Short communications

EURASIAN MATHEMATICAL JOURNAL ISSN 2077-9879 Volume 2, Number 2 (2011), 129 – 133

ABOUT THE SPECTRUM OF THE LAPLACE OPERATOR

B.N. Biyarov

Communicated by M. Otelbaev

Key words: Laplace operator, Volterra operator, correct restrictions of the maximal operator, correct extensions of the minimal operator.

AMS Mathematics Subject Classification: 35P05, 58J50.

Abstract. The famous French scientist J. Hadamard constructed the well-known example illustrating the incorrectness of the Cauchy problem for the Laplace equation. Since then, the question arises whether there exists a Volterra problem for the Laplace equation. In this paper we prove a theorem for a wide class of correct restrictions of the maximal operator L and the correct extensions of the minimal operator L_0 , generated by the Laplace operator, which are not Volterra problems.

1 Introduction and statement of problem

In a Hilbert space $L_2(\mathbb{B})$, where $\mathbb B$ is the m-dimensional unit ball in \mathbb{R}^m with the boundary S, we consider the Laplace operator

$$
-\Delta u = -\left(\frac{\partial^2 u}{\partial x_1^2} + \frac{\partial^2 u}{\partial x_2^2} + \dots + \frac{\partial^2 u}{\partial x_m^2}\right).
$$
 (1.1)

The minimal operator L_0 , corresponding to Laplace operator 1.1 is defined as the closure in the graph norm of the restriction of $-\Delta$ on $C_0^{\infty}(\mathbb{B})$ as an operator from $L_2(\mathbb{B})$ to $L_2(\mathbb{B})$. Denote by $\widehat{L} = L_0^*$ the maximal operator. This definition is the definition of the weak maximal operator. It means, that $u \in D(\widehat{L})$ and $\widehat{L}u = f$ if and only if u and f belong to $L_2(\mathbb{B})$ and for all $v \in C_0^{\infty}(\mathbb{B})$

$$
(f, v) = (u, \tilde{L}v).
$$

The operator \widehat{L} is called a strong maximal operator if it coincides with the closure of its restriction on $D(\widehat{L}) \cap C^{\infty}(\mathbb{B})$. In our case the weak and strong definition of the maximal operator coincide, because L is an operator of local type (see [4, p. 118]).

Thus, we have defined the operators L_0 with the domain $D(L_0) = W_2^2(\mathbb{B})$ and \widehat{L} with the domain $D(\widehat{L}) = \{u \in L_2(\mathbb{B}) : \widehat{L}u \in L_2(\mathbb{B})\}.$

130 B.N. Biyarov

Denote by L_D the operator, corresponding to the Dirichlet problem, that is, with the domain

$$
D(L_D) = \{ u \in W_2^2(\mathbb{B}) : u|_S = 0 \}.
$$

Definition 1. A linear operator L in a Hilbert space H is called *correct* if L has a bounded inverse defined on H.

Definition 2. A linear operator A in a Hilbert space H is called a *Volterra operator* if A compact and quasinilpotent.

We denote by $\mathfrak{S}_{\infty}(H, H_1)$ the set of all linear compact operators acting from a Hilbert space H to a Hilbert space H_1 . If $T \in \mathfrak{S}_{\infty}(H, H_1)$, then T^*T is a non-negative self-adjoint operator in $\mathfrak{S}_{\infty}(H) \equiv \mathfrak{S}_{\infty}(H, H)$ and therefore has a non-negative selfadjoint square root $|T| = (T^*T)^{1/2}$. They will be written in the form of a sequence ${s_j(T)}_{j \in \mathbb{N}}$ where $s_1(T) \geq s_2(T) \geq \ldots \geq 0$ and each singular number is repeated as many times as its geometric multiplicity. If T (and hence $|T|$) is of finite rank n we assume that $s_i(T) = 0$ for $j > n$.

We denote by $\mathfrak{S}_p(H, H_1)$ the set of all compact operators $T \in \mathfrak{S}_{\infty}(H, H_1)$, for which

$$
\sum_{j=1}^{\infty} s_j^p(T) < \infty \quad (0 < p < \infty).
$$

The inverse operators L^{-1} to all possible correct restrictions L of the maximal operator \tilde{L} corresponding to Laplace operator(1.1) can be described (see [5]) in the following form

$$
u \equiv L^{-1}f = L_D^{-1}f + Kf,
$$
\n(1.2)

where K is an arbitrary linear operator bounded in $L_2(\mathbb{B})$ satisfying $R(K) \subset Ker \tilde{L}$. Then the direct operator L is defined by:

$$
Lu = \widehat{L}u = f, \quad u \in D(L), \quad f \in L_2(\mathbb{B}), \tag{1.3}
$$

$$
D(L) = \{ u \in D(\widehat{L}) : (I - K\widehat{L})u|_{S} = 0 \},
$$
\n(1.4)

where I is the identity operator in $L_2(\mathbb{B})$.

The operators $(L^*)^{-1}$ are defined by

$$
(L^*)^{-1}g = L_D^{-1}g + K^*g, \quad g \in L_2(\mathbb{B}).\tag{1.5}
$$

They describe the inverses to all possible correct extensions of the minimal operators L_0 if and only if K satisfies the condition (see [1]):

$$
Ker(L_D^{-1} + K^*) = \{0\}.
$$

If the operator K in (1.2) , satisfies one more additional condition

$$
KR(L_0)=\{0\},\
$$

then an operator L corresponding to problem (1.3) - (1.4) will be simultaneously a correct restriction of the maximal operator \widehat{L} and a correct extension of the minimal operator L_0 , that is, $L_0 \subset L \subset \widehat{L}$. Such operators L will be called the *boundary correct* extensions of the minimal operator L_0 (with respect to the maximal operator L).

Definition 3. A correct restriction, a correct extension, and a boundary correct extension L is called Volterra if the inverse operator L^{-1} is a Volterra operator.

By Poisson's formula we have

$$
u(x) = (P\varphi)(x) = \frac{1}{|S|} \int_{S} \varphi(\Theta') \frac{1 - \rho^2}{r^m} d\Theta' S; \qquad |x| = \rho < 1,
$$
 (1.6)

where $r^2 = 1 - 2\rho \cos \gamma + \rho^2 = |\xi - x|^2$, $|\xi| = 1$, $\Theta' \in S$, γ is the angle between vectors x and ξ . Note that $u(x)$ is a harmonic function in the ball $\mathbb B$ such that $u_{\text{S}} = \varphi$. The function u can be written in the form of a series (see [6, p. 249])

$$
u(x) = \sum_{n=0}^{\infty} \rho^n \sum_{k=1}^{k_{n,m}} a_n^{(k)} Y_{n,m}^{(k)}(\Theta), \qquad a_n^{(k)} = \int_S \varphi(\Theta) Y_{n,m}^{(k)}(\Theta) dS,
$$

where $0 < \rho < 1$, $\Theta \in S$, with respect to the orthonormal system ${Y_{n,m}^{(k)}}$ of spherical functions. We denote by P the operator, corresponding to (1.6) . The operator P acts from $L_2(S)$ to $L_2(\mathbb{B})$. Then the operator P^* acts from $L_2(\mathbb{B})$ to $L_2(S)$ and has the form

$$
P^*\psi = \frac{1}{|S|} \int_0^1 \rho d\rho \int_S \psi(\Theta) \frac{1 - \rho^2}{r^m} dS.
$$

It is easy to see that

$$
P^*PY_{n,m}^{(k)}(\Theta) = P^* \rho^n Y_{n,m}^{(k)}(\Theta) = \int_0^1 \rho^{2n} Y_{n,m}^{(k)}(\Theta) \rho d\rho = \frac{1}{2(n+1)} Y_{n,m}^{(k)}(\Theta).
$$

This shows that the s-numbers of the operator P are of the form

$$
s_n(P) = \frac{1}{\sqrt{2(n+1)}}, \quad n = 0, 1, 2, \dots.
$$

Therefore

$$
P \in \mathfrak{S}_p(L_2(S), L_2(\mathbb{B})), \quad \text{for each} \quad p > 2. \tag{1.7}
$$

2 Main results

Theorem. Let $m \geq 2$ and the domain $D(L)$ of a correct restriction L of the maximal operator \widehat{L} , corresponding to Laplace operator (1.1), is such that the following smoothness conditions are satisfied

$$
D(L) \subset W_2^l(\mathbb{B}), \quad l > 1, \quad \text{in the case} \quad m = 2,\tag{2.1}
$$

or

$$
D(L) \subset W_2^1(\mathbb{B}), \quad \text{in the case} \quad m \ge 3. \tag{2.2}
$$

Then the operator L^{-1} is not quasinilpotent, hence the correct restriction L is not Volterra.

132 B.N. Biyarov

Idea of the proof. By (1.7) it follows (see $|2, p.256|$) and (see [7]) that

$$
K \in \mathfrak{S}_{\alpha}(L_2(\mathbb{B}), L_2(\mathbb{B})), \quad \forall \alpha > \frac{2}{l+1}, \quad l > 1,
$$

in the case (2.1), and

$$
K \in \mathfrak{S}_{\beta}(L_2(\mathbb{B}), L_2(\mathbb{B})), \quad \forall \beta > \frac{2(m-1)}{m},
$$

in the case (2.2). Suppose to the contrary that L^{-1} is quasinilpotent. Since $L_D^{-1} \geq 0$ and by virtue of V.I. Macaev's theorems (see here [3, p. 269] in the case $\frac{1}{2} < \alpha \leq 1$, [3, p. 273 in the case $0 < \alpha \leq \frac{1}{2}$ $\frac{1}{2}$ and [3, p. 267] in the case $1 < \alpha < +\infty$), we arrive at a contradiction.

Corollary 1. If the conditions of the theorem are satisfied, then correct extension (1.5) of the minimal operator L_0 is not a Volterra operator.

Corollary 2. If the operator K is a finite-dimensional operator in $L_2(\mathbb{B})$, then there are no Volterra restrictions of the maximal operator \hat{L} and there are no Volterra extensions of the minimal operator L_0 independently of the smoothness of $D(L)$.

Corollary 3. If $K = K_1 + K_2$, where K_1 satisfies the conditions of the theorem, and K_2 is finite-dimensional, then there are no Volterra restrictions of the maximal operator L and there are no Volterra extensions of the minimal operator L_0 .

Corollary 4. If the operator K satisfies the conditions of the theorem and $KR(L_0)$ = ${0}$ (that is, $L_0 \subset L \subset \hat{L}$), then there are no Volterra boundary correct extensions.

Remark 1. In the one-dimensional $(m = 1)$ case the statement of the theorem is not true.

Remark 2. The above results are easily generalised to the case of any bounded domain with the boundary of class C^1 .

References

- [1] B.N. Biyarov, About spectral properties of correct restrictions and extensions of one class of differential operators. Candidate's degree thesis. IMM AN KazSSR, Alma-Ata, 1989 (in Russian).
- [2] N. Dunford, J.T. Schwartz, Linear operators. Spectral theory. Self-adjont operators in Hilbert space. Mir, Moscow, 1966 (in Russian).
- [3] I.C. Gohberg, M.G. Krein, Introduction to the theory of linear nonselfadjoint operators in Hilbert space. Nauka, Moscow, 1965 (in Russian).
- [4] L. Hörmander, On the theory of general partial differential operators. Acta Math., 94 (1955), $161 - 248.$
- [5] B.K. Kokebaev, M. Otelbaev, A.N. Shynybekov, About extensions and restrictions of operators in Banach space. Uspekhi Mat. Nauk, 37, no. 4 (1982), $116 - 123$ (in Russian).
- [6] S.G. Mihlin, Linear equations in partial derivatives. Higher School, Moscow, 1977 (in Russian).
- [7] H. Triebel, *Interpolation theory, function spaces, differential operators*. Birkhäuser, Berlin, 1977.

Bazarkan Nuroldinovich Biyarov Faculty of Mechanics and Mathematics L.N. Gumilyov Eurasian National University 5 Munaitpasov St, 010008 Astana, Kazakhstan E-mail: splinekz@mail.ru

Received: 26.05.2011