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Abstract. In this paper we find a condition on a function w which ensures the equiva-
lence of norms of the Riesz potential and the fractional maximal function in generalized
Morrey spaces Mp,w(Rn).

Recall that Iα ∗ µ and Mαµ denote the Riesz potential and the fractional maximal
function associated with a non-negative measure µ on Rn, respectively. That is,

Iα ∗ µ(x) =

∫
Rn

dµ(y)

|x− y|n−α
, 0 < α < n,

and
Mαµ(x) = sup

r>0
rα−nµ(B(x, r)), 0 ≤ α < n,

where B(x, r) denotes the open ball centered at x of radius r.
If dµ(x) = |f(x)|dx, then Iα ∗µ and Mαµ will be denoted by Iαf and Mαf , respec-

tively.
Recall that, for 0 < α < n,

Mαµ(x) . Iα ∗ µ(x) (1)

for any x ∈ Rn.
By A . B we mean that A ≤ cB with some positive constant c independent of

appropriate quantities. If A . B and B . A, we write A ≈ B and say that A and B
are equivalent.

Let us denote by Lloc,+
p (Rn) the set of all non-negative functions from Lloc

p (Rn).
The well-known Morrey spaces Mp,λ introduced by C. Morrey in 1938 in [6] in

connection with the study of partial differential equations, were widely investigated
during the last decades, including the study of classical operators of harmonic analysis
- maximal, singular and potential operators - in generalizations of these spaces (the
so-called Morrey-type spaces).

Definition 1. Let 1 ≤ p ≤ ∞, w be a continuous weight function w defined on (0,∞).
We say that f ∈Mp,w if f ∈ Lloc

p (Rn) and

‖f‖Mp,w
≡ ‖f‖Mp,w(Rn) = sup

x∈Rn, r>0
w(r)‖f‖Lp(B(x,r)) <∞.
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If w(r) = r−λ/p, then Mp,w becomes the classical Morrey space Mp,λ.
If ‖w(r)‖L∞(t,∞) = ∞ for all t > 0 or ‖w(r)r

n
p ‖L∞(0,t) = ∞ for all t > 0, then

the space Mp,w coincides with the set of all functions equivalent to 0 on Rn (see [3,
Lemma 1], for instance).

Definition 2 ([3]). Let 0 < p < ∞. We denote by Ωp,∞ the set of all non-negative
measurable functions w on (0,∞) such that for some t1, t2 > 0,

‖w(r)‖L∞(t1,∞) <∞, ‖w(r)r
n
p ‖L∞(0,t2) <∞.

In what follows, we always assume that w ∈ Ωp,∞.
The goal of the present work is to extend the theorem of B. Muckenhoupt and

R.L. Wheeden to the generalized Morrey spaces (see [7]).
Our main result is given in the following theorem.

Theorem 1. Let 1 < p < ∞, 0 < α < n, w be a continuous weight function defined
on (0,∞) such that w ∈ Ωp,∞ and define

ψ(x) := sup
x<s<∞

sα−n sup
0<τ<s

w(τ)τ
n
p . (2)

If there exists a constant c > 0 such that for any x > 0∫ ∞

x

tα−n−1 (ψ(t))−1 dt ≤ cxα−n (ψ(x))−1 , (3)

then
‖Iαf‖Mp,w ≈ ‖Mαf‖Mp,w (4)

for all f ∈ Lloc,+
1 (Rn) and the constants in the equivalency do not depend on f .

Note that if the function w(τ)τ
n
p is non-decreasing and the function w(τ)τα−n+n

p is
non-increasing, then ψ(x) = xα−n+n

pw(x).
In order to prove Theorem 1 we need the following statement.

Theorem 2. Let β > 0, δ > 0 and w be a continuous weight function defined on
(0,∞). Let ψ : (0,∞) → (0,∞) be defined by

ψ(x) := sup
x<s<∞

s−δ sup
0<τ<s

w(τ)τβ.

Then the inequality

sup
r>0

w(r)rβ
∫ ∞

r

g(t)

tδ
dt . sup

r>0
w(r)rβ

(
sup
t>r

t−δ
∫ t

0

g(s)ds

)
. (5)

holds for any non-negative measurable functions g on (0,∞) if and only if∫ ∞

x

t−δ−1 (ψ(t))−1 dt . x−δ (ψ(x))−1 , x > 0. (6)
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Inequalities of such type were studied in [4]. This theorem is of independent interest.
From Theorem 1, as a special case, follows the result of D.R. Adams and J. Xiao.

Theorem 3 ([2], Theorem 4.2). Let 1 < p < ∞, 0 < α < n, 0 ≤ λ < n. If
f ∈ Lloc,+

1 (Rn), then
‖Iαf‖Mp,λ

≈ ‖Mαf‖Mp,λ
. (7)

To be more precise, in [2] Theorem 4.2 is formulated for non-negative measures.
Note that there is a gap in the proof of Theorem 3 of [2] as it depends on an

incorrect estimate (see (4.8) of [2]).
The correct formulation of estimate (4.8) from [2] is given in the following lemma.

Lemma 1. Let 1 < p < ∞ and 0 < α < n. If µ is a non-negative measure on Rn,
then there exists c > 0 such that for any cube Q in Rn

‖Iα ∗ µ‖Lp(Q) ≤ c
(
|Q|

1
p (Iα ∗ µ)Q + ‖(Iα ∗ µ)#‖Lp(Q)

)
. (8)

Here f# is the Fefferman-Stein sharp maximal function of f ∈ Lloc
1 (Rn) defined by

f#(x) = sup
Q3x

1

|Q|

∫
Q

|f(y)− fQ|dy, (9)

where the supremum is taken over all cubes Q containing x.
Estimate (4.8) in [2] is (8) but without the first summand in the right hand side.
The source of the error in [2] is in Lemma 4.1 (ii), in the proof of which the

restriction t > 2n+1(Iα ∗ µ)Q was omitted from the local variant of the Calderón-
Zygmund decomposition.

The correct formulation of Lemma 4.1 (ii) in [2] is the following.

Lemma 2. Let α ∈ (0, n) and Iα ∗ µ ∈ Lloc
1 (Rn) for a given non-negative measure µ

on Rn. Then, given a cube Q ⊂ Rn and numbers t > 2n+1(Iα ∗ µ)Q, ε > 0,

|{x ∈ Q : Iα ∗ µ(x) > t}| ≤|{x ∈ Q : (Iα ∗ µ)#(x) > 2−1εt}|
+ε|{x ∈ Q : Iα ∗ µ(x) > 2−n−1t}|. (10)

Note that the restriction t > 2n+1(Iα ∗ µ)Q is very important (see, for instance [5,
Corollary 2.1.21]).

To avoid the restriction on t, we can formulate Lemma 2 in the following way.

Lemma 3. Let α ∈ (0, n) and Iα ∗ µ ∈ Lloc
1 (Rn) for a given non-negative measure µ

on Rn. Then, given a cube Q ⊂ Rn and numbers t, ε > 0,

|{x ∈ Q : |Iα ∗ µ(x)− (Iα ∗ µ)Q| > t}| ≤|{x ∈ Q : (Iα ∗ µ)#(x) > 2−1εt}|
+ε|{x ∈ Q : |Iα ∗ µ(x)− (Iα ∗ µ)Q| > 2−n−1t}|.

(11)

In fact, the main reason to prove Lemma 4.1 in [2] was to obtain the relation between
Lp-norms of Riesz potential and fractional maximal function over cubes. Such an
estimate is very useful in many applications. Our main two-sided estimate is formulated
in the following theorem.
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Theorem 4. Let 0 < α < n, 1 < p < ∞ and f ∈ Lloc,+
1 (Rn). Then for any cube

Q = Q(x0, r0),

‖Iαf‖Lp(Q) ≈ ‖Mαf‖Lp(Q) + |Q|
1
p

∫
Rn\Q

f(y)dy

|y − x0|n−α
, (12)

where the constants in the equivalence do not depend on Q and f .

Remark 1. Since for any function f ≥ 0 with compact support in Rn such that
Iαf ∈ Lloc

1 (Rn)
(Iαf)#(x) ≈ Mαf(x), for any x ∈ Rn

(see [1, Proposition 3.3 and 3.4] or [2, Lemma 4.1 (i)]), then equivalence (12) could be
written in the following form

‖Iαf‖Lp(Q) ≈ ‖(Iαf)#‖Lp(Q) + |Q|
1
p

∫
Rn\Q

f(y)dy

|y − x0|n−α
. (13)

This inequality gave us a hint that inequality (4.8) in [2] is not likely to hold. The
next example confirms our doubt: For 0 < r < R/4, where R is a fixed real number,
consider the function

f(y) = |y|−αχB(0,R)\B(0,2r)(y).

It is easy to calculate that
‖Mαf‖Lp(B(0,r)) ≈ r

n
p

and
‖Iαf‖Lp(B(0,r)) ≈ r

n
p ln

R

r
.

Thus
‖Iαf‖Lp(B(0,r)) 6≈ ‖Mαf‖Lp(B(0,r)) ≈ ‖(Iαf)#‖Lp(B(0,r)).
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