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Abstract. The paper studies the spread of waves along the star graph. The continuation of the
initial data from the graph edges for the entire numerical axis allows to represent an analogue of the
d’Alembert formula for waves on the star graph. At the same time, the continuation of the initial
data is closely related to the continuation of the system of its eigenfunctions of the Sturm-Liouville
problem originally defined on the star graph. The continuation of the eigenfunctions defined on
the star graph is based on the continuation of the initial data of the mixed problem for the wave
equation. The indicated continuation of the initial data of the mixed problem was proposed by B.M.
Levitan.
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1 Statement of the main result

Let I' = {V, E'} be a star graph. Here V is a set of vertices and E is a set of edges. The vertices
are numerated by integer numbers from 0 to m + 1. The interior vertex corresponds to the number
m + 1. The directed edges are denoted by ey, ..., €,,11, with j corresponding to the vertex of edge
ej. The length of the edge e; is denoted by b;.

On each edge e; of the star graph I" we study the initial boundary value problem (IBVP) for the
wave equation with the individual continuous potential ¢;(x;)

0%0;(x;,t) _ 0°0;(z;, 1)

o2 = 817]2 — Qj(Ij)ej($j,t>, t >0, T; € ey (11)
with the initial conditions
99;(z;,0)
0;(2;,0) = asa;), 52 = bilay), (1.2)
matching conditions
01(0,t) = 05(0,t) = ... = 0,,(0,t) = 0m+1(bm+1,t), (1.3)
a9m+1 m+17 89
1.4
0T i1 Z 895] (1.4)

at the interior vertices of the star graph, and the Dirichlet boundary conditions

01(b1,t) = Os(b, ) = .. = O (bst) = Ors1 (0, 2) (1.5)
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at the boundary vertices. So, one IBVP - corresponds to the each edge e; of the star
graph I'.

The goal of this work is to establish an analogue of the d’Alembert formula for the mixed problem
- . In the simplest case of a graph, representing a sequential connection of four intervals,
such a formula is presented in [I].

We invoke some constructions from the monograph [I] for the statement of the main result. We
extend the continuous function g¢;(x;) from (0,b;) with j = 1,...,m + 1 continuously to the entire
real axis. So, we consider the following Goursat problem

Pwj(xj,t,s)  O*wj(xy,t, )

B = 52 —qj(s)w;(z;,t,s), t>0, seR,

t
1
wj(xj,t,t+xj) = —§/qj-(’7'+l'j)d7',
0

¢
/qj(xj — 7)dT
0

for j =1,...,m+ 1. The Goursat problem has a unique solution w;(z;,t,s).

wj(xjuthj' _t) = -

N | —

Now we exploit an assumption that ensures the simplicity of the spectrum for eigenvalue problem
2.1) - (2.4).

Assumption 1.1. The lengths by, ..., by,11 of the edges e, ..., 41 and the potentials q;(x;), j =
1,....,m+ 1 are chosen such that the spectra of the Sturm-Liouville operators L; do not intersect
pasrwise. The operator L; is defined by the differential expression:

& — q;(x;) on the domain D(L;) = {y(z;) € W[0,b;] : y(b;) = y(0) = 0}.

dz?

We note that such a choice is always possible.

We state the main result of the work. We establish an existence and uniqueness of the solution to
problem - on the star graph in the following theorem. Moreover, we present an analogue of
the d’Alembert formula for the solution to the initial boundary value problem for the wave equation
on the star graph.

Theorem 1.1. Suppose that the potentials q;(x;) for j =1, ...,m+1 represent a set of real continuous
functions. Let Assumption also be satisfied. We assume that the initial functions a;(z;), b;j(z;),
j=1,....,m+1 are twice continuously differentiable on the corresponding edges and satisfy conditions
).

Then, the solution to problem - exists and is unique. Moreover, for the solution, an
analogue of the d’Alembert formula holds and for bj(z;) =0, j = 1,...,m + 1 the solution can be
represented as follows

Ij+t

1. 1. 1 -
0j(wj,t) = 5a(z; +1) + 5a5(; — 1) + 5 / wj(z;,t, s)d;(s)ds.

zj—t

Here a;(s) is the special continuation of the function a;(x;) from the interval (0, b;) to the entire
real axis. The details of this continuation are given in the proof of Theorem
We note that ¢;(z;) = 0 implies that w;(z;,t,s) = 0.
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2 Proof of Theorem [1.1

It is sufficient to prove Theorem for bj(z;) = 0 with j = 0,1,...,m + 1. To state and prove
Theorem for nontrivial b;(x;), we invoke the standard procedure from [3]. Now we state the
following eigenvalue problem

Li(y;) = =y (25) + q5(x)y; () = Ay;(), o5 € e; (2.1)
with the following Dirichlet boundary conditions
y1(b1) = ya(b2) = ... = Y (bm) = Ym41(0) =0 (2.2)

at the boundary vertices of the star graph and the following matching conditions

1(0) = 12(0) = ... = Ym(0) = Yms1(brmi1) (2.3)
and .
y;n—i-l (by1) = Z y;(O) (2.4)

at the interior vertices of the star graph. The spectral properties of eigenvalue problem -
are essential to prove Theorem [I.T]

We state some notations and auxiliary facts related to eigenvalue problem — in Appendix
1. In particular, Appendix 1 proves that if Assumption [I.Tholds, then all the eigenvalues of problem
- are simple, even if the potentials ¢;(x;) with j = 1,...,m + 1 are complex-valued
continuous functions. If the potentials ¢;(z;) are real continuous functions, then all the eigenvalues
are real, and the corresponding system of eigenfunctions forms an orthogonal basis in the space
Lo(T).

We denote by Ai, where & € N, the sequence of eigenvalues of problem (2.1)) - (2.4). Hence,
A # A if k # s by Lemma from Appendix 1. The corresponding system of eigenfunctions can
be written as follows

-

(I)(f7 )‘k) = {<(701($1> )‘k)v sy (;Oerl(merla Ak))Ta k Z 1}
Now we expand the initial function
g(f) = (a1 (1), - g1 (T 1)) "

in terms of the system of eigenfunctions of problem ({2.1)) - (2.4)) to the following series

aj(z;) = Z ik (T4, Ar), (2.5)

where
b

J e —
J a;(;)er (5, Ae)d;

Cjk = » .
J @@, M)y (x5, A )da

0

Since the smooth function A(Z) satisfies all conditions (2.2), (2.3) and (2.4), series (2.5) converges
absolutely and uniformly on the graph T'.
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We seek the solution of problem ([I.1)) - ({1.5) in the following form

0;(x;) = Y dix(t) (x5, M). (2.6)

k=1

o0

In a standard way, we find that
djr(t) = cji cos \/ Ait.

In the next lemma we give the representation of the solution of problem ([1.1)) - (1.5) in terms of the
special extension of the eigenfunctions.

Lemma 2.1. The following formula

$j‘+t
COS 4/ )\kt QOj(ZEj, /\k) = @j(l’j + t, /\k) + @j(l‘j - t, )\k> + / wj(xj, t, s)géj(s, /\k)ds
r;—t

holds for t > 0 and x; € e, where @;(xj, \) is the special extension of the function ¢;(x;, \p) from
the interval e; to the entire real azis.

Proof. In fact, the potential g;(z;) is defined only on the edge e;. We extend the potential ¢;(x;)
to the entire real axis, preserving its class but otherwise arbitrarily. The function p;(x;, A\y) (j
1,...,m+ 1) is the solution of the homogeneous equation

—¢5(x5) + qi(x5) () = Mpj(75), 75 €€ (j=1,...,m+1)
with Cauchy conditions at z; = b;

Let 9;(x,t) = 2cos vV Aptp;(z, \g) for x € e;, t > 0. We note that J;(z,t) is the solution of the
mixed problem

8219j($, t) . 8219]' (l’, t)

Ot2 - Ox2 —4gj ("I;j)ﬁj (l’, t>7 (28)
(2,0 = 26,0, 1), 2280 g (2.9)
9;(0, 1) = 2cos v/ Atip; (0, \i), 95(by, 1) = 0. (2.10)

Invoking the results of the monograph [2], we write the solution to the mixed problem ([2.8]), (2.9)),
(2.10) as follows

.Z’j-‘rﬁ

9:(,8) = 35+ £, \) + 35 — £, ) + / w;(x, , 8)5(5, M )ds. (2.11)

rj—t

Here, w;(z,t,s) can be uniquely constructed from the function ¢;(x), z € R, as the solution of the
Goursat problem
8211)]' . 82wj

o2 0s?

— qj(s)wy,
t

1
wi(z,t,x+1t) = —§/qj(:v+7')d7',
0
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t

/ 4;(x — 7)dr.

0

wi(z,t,x —t) = —

N| —

Let us clarify how the continuation of the function ¢;(x, ;) initially defined as ¢;(z, \y) on = €
e; = (0,b;) is extended to the entire real axis.
Substitution of representation (2.11) into the first of conditions (2.10)) leads us to the following
equality
t
2cos /At (0, Ap) = @;(t, ) + /wj(O,t, s)p;(s, A)ds
0

0
+ @i(—t, M) + /wj(O,t, $)p;(s, Ax)ds.
Zt

For 0 <t < bj, this equality implies that

Qi(—t, \k) + /wj((),t, s)p;(s, Ak)ds = Fj(t), (2.12)

where
t

F;(t) = 2cos v/ At (0, Ag) — @;(t, A) — /wj(O, t,s)p;i(s, Ax)ds.
0
In [2] it is shown that such an extension of the function ¢;(z;, \x) belongs to the space C?[—b;, b;].
Applying the second of boundary condition (2.9)), we extend the function ¢;(z;, Ay) to the interval
(b;,2b;). Therefore, the substitution of (2.10)) into the second of conditions (2.9)) gives the following
integral equation

bj+t
55(b; +1, M) + / (b, 1, 8)35(5, Ae)dds = R (1) (2.13)
0
for 0 <t <b;, where
0
Rj(t) = —pj(bj —t, ) + / wj(bj,t,8)p;(s, \p)ds (j =1,...,m+1).
bj—t

The extension of ¢;(z;, \¢) from the interval (0,b;) to the interval (b;,2b;) belongs to C*(0,2b;).
Integral equations (2.11) and (2.12) allow the function ¢;(z;, \x) to be extended to the entire real
axis. 0

Representation (2.6)), relation (2.5) and Lemma allow us to express the desired solution as

follows
T —+t

0i(wj,t) = aj(z; +t) +a;(r; —t) + / wj(xj,t,s)a;(s)ds
:Djft

for j =1,...,m+1, where a;(¢;) is the extension of a;(x;) from the interval (0, b;) to the entire real
axis, realized by the formula

a;(&5) = chk@(fm)\k), §; € (—o0, 00).

k=1
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3 Appendix 1. Spectral properties of problem (2.1) - (2.4)

In this appendix, we state the spectral properties of problem . . that are necessary to prove
Theorem |1 . In the absence of potentials ¢i(x1) = 0, ..., ¢gm+1(Tmy1) = 0, the spectral properties
can be found in the work of N.P. Bondarenko [4]. In the case of real potentials ¢i, ..., ¢my1, problem
- is self-adjoint in the function space Lo(I"). Therefore, its spectrum consists of real
eigenvalues and the corresponding system of eigenfunctions forms an orthogonal basis in the space
Ly(T). We establish conditions under which problem (2.1) - (2.4) has only simple eigenvalues. In
our considerations, the potentials ¢;(-) =0, ..., ¢m+1(-) = 0 may represent complex-valued continuous
functions.

We denote by ¢;(z;, \) the solution of the homogeneous equation [;(¢;) = Ap; with z; € e; =
(0,b,) that satisfy the Cauchy conditions

Wj(bﬁ)‘) 0, @J(b >‘)

at x; =bjforj=1,...,m. Assumptionimplies that the values ©1(0,\), ..., ¢, (0, A) do not vanish
for all complex values of the spectral parameter .
We also introduce the system of functions vy (z;,\) = Bjpi(xj,A), x; € e;. The numbers

By, ..., By, are chosen so that condition ({2.3)) is satisfied

Bj = By H ©;(0,7),
2

where B,, 1 is a common constant for all indices j = 1,2, ..., m. The value of B,,,; may depend on
the spectral parameter \, but does not depend on x,,11 € €,,11.

Now we denote by ©,11(Tmi1,A) the solution of the homogeneous equation l,,1(@me1) =
APma1(Tma1, A) for 2,41 € (0,b,,41) which at the point z,,.; = b,,,1 satisfies the following condi-
tions

Omr1(bmy1, A Hgoj 0, ),
1 (s, A) = D ] [0, 200, ).
i=1 s=1
s;ﬁz

Therefore, we can write the following relation

Cmi1(Tmr1, A) = Omi1 (bmat, A)emir (Tmi1, A) + 90§n+1(bm+17 A)Smi1(Tmi1, A)

for all x,,.1 € (0,b11). Here, ¢pi1(zmy1, A) and Syp1(2my1, A) form a fundamental system of
solutions of the homogeneous equation ;11 (Ym+1) = AYm+1(Tima1, A), Tima1 € €ma1 with the Cauchy
conditions

Smt1 (Oma1, A) = g1 (bng1, A) = 0

and
S a1 (bms1,A) = Cmg1(bmgr, A) =1

at Tm+1 = bm+1.

We note that the function ,,+1(Zmn11, A) is an entire function of the spectral parameter A for all
fixed ;11 € [0,b41]. The characteristic determinant of the eigenvalue problem - has
the following form

AN) = @nmi1(0,0), A e C.
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Lemma 3.1. The characteristic determinant A(X\) has only simple zeros

Proof. Let A\, € C. We denote by I (y) = —y"(z;) + G;(z;)y;(x;), z; € e; the formally adjoint
differential expression to [;(-).

We consider the following difference

J b]

b;
m+1
= ([ blortes e, — [ oyt NS i)

=1 9 0

where the functions goj(a:j,ﬁ),j = 1,...,m + 1, are the solutions of the homogeneous equations
(] (x;, 7)) = fi] (x;,75), and their construction is analogous to the construction of ¢;(x, \)
1,...,m+1. The characteristic determinant of the adjoint problem is A™(7)

= ¢1n+1(0,71). Applying
the Lagrange formula [5] and Cauchy conditions (2.7)) to the difference R, we obtain

m1 I ——
d — dj (), 1)\ |2 =bs=0
R = § <d SD](:E]?A%O] (CE'J,,U) 903‘(953‘7)\) jd$]] ) ;=0
j=1

dpmi1(bmi1, \)——F——— Aoy 1 (bmir, 1)
= d2mis 90;+1(bm+17 M) - <Pm+1(bm+1’ /\) tllmmﬂ

5,0 s 70

Z ]dﬂf m+1 (bm+17 M) + Om+1 (berl; )\) Z ]dT
J — ;

tonir (0.0) s M)
dZm+1 Pt (0,7 F 22 (0, 4) ATy

det (0
_ A()\) Spm—i-l( 7#) dgom-i-l(o A)A+( )
AT 41 AT 41
On the other hand, we have the following equality

m-+1 by

/90%7 90; (z;, 1 )dxj
0

1

j:
As a result, we obtain the identity

m+1

Z/ o5, N ;) (2,7 )d:vj =
_ 1 dgpm—&-l(owu) d‘Pm—&-l(O /\) Y=

Let A = )¢ be an arbitrary eigenvalue of the problem ({2.1) - (2.4). Then A()\g) = 0. Thus, the
following equality

1bJ

/90 Tj, A 90] ‘Tja )dl”]—
0

m

+

A+( )M

1 0— AT

.
Il
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holds. Now, let 1 — Ag. This equality implies the limiting relation
bJ

/90 .23], 90] $], )dl’]—
0

m+1

+

dA+()\_0) ) dSOmH(O, >\0)
dp drmi1

J=1

The results of monograph [6] imply that ), is an eigenvalue of the adjoint problem, and gpj(:cj,)\_o)

o m+1 bj -
is the eigenfunction corresponding to the eigenvalue Ag. Moreover, > [ o(x;, o)) (x5, B)dx; # 0.
=10
Hence, we get dA+fLA°) : d%g;;(ol’\o # 0. We observe that Cl@"%@’\o) £ 0, since i1 (g1, Ao) = 0.

Otherwise, this would contradict Assumption [T Therefore, it follows that

dAT(\
dp

Hence, the eigenvalue Ay of the adjoint problem is simple. Consequently, the eigenvalue of original

problem (2.1 - (2.4) must also be simple. O

Corollary 3.1. If )\ is an eigenvalue of problem ({2.1] . then the corresponding eigenfunction
has the follwing form

(B()‘O) = (301($1, )‘0)7 902(‘%27 >‘0)7 ) me-i,-l(l'm-',-l, AO))

and none of the components of 5()\0) can be identically zero.
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