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Abstract. A mathematical model of the heat exchange process, where the temper-
ature inside some domain is controlled by m convectors acting on the boundary, is
considered. The control parameter is a vector-function, whose components are equal
to the magnitude of the output of hot or cold air produced by each convector. The
necessary and sufficient conditions, which initial temperature must satisfy for achieving
the zero value by the projection of the temperature into some m-dimensional subspace,
are studied.

1 Introduction

1. Consider in a semi-infinite cylinder Q = Ω × (0,+∞) ⊂ Rn+1, where Ω ⊂ Rn is a
bounded domain with piecewise smooth boundary ∂Ω, the following equation

ut(x, t) = ∆u(x, t) − p(x)u(x, t), p(x) ≥ 0, x ∈ Ω, t > 0. (1.1)

Let Γ1,Γ2, ...,Γm be m disjoint subsets of ∂Ω, and set

Γ =
m⋃
i=1

Γi.

We suppose that each Γi (heater or air conditioner) has piecewise smooth boundary
∂Γi and mesn−1Γi > 0 (we denote by mesn−1Γ the surface measure of Γ, distinct from
Lebesgue measure |Ω| ).

Assume that non-negative piecewise smooth functions ai(x) defined on the bound-
ary ∂Ω vanish outside the Γi . We say that a vector-function q : [0,+∞) → Rm is
an admissible control if all components qi(t) are measurable real-valued functions and
satisfy the condition

|qi(t)| ≤ 1, t ≥ 0, i = 1, 2, ...,m.

Consider the following boundary conditions:

∂u(x, t)

∂n
= q(t) · a(x), x ∈ Γ, t > 0, (1.2)
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where
q(t) · a(x) = q1(t)a1(x) + q2(t)a2(x) + ...+ qm(t)am(x),

and
∂u(x, t)

∂n
+ h(x)u(x, t) = 0, x ∈ ∂Ω \ Γ, t > 0. (1.3)

Condition (1.2) means that there is a blast of hot (or cold) air from Γi with the
magnitude of the output given by the function qi(t), and condition (1.3) means that
on the surface ∂Ω \ Γ a heat exchange takes place according to Newton’s law (see, e.g.
[14], Sect. III.1.4).

We suppose that h(x) (thermal conductivity of the walls) and ai(x) (the density of
the power of the i-th heater or air conditioner) are given piecewise smooth non-negative
functions, which are not identically zeros.

We may extend the function h(x) to the whole boundary ∂Ω by setting h(x) = 0
for x ∈ Γ. In this case we may rewrite conditions (1.2) and (1.3) in the following form

∂u(x, t)

∂n
+ h(x)u(x, t) = q(t) · a(x), x ∈ ∂Ω, t > 0. (1.4)

Finally, we add the initial condition

u(x, 0) = ψ(x). (1.5)

We use the standard definition of a generalized solution to the initial-boundary
value problem for equation (1.1) with conditions (1.4) and (1.5) (see [9], III.5, formula
(5.5) and Theorem 5.1).

Namely, a generalized solution of this problem is a function u(x, t) such that for
any T > 0 and any η ∈ W 1,1

2 (Ω× [0, T ]) for 0 < t ≤ T the following equality is valid

t∫
0

ds

∫
Ω

[∇u(x, s)∇η(x, s) + p(x)u(x, s)η(x, s)] dx −
t∫

0

ds

∫
Ω

u(x, s)
∂η(x, s)

∂s
dx +

+

∫
Ω

u(x, t)η(x, t)dx −
∫
Ω

ψ(x)η(x, 0)dx =

=

t∫
0

ds

∫
∂Ω

[q(s) · a(x)]η(x, s)dσ(x) −
t∫

0

ds

∫
∂Ω

h(x)u(x, s)η(x, s)dσ(x). (1.6)

2. For the formulation of the problem studied in this paper consider the following
eigenvalue problem

−∆v(x) + p(x)v(x) = λv(x), x ∈ Ω, (1.7)

with the boundary condition

∂v(x)

∂n
+ h(x)v(x) = 0, x ∈ ∂Ω. (1.8)
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We define a generalized solution of problem (1.7) – (1.8) as a function v(x) in the
Sobolev space W 1

2 (Ω), which satisfies the equality∫
Ω

[∇v(x)∇η(x)+p(x)v(x)η(x)] dx = λ

∫
Ω

v(x)η(x)dx−
∫
∂Ω

h(x)v(x)η(x)dσ(x), (1.9)

for an arbitrary function η ∈ W 1
2 (Ω) (see [8], Sec. III.6, formula (6.3)).

We consider this problem in the real Hilbert space L2(Ω) with the scalar product

(u, v) =

∫
Ω

u(x)v(x)dx

and the norm ‖u‖ =
√

(u, u).
It is well known that under the assumptions made above this problem is self-adjoint

in L2(Ω) and there exists a sequence of positive eigenvalues {λi} such that

0 < λ1 ≤ λ2 ≤ ... ≤ λi →∞, i→∞

(see, e. g. [8], Sec. III.6).
The corresponding eigenfunctions form a complete orthonormal system {vi}i∈N in

L2(Ω) .
Let Hm be the m-dimensional subspace formed by the eigenfunctions v1, v2, ..., vm

and let Sm be the orthogonal projector onto Hm, i. e. :

Smu(x) =
m∑
i=1

(u, vi)vi(x). (1.10)

3. In the present work we consider the following problem.
NC Problem. For a given vector-function ψ ∈ L2(Ω) NC problem consists in

finding the admissible control q(t) such that the solution u(x, t) of the initial-boundary
value problem (1.4)-(1.5) for equation (1.1) exists, is unique and for some T > 0
satisfies the equality

Smu(x, t) = 0, x ∈ Ω, t ≥ T. (1.11)

We may note that the detailed information on the problem of optimal control for
distributed parameter systems is given in the monographs [5], [6] and [10]. More recent
results concerned with the heat control problem for partial differential equations of
parabolic type were established in [1]-[4], [7], [11]-[13], [15].

In the case in which m = 1 and P1 is the projector to the one-dimensional subspace
generated by the function u1(x) ≡ 1, according to [1], the null-controllability takes
place for any initial function ψ ∈ L2(Ω).

In the case m > 1 the situation changes (see case m = 2 in [2]). In what follows we
assume that m ≥ 2.

4. Denote the points of the spectrum of the boundary value problem (1.7)-(1.8) by
{µk}, where

0 < µ1 < µ2 < ...
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Each µk is an eigenvalue with multiplicity νk such that 1 ≤ νk < ∞. It is well
known that ν1 = 1 (see, e. g. [16]).

Set N0 = 0 and
Nk = ν1 + ν2 + ...+ νk, k = 1, 2, ...

Define the number l = l(m) such that

Nl−1 < m ≤ Nl. (1.12)

Inasmuch as m ≥ 2, then l > 1. For a positive integer k ≤ l − 1 set

Ek = {u ∈ L2(Ω) : u(x) =
∑
λi=µk

αivi(x), αi ∈ R}.

It is clear that for these k

Ek = {u ∈ L2(Ω) : u(x) =

Nk∑
i=Nk−1+1

αivi(x), αi ∈ R}, (1.13)

and hence
dimEk = Nk −Nk−1 = νk, 1 ≤ k ≤ l − 1.

Further, define for k = l = l(m)

El = {u ∈ L2(Ω) : u(x) =
m∑

i=Nl−1+1

αivi(x), αi ∈ R} (1.14)

and note that
0 < dimEl = m − Nl−1 ≤ νl.

Let Pk be the orthogonal projector onto Ek, 1 ≤ k ≤ l, i. e. :

Pku(x) =
∑
λi=µk

(u, vi)vi(x), 1 ≤ k ≤ l − 1,

and

Plu(x) =
m∑

i=Nl−1+1

(u, vi)vi(x).

Then, obviously, for projector (1.10) we get

Sm =
l∑

k=1

Pk.

5. The solution of the null-controllability problem is connected with the following
boundary value problem for the equation

∆wj(x) − p(x)wj(x) = 0, x ∈ Ω, (1.15)
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and the boundary condition

∂wj(x)

∂n
+ h(x)wj(x) = aj(x), x ∈ ∂Ω. (1.16)

The physical meaning of the function wj(x) is clear: this is the temperature of the
volume Ω in the case in which only the jth convector works and it produces heat or
cold with maximal capacity (output).

Consider the following m vectors in Rm :

Θi = (θi1, θi2, ..., θim), i = 1, 2, ...,m, (1.17)

where
θij =

∫
Ω

vi(x)wj(x) dx. (1.18)

Set

Lk = {ξ ∈ Rm : ξ =

Nk∑
i=Nk−1+1

ciΘi, ci ∈ R}, 1 ≤ k < l, (1.19)

and

Ll = {ξ ∈ Rm : ξ =
m∑

i=Nl−1+1

ciΘi, ci ∈ R}. (1.20)

It is clear that dimLk ≤ νk for k = 1, 2, ..., l.

Definition. We say that convectors {Γi, ai}mi=1 are properly arranged if for every k, 1 ≤
k ≤ l, the following equality

dimLk = dimEk (1.21)

is valid.

Remark. Equalities (1.21) mean that none of the vectors Θi is equal to zero and for
every k, 1 ≤ k ≤ l, the vectors Θi ∈ Lk are linearly independent.

The main result is the following.

Theorem 1. If convectors {Γi, ai}mi=1 are properly arranged then for any function ψ ∈
L2(Ω) the problem of the null-controllability has positive solution.

The next theorem shows that this result is precise.

Theorem 2. If convectors {Γi, ai}mi=1 are not properly arranged then there exists a
function ψ ∈ L2(Ω) such that the null-controllability does not take place.

Remark. It is clear that v1(x) ≥ 0 and wj(x) ≥ 0 for all j = 1, 2, ...,m, and we
may state that the vector Θ1 has positive components. Therefore, in the case m = 1
obviously l(m) = 1 and

dimL1 = dimE1 = 1.

Hence, if there is only one air conditioner then it is always properly arranged. This
conforms with the results of [1].
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2 Representation of the solution

Consider the (m×m)-matrix Θ̂ = ‖θij‖ defined by (1.18).

Lemma 2.1. The elements of the matrix Θ̂ have the following form:

θij =
1

λi

∫
∂Ω

vi(x)aj(x) dσ(x). (2.1)

Proof. According to the definition of a generalized solution to problem (1.15) – (1.16),
the following equation∫

Ω

[∇wj(x)∇η(x) + p(x)wj(x)η(x)] dx =

∫
∂Ω

[aj(x)− h(x)wj(x)]η(x) dσ(x)

is valid for an arbitrary function η ∈ W 1
2 (Ω). In particular, for η(x) = vi(x) we get∫

Ω

[∇wj(x)∇vi(x) + p(x)wj(x)vi(x)] dx =

=

∫
∂Ω

aj(x)vi(x) dσ(x) −
∫
∂Ω

h(x)wj(x)vi(x) dσ(x). (2.2)

Now we use identity (1.9). Set in this identity η(x) = wj(x). Then we get∫
Ω

[∇vi(x)∇wj(x) + p(x)vi(x)wj(x)] dx =

= λi

∫
Ω

vi(x)wj(x) dx −
∫
∂Ω

h(x)vi(x)wj(x) dσ(x). (2.3)

Comparing (2.2) and (2.3) we get∫
∂Ω

aj(x)vi(x) dσ(x) = λi

∫
Ω

vi(x)wj(x) dx.

Since the value of the right-hand side is λiθij , the required representation (2.1) is
valid.

Set
bi(t) =

∫
∂Ω

[q(t) · a(x)] vi(x) dσ(x). (2.4)

Lemma 2.2. Let u(x, t) be the solution of the initial-boundary value problem (1.4)-
(1.5) for the equation (1.1). Then the eigenfunction expansion of this solution has the
form

u(x, t) =
∞∑
i=1

 t∫
0

bi(s) e
λis ds + (ψ, vi)

 e−λit vi(x), t ≥ 0, x ∈ Ω . (2.5)
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Proof. The function u(x, t) for almost every t ≥ 0 belongs to L2(Ω) and that is why
the Fourier coefficients exist and are equal to

ui(t) =

∫
Ω

u(x, t) vi(x) dx .

According to the definition of a generalized solution, for any η ∈ W 1,1
2 (Ω × [0, T ])

identity (1.6) is valid.

In the case in which η(x, t) ≡ vi(x) we have
∂vi(x)

∂t
≡ 0 and hence

t∫
0

ds

∫
Ω

[∇u(x, s)∇vi(x) + p(x)u(x, s)vi(x)]dx +

+

∫
Ω

u(x, t)vi(x)dx −
∫
Ω

ψ(x)vi(x)dx =

=

t∫
0

ds

∫
∂Ω

[q(s) · a(x)] vi(x) dσ(x) −
t∫

0

ds

∫
∂Ω

h(x)u(x, s)vi(x)dσ(x).

Using (2.4), we may rewrite this equality as follows

t∫
0

ds

∫
Ω

[∇u(x, s)∇vi(x) + p(x)u(x, s)vi(x)] dx+

∫
∂Ω

h(x)u(x, s)vi(x) dσ(x)

 =

= −
∫
Ω

u(x, t)vi(x)dx +

t∫
0

ds

∫
∂Ω

[q(s) · a(x)] vi(x) dσ(x) +

∫
Ω

ψ(x)vi(x) dx =

= − ui(t) +

t∫
0

bi(s) ds + (ψ, vi).

Further, it follows from (1.9) for η(x) = u(x, s) that∫
Ω

[∇u(x, s)∇vi(x) + p(x)u(x, s)vi(x)] dx +

∫
∂Ω

h(x)u(x, s)vi(x)dσ(x) =

= λi

∫
Ω

u(x, s)vi(x) dx = λiui(s).

Consequently,

λi

t∫
0

ui(s) ds = − ui(t) +

t∫
0

bi(s) ds + (ψ, vi) . (2.6)
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Hence, ui(t) is an absolutely continuous function and

ui(0) = (ψ, vi).

After differentiation equation (2.6) we get

λiui(t) + u′i(t) = bi(t)

or [
eλitui(t)

]′
= eλitbi(t).

Hence,

eλitui(t) = (ψ, vi) +

t∫
0

eλisbi(s) ds.

This means that Fourier expansion of solution has form (2.5).

Corollary. For t ≥ 0 and x ∈ Ω projector (1.10) has the form

Smu(x, t) =
m∑
i=1

 t∫
0

bi(s) e
λis ds + (ψ, vi)

 e−λit vi(x), t ≥ 0, x ∈ Ω . (2.7)

Define the operator Λm : L2(Ω) → Rm by the equality

Λmψ = ((ψ, v1), (ψ, v2), ..., (ψ, vm)). (2.8)

We introduce the matrix

Ê(t) =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥

eλ1t 0 ... 0

0 eλ2t ... 0

... ... ... ...

0 0 ... eλmt

∥∥∥∥∥∥∥∥∥∥∥∥∥∥
If a vector in Rm is on the right of some m×m matrix we always assume that it is

a column-vector.

Lemma 2.3. Condition (1.11) may be rewritten in the following form:

t∫
0

Ê ′(s)Θ̂ q(s) ds = − Λmψ. (2.9)

Proof. We use representation (2.7). According to Lemma 2.1, we may write for the
value bi(t), which is defined by (2.4),

bi(t) =
m∑
j=1

qj(t)

∫
∂Ω

aj(x)vi(x) dσ(x) = λi

m∑
j=1

θij qj(t). (2.10)
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Note that

Ê ′(t) =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥

λ1e
λ1t 0 ... 0

0 λ2e
λ2t ... 0

... ... ... ...

0 0 ... λme
λmt

∥∥∥∥∥∥∥∥∥∥∥∥∥∥
Hence, taking into account (2.10), we get for the vector

B(t) =
(
b1(t)e

λ1t, b2(t)e
λ2t, ..., bm(t)eλmt

)
the following representation

B(t) = Ê ′(t)Θ̂ q(t). (2.11)

According to (2.7), condition (1.11) means that the following equalities

t∫
0

bi(s) e
λis ds + (ψ, vi) = 0, i = 1, 2, ...,m,

must be fulfilled. We may rewrite them as

t∫
0

Bi(s) ds = −(ψ, vi), i = 1, 2, ...,m,

or, due to (2.8),
t∫

0

B(s) ds = −Λmψ.

Hence, taking into account (2.11), we get (2.9).

Remark. We may also rewrite condition (2.9) in the following form:

t∫
0

λie
λis (Θi, q(s)) ds = − (ψ, vi), i = 1, 2, ...,m. (2.12)

3 Proof of the Theorem 1

We suppose in this section that convectors {Γi, ai}mi=1 are properly arranged.

Lemma 3.1. Let
0 < µ1 < µ2 < · · · < µl . (3.1)
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There exist real numbers p l > p l−1 > ... > p1 > 0 such that for the determinant of
the matrix

Dl =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

1 1 1 ... 1

1 eµ1p1 eµ1p2 ... eµ1pl

1 eµ2p1 eµ2p2 ... eµ2pl

... ... ... ... ...

1 eµlp1 eµlp2 ... eµlpl

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
the inequality

| detDl| ≥ 1 (3.2)

is valid.

Proof. Is clear by induction. Indeed, for sufficiently large p l we have expanding by last
column

detDl = (−1)leµlpl detDl−1 + O(eµl−1pl)

and
| detDl| = eµlpl | detDl−1|

[
1 + O(e−(µl−µl−1)pl)

]
.

Lemma 3.2. Let s be a fixed integer, 1 ≤ s ≤ l, and let condition (3.1) be fulfilled.
Then for any τ > 0 and α ∈ R there exist a vector β ∈ Rl+1 and numbers t1, t2, ..., tl+1

such that
tl+1 > tl > ... > t1 ≥ τ (3.3)

and the following relations are valid:

l+1∑
j=1

βj = 0, (3.4)

l+1∑
j=1

βj e
µktj = α · δsk , k = 1, 2, ..., l, (3.5)

and
|βj| ≤ C|α|e−µsτ , j = 1, 2, ..., l + 1, (3.6)

where the constant C does not depend on the numbers τ and α.

Proof. Obviously, it suffices to prove this lemma in the case α = 1. Let pl > pl−1 >
... > p1 > 0 be the numbers in Lemma 3.1. Set t1 = τ , t2 = τ + p1, ..., tl+1 = τ + pl.

Consider the system of (l+1) equations for (l+1) unknowns βj:

β1 + β2 + ...+ βl+1 = 0 ,
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β1 + β2e
µkp1 + ...+ βl+1e

µkpl = e−µkτδsk, k = 1, 2, ..., l.

According to Cramer’s rule, the solution exists, is unique and has the form

βj =
∆j

∆
.

It is clear that the matrix ∆ of this system does not depend on τ and coincides
with Dl in Lemma 3.1. Hence, it satisfies inequality (3.2), i. e. |∆| ≥ 1. It is clear also
that

∆j = O(e−µsτ ).

Inequality (3.6) follows from this estimate.

Set e1 = (1, 0, ..., 0), e2 = (0, 1, 0, ..., 0), ..., em = (0, 0, ..., 0, 1).

Lemma 3.3. Let r be a fixed integer, 1 ≤ r ≤ m. There exists a vector h ∈ Rm

such that for any τ > 0 there exist a vector β ∈ Rl+1 and numbers t1, t2, ..., tl+1 with
following properties:

1) conditions (3.3) and (3.4), and the equality

l+1∑
j=1

βjÊ(tj)Θ̂h = er (3.7)

are fulfilled;
2) the estimate

|βj| ≤ Ce−λ1τ , j = 1, 2, ..., l + 1, (3.8)

where the constant C does not depend on the number τ , is valid.

Proof. Choose the integer s, 1 ≤ s ≤ l, such that

Ns−1 < r ≤ Ns.

According to the assumptions, the vectors Θi ∈ Ls are linearly independent. Denote
by h any nonzero vector in Ls, which is orthogonal to all Θi ∈ Ls except Θr. It means
that (Θr, h) 6= 0.

Consequently,

(Θ̂h)i = (Θi, h) = 0, Θi ∈ Ls, i 6= r, (3.9)

and
(Θ̂h)r = (Θr, h) 6= 0. (3.10)

Consider equation (3.7), which we rewrite in the following form:(
l+1∑
j=1

βj e
λitj

)
(Θ̂h)i = δri , i = 1, 2, ...,m . (3.11)
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To find the solution β ∈ Rn+1 of the system (3.11) and (3.4), we apply Lemma 3.2,
which guarantees the existence of the required β ∈ Rn+1 and tj for

α =
1

(Θ̂h)r
=

1

(Θr, h)
. (3.12)

1) Let Nk−1 < i ≤ Nk−1 and k 6= s. Then, according to (3.5),(
l+1∑
j=1

βj e
λitj

)
(Θ̂h)i =

(
l+1∑
j=1

βj e
µktj

)
(Θ̂h)i = 0 · (Θ̂h)i = 0. (3.13)

2) If Ns−1 < i ≤ Ns and i 6= r then, according to (3.9), (Θ̂h)i = 0, and(
l+1∑
j=1

βj e
λitj

)
(Θ̂h)i = 0. (3.14)

3) If Ns−1 < i ≤ Ns and i = r then, according to (3.5), (3.10) and (3.12),(
l+1∑
j=1

βj e
λrtj

)
(Θ̂h)r =

(
l+1∑
j=1

βj e
µstj

)
(Θ̂h)r = α · (Θ̂h)r = 1. (3.15)

Equalities (3.13) – (3.15) show that this vector β ∈ Rn+1 satisfies equations (3.11).
Finally, we note that estimate (3.8) follows from (3.6).

Lemma 3.4. For any integer r, 1 ≤ r ≤ m, and for any α ∈ R there exist a number
T0 > 0 and an admissible control q(t) such that for T ≥ T0

T∫
0

Ê ′(t)Θ̂q(t) dt = αer. (3.16)

Proof. Let βj and tj and vector h ∈ Rm be as in Lemma 3.3.
Choose τ > 0 such that

|βj| ≤
1

(l + 1)|α| · |h|
. (3.17)

We introduce the following l + 1 control functions

q[j ](t) =

{
h, for 0 ≤ t ≤ tj,

0, for t > tj,
(3.18)

where j = 1, 2, ..., l + 1.
Then for T > tj we have

T∫
0

Ê ′(t)Θ̂q[j ](t) dt =

tj∫
0

Ê ′(t)Θ̂h dt = Ê(tj)Θ̂h− Ê(0)Θ̂h. (3.19)
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Set

q(t) = α

l+1∑
j=1

βjq
[j ](t). (3.20)

According to (3.17) the control q(t) is admissible.
It is clear that if T is greater than all these numbers tj then, according to (3.19),

(3.4) and (3.7),

T∫
0

Ê ′(t)Θ̂q(t) dt = α
l+1∑
j=1

βjÊ(tj)Θ̂h − α

l+1∑
j=1

βjÊ(0)Θ̂h = αer.

Proof of Theorem 1. Let ψ ∈ L2(Ω). Set

g = −Λmψ,

where the operator Λm : L2(Ω) → Rm is defined by (2.8). Hence,

g =
m∑
r=1

crer.

We apply Lemma 3.4 for α = mcr. Then for each r, 1 ≤ r ≤ m, we get an
admissible control q[r](t) such that

T∫
0

Ê ′(t)Θ̂q[r](t) dt = mcrer, T ≥ T0.

Set

q(t) =
1

m

m∑
r=1

q[r](t).

It is clear that q(t) is an admissible control. Then

T∫
0

Ê ′(t)Θ̂q(t) dt =
1

m

m∑
r=1

T∫
0

Ê ′(t)Θ̂q[r](t) dt =
1

m

m∑
r=1

mcrer = g.

Hence, the control function q(t) satisfies equation (2.9) and, according to
Lemma 2.3, condition (1.11) is fulfilled. �

4 Proof of Theorem 2

Assume that convectors {Γi, ai}mi=1 are not properly arranged. This means that some of
the vectors Θi, defined by (1.17) and (1.18), are equal to zero, or for some k, 1 ≤ k ≤ l,
vectors Θi ∈ Lk are linearly dependent.
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1) First we assume that Θr = 0 for some r, 1 ≤ r ≤ m, i. e. the following equalities
are valid

θr1 = θr2 = · · · = θrm = 0. (4.1)
Set ψ(x) = vr(x), then Λmψ = er. Let us suppose that there exists an admissible

control q(t) = (q1(t), q2(t), ..., qm(t)) such that
T∫

0

Ê ′(t)Θ̂q(t) dt = −Λmψ = − er. (4.2)

Then
T∫

0

m∑
j=1

λre
λrtθrjqj(t) dt = − 1. (4.3)

This equality contradicts condition (4.1) and this contradiction proves Theorem 2.
2) Now we assume that for some k, 1 ≤ k < l, the vectors Θi ∈ Lk are linearly

dependent:
Nk∑

k=Nk−1+1

ciΘi = 0,

Nk∑
k=Nk−1+1

|ci|2 > 0

(recall that in the case k < l the subspaces Lk are defined by (1.19)).
Hence, if an admissible control exists then, according to (2.12),

Nk∑
i=Nk−1+1

ci(ψ, vi) = −
t∫

0

µke
µks

 Nk∑
i=Nk−1+1

ciΘi, q(s)

 ds = 0.

This means that the initial function ψ cannot be an arbitrary function but have to
satisfy the additional condition

Nk∑
i=Nk−1+1

ci(ψ, vi) = 0.

3) Finally, in the case k = l the subspace Ll is defined by (1.20) and the assumption
about null controllability under the same considerations leads to the condition

m∑
i=Nl−1+1

ci(ψ, vi) = 0,
m∑

i=Nl−1+1

|ci|2 > 0.

Hence, for

ψ(x) =
m∑

i=Nl−1+1

civi(x)

the null controllability does not take place. �
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