is the fundamental solution of the operator Lb(y, ∂x) := b(y)∆x with “frozen” coefficient
b(x) = b(y), i.e.,

Lb(y, ∂x)Fb(x, y
′; y) = δ(x− y′).

For the parametrix Pb(x, y), we evidently have,

Lb(y, ∂x)Pb(x, y) = δ(x− y).
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The parametrix-based Newtonian and the remainder volume potential operators,
corresponding to parametrix (3.1) and to remainder (3.2) are given, respectively, by

Pbg(y) :=

∫
Ω

Pb(x, y)g(x)dx, Rbg(y) :=

∫
Ω

Rb(x, y)g(x)dx. (3.3)

Let us introduce the single layer and the double layer surface potential operators,
based on parametrix (3.1),

Vbg(y) := −
∫
∂Ω

Pb(x, y)g(x)dSx, y /∈ ∂Ω, (3.4)

Wbg(y) := −
∫
∂Ω

[Tb(x, n(x), ∂x)Pb(x, y)]g(x)dSx, y /∈ ∂Ω. (3.5)

For y ∈ ∂Ω, the corresponding boundary integral (pseudodifferential) operators of
direct surface values of the simple layer potential, Vb, and of the double layer potential,
Wb, are

Vbg(y) := −
∫
∂Ω

Pb(x, y)g(x)dSx, (3.6)

Wbg(y) := −
∫
∂Ω

[Tb(x, n(x), ∂x)Pb(x, y)]g(x)dSx. (3.7)

We can also calculate at y ∈ ∂Ω the co-normal derivatives, associated with the operator
La, of the single layer potential and of the double layer potential:

T±a Vbg(y) =
a(y)

b(y)
T±b Vbg(y), (3.8)

L±abg(y) := T±a Wbg(y) =
a(y)

b(y)
T±b Wbg(y) =:

a(y)

b(y)
L±b g(y). (3.9)

The direct value operators associated with (3.8) are

W ′
abg(y) := −

∫
∂Ω

[Ta(y, n(y), ∂y)Pb(x, y)]g(x)dSx =
a(y)

b(y)
W ′

bg(y), (3.10)

W ′
bg(y) := −

∫
∂Ω

[Tb(y, n(y), ∂y)Pb(x, y)]g(x)dSx. (3.11)

From equations (3.3)-(3.11) we deduce representations of the parametrix-based sur-
face potential boundary operators in terms of their counterparts for b = 1, that is,
associated with the fundamental solution P∆ = −(4π|x − y|)−1 of the Laplace opera-
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tor ∆.

Pbg =
1

b
P∆g, Rbg = −1

b

3∑
j=1

∂jP∆ [g(∂jb)] , (3.12)

a

b
Vag = Vbg =

1

b
V∆g;

a

b
Wa

(
bg

a

)
= Wbg =

1

b
W∆ (bg) , (3.13)

a

b
Vag = Vbg =

1

b
V∆g;

a

b
Wa

(
bg

a

)
= Wbg =

1

b
W∆ (bg) , (3.14)

W ′
abg =

a

b
W ′

bg =
a

b

{
W ′

∆ (bg) +
[
b
∂

∂n

(1

b

)]
V∆g

}
, (3.15)

L±abg =
a

b
L±b g =

a

b

{
L∆(bg) +

[
b
∂

∂n

(1

b

)]
γ±W∆(bg)

}
. (3.16)

It is taken into account that b and its derivatives are continuous in R3 and L∆(bg) :=
L+

∆(bg) = L−∆(bg) by the Liapunov-Tauber theorem.
The mapping and jump properties of the parametrix-based volume and surface

potentials follow from [2] (see also [12]) and are provided in Appendix A to this paper.

3.1 Two-operator third Green identity

For v(x) := Pb(x, y) and u ∈ H1,0(Ω; ∆), we obtain from (2.10) by standard limiting
procedures (cf. [14]) the two-operator third Green identity,

u+ Zbu+Rbu− VbT
+
a u+Wbγ

+u = PbLau in Ω, (3.17)

where

Zbu(y) := −
∫

Ω

[a(x)− b(x)]∇xPb(x, y) · ∇u(x)dx

=
1

b(y)

3∑
j=1

∂jP∆ [(a− b)∂ju] (y), y ∈ Ω. (3.18)

Using the Gauss divergence theorem, we can rewrite Zbu(y) in the form that does not
involve derivatives of u,

Zbu(y) =

[
a(y)

b(y)
− 1

]
u(y) + Ẑbu(y), (3.19)

Ẑbu(y) :=
a(y)

b(y)
Waγ

+u(y)−Wbγ
+u(y) +

a(y)

b(y)
Rau(y)−Rbu(y), (3.20)

which allows to call Zb integral operator in spite of its integro-differential representation
(3.18).

Note that substituting (3.19)-(3.20) in (3.17) and multiplying by b(y)/a(y) one
reduces (3.17) to the one-operator parametrix-based third Green identity obtained in
[2],

u+Rau− VaT
+
a u+Waγ

+u = PaLau in Ω.
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Relations (3.18)-(3.20) and the mapping properties of Pa, Ra, Rb, Wa and Wb, see
Appendix, imply the following assertion.

Theorem 3.1. The operators

Zb : Hs(Ω) → Hs(Ω), s >
1

2
,

Ẑb : Hs(Ω) → Hs,0(Ω; ∆), s ≥ 1,

are continuous.

If u ∈ H1,0(Ω; ∆) is a solution to equation (3.7) with f ∈ L2(Ω), then (3.17) gives

u+ Zbu+Rbu− VbT
+
a u+Wbγ

+u = Pbf in Ω, (3.21)
1

2
γ+u+ γ+Zbu+ γ+Rbu− VbT+

a u+Wbγ
+u = γ+Pbf on ∂Ω, (3.22)(

1− a

2b

)
T+
a u+ T+

a Zbu+ T+
a Rbu−W ′

abT
+
a u+ L+

abγ
+u = T+

a Pbf on ∂Ω. (3.23)

Note that if Pb is not only the parametrix but also the fundamental solution of the
operator Lb, then the remainder operator Rb vanishes in (3.21)-(3.23) (and everywhere
in the paper), while the operator Zb does not unless La = Lb.

For some functions f,Ψ,Φ, let us consider a more general “indirect” integral relation,
associated with (3.21),

u+ Zbu+Rbu− VbΨ +WbΦ = Pbf, in Ω (3.24)

Lemma 3.1. Let f ∈ L2(Ω), Ψ ∈ H− 1
2 (∂Ω), Φ ∈ H

1
2 (∂Ω), and u ∈ H1(Ω) satisfy

(3.24). Then u ∈ H1,0(Ω; ∆),
Lau = f in Ω (3.25)

and
Vb
(
Ψ− T+

a u
)
−Wb

(
Φ− γ+u

)
= 0 in Ω. (3.26)

Proof. We generalize here the proof of Lemma 4.1 given in [2] for equation (3.24)
without Zbu. First of all, let us prove that u ∈ H1,0(Ω;La). Indeed, since

Lau = ∆(au)−
3∑
i=1

∂i(u∂ia),

and the last term belongs to L2(Ω), we need only to show that ∆[au] ∈ L2(Ω) (the
derivatives are understood in the distributional sense). Furthermore, by (3.24) due to
(3.19) we have

au = bPbf − bRbu− bẐbu+ bVbΨ− bWbΦ = P∆f − bRbu− bẐbu+ V∆Ψ−W∆(bΦ)

We notice that the last two terms in the right-hand side are harmonic functions. It
is clear that Rbu ∈ H2(Ω), Ẑbu ∈ H1,0(Ω) for u ∈ H1(Ω) and ∆[P∆f ] = f ∈ L2(Ω).
Therefore ∆(au) ∈ L2 and thus La(x, ∂x)u ∈ L2(Ω). So we can write two-operator
Green identity (3.24) for the function u.
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Subtracting (3.24) from (3.17), we obtain

−VbΨ∗ +WbΦ
∗ = Pb[Lau− f ] in Ω, (3.27)

where Ψ∗ := T+
a u−Ψ, Φ∗ := γ+u− Φ. Multiplying equality (3.27) by b we get

−V∆Ψ∗ +W∆(bΦ∗) = P∆ [Lau− f ] in Ω.

Applying the Laplace operator ∆ to the last equation and taking into consideration that
both functions in the left-hand side are harmonic surface potentials, while the right-
hand side function is the classical Newtonian volume potential, we arrive at equation
(3.25). Substituting (3.25) in (3.27) leads to (3.26).

The following lemma is proved in [2].

Lemma 3.2.

(i) Let Ψ∗ ∈ H− 1
2 (∂Ω). If VbΨ∗ = 0 in Ω, then Ψ∗ = 0

(ii) Let Φ∗ ∈ H 1
2 (∂Ω). If WbΦ

∗ = 0 in Ω, then Φ∗ = 0

(iii) Let ∂Ω = S1 ∪ S2, where S1 and S2 are nonintersecting simply connected sub-
manifolds of ∂Ω with infinitely smooth boundaries and S1 is nonempty. Let Ψ∗ ∈
H̃− 1

2 (S1),Φ
∗ ∈ H̃ 1

2 (S2). If VbΨ
∗ −WbΦ

∗ = 0, in Ω, then Ψ∗ = 0 and Φ∗ = 0 on
∂Ω.

4 Two-operator boundary-domain integral equations

Let Φ0 ∈ H
1
2 (∂Ω) and Ψ0 ∈ H− 1

2 (∂Ω) be some extensions of the given data ϕ0 ∈
H

1
2 (∂DΩ) from ∂DΩ to ∂Ω and ψ0 ∈ H− 1

2 (∂NΩ) from ∂NΩ to ∂Ω, respectively. Let us
also denote

F0 := Pbf + VbΨ0 −WbΦ0 in Ω.

Note that for f ∈ L2(Ω), Ψ0 ∈ H− 1
2 (∂Ω) and Φ0 ∈ H

1
2 (∂Ω), we have the inclusion

F0 ∈ H1,0(Ω, La) due to the mapping properties of the Newtonian (volume) and layer
potentials (cf. Theorems 3.1 and 3.10 in [2]).

To reduce BVP (3.7)-(2.7) to one or another two-operator BDIE system, we shall
use equation (3.21) in Ω, and restrictions of equation (3.22) or (3.23) to appropriate
parts of the boundary. We shall always substitute Φ0 +ϕ for γ+u and Ψ0 +ψ for T+

a u,
cf. [2], where Φ0 ∈ H

1
2 (∂Ω) and Ψ0 ∈ H− 1

2 (∂Ω) are considered as known, while ψ
belongs to H̃− 1

2 (∂DΩ) and ϕ to H̃
1
2 (∂NΩ) due to the boundary conditions (2.6)-(2.7)

and are to be found along with u ∈ H1,0(Ω; ∆). This will lead us to segregated BDIE
systems with respect to the unknown triple

U := [u, ψ, ϕ]> ∈ H1(Ω)× H̃− 1
2 (∂DΩ)× H̃

1
2 (∂NΩ).
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4.1 Boundary-domain integral equation system M11

Let us use equation (3.21) in Ω, the restriction of equation (3.22) on ∂DΩ and the
restriction of equation (3.23) on ∂NΩ. Then we arrive at the following two-operator
segregated system of BDIEs:

u+ Zbu+Rbu− Vbψ +Wbϕ = F0 in Ω, (4.1)
γ+Zbu+ γ+Rbu− Vbψ +Wbϕ = γ+F0 − ϕ0 on ∂DΩ, (4.2)

T+
a Zbu+ T+

a Rbu−W ′
abψ + L+

abϕ = T+
a F0 − ψ0 on ∂NΩ , (4.3)

which we call BDIE system M11, where M stands for the mixed problem and 11 hints
that the integral equations on the Dirichlet and Neumann parts of the boundary are
of the first kind. Note that due to Lemma 3.1, all terms of equation (4.1) belong to
H1,0(Ω; ∆) and their co-normal derivatives are well defined.

System (4.1)-(4.3) can be rewritten in the form

A11U = F11,

where

F11 := [F0, r∂DΩ
γ+F0 − ϕ0, r∂N Ω

T+
a F0 − ψ0]

>,

A11 :=


I + Zb +Rb −Vb Wb

r
∂DΩ

γ+[Zb +Rb] −r
∂DΩ

Vb r
∂DΩ

Wb

r
∂N Ω

T+
a [Zb +Rb] −r

∂N Ω
W ′

ab r
∂N Ω

L+
ab

 .

4.2 Boundary-domain integral equation system M12

To obtain another system, we use equation (3.21) in Ω and equation (3.22) on the
whole boundary ∂Ω, and arrive at the two-operator segregated BDIE system M12:

u+ Zbu+Rbu− Vbψ +Wbϕ = F0 in Ω, (4.4)
1

2
ϕ+ γ+Zbu+ γ+Rbu− Vbψ +Wbϕ = γ+F0 − Φ0 on ∂Ω . (4.5)

System (4.4)-(4.5) can be written in the form

A12U = F12,

where

F12 := [F0, γ
+F0 − Φ0]

>,

A12 :=

[
I + Zb +Rb −Vb Wb

γ+[Zb +Rb] −Vb 1
2
I +Wb

]
.
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4.3 Boundary-domain integral equation system M21

To obtain one more system, we use equation (3.21) in Ω and equation (3.23) on ∂Ω
and arrive at the two-operator segregated BDIE system M21:

u+ Zbu+Rbu− Vbψ +Wbϕ = F0 in Ω, (4.6)(
1− a

2b

)
ψ + T+

a Zbu+ T+
a Rbu−W ′

abψ + L+
abϕ = T+

a F0 −Ψ0 on ∂Ω. (4.7)

System (4.6)-(4.7) can be written in the form

A21U = F21,

where

F21 := [F0, T
+
a γ

+F0 −Ψ0]
>,

A21 :=

[
I + Zb +Rb −Vb Wb

T+
a [Zb +Rb] (1− a

2b
)I −W ′

ab L+
ab

]
.

4.4 Boundary-domain integral equation system M22

To reduce BVP (3.7)-(2.7) to a BDIE system of “almost” the second kind (up to the
spaces), we use equation (3.21) in Ω, the restriction of equation (3.23) to ∂DΩ, and the
restriction of equation (3.22) to ∂NΩ. Then we arrive at the following two-operator
segregated BDIE system M22:

u+ Zbu+Rbu− Vbψ +Wbϕ = F0 in Ω, (4.8)(
1− a

2b

)
T+
a Zbu+ T+

a Rbu−W ′
abψ + L+

abϕ = T+
a F0 −Ψ0 on ∂DΩ, (4.9)

1

2
ϕ+ γ+Zbu+ γ+Rbu− Vaψ +Waϕ = F+

0 − Φ0 on ∂NΩ. (4.10)

System (4.8)-(4.10) can be rewritten in the form

A22U = F22,

where

F22 := [F0, r∂DΩ
(T+

a F0 −Ψ0), r∂N Ω
(γ+F0 − Φ0)]

>,

A22 :=


I + Zb +Rb −Vb Wb

r
∂DΩ

T+
a [Zb +Rb] (1− a

2b
)I − r

∂DΩ
W ′

ab r
∂DΩ

L+
ab

r
∂N Ω

γ+[Zb +Rb] −r
∂N Ω

Vb 1
2
I + r

∂N Ω
Wb

 .
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5 Equivalence and invertibility

Now let us prove the equivalence of BVP (3.7)-(2.7) with the BDIE systems M11, M12,
M21 and M22.

Theorem 5.1. Let f ∈ L2(Ω) and let Φ0 ∈ H
1
2 (∂Ω) and Ψ0 ∈ H− 1

2 (∂Ω) be some fixed
extensions of ϕ0 ∈ H

1
2 (∂DΩ), ψ0 ∈ H− 1

2 (∂NΩ) respectively.

(i) If some u ∈ H1(Ω) solves the mixed BVP (3.7)-(2.7) in Ω, then the solution is
unique and the triple (u, ψ, ϕ) ∈ H1(Ω)× H̃− 1

2 (∂DΩ)× H̃
1
2 (∂NΩ), where

ψ = T+
a u−Ψ0, ϕ = γ+u− Φ0 on ∂Ω, (5.1)

solves the BDIE systems M11, M12, M21 and M22.

(ii) Vise versa, if a triple (u, ψ, ϕ) ∈ H1(Ω) × H̃− 1
2 (∂DΩ) × H̃

1
2 (∂NΩ) solves BDIE

system M11 or M12 or M21 or M22, then the solution is unique, the function u
solves BVP (3.7)-(2.7), and relations (5.1) hold.

Proof. Let u ∈ H1(Ω) be a solution to BVP (3.7)-(2.7). Then it is unique (cf. Theorem
2.1 in [2]). Set ψ := T+

a u − Ψ0 , ϕ := γ+u − Φ0. Evidently, ψ ∈ H̃− 1
2 (∂DΩ) and

ϕ ∈ H̃ 1
2 (∂NΩ). Then it immediately follows from relations (3.21)-(3.23) that the triple

(u, ψ, ϕ) satisfies the BDIE systems M11, M12, M21 and M22, which completes the
proof of item (i).

We give below proofs of item (ii) for the four BDIE systems M11, M12, M21 and
M22 one by one.

M11. Let a triple (u, ψ, ϕ) ∈ H1
2 (Ω) × H̃− 1

2 (∂DΩ) × H̃
1
2 (∂NΩ) solves BDIE system

(4.1)-(4.3). Let us consider the trace of equation (4.1) on ∂DΩ, taking into account the
jump properties (see Theorem A.6), and subtract equation (4.2) to obtain

γ+u = ϕ0 on ∂DΩ, (5.2)

i.e., u satisfies the Dirichlet condition (2.6). Taking the co-normal derivative T+
a of

equation (4.1) on ∂NΩ, again with the account of the jump properties, and subtracting
equation (4.3), we obtain

T+
a u = ψ0, on ∂NΩ. (5.3)

i.e. u satisfies the Neumann condition (2.7). Taking into account that ϕ = 0, Φ0 = ϕ0

on ∂DΩ and ψ = 0, Ψ0 = ψ0 on ∂NΩ, equations (5.2) and (5.3) imply that the first
equation of (5.1) is satisfied on ∂NΩ and the second equations (5.1) is satisfied on ∂DΩ.

Equations (4.1) and Lemma 3.1 with Ψ = ψ + Ψ0, Φ = ϕ + Φ0 imply that u is a
solution to (3.7) and

VbΨ
∗ −WbΦ

∗ = 0, in Ω,

where Ψ∗ = Ψ0 + ψ − T+
a u and Φ∗ = Φ0 + ϕ− γ+u. Since first equation (5.1) on ∂NΩ

and the second equation (5.1) on ∂DΩ, already proved, we have Ψ∗ ∈ H̃− 1
2 (∂DΩ), Φ∗ ∈

H̃
1
2
2 (∂NΩ). Then Lemma 3.2 (iii) with S1 = ∂DΩ, S2 = ∂NΩ, implies Ψ = Φ = 0, which

completes the proof of conditions (5.1).
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M12. Let the triple (u, ψ, ϕ) ∈ H1
2 (Ω)× H̃

1
2 (∂DΩ)× H̃− 1

2 (∂NΩ) solve BDIE system
(4.4)-(4.5). Let us consider the trace of equation (4.4) on ∂Ω, taking into account the
jump properties, and subtract it from (4.5) to obtain,

γ+u = Φ0 + ϕ on ∂Ω. (5.4)

This means that the second equation in (5.1) holds. Since ϕ = 0, Φ0 = ϕ0 on ∂DΩ we
see that the Dirichlet condition (2.6) is satisfied.

Equation (4.4) and Lemma 3.1 with Ψ = ψ + Ψ0, Φ = ϕ + Φ0 imply that u is a
solution to equation (3.7) and

Vb(Ψ0 + ψ − T+
a u)−Wb(Φ0 + ϕ− γ+u) = 0 in Ω. (5.5)

Due to (5.4), the second term in (5.5) vanishes, and by Lemma 3.2 (i) we obtain

Ψ0 + ψ − T+
a u = 0 on ∂Ω, (5.6)

i.e., the first equation in (5.1) is satisfied as well. Since ψ = 0, Ψ0 = ψ0 on ∂NΩ
equation (5.6) implies that u satisfies the Neumann boundary condition (2.7).

M21. Let now a triple (u, ψ, ϕ) ∈ H1
2 (Ω)×H̃ 1

2 (∂DΩ)×H̃− 1
2 (∂NΩ) solve BDIE system

(4.6)-(4.7). Taking the co-normal derivative of equation (4.6) on ∂Ω and subtracting
it from equation (4.7), we obtain

ψ + Ψ0 − T+
a u = 0 on ∂Ω, (5.7)

which proves the first equation in (5.1). Since ψ = 0 on ∂NΩ and Ψ0 = ψ0 on ∂NΩ, we
see that u satisfies the Neumann condition (2.7).

Equation (4.6) and Lemma 3.1 with Ψ = ψ + Ψ0, Φ = ϕ + Φ0 imply that u is a
solution to equation (3.7) and

Vb(Ψ0 + ψ − T+
a u)−Wb(Φ0 + ϕ− γ+u) = 0 in Ω. (5.8)

Due to equation (5.7) the first term vanishes in (5.8), and by Lemma 3.2 (ii) we obtain,

Φ0 + ϕ− γ+u = 0 on ∂Ω,

which means the second condition in (5.1) holds as well. Taking into account that
ϕ = 0 on ∂DΩ and Φ0 = ϕ on ∂DΩ , we conclude that u satisfies the Dirichlet condition
(2.6).

M22. Let now a triple (u, ψ, ϕ) ∈ H1(Ω)×H̃ 1
2 (∂DΩ)×H̃− 1

2 (∂NΩ) solve BDIE system
(4.8)-(4.10). Taking the co-normal derivative of equation (4.8) on ∂DΩ and subtracting
it from equation (4.9), we obtain

ψ = T+
a u−Ψ0 on ∂DΩ. (5.9)

Further, take the trace of equation (4.8) on ∂NΩ and subtract it from equation (4.10).
We get

ϕ = γ+u− Φ0 on ∂NΩ. (5.10)
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Equations (5.9) and (5.10) imply that the first equation (5.1) is satisfied on ∂DΩ and
the second equation (5.1) is satisfied on ∂NΩ.

Equations (4.8) and Lemma 3.1 with Ψ = ψ + Ψ0, Φ = ϕ + Φ0 imply that u is a
solution to equation (3.7) and VbΨ∗−WbΨ

∗ = 0 in Ω, where Ψ∗ = Ψ0+ψ−T+
a u and

Φ∗ = Φ0 +ϕ−γ+u. Due to (5.1) and (5.10), we have Ψ∗ ∈ H̃− 1
2 (∂NΩ),Φ∗ ∈ H̃ 1

2 (∂DΩ).
Lemma 3.2 (iii) with S1 = ∂NΩ and S2 = ∂DΩ implies Ψ∗ = Φ∗ = 0 which completes
the proof of conditions (5.1) on the whole boundary ∂Ω. Taking into account that
ϕ = 0 on ∂DΩ and Φ0 = ϕ0 on ∂DΩ, and ψ = 0 on ∂NΩ and Ψ0 = ψ0 on ∂NΩ,
equations (5.1) imply the boundary conditions (2.6) and (2.7).

Unique solvability of the BDIE systems M11, M12, M12 and M22 then follows from
the already proved relations (5.1) and the unique solvability of BVP (3.7)-(2.7) stated
in item (i).

The mapping properties of operators in (4.4), (4.6), (4.8) and (4.11) described in
Appendix A and Theorem 5.1 imply the following statement.

Corollary 5.1. The following operators are continuous and injective

A11 : H1, 0
2 (Ω;La)× H̃− 1

2 (∂DΩ)× H̃
1
2 (∂NΩ) →

H1, 0(Ω;La)×H
1
2 (∂DΩ)×H− 1

2 (∂NΩ), (5.11)

A12 : H1, 0(Ω;La)× H̃− 1
2 (∂DΩ)× H̃

1
2 (∂NΩ) →

H1, 0(Ω;La)×H
1
2 (∂Ω), (5.12)

A21 : H1, 0(Ω;La)× H̃− 1
2 (∂DΩ)× H̃

1
2 (∂NΩ) →

H1, 0(Ω;La)×H
1
2 (∂Ω), (5.13)

A22 : H1, 0(Ω;La)× H̃− 1
2 (∂DΩ)× H̃

1
2 (∂NΩ) →

H1, 0(Ω;La)×H− 1
2 (∂DΩ)×H

1
2 (∂NΩ). (5.14)

Now we are in the position to analyse the invertibility of the operators A11, A12,
A21and A22.

Theorem 5.2. Operators (5.11)-(5.14) are continuously invertible.

Proof. To prove the invertibility of operator (5.11), let us consider BDIE system M11
with an arbitrary right-hand side F11

∗ = {F11
∗1 ,F11

∗2 ,F11
∗3}> ∈ H1, 0(Ω;La)×H

1
2 (∂DΩ)×

H− 1
2 (∂NΩ). Taking S1 = ∂NΩ, S2 = ∂DΩ and

F = F11
∗1 , Ψ = r

∂N Ω
T+
a F11

∗1 −F11
∗3 , Φ = r

∂DΩ
γ+F11

∗1 −F11
∗2

in [2, Lemma 5.13], presented as Lemma B.1 in the Appendix, we obtain that F11
∗ can

be represented as

F11
∗1 = Pb f∗ + Vb Ψ∗ −Wb Φ∗ in Ω,

F11
∗2 = r

∂DΩ

[
γ+F11

∗1 − Φ∗
]
,

F11
∗3 = r

∂N Ω

[
T+
a F11

∗1 −Ψ∗
]
,
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where the triple

(f∗,Ψ∗,Φ∗)
> = C∂NΩ,∂DΩF11

∗ ∈ L2(Ω)×H− 1
2 (∂Ω)×H

1
2 (∂Ω) (5.15)

is unique and the operator

C∂NΩ,∂DΩ : H1, 0(Ω;La)×H
1
2 (∂DΩ)×H− 1

2 (∂NΩ) → L2(Ω)×H− 1
2 (∂Ω)×H

1
2 (∂Ω) (5.16)

is linear and continuous.
Applying Theorem 5.1 with

f = f∗, Ψ0 = Ψ∗, Φ0 = Φ∗, ψ0 = r
∂N Ω

Ψ0, ϕ0 = r
∂DΩ

Φ0, (5.17)

we obtain that system M11 is uniquely solvable and its solution is

U1 = (ADN)−1(f∗, r∂DΩ
Φ∗, r∂N Ω

Ψ∗)
>, U2 = T+

a U1−Ψ∗, U3 = γ+U1−Φ∗ (5.18)

while r
∂N Ω

U2 = 0, r
∂DΩ

U3 = 0. Here (ADN)−1 is the continuous inverse operator
to the left-hand-side operator of the mixed BVP (3.7)-(2.7), ADN : H1,0(Ω;La) →
L2(Ω) × H

1
2 (∂DΩ) × H− 1

2 (∂NΩ), cf. [2, Corollary 5.16]. Representation (5.15), and
continuity of operator (5.16) complete the proof for A11.

To prove the invertibility of operator (5.14), we apply similar arguments. Let us con-
sider the BDIE system M22 with an arbitrary right-hand side F22

∗ = {F22
∗1 ,F22

∗2 ,F22
∗3}> ∈

H1, 0(Ω;La)×H− 1
2 (∂DΩ)×H

1
2 (∂NΩ). Taking now S1 = ∂DΩ, S2 = ∂NΩ,

F = F22
∗1 , Ψ = r

∂DΩ
T+
a F22

∗1 −F22
∗2 , Φ = r

∂N Ω
γ+F22

∗1 −F22
∗3

in [2, Lemma 5.13], i.e., Lemma B.1 in the Appendix, we obtain that F22
∗ can be

represented as

F22
∗1 = Pb f∗ + Vb Ψ∗ −Wb Φ∗ in Ω,

F22
∗2 = r

∂DΩ

[
T+
a F22

∗1 − Ψ∗
]
,

F22
∗3 = r

∂N Ω

[
γ+F22

∗1 − Φ∗
]
,

where the triple

(f∗,Ψ∗,Φ∗)
> = C∂DΩ,∂NΩF22

∗ ∈ L2(Ω)×H− 1
2 (∂Ω)×H

1
2 (∂Ω) (5.19)

is unique and the operator

C∂NΩ,∂DΩ : H1, 0(Ω;La)×H− 1
2 (∂DΩ)×H− 1

2 (∂NΩ) → L2(Ω)×H− 1
2 (∂Ω)×H

1
2 (∂Ω)
(5.20)

is linear and continuous.
Applying now Theorem 5.1 with the same substitutions (5.17), we obtain that

system M22 is uniquely solvable and its solution is given by (5.18). Representation
(5.19), and continuity of operator (5.20) complete the proof for M22.

To prove the invertibility of operator (5.12), let us consider the BDIE system M12
with an arbitrary right-hand side F12

∗ = {F12
∗1 ,F12

∗2}> ∈ H1, 0(Ω;La)×H
1
2 (∂Ω). Taking
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F = F12
∗1 , Φ = γ+F12

∗1 − F12
∗2 on ∂Ω in Corollary B.1 in the Appendix, we obtain the

representation

F12
∗1 = Pb f∗ + Vb Ψ∗ −Wb Φ∗ in Ω,

F12
∗2 = γ+F12

∗1 − Φ∗ on ∂Ω,

where the triple

(f∗,Ψ∗,Φ∗)
> = C̃Φ∗F∗ ∈ L2(Ω)×H− 1

2 (∂Ω)×H
1
2 (∂Ω) (5.21)

is unique and the operator

C̃Φ∗ : H1, 0(Ω;La)×H
1
2 (∂Ω) → L2(Ω)×H− 1

2 (∂Ω)×H
1
2 (∂Ω) (5.22)

is linear and continuous.
Applying Theorem 5.1 with substitutions (5.17), we obtain that system M12 is

uniquely solvable and its solution is given by (5.18). Representation (5.21), and conti-
nuity of operator (5.22) complete the proof for M12.

Finally to prove invertibility of operator (5.13), let us consider the BDIE system
M21 with an arbitrary right hand side F21

∗ = {F21
∗1 ,F21

∗2}> ∈ H1, 0(Ω;La) ×H− 1
2 (∂Ω).

Taking F = F21
∗1 , Ψ = T+

a F21
∗1 −F21

∗2 on ∂Ω in Corollary B.2 in the Appendix, we obtain
that

F21
∗1 = Pb f∗ + Vb Ψ∗ −Wb Φ∗ in Ω,

F21
∗2 = T+

a F21
∗1 −Ψ∗ on ∂Ω.

where the triple

(f∗,Ψ∗,Φ∗)
> = C̃Ψ∗F∗ ∈ L2(Ω)×H− 1

2 (∂Ω)×H
1
2 (∂Ω) (5.23)

is unique and the operator

C̃Ψ∗ : H1, 0(Ω;La)×H− 1
2 (∂Ω) → L2(Ω)×H− 1

2 (∂Ω)×H
1
2 (∂Ω) (5.24)

is linear and continuous. Applying Theorem 5.1 with substitutions (5.17), we obtain
that the system M21 is uniquely solvable and its solution is given by (5.18). Represen-
tation (5.23), and continuity of operator (5.24) complete the proof for M21.

APPENDICES

A Mapping and jump properties of the volume and surface
potentials

The mapping properties of the parametrix-based volume and surface potentials formu-
lated in Appendix A are proved or immediately follow from [2] (see also [12]).



Analysis of two-operator boundary-domain integral. . . 35

Theorem A.1. Let Ω be a bounded open three-dimensional region of R3 with a simply
connected, closed, infinitely smooth boundary ∂Ω. The operators

Pb : H̃s(Ω) → Hs+2(Ω), s ∈ R (A.1)

: Hs(Ω) → Hs+2(Ω), s > −1

2
, (A.2)

: Hs(Ω) → Hs+2,0(Ω;La), s ≥ 0, (A.3)
Rb : H̃s(Ω) → Hs+1(Ω), s ∈ R, (A.4)

: Hs(Ω) → Hs+1(Ω), s > −1

2
, (A.5)

: Hs(Ω) → Hs+1,0(Ω;La), s ≥ 1, (A.6)

γ+Pb : H̃s(Ω) → Hs+ 3
2 (∂Ω), s > −3

2
, (A.7)

: Hs(Ω) → Hs+ 3
2 (∂Ω), s > −1

2
, (A.8)

γ+Rb : H̃s(Ω) → Hs+ 1
2 (∂Ω), s > −1

2
, (A.9)

: Hs(Ω) → Hs+ 1
2 (∂Ω), s > −1

2
, (A.10)

T+
a Pb : H̃s(Ω) → Hs+ 1

2 (∂Ω), s > −1

2
, (A.11)

: Hs(Ω) → Hs+ 1
2 (∂Ω), s > −1

2
, (A.12)

T+
a Rb : H̃s(Ω) → Hs− 1

2 (∂Ω), s >
1

2
, (A.13)

: Hs(Ω) → Hs− 1
2 (∂Ω), s >

1

2
(A.14)

are continuous and the operators

Rb : Hs(Ω) → Hs(Ω), s > −1

2
, (A.15)

: Hs(Ω) → Hs,0(Ω;La), s > 1, (A.16)

r
S1
γ+Rb : Hs(Ω) → Hs− 1

2 (S1), s > −1

2
, (A.17)

r
S1
T+
a Rb : Hs(Ω) → Hs− 3

2 (S1), s >
1

2
(A.18)

are compact for any non-empty, open sub-manifold S1 of ∂Ω with an infinitely smooth
boundary.

Proof. For a = b, the mapping properties are stated in Theorem 3.8 in [2] and Corollary
B.3 in [12]. The case a 6= b then follows by taking into account the relation T+

a = a
b
T+
b ,

for (A.11)-(A.14) and (A.18).
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Theorem A.2. The following operators are continuous

Vb : Hs(∂Ω) → Hs+ 3
2 (Ω)

[
Hs(∂Ω) → H

s+ 3
2

loc (Ω−)
]
, s ∈ R,

Wb : Hs(∂Ω) → Hs+ 1
2 (Ω)

[
Hs(∂Ω) → H

s+ 1
2

loc (Ω−)
]
, s ∈ R,

Vb : Hs(∂Ω) → Hs+ 3
2
,0(Ω, La)

[
Hs(∂Ω) → H

s+ 3
2
,0

loc (Ω−, La)
]
, s ≥ −1

2
,

Wb : Hs(∂Ω) → Hs+ 1
2
,0(Ω, La)

[
Hs(∂Ω) → H

s+ 1
2
,0

loc (Ω−, La)
]
, s ≥ 1

2
.

Theorem A.3. Let s ∈ R. The following pseudodifferential operators are continuous

Vb : Hs(∂Ω) → Hs+1(∂Ω)

Wb : Hs(∂Ω) → Hs+1(∂Ω)

W ′
ab : Hs(∂Ω) → Hs+1(∂Ω)

L±ab : Hs(∂Ω) → Hs−1(∂Ω).

Due to the Rellich compact embedding theorem, Theorem A.3 implies the following
assertion.

Theorem A.4. Let s ∈ R. Let S1 and S2 with ∂S1, ∂S2 ∈ C∞ be nonempty open
submanifolds of ∂Ω. The operators

r
S2
Vb : H̃s(S1) → Hs(S2)

r
S2
Wb : H̃s(S1) → Hs(S2)

r
S2
W ′

ab : H̃s(S1) → Hs(S2)

are compact.

Theorem A.5. Let S1 be a nonempty, simply connected sub-manifold of ∂Ω with in-
finitely smooth boundary, and 0 < s < 1. Then the operator r

S1
Vb : H̃s−1(S1) → Hs(S1)

is invertible.

Similar by to Theorems 3.3 and 3.6 in [2] (see also Appendix A and B in [12]),
relations (3.13)-(3.16) imply the two following jump relation theorems.

Theorem A.6. Let g1 ∈ H− 1
2 (∂Ω), and g2 ∈ H

1
2 (∂Ω). Then there hold the following

relations on ∂Ω,

γ±Vbg1 = Vbg1,

γ±Wbg2 = ∓1

2
g2 +Wbg2,

T±a Vbg1 = ±1

2

a

b
g1 +W ′

abg1.
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Theorem A.7. Let S1 and ∂Ω\S1 be nonempty, open, simply connected sub-manifolds
of ∂Ω with an infinitely smooth boundary, and 0 < s < 1. Then

L+
ab +

a

b

∂b

∂n

(
−1

2
I +Wb

)
= L−ab +

a

b

∂b

∂n

(
1

2
I +Wb

)
on ∂Ω.

Moreover, the pseudodifferential operator r
S1
L̂ab : H̃s(S1) → Hs−1(S1), where

L̂abg :=

[
b

a
L±ab +

∂b

∂n

(
∓1

2
I +Wb

)]
g = L∆(bg) on ∂Ω,

is invertible, while the operators

r
S1

(
b

a
L±ab − L̂ab

)
: H̃s(S1) → Hs(S1)

are bounded and the operators

r
S1

(
b

a
L±ab − L̂ab

)
: H̃s(S1) → Hs−1(S1)

are compact.

B Representation lemmas

To prove the invertibility of the BDIE operators we need the following representation
statements.

Lemma B.1 ([2], Lemma 5.13). Let ∂Ω = S̄1∪S̄2, where S1 and S2 are nonintersect-
ing simply connected nonempty sub-manifolds of ∂Ω with infinitely smooth boundaries.
For any triple

F∗ = (F,Ψ,Φ)> ∈ H1,0(Ω;La)×H− 1
2 (S1)×H

1
2 (S2)

there exists a unique triple

(f∗,Ψ∗,Φ∗)
> = C̃S1,S2 F∗ ∈ L2(Ω)×H− 1

2 (∂Ω)×H
1
2 (∂Ω)

such that

Pb f∗ + Vb Ψ∗ −Wb Φ∗ = F in Ω,

r
S1

Ψ∗ = Ψ ,

r
S2

Φ∗ = Φ .

Moreover, the operator

C̃S1,S2 : H1, 0(Ω;La)×H− 1
2 (S1)×H

1
2 (S2) → L2(Ω)×H− 1

2 (∂Ω)×H
1
2 (∂Ω)

is linear and continuous.
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The cases when S1 = ∅ or S2 = ∅ need to be considered separately. Let us first
present a simplified version of Lemma 5.5 in [12].
Lemma B.2. For any function FΨ∗ ∈ H1,0(Ω;La), there exists a unique couple
(f∗,Ψ∗) = C

Ψ
FΨ∗ ∈ L2(Ω)×H− 1

2 (∂Ω) such that

FΨ∗ = Pbf∗ + VbΨ∗, in Ω+,

and C
Ψ

: H1,0(Ω;La) → L2(Ω)×H− 1
2 (∂Ω) is a bounded linear operator.

Considering a couple (F,Φ)> ∈ H1,0(Ω;La) ×H
1
2 (∂Ω) and employing Lemma B.2

for FΨ∗ = F +WbΦ ∈ H1,0(Ω;La), we arrive at the following statement.
Corollary B.1. For any couple

(F,Φ)> = F∗ ∈ H1,0(Ω;La)×H
1
2 (∂Ω)

there exists a unique triple

(f∗,Ψ∗,Φ∗)
> = C̃Φ∗F∗ ∈ L2(Ω)×H− 1

2 (∂Ω)×H
1
2 (∂Ω)

such that

Pb f∗ + Vb Ψ∗ −Wb Φ∗ = F in Ω,

Φ∗ = Φ on ∂Ω.

Moreover, the operator

C̃Φ∗ : H1, 0(Ω;La)×H
1
2 (∂Ω) → L2(Ω)×H− 1

2 (∂Ω)×H
1
2 (∂Ω)

is linear and continuous.
Lemma 19 from [10] redone word-by-word to a more narrow space reads as follows.

Lemma B.3. For any function FΦ∗ ∈ H1,0(Ω;La), there exists a unique couple
(f∗,Φ∗) = C

Φ
FΦ∗ ∈ L2(∂Ω)×H

1
2 (∂Ω) such that

FΦ∗ = Pbf∗ −WbΦ∗, in Ω,

and C
Φ

: H1,0(Ω;La) → L2(Ω)×H
1
2 (∂Ω) is a bounded linear operator.

Considering a couple (F,Ψ)> ∈ H1,0(Ω;La)×H− 1
2 (∂Ω) and employing Lemma B.3

for FΦ∗ = F − VbΨ ∈ H1,0(Ω;La), we arrive at the following statement.
Corollary B.2. For any couple

(F,Ψ)> = F∗ ∈ H1,0(Ω;La)×H− 1
2 (∂Ω)

there exists a unique triple

(f∗,Ψ∗,Φ∗)
> = C̃Ψ∗F∗ ∈ L2(Ω)×H− 1

2 (∂Ω)×H
1
2 (∂Ω)

such that

Pb f∗ + Vb Ψ∗ −Wb Φ∗ = F in Ω,

Ψ∗ = Ψ on ∂Ω.

Moreover, the operator

C̃Ψ∗ : H1, 0(Ω;La)×H− 1
2 (∂Ω) → L2(Ω)×H− 1

2 (∂Ω)×H
1
2 (∂Ω)

is linear and continuous.
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