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Abstract. The manuscript introduces an innovative framework for establishing the existence of
in�nitely many nontrivial periodic solutions within a class of di�erential equations characterized
by a piecewise alternately advanced and retarded argument. It comprehensively delineates the
essential criteria required for the existence of these solutions and provides detailed procedures for
their determination. Additionally, the study incorporates illustrative examples, including cases
with in�nitely many solutions, to demonstrate the e�ectiveness and applicability of the proposed
approach.
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1 Introduction

A di�erential equation with a piecewise constant argument which is alternately advanced and re-
tarded (DEPCA) is expressed as:

x′(t) = f

(
t, x(t), x

(
p

[
t+ l

p

]))
, (1.1)

where [·] denotes the greatest integer function, f is a continuous function de�ned on R×R×R, and
p
[
t+l
p

]
is a piecewise constant function de�ned by

p
[
t+l
p

]
= kp for t ∈ [kp− l, (k + 1)p− l), k ∈ Z,

with p and l being positive constants satisfying p > l.
The deviation argument of DEPCA (1.1), de�ned as

℘(t) := t− p
[
t+l
p

]
is negative within the interval [kp − l, kp) and positive in [kp, (k + 1)p − l). This alternating sign
behavior classi�es DEPCA (1.1) as a di�erential equation of alternately advanced and retarded type.

DEPCAs represent a hybrid class of equations that combine characteristics of both discrete
dynamics and continuous systems. These equations are particularly relevant in modeling applications
in biomedical sciences and physical processes, as discussed in [6, 24] and further elaborated in
[16, 18, 19, 20, 27]. Moreover, extensive research has been conducted to investigate various properties
of DEPCAs. See, for example, [2, 3, 4, 5].
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Recent studies [1, 12, 14, 15, 17, 22, 26, 28, 29, 30, 31] have analyzed speci�c formulations of
DEPCAs.

Additionally, the works in [7, 8, 9, 10, 11] simpli�ed the problem of n-periodic solution solvability
into a system of n linear equations. Utilizing foundational principles of linear algebra, these studies
systematically identi�ed the conditions required for the existence of n-periodic solutions and provided
explicit methodologies for deriving these solutions.

In 2024, M.I. Muminov and T.A. Radjabov [11] investigated the conditions under which 2-periodic
solutions exist for �rst-order di�erential equations with piecewise constant delay:

T ′(t) = a(t)T (t) + b(t)T ([t]) + f(t).

They introduced a systematic method to identify 2-periodic solutions, clearly de�ned the requisite
existence criteria, and provided explicit solution formulas.

Subsequently, K.-S. Chiu and F. Cordova [23] explored the conditions for the existence of 4-
periodic solutions for �rst-order DEPCA (1.1) with the parameters p = 2 and l = 1.

To the best of our knowledge, only the two studies [11] and [23] have investigated the existence
of in�nitely many periodic solutions for DEPCA. However, neither has formulated detailed criteria
for identifying such solutions in di�erential equations with a general piecewise alternately advanced
and retarded argument.

This paper investigates a non-homogeneous di�erential equation with piecewise alternately ad-
vanced and retarded argument, given by:

y′(t) = a(t)y(t) + b(t)y

(
p

[
t+ l

p

])
+ g(t), t ∈ R, (1.2)

where the functions a(t), b(t), and g(t) are continuous and non-zero on R. The general framework
of this problem was previously analyzed in [13, 21], where the authors derived conditions ensuring
the existence of a solution and demonstrated a Gronwall-type integral inequality as a practical
application.

In this paper, we focus on establishing the conditions necessary for the existence of 2p-periodic so-
lutions to the initial value problem. An illustrative example is provided to demonstrate a case where
an in�nite number of 2p-periodic solutions exist, thereby o�ering new perspectives that complement
earlier studies on uniqueness for homogeneous cases.

2 Alternately advanced and retarded di�erential equation

A solution of DEPCA (1.2) is de�ned as follows. A function y is considered to be a solution of
DEPCA (1.2) on R if it satis�es the following criteria:

(i) y is continuous on R,

(ii) the derivative y′(t) exists at each t ∈ R, except possibly at points t = kp− l for k ∈ Z, where
one-sided derivatives are required to exist,

(iii) y satis�es DEPCA (1.2) within each interval
(
kp− l, (k+ 1)p− l

)
for k ∈ Z, and the equation

is satis�ed for the right-hand derivative at t = pk − l for k ∈ Z.
To determine a solution of DEPCA (1.2), we follow the integration methodology described in

[25]. By integrating equation (1.2), the solution can be expressed as:

y(t) = e
∫ t
p a(s)dsy(p) +

∫ t

p

b(s)y

(
p

[
s+ l

p

])
e
∫ t
s a(r)drds

+

∫ t

p

g(s)e
∫ t
s a(r)drds, t ∈ [p− l, 2p− l).
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We de�ne

λ (t, s) := e
∫ t
s a(r)dr +

∫ t

s

e
∫ t
u a(r)drb(u)du,

Ψ (t, s) =
λ
(
t, p
[
t+l
p

])
λ
(
s, p
[
s+l
p

]) [ t+lp ]∏
j=[ s+lp ]+1

λ (pj − l, p(j − 1))

λ (pj − l, pj)
, t ≥ s,

G(t, s) =

∫ t

s

e
∫ t
u a(κ)dκg(u)du,

where t, s ∈ [p− l,∞) , λ (pj − l, pj) 6= 0, j ∈ N.
The following theorem provides a representation formula for the solution to DEPCA (1.2) for

t > 0. The proof is similar to proofs of Theorem 2.1 in [13] and Theorem 2.2 in [21].

Theorem 2.1. If λ (pj − l, pj) 6= 0 for j ∈ N, then y(t) represents the unique solution to DEPCA
(1.2) for t ≥ p− l if and only if y(t) can be represented as

y(t) =Ψ (t, τ) y(τ) +

∫ p[(τ+l)/p]

τ

Ψ (t, τ)G(τ, s)ds

+

[(t+l)/p]−1∑
k=[(τ+l)/p]

∫ (k+1)p

kp

Ψ
(
t, (k + 1)p− l

)
G
(

(k + 1)p− l, s
)
ds

+G
(
t, p [(t+ l)/p]

)
.

(2.1)

Proof. First, we demonstrate that the function y(t) de�ned in (2.1) satis�es DEPCA (1.2). This can

be readily veri�ed using the relation dλ(t,s)
dt

= a(t)λ (t, s) + b(t), where s is �xed. Using the notation
introduced earlier, we proceed as follows:

dΨ (t, s)

dt
=
λ′
(
t, p
[
t+l
p

])
(
s, p
[
s+l
p

]) [ t+lp ]∏
j=[ s+lp ]+1

λ (pj − l, p(j − 1))

λ (pj − l, pj)

=
a(t)λ

(
t, p
[
t+l
p

])
+ b(t)

λ
(
s, p
[
s+l
p

]) [ t+lp ]∏
j=[ s+lp ]+1

λ (pj − l, p(j − 1))

λ (pj − l, pj)

= a(t)Ψ (t, s) + b(t)

λ
(
p
[
t+l
p

]
, p
[
t+l
p

])
λ
(
s, p
[
s+l
p

])
 [ t+lp ]∏

j=[ s+lp ]+1

λ (pj − l, p(j − 1))

λ (pj − l, pj)

= a(t)Ψ (t, s) + b(t)Ψ

(
p

[
t+ l

p

]
, s

)
, s < t.

Conversely, suppose that yi(t) is a solution to DEPCA (1.2) on the interval ip−l ≤ t < (i+1)p−l.
Then, it satis�es

y′i(t) = a(t)yi(t) + b(t)yi(ip) + g(t).

By de�ning G(t, u) =
∫ t
u
e
∫ t
s a(κ)dκg(s)ds, the solution of this equation on Ii = [ip− l, (i+ 1)p− l)

is expressed as:

yi(t) =

(
e
∫ t
ip a(s)ds +

∫ t

ip

e
∫ t
s a(κ)dκb(s)ds

)
yi(ip) +

∫ t

ip

e
∫ t
s a(κ)dκg(s)ds

= λ (t, ip) yi(ip) +G(t, ip).

(2.2)
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From (2.2), substituting t = ip− l and taking the limit as t→ (i+ 1)p− l−, we obtain

yi(ip) =

(
yi(ip− l)−G(ip− l, ip)

λ (ip− l, ip)

)
. (2.3)

Thus, based on (2.3), we deduce:

yi((i+ 1)p− l) =

(
λ((i+ 1)p− l, ip)
λ(ip− l, ip)

)(
yi(ip− l)−G(ip− l, ip)

)
+G((i+ 1)p− l, ip).

Similarly,

yi−1(ip− l) =

(
λ (ip− l, (i− 1)p)

λ (ip− l, (i− 1)p)

)(
yi−1((i− 1)p− l)−G((i− 1)p− l, (i− 1)p)

)
+G(ip− l, (i− 1)p), i ≥

[
τ + l

p

]
+ 2,

and as t→ p
([

τ+l
p

]
+ 1
)
− l−, we have

y

(
p

([
τ + l

p

]
+ 1

)
− l
)

=

λ
(
p
([

τ+l
p

]
+ 1
)
− l, p

[
τ+l
p

])
λ
(
τ, p
[
τ+l
p

])
(y(τ)−G

(
τ, p

[
τ + l

p

]))

+G

(
p

([
τ + l

p

]
+ 1

)
− l, p

[
τ + l

p

])
.

Applying the two previous relations, we obtain

yi((i+ 1)p− l) =

λ ((i+ 1)p− l, ip)

λ
(
τ, p
[
τ+l
p

])

 i∏
j=[ τ+lp ]+1

λ(jp− l, (j − 1)p)

λ(jp− l, jp)

 y(τ)

+
i∑

k=[ τ+lp ]+1

{(
λ ((i+ 1)p− l, ip)

λ ((k + 1)p− l, (k + 1)p)

)( i∏
j=k+2

λ(jp− l, (j − 1)p)

λ(jp− l, jp)

)
×

(
λ ((k + 1)p− l, kp)
λ (kp− l, kp)

(−G(kp− l, kp)) +G((k + 1)p− l, kp)
)}

+

(
λ ((i+ 1)p− l, ip)

λ ((k + 1)p− l, (k + 1)p)

) i∏
j=[ τ+lp ]+2

λ(jp− l, (j − 1)p)

λ(jp− l, jp)

×
λ

(
p
([

τ+l
p

]
+ 1
)
− l, p

[
τ+l
p

])
λ
(
τ, p
[
τ+l
p

]) (
−G

(
τ, p

[
τ + l

p

]))
+G

(
p

([
τ + l

p

]
+ 1

)
− l, p

[
τ + l

p

]) .
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Using the notation Ψ, we have for all i ≥
[
τ+l
p

]
+ 1:

yi((i+ 1)p− l) = Ψ ((i+ 1)p− l, τ) y(τ) +
i∑

k=[ τ+lp ]+1

[
Ψ ((i+ 1)p− l, kp− l) · (−G(kp− l, kp))

+ Ψ ((i+ 1)p− l, (k + 1)p− l) ·G((k + 1)p− l, kp)
]

+ Ψ ((i+ 1)p− l, τ) ·
(
−G

(
τ, p

[
τ + l

p

]))
+ Ψ

(
(i+ 1)p− l, p

([
τ + l

p

]
+ 1

)
− l
)
·G
(
p

([
τ + l

p

]
+ 1

)
− l, p

[
τ + l

p

])
.

In particular,

yi(ip− l) = Ψ (ip− l, τ) y(τ) +
i−1∑

k=[ τ+lp ]+1

[
Ψ (ip− l, kp− l) (−G(kp− l, kp))

+ Ψ (ip− l, (k + 1)p− l) ·G((k + 1)p− l, kp)
]

+ Ψ (ip− l, τ) ·
(
−Ψ

(
τ, p

[
τ + l

p

]))
+ Ψ

(
ip− l, p

([
τ + l

p

]
+ 1

)
− l
)
G

(
p

([
τ + l

p

]
+ 1

)
− l, p

[
τ + l

p

])
.

(2.4)

From equations (2.2), (2.3), and (2.4), it follows that:

yi(t) = λ (t, ip) yi(ip) +G(t, ip) =
λ (t, ip)

λ (ip− l, ip)
·Ψ (ip− l, τ) y(τ)

+
λ (t, ip)

λ (ip− l, ip)
·
[
Ψ (ip− l, τ) ·

(
−G

(
τ, p

[
τ + l

p

]))
+Ψ

(
ip− l, p

([
τ + l

p

]
+ 1

)
− l
)
·G
(
p

([
τ + l

p

]
+ 1

)
− l, p

[
τ + l

p

])]

+
λ (t, ip)

λ (ip− l, ip)
·

i−1∑
k=[ τ+lp ]+1

[
Ψ (ip− l, kp− l) · (−G(kp− l, kp))

+Ψ (ip− l, (k + 1)p− l) ·G((k + 1)p− l, kp)
]

− λ (t, ip)

λ (ip− l, ip)
G(ip− l, ip) +G(t, ip)

= Ψ (t, τ) y(τ) + Ψ (t, τ)

(
−G

(
τ, p

[
τ + l

p

]))
+Ψ(t, (i(τ) + 1)p− l)G

(
p

([
τ + l

p

]
+ 1

)
− l, p

[
τ + l

p

])

+
i−1∑

k=[ τ+lp ]+1

[
Ψ (t, kp− l) (−G(kp− l, kp)) + Ψ (t, (k + 1)p− l)G((k + 1)p− l, kp)

]
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− λ (t, ip)

λ (ip− l, ip)
G(ip− l, ip) +G(t, ip)

= Ψ (t, τ) y(τ) +G(t, ip) + Ψ (t, τ)

(
−G

(
τ, p

[
τ + l

p

]))
+Ψ

(
t, p

([
τ + l

p

]
+ 1

)
− l
)
G

(
p

([
τ + l

p

]
+ 1

)
− l, p

[
τ + l

p

])
+

i−1∑
k=[ τ+lp ]+1

[
Ψ (t, kp− l) (−G(kp− l, kp)) + Ψ (t, (k + 1)p− l)G((k + 1)p− l, kp)

]

− λ (t, ip)

λ (ip− l, ip)
G(ip− l, ip)

= Ψ (t, τ) y(τ) +

∫ i(τ)p

τ

Ψ (t, τ) e
∫ τ
s a(κ)dκg(s)ds

+

∫ p([ τ+lp ]+1)−l

p[ τ+lp ]
Ψ

(
t, p

([
τ + l

p

]
+ 1

)
− l
)
e
∫ p([ τ+lp ]+1)−l
s a(κ)dκg(s)ds

+
∑k=i

k=i(τ)+1

(∫ kp

kp−l
Ψ (t, kp− l) e

∫ kp−l
s a(κ)dκg(s)ds

)

+
∑k=i−1

k=i(τ)+1

(∫ (k+1)p−l

kp

Ψ (t, (k + 1)p− l) e
∫ (k+1)p−l
s a(κ)dκg(s)ds

)

+

∫ t

ip

e
∫ t
s a(κ)dκg(s)ds

= Ψ (t, τ) y(τ) +

∫ p[ τ+lp ]

τ

Ψ (t, τ) e
∫ τ
s a(κ)dκg(s)ds

+
∑k=[ t+lp ]−1

k=[ τ+lp ]

(∫ (k+1)·p

kp

Ψ (t, (k + 1) · p− l) e
∫ (k+1)·p−l
s a(κ)dκg(s)ds

)

+

∫ t

ip

e
∫ t
s a(κ)dκg(s)ds.

From this, equality (2.1) follows.
If g(t) = 0 in (2.1), we obtain the solution to linear DEPCA (1.2), given by y(t) = Ψ (t, τ) y(τ).

3 Existence of in�nitely many periodic solutions

In this section, we propose an approach to identify 2p-periodic solutions to DEPCA (1.2), assuming
that the functions a(·), b(·), and g(·) are continuous on the interval [p− l,∞) and exhibit 2p-periodic
characteristics.

Assuming that y(t) satis�es DEPCA (1.2) within the interval kp−l ≤ t < (k+1)p−l, integrating
DEPCA (1.2) yields the solution of the following form:

y(t) = e
∫ t
kp a(s)dsy(kp) +

∫ t

kp

b(s)y

(
p

[
s+ l

p

])
e
∫ t
s a(r)drds+

∫ t

kp

g(s)e
∫ t
s a(r)drds

=

(
e
∫ t
kp a(s)ds +

∫ t

kp

b(s)e
∫ t
s a(r)drds

)
y(kp) +

∫ t

kp

g(s)e
∫ t
s a(r)drds.
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Using the notations λ(t, s), and G(t, s), the solution y(t) is expressed as:

y(t) = λ(t, kp)y(kp) +G(t, kp), kp− l ≤ t < (k + 1)p− l.

From the above, by setting t = kp− l, we derive:

y(kp) =
y(kp− l)−G(kp− l, kp)

λ(kp− l, kp)
.

Substituting this result back, we obtain:

y(t) =
λ(t, kp)

λ(kp− l, kp)

(
y(kp− l)−G(kp− l, kp)

)
+G(t, kp).

Assuming that y(t) is 2p-periodic on the interval [p − l,∞), the function y(t) on [p − l, 3p − l)
can be represented as:

y(t) =


λ(t,p)
λ(p−l,p)

(
y(p− l)−G(p− l, p)

)
+G(t, p), t ∈ [p− l, 2p− l),

λ(t,2p)
λ(2p−l,2p)

(
y(2p− l)−G(2p− l, 2p)

)
+G(t, 2p), t ∈ [2p− l, 3p− l).

(3.1)

This formulation highlights that the expressions on the right-hand side of (3.1) rely exclusively
on the values of the unknowns yp−l = y(p − l) and y2p−l = y(2p − l). By leveraging the continuity
of y(·), these unknowns can be de�ned as follows:

(i) y2p−l = y(2p− l) = lim
t→2p−l−

y(t), where t ∈ [p− l, 2p− l),

(ii) y3p−l = y(3p− l) = lim
t→3p−l−

y(t), where t ∈ [2p− l, 3p− l).

Given the continuity and periodicity of y(·), it follows that y(p − l) = y(3p − l). To determine
yp−l = y3p−l from (3.1), we obtain the following system of equations:{

λ(2p−l,p)
λ(p−l,p) y(p− l)− y(2p− l) = λ(2p−l,p)

λ(p−l,p) G(p− l, p)−G(2p− l, p),
y(p− l)− λ(3p−l,4)

λ(2p−l,2p)y(2p− l) = −λ(3p−l,2p)
λ(2p−l,2p)G(2p− l, 2p) +G(3p− l, 2p).

(3.2)

Let ∆ denote the determinant of the matrixM, where

M =

(
λ(2p−l,p)
λ(p−l,p) −1

1 −λ(3p−l,2p)
λ(2p−l,2p)

)
.

Using this, we establish the following theorem regarding the existence of 2p-periodic solutions to
DEPCA (1.2).

Theorem 3.1. Let a(·), b(·), and g(·) be 2p-periodic continuous functions. The following results
hold.

(a) If ∆ 6= 0, DEPCA (1.2) has a unique 2p-periodic solution, as given in (3.1), where (yp−l, y2p−l)
represents the sole solution of the system (3.2).
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(b) If ∆ = 0 and G(p − l, p) = G(2p − l, p) = G(2p − l, 2p) = G(3p − l, 2p) = 0, DEPCA (1.2)
admits an in�nite number of 2p-periodic solutions, as described below:

y(t) =

 α λ(t,p)
λ(p−l,p)

(
y(p− l)−G(p− l, p)

)
+G(t, p), t ∈ [p− l, 2p− l),

α λ(t,2p)
λ(2p−l,2p)

(
y(2p− l)−G(2p− l, 2p)

)
+G(t, 2p), t ∈ [2p− l, 3p− l).

Here, (yp−l, y2p−l) represents an eigenvector of M corresponding to the eigenvalue 0, and α
denotes a real-valued scalar.

(c) If ∆ = 0 and the rankM is less than the rank of the augmented matrix (M|b), where

b =

(
λ(2p−l,p)
λ(p−l,p) G(p− l, p)−G(2p− l, p),

−λ(3p−l,2p)
λ(2p−l,2p)G(2p− l, 2p) +G(3p− l, 2p)

)
,

then DEPCA (1.2) does not possess a 2p-periodic solution.

Proof. (a) Assume y(t) is a 2p-periodic solution to DEPCA (1.2). This solution can be charac-
terized by (3.1), where (yp−l, y2p−l) satis�es the system (3.2). The solvability of linear system
(3.2) requires that ∆ 6= 0. Consequently, ∆ 6= 0 must hold. Conversely, when ∆ 6= 0, DEPCA
(3.2) admits a unique solution (yp−l, y2p−l). Furthermore, it can be demonstrated that the
function y(·), de�ned in (3.1), represents the periodic solution to DEPCA (1.2).

(b) The function G assumes a value of zero at the points (p − l, p), (2p − l, p), (2p − l, 2p), and
(3p − l, 2p). Consequently, equation (3.2) simpli�es into a homogeneous form. A non-trivial
solution to this equation exists if and only if ∆ = 0.

The pair of non-zero solutions (yp−l, y2p−l) serves as an eigenvector ofM corresponding to the
eigenvalue 0. Thus, (αyp−l, αy2p−l) represents a non-trivial solution to equation (3.2), where α
denotes an arbitrary non-zero scalar. Accordingly, the 2p-periodic function is expressed as:

y(t) =

 α λ(t,p)
λ(p−l,p)

(
y(p− l)−G(p− l, p)

)
+G(t, p), t ∈ [p− l, 2p− l),

α λ(t,2p)
λ(2p−l,2p)

(
y(2p− l)−G(2p− l, 2p)

)
+G(t, 2p), t ∈ [2p− l, 3p− l).

This function satis�es DEPCA (1.2), where α can take any value.

(c) If ∆ = 0 and the rank of M is strictly less than the rank of the augmented matrix (M| b),
where

b =

(
λ(2p−l,p)
λ(p−l,p) G(p− l, p)−G(2p− l, p)

−λ(3p−l,2p)
λ(2p−l,2p)G(2p− l, 2p) +G(3p− l, 2p)

)
,

then equation (3.2) does not admit a solution. As a result, DEPCA (1.2) cannot have a
2p-periodic solution.

4 Illustrative example

In this section, we provide a pertinent example to demonstrate the practical application of our
theoretical framework. Speci�cally, we consider the following scalar di�erential equation involving a
piecewise alternately advanced and retarded argument
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y′(t) = sin (2πt) y

(
3

[
t+ 1

3

])
+ g(t), t ≥ 2. (4.1)

DEPCA (4.1) represents a particular case of DEPCA (1.2), speci�ed by the parameters p = 2, l = 1,
a = 0, b(t) = sin (2πt) with

g(t) =

{
sin
(
t−2.5−3k

π

)
, t ∈ [2 + 3k, 3 + 3k) ,

−
(

sin(0.5·π−1)
sin(π−1)

)
sin
(
t−4−3k

π

)
, t ∈ [3 + 3k, 5 + 3k) ,

for k ∈ N0.
It can be readily veri�ed that G(2, 3) = G(5, 3) = G(5, 6) = G(8, 6) = 0. The matrix associated

with the linear system of equations involving the variables y2 and y5 is given as follows:

M =

(
λ(5,3)
λ(2,3)

−1

1 −λ(8,6)
λ(5,6)

)
=

(
−1 −1
1 1

)
.

The determinantM is zero and vector (1, 1) serves as an eigenvector ofM corresponding to the
eigenvalue 0. According to Theorem 3.1(b), the solution to DEPCA is given by

yα(t) =


αλ(t, 3)y(2) + ĝ1(t), t ∈ [2, 3),
αλ(t, 3)y(2)− ĝ2(t), t ∈ [3, 5),
αλ(t, 6)y(5) + ĝ3(t), t ∈ [5, 6),
αλ(t, 6)y(5)− ĝ4(t), t ∈ [6, 8),

where

ĝ1(t) = π

(
− cos

(
t− 2.5

π

)
+ cos

(
−0.5

π

))
,

ĝ2(t) =

(
sin(0.5 · π−1)π

sin(π−1)

)(
− cos

(
t− 4

π

)
+ cos

(
−1

π

))
,

ĝ3(t) = π

(
− cos

(
t− 5.5

π

)
+ cos

(
−0.5

π

))
,

ĝ4(t) =

(
sin(0.5 · π−1)π

sin(π−1)

)(
− cos

(
t− 7

π

)
+ cos

(
−1

π

))
.

This solution is 6-periodic for any non-zero value of α.
The graphs of yα(t) for α = 0.7 and α = −0.5 are presented in Figure 1 and Figure 2, respectively.

Fig. 1. 6-periodic solution to DEPCA (4.1) if α = 0.7.
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Fig. 2. 6-periodic solution to DEPCA (4.1) if α = −0.5.

It is worth highlighting that the parameters of the equation in this example conform to the
conditions outlined in the main results of [12]. Moreover, Example 4.1 extends and enhances the
conclusions of Theorem 4.4 in [12], which establishes the uniqueness of the solution to the DEPCA
(1.2).

5 Conclusion

This article examines the presence of in�nitely many periodic solutions to �rst-order di�erential
equations characterized by piecewise alternately advanced and retarded argument. Several theo-
rems have been developed to establish both the existence and uniqueness of solutions to DEPCAs
of this nature. Drawing inspiration from the methodologies in [11, 23], we have identi�ed su�cient
conditions ensuring the existence of in�nitely many periodic solutions under the appropriate assump-
tions. Additionally, a range of numerical examples and simulations are provided to demonstrate the
practical relevance and applicability of the theoretical results.
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