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1 Preliminaries

Let Ny denote the set of the positive integers and N := N, U {0}. Let m =: (mg,ms,---) be a
sequence of positive integers not less than 2. Denote by

Ty :={0,1,--+ ,my, — 1}

the additive group of integers modulo my. Define the group G,, as the complete direct product of
the group Z,,, with the product of the discrete topologies of Z,,,’s.
The direct product u of the measures

e ({5}) = 1y (J € Zmy)

is the Haar measure on G,, with 1 (G,,) = 1.

If supgenymi < 400, then we call G, a bounded Vilenkin group. If the sequence {my}i>o is
unbounded, then G, is said to be an unbounded Vilenkin group. In this paper we consider only
bounded Vilenkin groups.

The elements of G, are represented by the sequences

x = (20, L1, Tpy...) (xk € Zm,,) -
It is easy to give a base for the neighborhood of G,,, namely
In(z) =Gy, In(x):={y€Gn|v =20 Yn-1=2Tn1} (v € Gp, n€N).

For brevity, we also define I,, := I,,(0).
Next, we define a generalized number system based on m in the following way:

My =:1, My =: mp M (]C S N)
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Then every n € N can be uniquely expressed as

n= anMj, where n; € Z,,, (j€N)
5=0
and only a finite number of n,’s differ from zero. Let

In| = max{j € N,n; # 0}.

Moreover, Vilenkin (see [33] 34} B5]) investigated the group G,, and introduced the Vilenkin system
{¥; }f.io as

Un (2) =[] ri* (@) (neN).
k=0
where 7 (x) are the generalized Rademacher functions defined by
ri(x) = exp(2mixy/my), (k € N).

If my = 2 for any k£ € N, then the Vilenkin group coincides with the dyadic group, which will be
denoted by G5 and Vilenkin systems include as a special case the Walsh system.
The norms (or quasi-norms) || f|[,, 0 < p < oo, of the Lebesgue spaces LP(G),) are defined by

T / P dp.

The Vilenkin system is orthonormal and complete in L? (G,,) (see e.g. [2] and [27]).

If f e L' (G,,), we can define the Fourier coefficients, the partial sums of the Fourier series,
the Fejér means, the Dirichlet and Fejér kernels with respect to the Vilenkin system in the usual
manner:

Fk) = = [ fihdp, (keN),
Snf L= Z}.\(k) wlm (TL € NJra SOf = )7
onf == S (meN).

D, ZZW, (neNy).
k=

1
Kn o= - Dk, (TL S N+)
"=
Recall that (see e.g. [2] and [25]),
M,, ifzel,
Du, (@) = { 0, if ¢l (1.1)
Dy, —j(z) = Du, (x) =y, 1 (—2)Dj(—2) (1.2)
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id

n|K,| <2R*> MKy,

=0

and

/ Ky(@)du(x) =1,  sup / Ko ()] dial) < R
Gm Gm

neN

where R := supycy my. Moreover, if n > ¢, t,n € N, then

#f(x)a HARS It\[t+17 T — Ty S I?"m
KMn (l') = an—i_la T € ]nv
0, otherwise.

The n-th Norlund mean ¢, and T mean T, of f € L'(G,,) are defined by

1 n
tnf = Q_ZQn—kSkf
" k=1

and
1 n—1
" k=0
where )
Qn = Z dk-
k=0

Here {qx, k > 0} is a sequence of nonnegative numbers, where gy > 0 and

lim @, = oo.
n—oo

10

(1.3)

(1.4)

(1.5)

(1.6)

Then, a T' mean generated by {qz, & > 0} is regular if and only if condition (1.6) is satisfied (see

[25]).
It is evident that

T,f (x) = /f(t)Fn () du(y),
Gm

where
1 n—1
ﬂ:aZM%
" k=0

which are called the kernels of the T" means.
By applying the Abel transformation, we get the following two useful identities

n—2

Z(Qk — Qir1)k + gn1(n — 1)
k=0

n—1
k=0

and

n—2
. ( (qr — @rs1)korf + gnoa(n — 1)0n_1f> .

(1.8)

(1.9)
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2 Historical overview

It is well-known (see e.g. [I5], [25] and [39]) that, for any 1 < p < oo and f € LP(G,,), there
exists C,, > 0, depending only on p, such that

”O-nf”p S Cp Hpr .

Moreover, Skvortsov [30] (see also [I]) proved that if 1 < p < oo, My < n < Myy1, f € LP(Gy)
and n € N, then

M
My

N
lonf = fll, <2R*Y " —"w, (1/M,, f). (2.1)
s=0

where R := sup,cy my and wy(1/My, f) is the modulus of continuity of LP(G,,) functions, 1 < p < oo
functions defined by

wp(1/Mg, f) = sup [[f(- —u) = fC)lp,  kEN,
|u|<1/Mj

where — is the inverse operation of the sum + defined on G, and the modulus |u| of u € G,, is
defined by

o0
u] = -
i=0 Min

It follows that if f € Lip (o, p), i.e.,
Lip(a,p) = {f € IX(Gu) w1/ My, ) = O(1/MZ) as k= 0},
then
O(1/My), if a>1,
0uf = fll, = { OWN/My), if a=1,
O(1/M»), if a<l
Moreover, (see e.g. [25]) if 1 <p < o0, f € LP(G,,) and

loar, f— fll, = o(1/M,), as n — oo,

then f is a constant function.
For the maximal operators of Vilenkin-Fejér means o*, defined by

o"f =sup|o,f|
neN

the weak-(1,1) type inequality

0" fluear—r, < CUfIL (f € LHGm))

can be found in Schipp [26] for Walsh series and in Pal, Simon [24] and Weisz [36] for bounded
Vilenkin series. The boundedness of the maximal operators of Vilenkin-Féjer means of the one- and
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two-dimensional cases can be found in Fridli [I0], Gét [12], Goginava [I4], Nagy and Tephnadze
[22, 23], Simon [28, 29] and Weisz [37].

Convergence and summability of Norlund means with respect to Vilenkin systems were studied
by Areshidze and Tephnadze [3|, Blahota and Nagy [4], Blahota, Persson and Tephnadze [7] (see
also [5l [6]), Blyumin [8], Efimov [9], Fridli, Manchanda and Siddiqi [11], Goginava [I3], Jastrebova
[16], Nagy [20, 21], Memic [I7], Tsutserova [31I] and Zhantlesov [38].

Méricz and Siddiqi [19] investigated the approximation properties of some special Norlund means
of Walsh-Fourier series of LP(G3) functions. In particular, they proved that if f € LP(Gs), 1 < p <
oo,n=2+k 1<k<2 (neN,) and (g, k € N) is a sequence of non-negative numbers, such
that

then there exists C), > 0, depending only on p, such that

Cp 1 1
thf - f”p < Q_i 22 4n—2iWp (§?f> + prp (2_]7f) )

i=0
if the sequence (gi, k € N) is non-decreasing, while

C, 1 1
”tnf - f”p S Q_p Z (an2i+1 - Qn72i+1+l) Wp (Ey f) + prp (57 f) )
" =0
if the sequence (g, k € N) is non-increasing.
Tutberidze [32] (see also [25]) proved that if T;, are T means generated by either a non-increasing
sequence {qx, k € N} or a non-decreasing sequence {q, k € N} satisfying the condition

o 1
— =0+, as k— oo,
Qr (k’)

then there exists an absolute constant C', such that

IT* flwcar—r2, < CUfIL (F € LHGw))

holds. From these results it follows that if f € LP(G,,), where 1 < p < oo and either the sequence
{qx, k € N} is non-increasing, or {q, k € N} is a sequence of non-decreasing numbers, such that the
condition

qn—1 1)
=0(—-), as n — oq, 2.2
@n ( (22)

is satisfied, then
lim [T,/ — £, = 0.

For the Walsh system in [I8] Moricz and Rhoades proved that if f € LP(G2), where 1 < p < oo,
and T,, are regular 7" means generated by a non-increasing sequence {q., k¥ € N}, then, for any
2NV <n < 2N+ we have the following approximation inequality:

Cy N g :
1T, f = fll, < Q—p > 2quw, (1/2°, f) + Couwp (1/2V, f) . (2.3)
" s=0
In the case in which the sequence {q, k € N} is non-decreasing and satisfying the condition

k-1 1
—=0(-], as k — oo, 2.4
Qr (k) (24)
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the following inequality holds:

ITnf = fllp < Gy ZQJ Yy (1/27, £) + Cywp (1/27, f) - (2.5)

In this paper we use a new approach and generalize inequalities in (2.3) and (2.5)) for 7" means
with respect to the Vilenkin system (see Theorems 1 and 2). We also prove a new inequality for the
subsequences {T), } means if the sequence {qx, k& € N} is non-decreasing (see Theorem 3).

3 The main results

Qur first main result reads:

Theorem 3.1. Let f € LP(G,,), where 1 < p < oo and T, are T means generated by a non-
increasing sequence {qi, k € N}. Then, for any n,N € N, My < n < My,1, we have the following
inequality:

6R6 N-1
@n

ITuf = fllp <

Mgy, wp (1/Mj, f) + 4R°w, (1/My, f) - (3.1)

Next we state and prove a similar inequality for non-decreasing sequences but under some re-
strictions.

Theorem 3.2. Let f € LP(G,,), where 1 < p < oo and T, are reqgular T means generated by a

non-decreasing sequence {qi, k € N}. Then, for any n,N € N, My < n < My, we have the

following inequality:

4RSq, 1 My
@n

If, in addition, the sequence {qy, k € N} satisfies condition (2.2)), then the inequality

ITf - 11, < 2 S Zwa (1/M;. ) + wp (1/My. ). (3.2)

N oA
ITuf = Flp < Co )y M—jva (1/M;, f) (3:3)
j=0

holds for C, > 0, depending only on p.

Finally, we state and prove the third main result for non-decreasing sequences, in which we prove
a more precise result than that in (3.3) and without restriction ([2.2)), but only for subsequences.

Theorem 3.3. Let f € LP(G,,), where 1 < p < oo and Ty are reqular T means generated by a
non-decreasing sequence {qx, k € N}. Then, for any n € N, the following inequality holds:

M;
ﬁu/ )

MH

||TM7Lf - pr S

Q
O

2R4 (TL - ]>qA1n—1v1 M

" QP = M, wp (1/Mj, f) 4 wp (1/ My, f) . (3.4)




Approximation by T means with respect to Vilenkin system in Lebesgue spaces 14

We also point out the following generalizations of some results in [I8] (in that paper, only the
Walsh system was considered):

Corollary 3.1. Let {qx, k > 0} be a sequence of non-negative and non-increasing numbers, while
in case when the sequence is non-decreasing it is assumed that also condition (2.2)) is satisfied. If
f € Lip(a,p) for some a >0 and 1 < p < oo, then

O(n™), if 0<a<l,
\Tof = fllp =94 O(ntlogn), if «a=1,
O(Tfl), if a>1,

Corollary 3.2. Let {qr, k > 0} be a sequence of non-negative and non-increasing numbers such
that

g~ kP for some 0<p<1

18 satisfied.
If f € Lip(«,p) for some a >0 and 1 < p < oo, then

O(n ]Ogn+n a), if CM“‘/@:L

T.f — flp =

| T f — fllp O(*l) it a+pB8>1, B>1,
O((logn)~1), if p=1

Corollary 3.3. Let {qr, k > 0} be a sequence of non-negative and non-increasing numbers such
that the equivalence

qr ~ (log k)fﬁ for some (>0

18 satisfied.
If f € Lip(«,p) for some a >0 and 1 < p < oo, then

O(n™%), if O<ax<l, >0,
O(n~tlogn), if a=1 0<p<1,
ITf = fllp = . . Ca
O(n~'lognloglogn), if a=p=1,
O(n~t(logn)?), it a>1, f>0.

Corollary 3.4. Let f € LP(G,,), where 1 < p < oo and {qx, k > 0} is a sequence of non-negative
and non-increasing numbers, while in case when the sequence is non-decreasing it 1s also assumed

that condition (2.2) is satisfied. Then,

Tim |70 f = fllp =
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4 Proofs

Proof of Theorem 1. Let My < n < Mpy1. Since T,, are regular 7" means generated by a sequence
of non-increasing numbers {g; : £ € N}, we can combine (1.8) and ([1.9) and conclude that

n—2
ITnf = flly < Ql (Z( = @+1)jllosf = fllp + gu-a(n = Dfon-1f — f”p)
= I+ 11 (4.1)
Moreover,
1 Mpy—1 1 n—1
I = = Z (4 — +1) jlloj f = fllp + Z (¢; — gj+1) dllof = fllp

Qn 2 Qu 2

= [1+[2. (42)

Now we estimate both terms separately. By applying estimate ({2.1]) for I; we obtain that

5 N—1Mp11—1 k M
[1 S n Z Z QJJrl ]ZMkwp 1/Ms:f)
k=0 j=DMj s=0
6N 1 Mk+1 1 k M
< ZMk > (G =a) ) 7w (/M f)
@n k=0 J=Mjy, s=0 K
o po V-1
<3 Z (4, = ., Zwa 1/M,. f)
o6 N-1
< ZMWP 1/M;, f) Z (qu _qu-H)
n s=0 k=s
oo V-1
< o> My, (ML), (43)
" s=0
Moreover,
2R5 n—1 . N MS
I, < 9 (g; QJ+1>]ZM wp (1/Ms, f)
" j=My s=0 N
2RO My N M,
< 0 (g; QJ+1)ZM wy (1/M, [)
n ]:MN s=0 N
2RS N
< QqMN ZMst (1/M57f)
n s=0
2R6 &
<3 > Mg, w, (1/M,, f)
" s=0
2RO 6
< ZM Qo wp (1/ M, f) + 2R%w, (1/Mj, f). (4.4)

Qn =
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For I1 we have that

N

2R5MN+IQ7171 Ms
I < w, (1/M.,
— Qn ; MN P( / f)
o p6 N1
< 0 MsQMSwp (1/Ms, f) +2R6wp (1/Mn, f). (4.5)
" s=0
The proof of (3.1) is complete by just combining (|4.1))-(4.5)). ]

Proof of Theorem 2. Let My <n < My,. Since T,, are regular 7' means, generated by a sequence
of non-decreasing numbers {q; : k € N}, by combining (1.8]) and (1.9), we find that

n—1
ITof = fllp < Qi (Z (@541 = ¢j) dllogf = fllp + gn-a(n = Dllonf - f||p>
no\j=1

— T41I (4.6)
Furthermore,
| Myl 1 =t
I = 5o 2 @n—a)illosf = flo+ 5= 2 @ = a)dllosf = fl
j=1 J=Mn
= L+ 1. (47)

Analogously to (4.3) we get that

g N=1 k
Il S Q—Z (qu+1 - qu) Z (1/M37f)
o “va
< Q Zwa (1/Ms, f) (qu+1 _qu>
™ s=0 k=s
= Q ZMWp 1/M57f) (qMN qu)
™ s=0
2R%pr,, N
< %Z M, (1/M,, f)
N—-1
< % Mw, (1/M87f>' (4.8)
n s=0

In a similar way as in (4.4]) we find that

2R5n 1 N
> w, (1/M,
Qn q]+1 j Sz; Mpr / ?f)

<

I <

2R
@n

IR My 101
< # > M, (1/M,, f)

s=0

M
My

hE

((n = 1)gn-1 — @n)

Wp (1/M57 f)

Il
=)

s
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2R, 1
S Q ! ZMSwp (1/M87f)
n s=0
2R6Qn71 — 2RGanl]\/[N
< Q—ZMswp(l/Msaf)+Q—(l/MNvf)' (4.9)
n s=0 n
For II we have that
2R%Gy 1 M1 o= M.
I < LN > w, (1/M,
2R%, 1
< =5 =Y M, (1/M,, f)
n s=0
2R6qn71 — 2R6qn71MN
= LY My (1M, f) + S (1M, ). (110
n s=0 n
By combining (4.6))-(4.10)) we find that (3.2)) holds. Moreover, by using condition ({2.2]) we obtain
estimate (3.3), so the proof is complete. O
Proof of Theorem 3. According to (1.2) we find that
| Mal
Tot,f = Dagy % f = 5— > @ ((Yar,1Dx) % f) -
Qu. 47
Hence, by using the Abel transformation we get that
Tu,f = D, *f
| Ma2
- Q_ Z (an_j - an—j—l) j((an—lKj) * f)
Mn 555
1 —
- Q—Manfl(Mn = D)Wy, o K n-1 % f)
== DMn * f
| M2
- Q— Z (anfj - anfjA) j((,[?Z}Mn—lKj) * f)
M 555
1 —
- Q_Manfan<anflKMn * f)
- —
+ ST(anﬂDMn * f)’

so that
Ty, /() — f(z) = / (F(x — ) — £(2)) Do, (t)dt

Mp—2

_QL]V[” JZO (an—j - QJanjfl) ] /Gm (f(x — t) — f(g;)) anfl (t>Kj<t)dt
1

Q_an—an (f(33 - t) - f(x)>¢1un—1<t)7Mn (t)dt
My, Gm
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9ar, -1 _ B T _M
+ s / (fle =) = F@) (D, ()

= I+I1I+1IT+1V.
By combining generalized Minkowski’s inequality and (|1.1)) we find that
I < [ 15 =) = F@)Dar, ()it <y (1/M.
and

V1l S/I 1f(z =) = f(@)[l, Do, (B)dt < wp (1/ M, f) .

Moreover, since
Muqy,—1 < Qu,, forany neN,

we can use ([1.5)) and generalized Minkowski’s inequality to find that

[, < /G 1f (@ =1) = F @)l [K s, ()] du(t)

_ /||f(a:—t Iy [ s, (8)] dps

s Zmz [ 1m0 = @l Fu. 0]t
< [ 1ra=n-rwl, T

N ZMSH z / N CCEURS G0

S -

L (1/M,., ) / Mot L)

; ZMS+1 ) [ Mg dut)

ns=1 nses)
n—1 M
< wp (1M, )+ B2 Y 57wy (1M, f).
s=0 n

From this inequality and the estimates in (4.14)) it follows also that

M, ; If (z =) = f @), 1K, (8)] da(t) < By Myw, (1/M,,, f).

s=0

Let My < j < Mgy1. By applying (1.3)) and the last estimate we find that

k

j/G If (z =) = f (@), [K;()ldp(t) < 2R Y Y Mw, (1/M,, f) .

=0 s=0

18

(4.11)

(4.12)

(4.13)

(4.14)



Approximation by T means with respect to Vilenkin system in Lebesgue spaces 19

Hence, by also using (|1.3) we obtain that

121]],
| Ml
< Qu, Z% (an,j - anjl)j/Gm | f(z—1)— f($>||p|Kj(t)|dM(t)
n—1Mgi1—1
< oo Y st [ 15— 0 = @R
Mnk =0 j=Mj, Gm
R IZ 1My yp1—-1 Eool
S Q Z Z qlwn —J an —j—1 ZZMSWP (1/M87f>
Mn =0 j=M, —0 s=0
2R T k
< Q Z (an—Mk - an—MkH) Z Mswp (1/Ms,f)
Mnj—o 1=0 s=0
2R4 n—1n-1 l
< G2 2 (B = D) D Moty (/M. )
Mn—g k=1 s=0
2R* <
< Q Zan MZZMst (1/M,, f)
My,
< QM" > Mswp (1/M,, f) Zan v
2R4 n—1
< Mswp (1/M57 f) Ay, — g (n - S)
@, =
M
< 2342 Datnste gy, (1/M,, ). (4.15)

qo

Finally, by combining (4.11)-(4.15) and using Minkowski’s inequality we obtain (3.4]), so the
proof is complete. O
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