

CONTENTS

<i>N. Anakidze, N. Areshidze, L.-E. Persson, G. Tephnadze</i>	
Approximation by T means with respect to Vilenkin system in Lebesgue spaces.....	8
<i>V.I. Burenkov, M.A. Senouci</i>	
Boundedness of the generalized Riemann-Liouville operator in local Morrey-type spaces with mixed quasi-norms.....	23
<i>K.-S. Chiu, I. Berna Sepúlveda</i>	
Infinitely many periodic solutions for differential equations involving piecewise alternately advanced and retarded argument.....	33
<i>B. Kanguzhin</i>	
Propagation of nonsmooth waves along a star graph with fixed boundary vertices....	45
<i>S.A. Plaksa</i>	
Continuous extension to the boundary of a domain of the logarithmic double layer potential.....	54
<i>E.L. Presman</i>	
Sonin's inventory model with a long-run average cost functional.....	76

EURASIAN MATHEMATICAL JOURNAL

ISSN (Print): 2077-9879
ISSN (Online): 2617-2658

Eurasian Mathematical Journal

2025, Volume 16, Number 4

Founded in 2010 by
the L.N. Gumilyov Eurasian National University
in cooperation with
the M.V. Lomonosov Moscow State University
the Peoples' Friendship University of Russia (RUDN University)
the University of Padua

Starting with 2018 co-funded
by the L.N. Gumilyov Eurasian National University
and
the Peoples' Friendship University of Russia (RUDN University)

Supported by the ISAAC
(International Society for Analysis, its Applications and Computation)
and
by the Kazakhstan Mathematical Society

Published by
the L.N. Gumilyov Eurasian National University
Astana, Kazakhstan

EURASIAN MATHEMATICAL JOURNAL

Editorial Board

Editors-in-Chief

V.I. Burenkov, M. Otelbaev, V.A. Sadovnichy

Vice-Editors-in-Chief

R. Oinarov, K.N. Ospanov, T.V. Tararykova

Editors

Sh.A. Alimov (Uzbekistan), H. Begehr (Germany), T. Bekjan (Kazakhstan), O.V. Besov (Russia), N.K. Bliev (Kazakhstan), N.A. Bokayev (Kazakhstan), A.A. Borubaev (Kyrgyzstan), G. Bourdaud (France), A. Caetano (Portugal), A.D.R. Choudary (Pakistan), V.N. Chubarikov (Russia), A.S. Dzhumadildaev (Kazakhstan), V.M. Filippov (Russia), H. Ghazaryan (Armenia), V. Goldshtain (Israel), V. Gulyev (Azerbaijan), D.D. Haroske (Germany), A. Hasanoglu (Turkey), M. Huxley (Great Britain), P. Jain (India), T.Sh. Kalmenov (Kazakhstan), B.E. Kangyzhin (Kazakhstan), K.K. Kenzhibaev (Kazakhstan), S.N. Kharin (Kazakhstan), E. Kissin (Great Britain), V.I. Korzyuk (Belarus), A. Kufner (Czech Republic), L.K. Kussainova (Kazakhstan), P.D. Lamberti (Italy), M. Lanza de Cristoforis (Italy), F. Lanzara (Italy), V.G. Maz'ya (Sweden), K.T. Mynbayev (Kazakhstan), E.D. Nursultanov (Kazakhstan), I.N. Parasidis (Greece), J. Pečarić (Croatia), S.A. Plaksa (Ukraine), L.-E. Persson (Sweden), E.L. Presman (Russia), M.A. Ragusa (Italy), M. Reissig (Germany), M. Ruzhansky (Great Britain), M.A. Sadybekov (Kazakhstan), S. Sagitov (Sweden), T.O. Shaposhnikova (Sweden), A.A. Shkalikov (Russia), V.A. Skvortsov (Russia), G. Sinnamon (Canada), V.D. Stepanov (Russia), Ya.T. Sultanaev (Russia), D. Suragan (Kazakhstan), I.A. Taimanov (Russia), J.A. Tussupov (Kazakhstan), U.U. Umirbaev (Kazakhstan), N. Vasilevski (Mexico), Dachun Yang (China), B.T. Zhumagulov (Kazakhstan)

Managing Editor

A.M. Temirkhanova

Aims and Scope

The Eurasian Mathematical Journal (EMJ) publishes carefully selected original research papers in all areas of mathematics written by mathematicians, principally from Europe and Asia. However papers by mathematicians from other continents are also welcome.

From time to time the EMJ publishes survey papers.

The EMJ publishes 4 issues in a year.

The language of the paper must be English only.

The contents of the EMJ are indexed in Scopus, Web of Science (ESCI), Mathematical Reviews, MathSciNet, Zentralblatt Math (ZMATH), Referativnyi Zhurnal – Matematika, Math-Net.Ru.

The EMJ is included in the list of journals recommended by the Committee for Control of Education and Science (Ministry of Education and Science of the Republic of Kazakhstan) and in the list of journals recommended by the Higher Attestation Commission (Ministry of Education and Science of the Russian Federation).

Information for the Authors

Submission. Manuscripts should be written in LaTeX and should be submitted electronically in DVI, PostScript or PDF format to the EMJ Editorial Office through the provided web interface (www.enu.kz).

When the paper is accepted, the authors will be asked to send the tex-file of the paper to the Editorial Office.

The author who submitted an article for publication will be considered as a corresponding author. Authors may nominate a member of the Editorial Board whom they consider appropriate for the article. However, assignment to that particular editor is not guaranteed.

Copyright. When the paper is accepted, the copyright is automatically transferred to the EMJ. Manuscripts are accepted for review on the understanding that the same work has not been already published (except in the form of an abstract), that it is not under consideration for publication elsewhere, and that it has been approved by all authors.

Title page. The title page should start with the title of the paper and authors' names (no degrees). It should contain the Keywords (no more than 10), the Subject Classification (AMS Mathematics Subject Classification (2010) with primary (and secondary) subject classification codes), and the Abstract (no more than 150 words with minimal use of mathematical symbols).

Figures. Figures should be prepared in a digital form which is suitable for direct reproduction.

References. Bibliographical references should be listed alphabetically at the end of the article. The authors should consult the Mathematical Reviews for the standard abbreviations of journals' names.

Authors' data. The authors' affiliations, addresses and e-mail addresses should be placed after the References.

Proofs. The authors will receive proofs only once. The late return of proofs may result in the paper being published in a later issue.

Offprints. The authors will receive offprints in electronic form.

Publication Ethics and Publication Malpractice

For information on Ethics in publishing and Ethical guidelines for journal publication see <http://www.elsevier.com/publishingethics> and <http://www.elsevier.com/journal-authors/ethics>.

Submission of an article to the EMJ implies that the work described has not been published previously (except in the form of an abstract or as part of a published lecture or academic thesis or as an electronic preprint, see <http://www.elsevier.com/postingpolicy>), that it is not under consideration for publication elsewhere, that its publication is approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out, and that, if accepted, it will not be published elsewhere in the same form, in English or in any other language, including electronically without the written consent of the copyright-holder. In particular, translations into English of papers already published in another language are not accepted.

No other forms of scientific misconduct are allowed, such as plagiarism, falsification, fraudulent data, incorrect interpretation of other works, incorrect citations, etc. The EMJ follows the Code of Conduct of the Committee on Publication Ethics (COPE), and follows the COPE Flowcharts for Resolving Cases of Suspected Misconduct (<http://publicationethics.org/files/u2/NewCode.pdf>). To verify originality, your article may be checked by the originality detection service CrossCheck <http://www.elsevier.com/editors/plagdetect>.

The authors are obliged to participate in peer review process and be ready to provide corrections, clarifications, retractions and apologies when needed. All authors of a paper should have significantly contributed to the research.

The reviewers should provide objective judgments and should point out relevant published works which are not yet cited. Reviewed articles should be treated confidentially. The reviewers will be chosen in such a way that there is no conflict of interests with respect to the research, the authors and/or the research funders.

The editors have complete responsibility and authority to reject or accept a paper, and they will only accept a paper when reasonably certain. They will preserve anonymity of reviewers and promote publication of corrections, clarifications, retractions and apologies when needed. The acceptance of a paper automatically implies the copyright transfer to the EMJ.

The Editorial Board of the EMJ will monitor and safeguard publishing ethics.

The procedure of reviewing a manuscript, established by the Editorial Board of the Eurasian Mathematical Journal

1. Reviewing procedure

1.1. All research papers received by the Eurasian Mathematical Journal (EMJ) are subject to mandatory reviewing.

1.2. The Managing Editor of the journal determines whether a paper fits to the scope of the EMJ and satisfies the rules of writing papers for the EMJ, and directs it for a preliminary review to one of the Editors-in-chief who checks the scientific content of the manuscript and assigns a specialist for reviewing the manuscript.

1.3. Reviewers of manuscripts are selected from highly qualified scientists and specialists of the L.N. Gumilyov Eurasian National University (doctors of sciences, professors), other universities of the Republic of Kazakhstan and foreign countries. An author of a paper cannot be its reviewer.

1.4. Duration of reviewing in each case is determined by the Managing Editor aiming at creating conditions for the most rapid publication of the paper.

1.5. Reviewing is confidential. Information about a reviewer is anonymous to the authors and is available only for the Editorial Board and the Control Committee in the Field of Education and Science of the Ministry of Education and Science of the Republic of Kazakhstan (CCFES). The author has the right to read the text of the review.

1.6. If required, the review is sent to the author by e-mail.

1.7. A positive review is not a sufficient basis for publication of the paper.

1.8. If a reviewer overall approves the paper, but has observations, the review is confidentially sent to the author. A revised version of the paper in which the comments of the reviewer are taken into account is sent to the same reviewer for additional reviewing.

1.9. In the case of a negative review the text of the review is confidentially sent to the author.

1.10. If the author sends a well reasoned response to the comments of the reviewer, the paper should be considered by a commission, consisting of three members of the Editorial Board.

1.11. The final decision on publication of the paper is made by the Editorial Board and is recorded in the minutes of the meeting of the Editorial Board.

1.12. After the paper is accepted for publication by the Editorial Board the Managing Editor informs the author about this and about the date of publication.

1.13. Originals reviews are stored in the Editorial Office for three years from the date of publication and are provided on request of the CCFES.

1.14. No fee for reviewing papers will be charged.

2. Requirements for the content of a review

2.1. In the title of a review there should be indicated the author(s) and the title of a paper.

2.2. A review should include a qualified analysis of the material of a paper, objective assessment and reasoned recommendations.

2.3. A review should cover the following topics:

- compliance of the paper with the scope of the EMJ;

- compliance of the title of the paper to its content;

- compliance of the paper to the rules of writing papers for the EMJ (abstract, key words and phrases, bibliography etc.);

- a general description and assessment of the content of the paper (subject, focus, actuality of the topic, importance and actuality of the obtained results, possible applications);

- content of the paper (the originality of the material, survey of previously published studies on the topic of the paper, erroneous statements (if any), controversial issues (if any), and so on);

- exposition of the paper (clarity, conciseness, completeness of proofs, completeness of bibliographic references, typographical quality of the text);

- possibility of reducing the volume of the paper, without harming the content and understanding of the presented scientific results;

- description of positive aspects of the paper, as well as of drawbacks, recommendations for corrections and complements to the text.

2.4. The final part of the review should contain an overall opinion of a reviewer on the paper and a clear recommendation on whether the paper can be published in the Eurasian Mathematical Journal, should be sent back to the author for revision or cannot be published.

Web-page

The web-page of the EMJ is www.emj.enu.kz. One can enter the web-page by typing Eurasian Mathematical Journal in any search engine (Google, Yandex, etc.). The archive of the web-page contains all papers published in the EMJ (free access).

Subscription

Subscription index of the EMJ 76090 via KAZPOST.

E-mail

eurasianmj@yandex.kz

The Eurasian Mathematical Journal (EMJ)
The Astana Editorial Office
The L.N. Gumilyov Eurasian National University
Building no. 3
Room 306a
Tel.: +7-7172-709500 extension 33312
13 Kazhymukan St
010008 Astana, Republic of Kazakhstan

The Moscow Editorial Office
The Patrice Lumumba Peoples' Friendship University of Russia
(RUDN University)
Room 473
3 Ordzonikidze St
117198 Moscow, Russian Federation

**APPROXIMATION BY T MEANS WITH RESPECT TO
VILENKIN SYSTEM IN LEBESGUE SPACES**

N. Anakidze, N. Areshidze, L.-E. Persson, G. Tephnadze

Communicated by N.A. Bokayev

Key words: Vilenkin group, Vilenkin system, T means, Nörlund means, Fejér means, approximation, Lebesgue spaces, inequalities.

AMS Mathematics Subject Classification: 42C10.

Abstract. In this paper we present and prove some new results concerning approximation properties of T means with respect to the Vilenkin system in Lebesgue spaces for any $1 \leq p < \infty$. As applications, we obtain extensions of some known approximation inequalities.

DOI: <https://doi.org/10.32523/2077-9879-2025-16-4-08-22>

1 Preliminaries

Let \mathbb{N}_+ denote the set of the positive integers and $\mathbb{N} := \mathbb{N}_+ \cup \{0\}$. Let $m =: (m_0, m_1, \dots)$ be a sequence of positive integers not less than 2. Denote by

$$Z_{m_k} := \{0, 1, \dots, m_k - 1\}$$

the additive group of integers modulo m_k . Define the group G_m as the complete direct product of the group Z_{m_k} with the product of the discrete topologies of Z_{m_k} 's.

The direct product μ of the measures

$$\mu_k(\{j\}) := 1/m_k \quad (j \in Z_{m_k})$$

is the Haar measure on G_m with $\mu(G_m) = 1$.

If $\sup_{k \in \mathbb{N}} m_k < +\infty$, then we call G_m a bounded Vilenkin group. If the sequence $\{m_k\}_{k \geq 0}$ is unbounded, then G_m is said to be an unbounded Vilenkin group. In this paper we consider only bounded Vilenkin groups.

The elements of G_m are represented by the sequences

$$x := (x_0, x_1, \dots, x_k, \dots) \quad (x_k \in Z_{m_k}).$$

It is easy to give a base for the neighborhood of G_m , namely

$$I_0(x) := G_m, \quad I_n(x) := \{y \in G_m \mid y_0 = x_0, \dots, y_{n-1} = x_{n-1}\} \quad (x \in G_m, n \in \mathbb{N}).$$

For brevity, we also define $I_n := I_n(0)$.

Next, we define a generalized number system based on m in the following way:

$$M_0 =: 1, \quad M_{k+1} =: m_k M_k \quad (k \in \mathbb{N})$$

Then every $n \in \mathbb{N}$ can be uniquely expressed as

$$n = \sum_{j=0}^{\infty} n_j M_j, \quad \text{where} \quad n_j \in Z_{m_j} \quad (j \in \mathbb{N})$$

and only a finite number of n_j 's differ from zero. Let

$$|n| =: \max\{j \in \mathbb{N}, n_j \neq 0\}.$$

Moreover, Vilenkin (see [33, 34, 35]) investigated the group G_m and introduced the Vilenkin system $\{\psi_j\}_{j=0}^{\infty}$ as

$$\psi_n(x) := \prod_{k=0}^{\infty} r_k^{n_k}(x) \quad (n \in \mathbb{N}).$$

where $r_k(x)$ are the generalized Rademacher functions defined by

$$r_k(x) := \exp(2\pi i x_k/m_k), \quad (k \in \mathbb{N}).$$

If $m_k = 2$ for any $k \in \mathbb{N}$, then the Vilenkin group coincides with the dyadic group, which will be denoted by G_2 and Vilenkin systems include as a special case the Walsh system.

The norms (or quasi-norms) $\|f\|_p$, $0 < p < \infty$, of the Lebesgue spaces $L^p(G_m)$ are defined by

$$\|f\|_p^p := \int_{G_m} |f|^p d\mu.$$

The Vilenkin system is orthonormal and complete in $L^2(G_m)$ (see e.g. [2] and [27]).

If $f \in L^1(G_m)$, we can define the Fourier coefficients, the partial sums of the Fourier series, the Fejér means, the Dirichlet and Fejér kernels with respect to the Vilenkin system in the usual manner:

$$\begin{aligned} \widehat{f}(k) &:= \int_{G_m} f \overline{\psi}_k d\mu, \quad (k \in \mathbb{N}), \\ S_n f &:= \sum_{k=0}^{n-1} \widehat{f}(k) \psi_k, \quad (n \in \mathbb{N}_+, \quad S_0 f := 0), \\ \sigma_n f &:= \frac{1}{n} \sum_{k=1}^n S_k f, \quad (n \in \mathbb{N}_+). \\ D_n &:= \sum_{k=0}^{n-1} \psi_k, \quad (n \in \mathbb{N}_+). \\ K_n &:= \frac{1}{n} \sum_{k=1}^n D_k, \quad (n \in \mathbb{N}_+). \end{aligned}$$

Recall that (see e.g. [2] and [25]),

$$D_{M_n}(x) = \begin{cases} M_n, & \text{if } x \in I_n, \\ 0, & \text{if } x \notin I_n, \end{cases} \quad (1.1)$$

$$\begin{aligned} D_{M_n-j}(x) &= D_{M_n}(x) - \overline{\psi}_{M_n-1}(-x) D_j(-x) \\ &= D_{M_n}(x) - \psi_{M_n-1}(x) \overline{D_j}(x), \quad 0 \leq j < M_n. \end{aligned} \quad (1.2)$$

$$n |K_n| \leq 2R^2 \sum_{l=0}^{|n|} M_l |K_{M_l}|, \quad (1.3)$$

and

$$\int_{G_m} K_n(x) d\mu(x) = 1, \quad \sup_{n \in \mathbb{N}} \int_{G_m} |K_n(x)| d\mu(x) \leq R^5. \quad (1.4)$$

where $R := \sup_{k \in \mathbb{N}} m_k$. Moreover, if $n > t$, $t, n \in \mathbb{N}$, then

$$K_{M_n}(x) = \begin{cases} \frac{M_t}{1-r_t(x)}, & x \in I_t \setminus I_{t+1}, \quad x - x_t e_t \in I_n, \\ \frac{M_n+1}{2}, & x \in I_n, \\ 0, & \text{otherwise.} \end{cases} \quad (1.5)$$

The n -th Nörlund mean t_n and T mean T_n of $f \in L^1(G_m)$ are defined by

$$t_n f := \frac{1}{Q_n} \sum_{k=1}^n q_{n-k} S_k f$$

and

$$T_n f := \frac{1}{Q_n} \sum_{k=0}^{n-1} q_k S_k f,$$

where

$$Q_n := \sum_{k=0}^{n-1} q_k.$$

Here $\{q_k, k \geq 0\}$ is a sequence of nonnegative numbers, where $q_0 > 0$ and

$$\lim_{n \rightarrow \infty} Q_n = \infty. \quad (1.6)$$

Then, a T mean generated by $\{q_k, k \geq 0\}$ is regular if and only if condition (1.6) is satisfied (see [25]).

It is evident that

$$T_n f(x) = \int_{G_m} f(t) F_n(x - y) d\mu(y),$$

where

$$F_n := \frac{1}{Q_n} \sum_{k=0}^{n-1} q_k D_k, \quad (1.7)$$

which are called the kernels of the T means.

By applying the Abel transformation, we get the following two useful identities:

$$Q_n := \sum_{k=0}^{n-1} q_k \cdot 1 = \sum_{k=0}^{n-2} (q_k - q_{k+1}) k + q_{n-1}(n-1) \quad (1.8)$$

and

$$T_n f = \frac{1}{Q_n} \left(\sum_{k=0}^{n-2} (q_k - q_{k+1}) k \sigma_k f + q_{n-1}(n-1) \sigma_{n-1} f \right). \quad (1.9)$$

2 Historical overview

It is well-known (see e.g. [15], [25] and [39]) that, for any $1 \leq p \leq \infty$ and $f \in L^p(G_m)$, there exists $C_p > 0$, depending only on p , such that

$$\|\sigma_n f\|_p \leq C_p \|f\|_p.$$

Moreover, Skvortsov [30] (see also [1]) proved that if $1 \leq p \leq \infty$, $M_N \leq n < M_{N+1}$, $f \in L^p(G_m)$ and $n \in \mathbb{N}$, then

$$\|\sigma_n f - f\|_p \leq 2R^5 \sum_{s=0}^N \frac{M_s}{M_N} \omega_p(1/M_s, f), \quad (2.1)$$

where $R := \sup_{k \in \mathbb{N}} m_k$ and $\omega_p(1/M_k, f)$ is the modulus of continuity of $L^p(G_m)$ functions, $1 \leq p < \infty$ functions defined by

$$\omega_p(1/M_k, f) = \sup_{|u| < 1/M_k} \|f(\cdot - u) - f(\cdot)\|_p, \quad k \in \mathbb{N},$$

where $-$ is the inverse operation of the sum $+$ defined on G_m and the modulus $|u|$ of $u \in G_m$ is defined by

$$|u| = \sum_{i=0}^{\infty} \frac{u_i}{M_{i+1}}.$$

It follows that if $f \in Lip(\alpha, p)$, i.e.,

$$Lip(\alpha, p) := \{f \in L^p(G_m) : \omega_p(1/M_k, f) = O(1/M_k^\alpha) \text{ as } k \rightarrow 0\},$$

then

$$\|\sigma_n f - f\|_p = \begin{cases} O(1/M_N), & \text{if } \alpha > 1, \\ O(N/M_N), & \text{if } \alpha = 1, \\ O(1/M_n^\alpha), & \text{if } \alpha < 1. \end{cases}$$

Moreover, (see e.g. [25]) if $1 \leq p < \infty$, $f \in L^p(G_m)$ and

$$\|\sigma_{M_n} f - f\|_p = o(1/M_n), \text{ as } n \rightarrow \infty,$$

then f is a constant function.

For the maximal operators of Vilenkin-Fejér means σ^* , defined by

$$\sigma^* f = \sup_{n \in \mathbb{N}} |\sigma_n f|$$

the weak-(1, 1) type inequality

$$\|\sigma^* f\|_{weak-L_1} \leq C \|f\|_1, \quad (f \in L^1(G_m))$$

can be found in Schipp [26] for Walsh series and in Pál, Simon [24] and Weisz [36] for bounded Vilenkin series. The boundedness of the maximal operators of Vilenkin-Féjer means of the one- and

two-dimensional cases can be found in Fridli [10], Gát [12], Goginava [14], Nagy and Tephnadze [22, 23], Simon [28, 29] and Weisz [37].

Convergence and summability of Nörlund means with respect to Vilenkin systems were studied by Areshidze and Tephnadze [3], Blahota and Nagy [4], Blahota, Persson and Tephnadze [7] (see also [5, 6]), Blyumin [8], Efimov [9], Fridli, Manchanda and Siddiqi [11], Goginava [13], Jastrebova [16], Nagy [20, 21], Memic [17], Tsutserova [31] and Zhantlesov [38].

Móricz and Siddiqi [19] investigated the approximation properties of some special Nörlund means of Walsh-Fourier series of $L^p(G_2)$ functions. In particular, they proved that if $f \in L^p(G_2)$, $1 \leq p \leq \infty$, $n = 2^j + k$, $1 \leq k \leq 2^j$ ($n \in \mathbb{N}_+$) and $(q_k, k \in \mathbb{N})$ is a sequence of non-negative numbers, such that

$$\frac{n^{\gamma-1}}{Q_n^\gamma} \sum_{k=0}^{n-1} q_k^\gamma = O(1), \quad \text{for some } 1 < \gamma \leq 2,$$

then there exists $C_p > 0$, depending only on p , such that

$$\|t_n f - f\|_p \leq \frac{C_p}{Q_n} \sum_{i=0}^{j-1} 2^i q_{n-2^i} \omega_p \left(\frac{1}{2^i}, f \right) + C_p \omega_p \left(\frac{1}{2^j}, f \right),$$

if the sequence $(q_k, k \in \mathbb{N})$ is non-decreasing, while

$$\|t_n f - f\|_p \leq \frac{C_p}{Q_n} \sum_{i=0}^{j-1} (Q_{n-2^{i+1}} - Q_{n-2^i+1}) \omega_p \left(\frac{1}{2^i}, f \right) + C_p \omega_p \left(\frac{1}{2^j}, f \right),$$

if the sequence $(q_k, k \in \mathbb{N})$ is non-increasing.

Tutberidze [32] (see also [25]) proved that if T_n are T means generated by either a non-increasing sequence $\{q_k, k \in \mathbb{N}\}$ or a non-decreasing sequence $\{q_k, k \in \mathbb{N}\}$ satisfying the condition

$$\frac{q_0}{Q_k} = O \left(\frac{1}{k} \right), \quad \text{as } k \rightarrow \infty,$$

then there exists an absolute constant C , such that

$$\|T^* f\|_{weak-L_1} \leq C \|f\|_1, \quad (f \in L^1(G_m))$$

holds. From these results it follows that if $f \in L^p(G_m)$, where $1 \leq p < \infty$ and either the sequence $\{q_k, k \in \mathbb{N}\}$ is non-increasing, or $\{q_k, k \in \mathbb{N}\}$ is a sequence of non-decreasing numbers, such that the condition

$$\frac{q_{n-1}}{Q_n} = O \left(\frac{1}{n} \right), \quad \text{as } n \rightarrow \infty, \tag{2.2}$$

is satisfied, then

$$\lim_{n \rightarrow \infty} \|T_n f - f\|_p = 0.$$

For the Walsh system in [18] Móricz and Rhoades proved that if $f \in L^p(G_2)$, where $1 \leq p < \infty$, and T_n are regular T means generated by a non-increasing sequence $\{q_k, k \in \mathbb{N}\}$, then, for any $2^N \leq n < 2^{N+1}$, we have the following approximation inequality:

$$\|T_n f - f\|_p \leq \frac{C_p}{Q_n} \sum_{s=0}^{N-1} 2^s q_{2^s} \omega_p \left(1/2^s, f \right) + C_p \omega_p \left(1/2^N, f \right). \tag{2.3}$$

In the case in which the sequence $\{q_k, k \in \mathbb{N}\}$ is non-decreasing and satisfying the condition

$$\frac{q_{k-1}}{Q_k} = O \left(\frac{1}{k} \right), \quad \text{as } k \rightarrow \infty, \tag{2.4}$$

the following inequality holds:

$$\|T_n f - f\|_p \leq C_p \sum_{j=0}^{N-1} 2^{j-N} \omega_p(1/2^j, f) + C_p \omega_p(1/2^N, f). \quad (2.5)$$

In this paper we use a new approach and generalize inequalities in (2.3) and (2.5) for T means with respect to the Vilenkin system (see Theorems 1 and 2). We also prove a new inequality for the subsequences $\{T_{M_n}\}$ means if the sequence $\{q_k, k \in \mathbb{N}\}$ is non-decreasing (see Theorem 3).

3 The main results

Our first main result reads:

Theorem 3.1. *Let $f \in L^p(G_m)$, where $1 \leq p < \infty$ and T_n are T means generated by a non-increasing sequence $\{q_k, k \in \mathbb{N}\}$. Then, for any $n, N \in \mathbb{N}$, $M_N \leq n < M_{N+1}$, we have the following inequality:*

$$\|T_n f - f\|_p \leq \frac{6R^6}{Q_n} \sum_{j=0}^{N-1} M_j q_{M_j} \omega_p(1/M_j, f) + 4R^6 \omega_p(1/M_N, f). \quad (3.1)$$

Next we state and prove a similar inequality for non-decreasing sequences but under some restrictions.

Theorem 3.2. *Let $f \in L^p(G_m)$, where $1 \leq p < \infty$ and T_n are regular T means generated by a non-decreasing sequence $\{q_k, k \in \mathbb{N}\}$. Then, for any $n, N \in \mathbb{N}$, $M_N \leq n < M_{N+1}$, we have the following inequality:*

$$\|T_n f - f\|_p \leq \frac{6R^6 q_{n-1}}{Q_n} \sum_{j=0}^{N-1} M_j \omega_p(1/M_j, f) + \frac{4R^6 q_{n-1} M_N}{Q_n} \omega_p(1/M_N, f). \quad (3.2)$$

If, in addition, the sequence $\{q_k, k \in \mathbb{N}\}$ satisfies condition (2.2), then the inequality

$$\|T_n f - f\|_p \leq C_p \sum_{j=0}^N \frac{M_j}{M_N} \omega_p(1/M_j, f) \quad (3.3)$$

holds for $C_p > 0$, depending only on p .

Finally, we state and prove the third main result for non-decreasing sequences, in which we prove a more precise result than that in (3.3) and without restriction (2.2), but only for subsequences.

Theorem 3.3. *Let $f \in L^p(G_m)$, where $1 \leq p < \infty$ and T_k are regular T means generated by a non-decreasing sequence $\{q_k, k \in \mathbb{N}\}$. Then, for any $n \in \mathbb{N}$, the following inequality holds:*

$$\begin{aligned} \|T_{M_n} f - f\|_p &\leq R^2 \sum_{j=0}^{n-1} \frac{M_j}{M_n} \omega_p(1/M_j, f) \\ &+ \frac{2R^4}{q_0} \sum_{j=0}^{n-1} \frac{(n-j)q_{M_n-M_j} M_j}{M_n} \omega_p(1/M_j, f) + \omega_p(1/M_n, f). \end{aligned} \quad (3.4)$$

We also point out the following generalizations of some results in [18] (in that paper, only the Walsh system was considered):

Corollary 3.1. *Let $\{q_k, k \geq 0\}$ be a sequence of non-negative and non-increasing numbers, while in case when the sequence is non-decreasing it is assumed that also condition (2.2) is satisfied. If $f \in \text{Lip}(\alpha, p)$ for some $\alpha > 0$ and $1 \leq p < \infty$, then*

$$\|T_n f - f\|_p = \begin{cases} O(n^{-\alpha}), & \text{if } 0 < \alpha < 1, \\ O(n^{-1} \log n), & \text{if } \alpha = 1, \\ O(n^{-1}), & \text{if } \alpha > 1, \end{cases}$$

Corollary 3.2. *Let $\{q_k, k \geq 0\}$ be a sequence of non-negative and non-increasing numbers such that*

$$q_k \sim k^{-\beta} \quad \text{for some } 0 < \beta \leq 1$$

is satisfied.

If $f \in \text{Lip}(\alpha, p)$ for some $\alpha > 0$ and $1 \leq p < \infty$, then

$$\|T_n f - f\|_p = \begin{cases} O(n^{-\alpha}), & \text{if } \alpha + \beta < 1, \\ O(n^{-(1-\beta)} \log n + n^{-\alpha}), & \text{if } \alpha + \beta = 1, \\ O(n^{-(1-\beta)}), & \text{if } \alpha + \beta > 1, \beta > 1, \\ O((\log n)^{-1}), & \text{if } \beta = 1. \end{cases}$$

Corollary 3.3. *Let $\{q_k, k \geq 0\}$ be a sequence of non-negative and non-increasing numbers such that the equivalence*

$$q_k \sim (\log k)^{-\beta} \quad \text{for some } \beta > 0$$

is satisfied.

If $f \in \text{Lip}(\alpha, p)$ for some $\alpha > 0$ and $1 \leq p < \infty$, then

$$\|T_n f - f\|_p = \begin{cases} O(n^{-\alpha}), & \text{if } 0 < \alpha < 1, \beta > 0, \\ O(n^{-1} \log n), & \text{if } \alpha = 1, 0 < \beta < 1, \\ O(n^{-1} \log n \log \log n), & \text{if } \alpha = \beta = 1, \\ O(n^{-1} (\log n)^\beta), & \text{if } \alpha > 1, \beta > 0. \end{cases}$$

Corollary 3.4. *Let $f \in L^p(G_m)$, where $1 \leq p < \infty$ and $\{q_k, k \geq 0\}$ is a sequence of non-negative and non-increasing numbers, while in case when the sequence is non-decreasing it is also assumed that condition (2.2) is satisfied. Then,*

$$\lim_{n \rightarrow \infty} \|T_n f - f\|_p = 0.$$

4 Proofs

Proof of Theorem 1. Let $M_N \leq n < M_{N+1}$. Since T_n are regular T means generated by a sequence of non-increasing numbers $\{q_k : k \in \mathbb{N}\}$, we can combine (1.8) and (1.9) and conclude that

$$\begin{aligned} \|T_n f - f\|_p &\leq \frac{1}{Q_n} \left(\sum_{j=0}^{n-2} (q_j - q_{j+1}) j \|\sigma_j f - f\|_p + q_{n-1}(n-1) \|\sigma_{n-1} f - f\|_p \right) \\ &:= I + II. \end{aligned} \quad (4.1)$$

Moreover,

$$\begin{aligned} I &= \frac{1}{Q_n} \sum_{j=1}^{M_N-1} (q_j - q_{j+1}) j \|\sigma_j f - f\|_p + \frac{1}{Q_n} \sum_{j=M_N}^{n-1} (q_j - q_{j+1}) j \|\sigma_j f - f\|_p \\ &:= I_1 + I_2. \end{aligned} \quad (4.2)$$

Now we estimate both terms separately. By applying estimate (2.1) for I_1 we obtain that

$$\begin{aligned} I_1 &\leq \frac{2R^5}{Q_n} \sum_{k=0}^{N-1} \sum_{j=M_k}^{M_{k+1}-1} (q_j - q_{j+1}) j \sum_{s=0}^k \frac{M_s}{M_k} \omega_p(1/M_s, f) \\ &\leq \frac{2R^6}{Q_n} \sum_{k=0}^{N-1} M_k \sum_{j=M_k}^{M_{k+1}-1} (q_j - q_{j+1}) \sum_{s=0}^k \frac{M_s}{M_k} \omega_p(1/M_s, f) \\ &\leq \frac{2R^6}{Q_n} \sum_{k=0}^{N-1} (q_{M_k} - q_{M_{k+1}}) \sum_{s=0}^k M_s \omega_p(1/M_s, f) \\ &\leq \frac{2R^6}{Q_n} \sum_{s=0}^{N-1} M_s \omega_p(1/M_s, f) \sum_{k=s}^{N-1} (q_{M_k} - q_{M_{k+1}}) \\ &\leq \frac{2R^6}{Q_n} \sum_{s=0}^{N-1} M_s q_{M_s} \omega_p(1/M_s, f). \end{aligned} \quad (4.3)$$

Moreover,

$$\begin{aligned} I_2 &\leq \frac{2R^5}{Q_n} \sum_{j=M_N}^{n-1} (q_j - q_{j+1}) j \sum_{s=0}^N \frac{M_s}{M_N} \omega_p(1/M_s, f) \\ &\leq \frac{2R^6 M_N}{Q_n} \sum_{j=M_N}^{n-1} (q_j - q_{j+1}) \sum_{s=0}^N \frac{M_s}{M_N} \omega_p(1/M_s, f) \\ &\leq \frac{2R^6 q_{M_N}}{Q_n} \sum_{s=0}^N M_s \omega_p(1/M_s, f) \\ &\leq \frac{2R^6}{Q_n} \sum_{s=0}^N M_s q_{M_s} \omega_p(1/M_s, f) \\ &\leq \frac{2R^6}{Q_n} \sum_{s=0}^{N-1} M_s q_{M_s} \omega_p(1/M_s, f) + 2R^6 \omega_p(1/M_s, f). \end{aligned} \quad (4.4)$$

For II we have that

$$\begin{aligned} II &\leq \frac{2R^5 M_{N+1} q_{n-1}}{Q_n} \sum_{s=0}^N \frac{M_s}{M_N} \omega_p(1/M_s, f) \\ &\leq \frac{2R^6}{Q_n} \sum_{s=0}^{N-1} M_s q_{M_s} \omega_p(1/M_s, f) + 2R^6 \omega_p(1/M_N, f). \end{aligned} \quad (4.5)$$

The proof of (3.1) is complete by just combining (4.1)-(4.5). \square

Proof of Theorem 2. Let $M_N \leq n < M_{N+1}$. Since T_n are regular T means, generated by a sequence of non-decreasing numbers $\{q_k : k \in \mathbb{N}\}$, by combining (1.8) and (1.9), we find that

$$\begin{aligned} \|T_n f - f\|_p &\leq \frac{1}{Q_n} \left(\sum_{j=1}^{n-1} (q_{j+1} - q_j) j \|\sigma_j f - f\|_p + q_{n-1}(n-1) \|\sigma_n f - f\|_p \right) \\ &:= I + II. \end{aligned} \quad (4.6)$$

Furthermore,

$$\begin{aligned} I &= \frac{1}{Q_n} \sum_{j=1}^{M_N-1} (q_{j+1} - q_j) j \|\sigma_j f - f\|_p + \frac{1}{Q_n} \sum_{j=M_N}^{n-1} (q_{j+1} - q_j) j \|\sigma_j f - f\|_p \\ &:= I_1 + I_2. \end{aligned} \quad (4.7)$$

Analogously to (4.3) we get that

$$\begin{aligned} I_1 &\leq \frac{2R^6}{Q_n} \sum_{k=0}^{N-1} (q_{M_{k+1}} - q_{M_k}) \sum_{s=0}^k M_s \omega_p(1/M_s, f) \\ &\leq \frac{2R^6}{Q_n} \sum_{s=0}^{N-1} M_s \omega_p(1/M_s, f) \sum_{k=s}^{N-1} (q_{M_{k+1}} - q_{M_k}) \\ &= \frac{2R^6}{Q_n} \sum_{s=0}^{N-1} M_s \omega_p(1/M_s, f) (q_{M_N} - q_{M_s}) \\ &\leq \frac{2R^6 q_{M_N}}{Q_n} \sum_{s=0}^{N-1} M_s \omega_p(1/M_s, f) \\ &\leq \frac{2R^6 q_{n-1}}{Q_n} \sum_{s=0}^{N-1} M_s \omega_p(1/M_s, f). \end{aligned} \quad (4.8)$$

In a similar way as in (4.4) we find that

$$\begin{aligned} I_2 &\leq \frac{2R^5}{Q_n} \sum_{j=1}^{n-1} (q_{j+1} - q_j) j \sum_{s=0}^N \frac{M_s}{M_N} \omega_p(1/M_s, f) \\ &= \frac{2R^5}{Q_n} ((n-1)q_{n-1} - Q_n) \sum_{s=0}^N \frac{M_s}{M_N} \omega_p(1/M_s, f) \\ &\leq \frac{2R^5 M_{N+1} q_{n-1}}{Q_n M_N} \sum_{s=0}^N M_s \omega_p(1/M_s, f) \end{aligned}$$

$$\begin{aligned}
&\leq \frac{2R^6 q_{n-1}}{Q_n} \sum_{s=0}^N M_s \omega_p(1/M_s, f) \\
&\leq \frac{2R^6 q_{n-1}}{Q_n} \sum_{s=0}^{N-1} M_s \omega_p(1/M_s, f) + \frac{2R^6 q_{n-1} M_N}{Q_n} (1/M_N, f). \tag{4.9}
\end{aligned}$$

For II we have that

$$\begin{aligned}
II &\leq \frac{2R^5 q_{n-1} M_{N+1}}{Q_n} \sum_{s=0}^N \frac{M_s}{M_N} \omega_p(1/M_s, f) \\
&\leq \frac{2R^6 q_{n-1}}{Q_n} \sum_{s=0}^N M_s \omega_p(1/M_s, f) \\
&= \frac{2R^6 q_{n-1}}{Q_n} \sum_{s=0}^{N-1} M_s \omega_p(1/M_s, f) + \frac{2R^6 q_{n-1} M_N}{Q_n} (1/M_N, f). \tag{4.10}
\end{aligned}$$

By combining (4.6)-(4.10) we find that (3.2) holds. Moreover, by using condition (2.2) we obtain estimate (3.3), so the proof is complete. \square

Proof of Theorem 3. According to (1.2) we find that

$$T_{M_n} f = D_{M_n} * f - \frac{1}{Q_{M_n}} \sum_{k=0}^{M_n-1} q_k ((\psi_{M_n-1} \overline{D_k}) * f).$$

Hence, by using the Abel transformation we get that

$$\begin{aligned}
T_{M_n} f &= D_{M_n} * f \\
&- \frac{1}{Q_{M_n}} \sum_{j=0}^{M_n-2} (q_{M_n-j} - q_{M_n-j-1}) j ((\psi_{M_n-1} \overline{K_j}) * f) \\
&- \frac{1}{Q_{M_n}} q_{M_n-1} (M_n - 1) (\psi_{M_n-1} \overline{K_{M_n-1}} * f) \\
&= D_{M_n} * f \\
&- \frac{1}{Q_{M_n}} \sum_{j=0}^{M_n-2} (q_{M_n-j} - q_{M_n-j-1}) j ((\psi_{M_n-1} \overline{K_j}) * f) \\
&- \frac{1}{Q_{M_n}} q_{M_n-1} M_n (\psi_{M_n-1} \overline{K_{M_n}} * f) \\
&+ \frac{q_{M_n-1}}{Q_{M_n}} (\psi_{M_n-1} \overline{D_{M_n}} * f),
\end{aligned}$$

so that

$$\begin{aligned}
T_{M_n} f(x) - f(x) &= \int_{G_m} (f(x-t) - f(x)) D_{M_n}(t) dt \\
&- \frac{1}{Q_{M_n}} \sum_{j=0}^{M_n-2} (q_{M_n-j} - q_{M_n-j-1}) j \int_{G_m} (f(x-t) - f(x)) \psi_{M_n-1}(t) \overline{K_j}(t) dt \\
&- \frac{1}{Q_{M_n}} q_{M_n-1} M_n \int_{G_m} (f(x-t) - f(x)) \psi_{M_n-1}(t) \overline{K_{M_n}}(t) dt
\end{aligned}$$

$$\begin{aligned}
& + \frac{q_{M_n-1}}{Q_{M_n}} \int_{G_m} (f(x-t) - f(x)) \psi_{M_n-1}(t) \overline{D}_{M_n}(t) dt \\
& =: I + II + III + IV.
\end{aligned} \tag{4.11}$$

By combining generalized Minkowski's inequality and (1.1) we find that

$$\|I\|_p \leq \int_{I_n} \|f(x-t) - f(x)\|_p D_{M_n}(t) dt \leq \omega_p(1/M_n, f) \tag{4.12}$$

and

$$\|IV\|_p \leq \int_{I_n} \|f(x-t) - f(x)\|_p D_{M_n}(t) dt \leq \omega_p(1/M_n, f). \tag{4.13}$$

Moreover, since

$$M_n q_{M_n-1} \leq Q_{M_n}, \quad \text{for any } n \in \mathbb{N},$$

we can use (1.5) and generalized Minkowski's inequality to find that

$$\begin{aligned}
\|III\|_p & \leq \int_{G_m} \|f(x-t) - f(x)\|_p |\overline{K}_{M_n}(t)| d\mu(t) \\
& = \int_{I_n} \|f(x-t) - f(x)\|_p |\overline{K}_{M_n}(t)| d\mu(t) \\
& + \sum_{s=0}^{n-1} \sum_{n_s=1}^{m_s-1} \int_{I_n(n_s e_s)} \|f(x-t) - f(x)\|_p |\overline{K}_{M_n}(t)| d\mu(t) \\
& \leq \int_{I_n} \|f(x-t) - f(x)\|_p \frac{M_n + 1}{2} d\mu(t) \\
& + \sum_{s=0}^{n-1} M_{s+1} \sum_{n_s=1}^{m_s-1} \int_{I_n(n_s e_s)} \|f(x-t) - f(x)\|_p d\mu(t) \\
& \leq \omega_p(1/M_n, f) \int_{I_n} \frac{M_n + 1}{2} d\mu(t) \\
& + \sum_{s=0}^{n-1} M_{s+1} \sum_{n_s=1}^{m_s-1} \int_{I_n(n_s e_s)} \omega_p(1/M_s, f) d\mu(t) \\
& \leq \omega_p(1/M_n, f) + R^2 \sum_{s=0}^{n-1} \frac{M_s}{M_n} \omega_p(1/M_s, f).
\end{aligned} \tag{4.14}$$

From this inequality and the estimates in (4.14) it follows also that

$$M_n \int_{G_m} \|f(x-t) - f(x)\|_p |\overline{K}_{M_n}(t)| d\mu(t) \leq R^2 \sum_{s=0}^n M_s \omega_p(1/M_s, f).$$

Let $M_k \leq j < M_{k+1}$. By applying (1.3) and the last estimate we find that

$$j \int_{G_m} \|f(x-t) - f(x)\|_p |\overline{K}_j(t)| d\mu(t) \leq 2R^4 \sum_{l=0}^k \sum_{s=0}^l M_s \omega_p(1/M_s, f).$$

Hence, by also using (1.3) we obtain that

$$\begin{aligned}
& \|II\|_p \\
& \leq \frac{1}{Q_{M_n}} \sum_{j=0}^{M_n-1} (q_{M_n-j} - q_{M_n-j-1}) j \int_{G_m} \|f(x-t) - f(x)\|_p |\bar{K}_j(t)| d\mu(t) \\
& \leq \frac{1}{Q_{M_n}} \sum_{k=0}^{n-1} \sum_{j=M_k}^{M_{k+1}-1} (q_{M_n-j} - q_{M_n-j-1}) j \int_{G_m} \|f(x-t) - f(x)\|_p |\bar{K}_j(t)| d\mu(t) \\
& \leq \frac{2R^4}{Q_{M_n}} \sum_{k=0}^{n-1} \sum_{j=M_k}^{M_{k+1}-1} (q_{M_n-j} - q_{M_n-j-1}) \sum_{l=0}^k \sum_{s=0}^l M_s \omega_p(1/M_s, f) \\
& \leq \frac{2R^4}{Q_{M_n}} \sum_{k=0}^{n-1} (q_{M_n-M_k} - q_{M_n-M_{k+1}}) \sum_{l=0}^k \sum_{s=0}^l M_s \omega_p(1/M_s, f) \\
& \leq \frac{2R^4}{Q_{M_n}} \sum_{l=0}^{n-1} \sum_{k=l}^{n-1} (q_{M_n-M_k} - q_{M_n-M_{k+1}}) \sum_{s=0}^l M_s \omega_p(1/M_s, f) \\
& \leq \frac{2R^4}{Q_{M_n}} \sum_{l=0}^{n-1} q_{M_n-M_l} \sum_{s=0}^l M_s \omega_p(1/M_s, f) \\
& \leq \frac{2R^4}{Q_{M_n}} \sum_{s=0}^{n-1} M_s \omega_p(1/M_s, f) \sum_{l=s}^{n-1} q_{M_n-M_l} \\
& \leq \frac{2R^4}{Q_{M_n}} \sum_{s=0}^{n-1} M_s \omega_p(1/M_s, f) q_{M_n-M_s}(n-s) \\
& \leq 2R^4 \sum_{s=0}^{n-1} \frac{(n-s)M_s}{M_n} \frac{q_{M_n-M_s}}{q_0} \omega_p(1/M_s, f). \tag{4.15}
\end{aligned}$$

Finally, by combining (4.11)-(4.15) and using Minkowski's inequality we obtain (3.4), so the proof is complete. \square

Acknowledgments

We thank the careful referee for good suggestions, which improved the final version of this paper.

The research was supported Shota Rustaveli National Science Foundation (SRNSF), grant no. FR-24-698.

References

- [1] N. Anakidze, N. Areshidze, *On the approximation by Fejér means in Lebesgue spaces*, Trans. A. Razmadze Math. Inst. (to appear).
- [2] G.N. Agaev, N.Ya. Vilenkin, G.M. Dzhafarly, A.I. Rubinshtein, *Multiplicative systems of functions and harmonic analysis on zero-dimensional groups*, Baku, Ehim, 1981 (in Russian).
- [3] N. Areshidze, G. Tephnadze, *Approximation by Nörlund means with respect to Walsh system in Lebesgue spaces*, Math. Inequal. Appl. 27 (2024), no. 1, 137-147.
- [4] I. Blahota, K. Nagy, *Approximation by matrix transform of Vilenkin-Fourier series*, Publ. Math. Debrecen. 99 (2021), no. 1-2, 223-242.
- [5] I. Blahota, G. Tephnadze, *On the (C, α) -means with respect to the Walsh system*, Anal. Math. 40 (2014), 161-174.
- [6] I. Blahota, G. Tephnadze, R. Toledo, *Strong convergence theorem of (C, α) -means with respect to the Walsh system*, Tohoku Math. J. 67 (2015), no. 4, 573-584.
- [7] I. Blahota, L.E. Persson, G. Tephnadze, *On the Nörlund means of Vilenkin-Fourier series*, Czech. Math J. 65 (2015), no. 4, 983-1002.
- [8] S.L. Blyumin, *Linear summability methods for Fourier series in multiplicative systems*, Sib. Math. J. 9, (1968), no. 2, 449-455.
- [9] A.V. Efimov, *On certain approximation properties of periodic multiplicative orthonormal systems*. Mat. Sb. (N.S.) 69/111 (1966), 354-370.
- [10] S. Fridli, *On the rate of convergence of Cesaro means of Walsh-Fourier series*, J. Approx. Theory 76 (1994), no. 1, 31-53.
- [11] S. Fridli, P. Manchanda, A. Siddiqi, *Approximation by Walsh-Nörlund means*, Acta Sci. Math. 74 (2008), 3-4, 593-608.
- [12] G. Gát, *Cesàro means of integrable functions with respect to unbounded Vilenkin systems*. J. Approx. Theory 124 (2003), no. 1, 25-43.
- [13] U. Goginava, *Maximal operators of Walsh-Nörlund means on the dyadic Hardy spaces*, Acta Math. Hungar. 169 (2023), no. 1, 171-190.
- [14] U. Goginava, *The maximal operator of the Marcinkiewicz-Fejér means of the d -dimensional Walsh-Fourier series*, East J. Approx. 12 (2006), no. 3, 295-302.
- [15] B.I. Golubov, A.V. Efimov, V.A. Skvortsov, *Walsh series and transforms*, Kluwer Academic Publishers Group, Dordrecht, 1991.
- [16] M.A. Jastrebova, *The $(C, 1)$ -summability of the expansions of functions in periodic multiplicative orthonormal systems*, Izv. Vyss. Ucebn. Zaved. Matematika 1969 (1969), no. 12, 112-123.
- [17] N. Memić, *An estimate of the maximal operator of the Nörlund logarithmic means with respect to the character system of the group of 2-adic integers on the Hardy space H_1* , Bull. Iranian Math. Soc. 48 (2022), no. 6, 3381-3391.
- [18] F. Móricz, B.E. Rhoades, *Approximation by weighted means of Walsh-Fourier series*, Internat. J. Math. Math. Sci. 19 (1996) no 1, 1-8.
- [19] F. Móricz, A. Siddiqi, *Approximation by Nörlund means of Walsh-Fourier series*, J. Approx. Theory 70 (1992), no. 3, 375-389.
- [20] K. Nagy, *Approximation by Nörlund means of double Walsh-Fourier series for Lipschitz functions*, Math. Inequal. Appl. 15 (2012), no. 2, 301-322.
- [21] K. Nagy, *Approximation by Nörlund means of quadratical partial sums of double Walsh-Fourier series*, Anal. Math. 36 (2010), no. 4, 299-319.

- [22] K. Nagy, G. Tephnadze, *Approximation by Walsh-Marcinkiewicz means on the Hardy space*, Kyoto J. Math. 54, (2014), no. 3, 641-652.
- [23] K. Nagy, G. Tephnadze, *Strong convergence theorem for Walsh-Marcinkiewicz means*, Math. Inequal. Appl. 19 (2016), no. 1, 185-195.
- [24] J. Pál, P. Simon, *On a generalization of the concept of derivative*, Acta Math. Hungar. 29 (1977), 155-164.
- [25] L.-E. Persson, G. Tephnadze, F. Weisz, *Martingale Hardy spaces and summability of Vilenkin-Fourier series*, Birkhäuser-Springer, Cham., 2022.
- [26] F. Schipp, *Certain rearrangements of series in the Walsh series*, Mat. Zametki 18 (1975), 193-201.
- [27] F. Schipp, W. R. Wade, P. Simon, J. Pál, *Walsh series. An introduction to dyadic harmonic analysis*, Adam Hilger, Ltd., Bristol, 1990.
- [28] P. Simon, *Strong convergence of certain means with respect to the Walsh-Fourier series*, Acta Math. Hungar. 49 (1987), 3-4, 425-431.
- [29] P. Simon, *On the Cesáro summability with respect to the Walsh-Kaczmarz system*, J. Approx. Theory 106 (2000), no. 2, 249-261.
- [30] V.A. Skvortsov, *Cesáro means of Fourier series with respect to multiplicative systems*. Vestnik Moskov. Univ. Ser. I Mat. Mekh. 1 (1982), 7-11.
- [31] N.I. Tsutserova, *(C, 1)-summability of Fourier series with respect to a multiplicative system of functions*, Math. Notes 43 (1988), no. 6, 467-479.
- [32] G. Tutberidze, *Maximal operators of means with respect to the Vilenkin system*, Nonlinear Stud. 27 (2020), no. 4, 1-11.
- [33] N.Y. Vilenkin, *On a class of complete orthonormal systems*, Amer. Math. Soc. Trans. 28 (1963), no. 2, 1-35.
- [34] N.Y. Vilenkin, *On the theory of lacunary orthogonal systems*, (in Russian) Izv. Akad. Nauk USSR, Ser. Mat. 13 (1949), 245-252.
- [35] N.Y. Vilenkin, *On the theory of Fourier integrals on topological groups*, Mat. Sbornik N. S. 30 (1952), no. 72, 233-244.
- [36] F. Weisz, *Martingale Hardy spaces and their applications in Fourier analysis*, Springer, Berlin-Heidelberg-New York, 1994.
- [37] F. Weisz, *Hardy spaces and Cesàro means of two-dimensional Fourier series*, Bolyai Soc. Math. Studies, 5 (1996), 353-367.
- [38] Zh.Kh. Zhantlesov, *On the order of approximation of functions by the Zygmund means of the Fourier series with respect to a multiplicative system*, Current problems of function theory and of functional analysis. Collection of scientific works. (Sovremennye voprosy teorii funktsii i funktsional'nogo analiza. Sbornik nauchnykh trudov). (in Russian) Karaganda: Karagandinskij Gosudarstvennyj Universitet. 129 pp. (1984), 41-51 (see Zbl 0659.46001).
- [39] A. Zygmund, *Trigonometric series*, Vol. 1, Cambridge Univ. Press, 1959.

Nino Anakidze, George Tephnadze
 School of Science and Technology
 The University of Georgia
 77a Merab Kostava St,
 0171 Tbilisi, Georgia
 E-mails: nino.anakidze@mail.ru, g.tephnadze@ug.edu.ge

Nika Areshidze
Department of Mathematics
University of California, Irvine
480 Rowland Hall,
92697 Irvine, CA, USA.
E-mail: nika.areshidze15@gmail.com

Lars-Erik Persson
Department of Mathematics and Computer Science
UiT The Arctic University of Norway
and
Department of Mathematics,
Uppsala University, Uppsala, Sweden.
E-mail: larserik6pers@gmail.com

Received: 18.10.2024