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Abstract. In this work, we will solve the Laguerre-Freud equations for the recurrence
coefficients of the semiclassical orthogonal polynomials of class one in a particular case.
The integral representation and, as a consequence, the moments of the corresponding
form are obtained. Furthermore, both the characteristic elements of the structure
relation and of the second-order differential equation are explicitly given.

1 Introduction

Since the first work on semiclassical orthogonal polynomials by J. Shohat [19], many
authors have dealt with this subject. Most of them have especially treated the case of
semiclassical polynomials of class one [1, 2, 3, 4, 16].

Yet the description of all sequences of semiclassical orthogonal polynomials of class
one has remained an open problem. However, when the sequences are symmetric
(βn = 0), the problem is solved in [1]. In this paper, we assume that βn = (−1)nτ, τ 6= 0
and we will examine the corresponding sequences of class one through solving the
Laguerre-Freud system satisfied by (βn, γn+1) the coefficients of the standard three-
term recurrence relation, characterizing monic semiclassical orthogonal polynomials of
class one. We will show that the solution is unique up to an affine transformation. It
is worth mentioning that this case has already been studied by T. S. Chihara without
reference to the semiclassical character [5]. Recently, this case was studied using the
quadratic decomposition in [18].

The first section consists of material of introductory character. The second section
deals with solving Laguerre-Freud equations for the semiclassical orthogonal polynomi-
als of class one in the particular case mentioned above. In the third section, we will deal
with the moments of the canonical case found in the preceding section. Incidentally,
an identity satisfied by the Gamma function is obtained (see Proposition 3). In the
fourth section, we will provide the integral representation of the canonical case. In the
last section, we will establish the structure relation and the second-order differential
equation satisfied by any polynomial of the sequence given in the second section.
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2 Preliminary results

Let P be the vector space of polynomials with coefficients in C and P ′ its algebraic
dual. We denote by 〈u, f〉 the action of u ∈ P ′ on f ∈ P . In particular, for any f ∈ P ,
any a ∈ C r {0}, any c ∈ C, and b ∈ C, let u′, fu, hau, τ−bu, x−1u and σu be the
forms defined by duality

〈u′, p〉 := −〈u, p′〉; 〈fu, p〉 := 〈u, fp〉; 〈hau, p〉 := 〈u, hap〉; 〈τ−bu, p〉 := 〈u, τbp〉;

〈(x− c)−1u, p〉 := 〈u, θcp〉; 〈σu, p〉 := 〈u, σp〉, p ∈ P ,

where

(hap)(x) = p(ax), (τbp)(x) = p(x− b), (θcp)(x) =
p(x)− p(c)

x− c
(σp)(x) = p(x2).

We define the right multiplication of form u by a polynomial p as

(up)(x) := 〈u, xp(x)− ξp(ξ)

x− ξ
〉, u ∈ P ′, p ∈ P .

Let {Wn}n≥0 be a monic polynomial sequence (MPS), i.e. a sequence of polynomials
with the leading coefficients equal to 1, degWn = n, n ≥ 0 and {wn}n≥0 be its dual
sequence, with wn ∈ P ′ defined by 〈wn,Wm〉 = δn,m, n,m ≥ 0. The sequence {Wn}n≥0

is called orthogonal (MOPS) if there exists a form w ∈ P ′ such that

〈w,WnWm〉 = rnδn,m, n,m ≥ 0; rn 6= 0, n ≥ 0.

The form w is said to be normalized if (w)0 = 1 where in general (w)n = 〈w, xn〉,
n ≥ 0, are the moments of w. In this paper, we suppose that the forms are be
normalized. Thus, w = w0 and {Wn}n≥0 satisfies the standard recurrence relation

W0(x) = 1, W1(x) = x− β0,

Wn+2(x) = (x− βn+1)Wn+1(x)− γn+1Wn(x), n ≥ 0. (1)

When γn+1 > 0, n ≥ 0, a form w0 is said to be positive definite.

Definition. A MOPS {Wn}n≥0 is called semiclassical if w0 satisfies the equation

(φw0)
′ + ψw0 = 0, (2)

where φ, ψ are polynomials, φ is monic and degψ ≥ 1. In this case, the form w0 is
called semiclassical.

Let us introduce the integer s(φ, ψ) = max
(
deg φ − 2, degψ − 1

)
. Then, s =

min s(φ, ψ), where the minimum taken all over all pairs (φ, ψ) occurring in (2), is
called the class of w0. By extension, the integer s is also the class of {Wn}n≥0 [13].

We have the following result:
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Proposition 1 ([12]). The form w0 satisfying (2) is of class s = s(φ, ψ) if and only if∏
c∈Z(φ)

(
| ψ(c) + φ′(c) | + | 〈w0, θcψ + θ2

cφ〉 |
)
6= 0,

where Z(φ) = {c, φ(c) = 0}.

Lemma 1 ([10, 15]). Let {Wn}n≥0 be a semiclassical MOPS satisfying (2). Then the
sequence {W̃n}n≥0 where W̃n(x) = a−nWn(ax + b) = a−n(ha ◦ τ−bWn)(x) is a MOPS
with respect to w̃0 = (ha−1 ◦ τ−b)w0. Moreover, w̃0 satisfies the equation

(φ̃w̃0)
′ + ψ̃w̃0 = 0,

where
φ̃(x) = a− deg φφ(ax+ b), ψ̃(x) = a1−deg φψ(ax+ b).

In the sequel, we assume that {Wn}n≥0 is a semiclassical MOPS of class one. This
means that

φ(x) = c3x
3 + c2x

2 + c1x+ c0, ψ(x) = a2x
2 + a1x+ a0. (3)

In accordance with [3, 4] we have, the so-called Laguerre-Freud system of equations
satisfied by the coefficients of the three term recurrence relation (1)

a2γ1 = −(a2β
2
0 + a1β0 + a0), (4)

(a2 − 2c3n)(γn + γn+1)− 4c3

n−2∑
ν=0

γν+1 = (2c3n− a2)β
2
n + (2c2n− a1)βn+

+2c1n− a0 + 2c3

n−1∑
ν=0

β2
ν + (2c3βn + 2c2)

n−1∑
ν=0

βν , n ≥ 1, (5)

where
−1∑
ν=0

= 0, {
a1 − c2 + (a2 − c3)(β0 + β1)− c3β0

}
γ1 = φ(β0), (6)

Ξ1(n)γn+1 − 2c2

n−1∑
ν=0

γν+1 − 3c3

n−1∑
ν=0

γν+1(βν + βν+1) =
n∑
ν=0

φ(βν) , n ≥ 1, (7)

with

Ξ1(n) = a1 − (2n+ 1)c2 + (a2 − 2c3n)(βn + βn+1)− 2c3

n∑
ν=0

βν − c3βn+1, n ≥ 1. (8)

Remark 1. 1) (4) – (8) appear as a limit case when ω tends to zero in formulas (2.40)-
(2.43) given in [17].
2) In [4, p. 272], the right hand side of the first equation in (5.13), −ψ(βk) must be
read as −ψ(βn); in the right hand side of the second equation in (5.13), −ψ(β0) must
be read as −ψ(β1). In that paper, the system has not been solved.
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3 Search for solutions of the Laguerre-Freud system when
βn = (−1)nτ, n ≥ 0, τ 6= 0.

In order to solve (4) – (8) when βn = (−1)nτ, n ≥ 0, τ 6= 0, from Lemma 1 and without
loss of generality, we can assume that

βn = (−1)n, n ≥ 0. (9)

In this case, (4) – (8) become

a2γ1 = −(a2 + a1 + a0), (10)

(a2 − 2c3n)(γn + γn+1)− 4c3

n−2∑
ν=0

γν+1 = (4n− 1 + (−1)n)c3 − a2+

+
(
(2n− 1)(−1)n + 1

)
c2 − a1(−1)n + 2c1n− a0, n ≥ 1, (11)

(a1 − c2 − c3)γ1 = c3 + c2 + c1 + c0, (12)

(a1 − c3 − (2n+ 1)c2)γn+1 − 2c2

n−1∑
ν=0

γν+1 =
1

2
(c3 + c1)(1 + (−1)n)+

+(c2 + c0)(n+ 1), n ≥ 1. (13)

System (10) – (13) can be written as follows

a2γ1 = A(0), (14)

(a2 − 2c3n)(γn + γn+1)− 4c3

n−2∑
ν=0

γν+1 = A(n), n ≥ 1, . (15)

(a1 − c2 − c3)γ1 = B(0), (16)

(a1 − c3 − (2n+ 1)c2)γn+1 − 2c2

n−1∑
ν=0

γν+1 = B(n), n ≥ 1, (17)

where

A(n) =
(
4n− 1 + (−1)n

)
c3 − a2 +

(
(2n− 1)(−1)n + 1

)
c2 − a1(−1)n+

+2c1n− a0, n ≥ 0, (18)

B(n) =
1

2
(c3 + c1)(1 + (−1)n) + (c2 + c0)(n+ 1), n ≥ 0. (19)

Let

Tn =
n∑
ν=0

γν+1, n ≥ 0. (20)

Then
Tn − Tn−2 = γn + γn+1, n ≥ 1, T−1 = 0, (21)
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Tn − Tn−1 = γn+1, n ≥ 0. (22)

Taking into account relations (21) and (22), (14) – (17) become

a2T0 = A(0), (23)

(a2 − 2nc3)Tn − (a2 − 2(n− 2)c3)Tn−2 = A(n), n ≥ 1, (24)

(a1 − c3 − c2)T0 = B(0), (25)

(a1 − c3 − (2n+ 1)c2)Tn − (a1 − c3 − (2n− 1)c2)Tn−1 = B(n), n ≥ 1. (26)

Note that (25) can be obtained from (26) with n = 0. Similarly, equation (23) can be
obtained from (24) assuming that T−2 = 0.

Lemma 2. We have

(a1 − c3 − (2n+ 1)c2)Tn =
1

2
(c3 + c1)

{
n+ 1 +

1

2
(1 + (−1)n)

}
+

+
1

2
(c2 + c0)(n+ 1)(n+ 2), n ≥ 0, (27)

(a2 − 4nc3)T2n = (n+ 1)
{
2n(2c3 + c2 + c1)− a2 − a1 − a0

}
, n ≥ 0, (28)

(a2−(4n+2)c3)T2n+1 = (n+1)
{
2n(2c3−c2+c1)+2c3+2c1−a2+a1−a0

}
, n ≥ 0, (29)

c2(c3 + c2 + c1)− c0c3 = 0, (30)

c2
{
a2 − c3 + 3a1 − c2 + 2a0 − c1

}
+ 2a1c3 + c1c3 + 2c0c3 + a1c1 − a2c0 = 0, (31)

c2(a1 + a0) + a1(c3 − a2) + a0c3 − a2
1 − a2c1 − a0a1 − a2c0 = 0, (32)

c2(c3 − c2 + c1)− c0c3 = 0, (33)

c2
{
c3 − a2 + 3(a1 − c2) + 7c1 − 2a0

}
− 2a1c3 − c1c3 + a2c0 − a1c1 − 8c0c3 = 0, (34)

3c2(a1+2c1−a0)+a1(a2−c3)+(a2c1−a2
1−a0c3)+3(a2−2c3)c0−a1(2c1−a0) = 0. (35)

Proof. From equation (26), we get

(a1 − c3 − (2n+ 1)c2)Tn =
n∑
ν=0

B(ν), n ≥ 0,

and using (19) we can deduce (27).
Making the changes n→ 2n, and n→ 2n+ 1 respectively, in (24) we obtain

(a2 − 4nc3)T2n − (a2 − 4(n− 1)c3)T2n−2 = A(2n), n ≥ 1, (36)

(a2 − (4n+ 2)c3)T2n+1 − (a2 − (4n− 2)c3)T2n−1 = A(2n+ 1), n ≥ 0. (37)

From (36) we get

(a2 − 4nc3)T2n − a2T0 =
n∑
ν=1

A(2ν), n ≥ 1,
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and according to (23) it follows that

(a2 − 4nc3)T2n =
n∑
ν=0

A(2ν), n ≥ 0.

Taking into account (18), we get (28).
Likewise, from relations (37) and (18), we establish (29).
Making the changes n→ 2n, and n→ 2n+ 1 respectively, in (27) we obtain

(a1 − c3 − (4n+ 1)c2)T2n = (n+ 1)
{
(2n+ 1)(c2 + c0) + c3 + c1

}
, n ≥ 0, (38)

(a1 − c3 − (4n+ 3)c2)T2n+1 = (n+ 1)
{
(2n+ 3)(c2 + c0) + c3 + c1

}
, n ≥ 0. (39)

Multiplying (38) by (a2 − 4nc3) and taking into account formula (28), it follows that

−8n2
{
c2(c3 + c2 + c1)− c0c3

}
+

+2n
{
c2
{
a2 − c3 + 3a1 − c2 + 2a0 − c1

}
+ 2a1c3 + c1c3 + 2c0c3 + a1c1 − a2c0

}
+

+c2(a1 + a0) + a1(c3 − a2) + a0c3 − a2
1 − a2c1 − a0a1 − a2c0 = 0, n ≥ 0,

then we can deduce (30), (31) and (32).
In a similar way, multiplying (39) by (a2− (4n+2)c3) and taking into account (29),

we get
−8n2

{
c2(c3 − c2τ + c1)− c0c3

}
−

−2n
{
c2
{
c3 − a2 + 3(a1 − c2) + 7c1 − 2a0

}
− 2a1c3 − c1c3 + a2c0 − a1c1 − 8c0c3

}
−

−3c2(a1+2c1−a0)−a1(a2−c3)−(a2c1−a2
1−a0c3)−3(a2−2c3)c0+a1(2c1−a0)=0, n ≥ 0.

Then, we can evidently deduce (33), (34), and (35) respectively. �

Theorem 1. When the form w0 is regular the system (10) – (13) has a unique solution
γ2n+1 = −

{n− 1
2
(a2 + 2)}{n− 1

2
(1 + a2 + a0)}

(2n− a2

2
){2n− 1

2
(2 + a2)}

, n ≥ 0

γ2n+2 = −
(n+ 1){n+ 1

2
(1 + a0)}

(2n− a2

2
){2n+ 1

2
(2− a2)}

, n ≥ 0

. (40)

Proof. From (30) and (33) we find
c2 = 0, (41)

c0c3 = 0. (42)

Taking into account (41) and (42), relations (31), (32) and (35) become respectively

2a1c3 + c1c3 + a1c1 − a2c0 = 0, (43)

a1(c3 − a2) + a0c3 − a2
1 − a2c1 − a0a1 − a2c0 = 0, (44)

a1(c3 − a2) + a0c3 + a2
1 − a2c1 − 3a2c0 + 2a1c1 − a0a1 = 0. (45)
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Assuming that c3 = 0, system (43) – (45) becomes

a1c1 − a2c0 = 0, (46)

a1a2 + a2c1 + a2
1 + a0a1 + a2c0 = 0, (47)

a1a2 + a2c1 − a2
1 + 3a2c0 − 2a1c1 + a0a1 = 0. (48)

Subtracting identities (47) and (48), we obtain

a2
1 + a1c1 − a2c0 = 0.

According to (46) we get
a1 = 0. (49)

Taking into account (49), (46) and (47), we get the following relations

a2c0 = 0, a2c1 = 0. (50)

If a2 = 0, by (49) we obtain degψ ≤ 0, which is a contradiction. Hence, a2 6= 0 and
we have

c0 = 0, c1 = 0.

By the previous relation and (41), we get φ(x) = 0 which yields a contradiction.
Thus, we find that c3 6= 0, so we can choose

c3 = 1. (51)

Indeed, by virtue of (51) system (42) – (45) can be written as

c0 = 0, (52)

2a1 + c1 + a1c1 = 0, (53)

a1(1− a2) + a0 − a2
1 − a2c1 − a0a1 = 0, (54)

a1(1− a2) + a0 + a2
1 − a2c1 + 2a1c1 − a0a1 = 0. (55)

Subtracting identities (55) and (54) we get

a1(a1 + c1) = 0. (56)

If a1 = 0, equation (53) gives c1 = 0.
From the previous relation, (41) and (52), equation (27) becomes

Tn = −1

2

{
n+ 1 +

1

2
(1 + (−1)n)

}
, n ≥ 0.

From (22) we can deduce that γ2n+2 = 0, n ≥ 0, which means the form is not regular.
Therefore, a1 6= 0 hence (56) becomes

a1 + c1 = 0.
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By the previous relation, (53) can be written as

a1(1 + c1) = 0.

Therefore,

c1 = −1, a1 = 1. (57)

Taking into account (41), (51), (52) and (57), we successively get for (3), (28) and (29)

φ(x) = x(x2 − 1), ψ(x) = a2x
2 + x+ a0, (58)

(a2 − 4n)T2n = (n+ 1){2n− 1− a2 − a0}, n ≥ 0, (59)

(a2 − 2− 4n)T2n+1 = (n+ 1){2n+ 1− a2 − a0}, n ≥ 0. (60)

As a consequence, (59), (60) and (22) yield (40). �

Corollary 1. The following canonical case arises

βn = (−1)n, n ≥ 0

γ2n+1 = − (n+ α+ 1)(n+ α+ β + 1)

(2n+ α+ β + 1)(2n+ α+ β + 2)
, n ≥ 0

γ2n+2 = − (n+ 1)(n+ β + 1)

(2n+ α+ β + 2)(2n+ α+ β + 3)
, n ≥ 0(

x(x2 − 1)w0(α, β)
)′

+
(
−2(α+ β + 2)x2 + x+ 2β + 1

)
w0(α, β) = 0

.

(61)

Proof. From Theorem 1, as well as from relations (9) and (58) we get that in general
case 

βn = (−1)n, n ≥ 0

γ2n+1 = −
{n− 1

2
(a2 + 2)}{n− 1

2
(1 + a2 + a0)}

(2n− a2

2
){2n− 1

2
(2 + a2)}

, n ≥ 0

γ2n+2 = −
(n+ 1){n+ 1

2
(1 + a0)}

(2n− a2

2
){2n+ 1

2
(2− a2)}

, n ≥ 0(
x(x2 − 1)w0

)′
+
(
a2x

2 + x+ a0

)
w0 = 0

.

Putting β = −1
2

+ 1
2
a0, α = −3

2
− 1

2
(a2 + a0), we obtain (61). �

Remark 2. 1) The form w0(α, β) is regular if and only if α 6= −n − 1, n ≥ 0, β 6=
−n− 1, n ≥ 0 and α+ β 6= −n− 1, n ≥ 0. The form w0(α, β) is not positive definite.
2) According to Proposition 1, w0(α, β) is a semiclassical form of class one.

3) When α = −1
2
, β = 1

2
we obtain γn+1 = −1

4
, n ≥ 0, and the following functional

equation [16] (
x(x2 − 1)w0(−

1

2
,
1

2
)
)′

+
(
−4x2 + x+ 2

)
w0(−

1

2
,
1

2
) = 0.

In this case, w0(−1
2
, 1

2
) is a second order self-associated form: the MOPS {Wn}n≥0 is

identical to its associated MOPS of the second kind.
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4) The recurrence coefficients of the form h−1w0(α, p + 1
2
), where p takes nonnegative

integer values, are given in [2].
5) The form w0(α− 1, β + 1) is studied in [18]. Note that in [18, p. 532]

γ2n+2 = − 2(n+ 1)(2n+ 2− g0)

(4n− 3 + e0)(4n+ 5 + e0)

must be read as
γ2n+2 = − 2(n+ 1)(2n+ 2− g0)

(4n+ 3 + e0)(4n+ 5 + e0)
.

4 The moments

Proposition 2. The sequence of moments {(w0(α, β))n}n≥0 is given by

(w0(α, β))n =
(β + 1)[n

2
]

(α+ β + 2)[n
2
]

=
Γ(α+ β + 2)

Γ(β + 1)

Γ(β + 1 + [n
2
]))

Γ(α+ β + 2 + [n
2
])
, n ≥ 0, (62)

where (a)n, a ∈ C is the Pochhammer symbol{
(a)0 = 1
(a)n = a(a+ 1) · · · (a+ n− 1), n ≥ 1

.

Proof. Notice that (w0(α, β))1 = β0. By (61) we obtain (w0(α, β))1 = 1, then

(w0(α, β))1 = (w0(α, β))0 = 1. (63)

Taking into account the functional equation in (61) we get

〈(x(x2 − 1)w0(α, β))′ +
(
−2(α+ β + 2)x2 + x+ 2β + 1

)
w0(α, β), xn〉 = 0, n ≥ 0,

which is equivalent to

−(n+ 2(α+ β + 2))(w0(α, β))n+2 + (w0(α, β))n+1+

+(n+ 2β + 1)(w0(α, β))n = 0, n ≥ 0. (64)

Making the change n→ n+ 1 in (64) we obtain

−(n+ 1 + 2(α+ β + 2))(w0(α, β))n+3 + (w0(α, β))n+2+

+(n+ 2β + 2)(w0(α, β))n+1 = 0, n ≥ 0.

Subtracting the previous relation from (64) leads to

(n+ 1 + 2(α+ β + 2))((w0(α, β))n+3 − (w0(α, β))n+2) =

= (n+ 2β + 1)((w0(α, β))n+1 − (w0(α, β))n), n ≥ 0.

Let
vn = (w0(α, β))n+1 − (w0(α, β))n, n ≥ 0. (65)
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Then, we get

(n+ 1 + 2(α+ β + 2))vn+2 = (n+ 2β + 1)vn, n ≥ 0. (66)

From (63) we have v0 = 0, hence we obtain

v2n = (w0(α, β))2n+1 − (w0(α, β))2n = 0, n ≥ 0. (67)

After changing n→ 2n+ 1 in (66) we get

(n+ α+ β + 3)v2n+3 = (n+ β + 1)v2n+1, n ≥ 0.

Therefore,

v2n+1 = v1
Γ(α+ β + 3)

Γ(β + 1)

Γ(β + 1 + n)

Γ(α+ β + 3 + n)
, n ≥ 0,

but v1 = (w0(α, β))2 − (w0(α, β))1 = γ1 = − α+1
α+β+2

, and, as a consequence

v2n+1 = − α+ 1

α+ β + 2

Γ(α+ β + 3)

Γ(β + 1)

Γ(β + 1 + n)

Γ(α+ β + 3 + n)
, n ≥ 0. (68)

From (67), we have (w0(α, β))2n+1 = (w0(α, β))2n, then, from (64), we get

(n+ α+ β + 2)(w0(α, β))2n+2 = (n+ β + 1)(w0(α, β))2n, n ≥ 0,

therefore,

(w0(α, β))2n =
Γ(α+ β + 2)

Γ(β + 1)

Γ(β + 1 + n)

Γ(α+ β + 2 + n)
, n ≥ 0.

Finally, the previous relation provides (61). �
On the other hand, by (68) and (65) we have

(w0(α, β))2n+2 − (w0(α, β))2n = − α+ 1

α+ β + 2

Γ(α+ β + 3)

Γ(β + 1)

Γ(β + 1 + n)

Γ(α+ β + 3 + n)
, n ≥ 0.

Therefore it follows that

(w0(α, β))2n+2 − 1 = − α+ 1

α+ β + 2

Γ(α+ β + 3)

Γ(β + 1)

n∑
ν=0

Γ(β + 1 + ν)

Γ(α+ β + 3 + ν)
, n ≥ 0.

Taking into account (62), we get

Γ(α+ β + 2)

Γ(β + 1)

Γ(β + 2 + n))

Γ(α+ β + 3 + n)
− 1 =

= − α+ 1

α+ β + 2

Γ(α+ β + 3)

Γ(β + 1)

n∑
ν=0

Γ(β + 1 + ν)

Γ(α+ β + 3 + ν)
, n ≥ 0. (69)

Clearly, we obtain:
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Proposition 3. The following identity holds

n∑
ν=0

Γ(t+ ν)

Γ(s+ 1 + ν)
=

1

s− t

{Γ(t)

Γ(s)
− Γ(t+ n+ 1)

Γ(s+ n+ 1)

}
, n ≥ 0. (70)

Proof. Making β + 1 = t and α+ β + 2 = s in equation (69), we obtain (70). �

Remark 3. Consequently, the sequence
{ Γ(t+n)

Γ(s+n)

}
n≥0

is decreasing when s > t > 0 and
increasing when 0 < s < t. In the first case, when n −→ ∞ we get the well known
Gauss sum 2F1(a, b; c; 1) = s

s−t where a = t, b = 1 and c = s+ 1.

5 Integral representation

Theorem 2. The form w0(α, β) has the following integral representation (see [5])

〈w0(α, β), f〉 =
Γ(α+ β + 2)

Γ(α+ 1)Γ(β + 1)

∫ +1

−1

sgnx | x |2β (1− x2)α(1 + x)f(x)dx, f ∈ P ,

(71)
with <β > −1

2
, <α > −1.

Proof. We will look for a weight function U such that

〈w0(α, β), f〉 =

∫ +∞

−∞
U(x)f(x)dx , f ∈ P , (72)

where we suppose that U is regular as far as it is necessary.
The relation

〈(x(x2 − 1)w0(α, β))′ + (−2(α+ β + 2)x2 + x+ 2β + 1)w0(α, β), f〉 = 0, f ∈ P ,

reads
+∞∫
−∞

−x(x2 − 1)U(x)f ′(x) + (−2(α+ β + 2)x2 + x+ 2β + 1)U(x)f(x)dx = 0, f ∈ P .

The previous equation can be written as

−x(x2 − 1)U(x)f(x)]+∞−∞+

+

+∞∫
−∞

{x(x2 − 1)U ′(x) + (−(2α+ 2β + 1)x2 + x+ 2β)U(x)}f(x)dx = 0, f ∈ P ,

which is equivalent to

−x(x2 − 1)U(x)f(x)]+∞−∞ = 0, f ∈ P . (73)

x(x2 − 1)U ′(x) +
(
−(2α+ 2β + 1)x2 + x+ 2β

)
U(x) = λS(x), (74)



Some semiclassical orthogonal polynomials of class one 119

where λ ∈ C and S is the so-called ghost function locally integrable with rapid decay
representing the null form. The following formula

S(x) =

{
0, x ≤ 0
exp(−x1/4) sin(x1/4), x > 0

,

was given by Stieltjes [20]. When λ = 0, equation (74) becomes

U ′(x) =
(2β
x

+
α

x− 1
+
α+ 1

x+ 1

)
U(x),

therefore,

U(x) =


0, x ≤ −1
c1 | x |2β (1 + x)(1− x2)α, −1 < x < 0
c2 | x |2β (1 + x)(1− x2)α, 0 < x < 1
0, x ≥ 1

, (75)

where <β > −1/2, <α > −1.
From (62) we have (w0(α, β))0 = 1 and (w0(α, β))1 = 1, by virtue of (75) we get
(w0(α, β))0 = c1

0∫
−1

| x |2β (1− x2)α(1 + x)dx+ c2
1∫
0

x2β(1− x2)α(1 + x)dx = 1

(w0(α, β))1 = c1
0∫

−1

| x |2β x(1− x2)α(1 + x)dx+ c2
1∫
0

x2β+1(1− x2)α(1 + x)dx = 1

.

The last system can be written as
c1

1∫
0

x2β(1− x2)α(1− x)dx+ c2
1∫
0

x2β(1− x2)α(1 + x)dx = 1

−c1
1∫
0

x2β+1(1− x2)α(1− x)dx+ c2
1∫
0

x2β+1(1− x2)α(1 + x)dx = 1

.

Therefore, we obtain

c1 = −c2 =
−1

B(β + 1, α+ 1)
= − Γ(α+ β + 2)

Γ(α+ 1)Γ(β + 1)
,

by virtue of the previous relation, (75) gives (71) and we can conclude that condition
(73) is satisfied. �

Remark 4. The weight function given in (71) does not appear in [4]. Thus, the
classification given in [4] is not exhaustive.

6 Structure relation and differential equation

6.1 Structure relation

The sequence {Wn}n≥0 satisfies the following structure relation [12]

φ(x)W ′
n+1(x) =

1

2
(Cn+1(x)− C0(x))Wn+1(x)− γn+1Dn+1(x)Wn(x), n ≥ 0, (76)
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where
Cn+1(x) = −Cn(x) + 2(x− (−1)n)Dn(x), n ≥ 0, degCn ≤ 2, (77)

γn+1Dn+1(x) = −φ(x) + γnDn−1(x)− (x− (−1)n)Cn(x)+

+(x− (−1)n)2Dn(x), n ≥ 0, degDn ≤ 1, (78)

with

D−1(x) = 0, C0(x) = −ψ(x)− φ′(x), D0(x) = −(w0θ0φ)′(x)− (w0θ0ψ)(x), (79)

φ(x) = x(x2 − 1), ψ(x) = −2(α+ β + 2)x2 + x+ 2β + 1. (80)

From (79) and (80) we get

C0(x) = (2α+ 2β + 1)x2 − x− 2β, (81)

D0(x) = 2(α+ β + 1)(x+ 1). (82)

In order to determine the coefficients of the previous structure relation of {Wn}n≥0,
we use, the quadratic decomposition of {Wn}n≥0 [11]

W2n(x) = Pn(x
2), n ≥ 0, (83)

W2n+1(x) = (x− 1)Rn(x
2), n ≥ 0. (84)

The sequences {Pn}n≥0, {Rn}n≥0, are orthogonal with respect to u0 and v0, satisfying
the following relations

P0(x) = 1, P1(x) = x− γ1 − 1,

Pn+2(x) = (x− γ2n+2 − γ2n+3 − 1)Pn+1(x)− γ2n+1γ2n+2Pn(x), n ≥ 0, (85)

R0(x) = 1, R1(x) = x− γ1 − γ2 − 1,

Rn+2(x) = (x− γ2n+3 − γ2n+4 − 1)Rn+1(x)− γ2n+2γ2n+3Rn(x), n ≥ 0, (86)

Pn+1(x) = Rn+1(x) + γ2n+2Rn(x), n ≥ 0, (87)

(x− 1)Rn(x) = Pn+1(x) + γ2n+1Pn(x), n ≥ 0. (88)

Moreover, the forms u0, v0 and w0(α, β) satisfy

u0 = σ(w0(α, β)), (89)

σ(xw0(α, β)) = σ(w0(α, β)), (90)

v0 = γ−1
1 (x− 1)σ(w0(α, β)). (91)

Proposition 4. The following functional relations hold

(h−2 ◦ τ−1/2)(u0) = J(α,β), (92)

(h−2 ◦ τ−1/2)(v0) = J(α+1,β), (93)

where J(α,β) is the Jacobi form ([5, 6, 13, 14]).
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Proof. Following the integral representation (71) of the linear functional w0(α, β), we
can easily deduce (92)-(93). �

Corollary 2. We have

P̃ (α,β)
n (x) = (−1)n2nPn(

1− x

2
), n ≥ 0, (94)

P̃ (α+1,β)
n (x) = (−1)n2nRn(

1− x

2
), n ≥ 0, (95)

where {P̃n
(α,β)}n≥0 is the sequence of monic Jacobi polynomials, orthogonal with respect

to ũ0 = J (α, β).

Proof. We get the desired results as a consequence of Proposition 4 and Lemma 1. �

Corollary 3. (Compare with [18]) We have the following hypergeometric representation

W2n(x) = (−1)n
Γ(α+ β + 1)

Γ(β + 1)

Γ(n+ β + 1)

Γ(n+ α+ β + 1)
2F1(−n, n+α+β+1; β+1, x2), n ≥ 0,

W2n+1(x) = (−1)n(x− 1)
Γ(α+ β + 1)

Γ(β + 1)

Γ(n+ β + 1)

Γ(n+ α+ β + 1)
×

×2F1(−n, n+ α+ β + 2; β + 1, x2), n ≥ 0,

where

2F1(a, b, c, x) =
+∞∑
k=0

(a)k(b)k
(c)kk!

xk.

Proof. We know that the monic Jacobi polynomials P̃n
(α,β)

are represented by [21]

P̃n
(α,β)

(x) = 2n
Γ(α+ β + 1)

Γ(β + 1)

Γ(n+ β + 1)

Γ(n+ α+ β + 1)
2F1(−n, n+ α+ β + 1; β + 1,

1− x

2
).

From the previous relation, Corollary 2, (83) and (84), we obtain the desired results.
�

In the sequel we need the following result:

Lemma 3 ([1]). Let {Bn}n≥0 be a MOPS, and M(x;n), N(x;n) two polynomials such
that

M(x;n)Bn+1(x) = N(x;n)Bn(x), n ≥ 0.

Then, for any n for which degN(x;n) ≤ n, we have

M(x;n) = 0 and N(x;n) = 0.

Proposition 5. The sequences {Cn}n≥0 and {Dn}n≥0 are given by

Cn(x) =
(
2n+2α+2β+1

)
x2 +(−1)n+1x−2β−2n+(2α+1)

(
(−1)n−1

)
, n ≥ 0, (96)

Dn(x) = 2
(
n+ α+ β + 1

)(
x+ (−1)n

)
, n ≥ 0. (97)
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Proof. We take into account that the Jacobi polynomials satisfy (see [13] and [15])

(x2 − 1)P̃
(α,β)′

n+1 (x) =
1

2

(
Cn+1(x;α, β)− C0(x;α, β)

)
P̃

(α,β)
n+1 (x)−

−γ(α,β)
n+1 Dn+1(x;α, β)P̃ (α,β)

n (x), n ≥ 0, (98)

where

Cn(x;α, β) = (2n+ α+ β)x− α2 − β2

2n+ α+ β
, n ≥ 0, (99)

Dn(x;α, β) = 2n+ α+ β + 1, n ≥ 0, (100)

γ
(α,β)
n+1 = 4

(n+ 1)(n+ α+ β + 1)(n+ α+ 1)(n+ β + 1)

(2n+ α+ β + 1)(2n+ α+ β + 2)2(2n+ α+ β + 3)
, n ≥ 0, (101)

as well as

(x2 − 1)P̃
(α+1,β)′

n+1 (x) =
1

2

(
Cn+1(x;α+ 1, β)− C0(x;α+ 1, β)

)
P̃

(α+1,β)
n+1 (x)−

−γ(α+1,β)
n+1 Dn+1(x;α+ 1, β)P̃ (α+1,β)

n (x), n ≥ 0. (102)

From (94), (98) and (83) we deduce

x(x2 − 1)W ′
2n+2(x) = −1

2

(
Cn+1(1− 2x2;α, β)− C0(1− 2x2;α, β)

)
W2n+2(x)−

−1

2
γ

(α,β)
n+1 Dn+1(1− 2x2;α, β)W2n(x), n ≥ 0.

Using (1), we obtain
x(x2 − 1)W ′

2n+2(x) =

=
1

2

{γ(α,β)
n+1

γ2n+1

Dn+1(1− 2x2;α, β)− Cn+1(1− 2x2;α, β) + C0(1− 2x2;α, β)
}
W2n+2(x)−

−1

2

γ
(α,β)
n+1

γ2n+1

(x+ 1)Dn+1(1− 2x2;α, β)W2n+1(x), n ≥ 0. (103)

On the other hand, by (76) we have

x(x2 − 1)W ′
2n+2(x) =

=
1

2

(
C2n+2(x)− C0(x)

)
W2n+2(x)− γ2n+2D2n+2(x)W2n+1(x), n ≥ 0. (104)

Comparing relations (103) with (104), by Lemma 3 we find

C2n+2(x) = C0(x) +
γ

(α,β)
n+1

γ2n+1

Dn+1(1− 2x2;α, β)− Cn+1(1− 2x2;α, β)+

+C0(1− 2x2;α, β), n ≥ 0, (105)
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D2n+2(x) =
γ

(α,β)
n+1

2γ2n+1γ2n+2

(x+ 1)Dn+1(1− 2x2;α, β), n ≥ 0. (106)

From relations (61), (81), (97) and (101), equation (105) becomes

C2n+2(x) = (4n+ 2α+ 2β + 5)x2 − x− 2β − 4(n+ 1), n ≥ 0.

By (81) we get

C2n(x) = (4n+ 2α+ 2β + 1)x2 − x− 2β − 4n, n ≥ 0. (107)

Taking into account relations (61), (100) and (101), equation (106) can be written as

D2n+2(x) = 2(2n+ α+ β + 3)(x+ 1), n ≥ 0.

By (82), we obtain

D2n(x) = 2(2n+ α+ β + 1)(x+ 1), n ≥ 0. (108)

Likewise, based on relations (95), (102), (84), (101) and (1) we get

x(x2 − 1)W ′
2n+3(x) =

1

2

{
2x(x+ 1) +

γ
(α+1,β)
n+1

γ2n+2

Dn+1(1− 2x2;α+ 1, β)−

−Cn+1(1− 2x2, α+ 1, β) + C0(1− 2x2, α+ 1, β)
}
W2n+3(x)−

−1

2

γ
(α+1,β)
n+1

γ2n+2

(x− 1)Dn+1(1− 2x2;α+ 1, β)W2n+2(x), n ≥ 0. (109)

From (76), we have

x(x2 − 1)W ′
2n+3(x) =

1

2

(
C2n+3(x)− C0(x)

)
W2n+3(x)−

−γ2n+3W2n+2D2n+3(x)(x), n ≥ 0.

Comparing the previous equation with (109), from Lemma 3, we obtain

C2n+3(x) = C0(x) + 2x(x+ 1) +
γ

(α+1,β)
n+1

γ2n+2

Dn+1(1− 2x2;α+ 1, β)−

−Cn+1(1− 2x2, α+ 1, β) + C0(1− 2x2, α+ 1, β), n ≥ 0, (110)

D2n+3(x) =
1

2

γ
(α+1,β)
n+1

γ2n+2γ2n+3

(x− 1)Dn+1(1− 2x2;α+ 1, β), n ≥ 0. (111)

Based on relations (61), (81), (99) and (101), equation (110) becomes

C2n+3(x) = (4n+ 2α+ 2β + 7)x2 + x− 2(β + 2n+ 2α+ 4), n ≥ 0.
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By (77) and (78), we have C1(x) = (2α+ 2β + 3)x2 + x− 2β − 4α− 4, then

C2n+1(x) = (4n+ 2α+ 2β + 3)x2 + x− 2(β + 2n+ 2α+ 2), n ≥ 0. (112)

Taking into account relations (61), (82), (100) and (101), equation (111) becomes

D2n+3(x) = 2(2n+ α+ β + 4)(x− 1), n ≥ 0.

By (78) and (81), we have D1(x) = 2(α+ β + 2)(x− 1), therefore

D2n+1(x) = 2(2n+ α+ β + 2)(x− 1), n ≥ 0. (113)

Relations (107), (108), (112) and (113) prove the Proposition. �

Corollary 4. The zeros of Wn are simple for n ≥ 2. Moreover, if α > −1 and β > −1,
then they are in the interval ]− 1,+1].

Proof. Let c be a zero of Wn+1, n ≥ 1 of order µ ≥ 2, then Wn(c) 6= 0 and W ′
n+1(c) = 0.

Taking into account (76) we get Dn+1(c) = 0, by virtue of (96) we obtain c = (−1)n.
But φ((−1)n) = 0, hence from (76) it follows that D′

n+1(c) = 0, which is contradictory.
When α > −1 and β > −1, taking into account relations (83), (84), (94) and (95),

we see that that the zeros of {Wn}n≥0 are in ]− 1,+1]. �

6.2 Differential equation

It is well- nown that any polynomial of a semiclassical MOPS satisfies [7, 8, 12] the
second-order linear differential equation

J(x;n)W ′′
n+1(x) +K(x;n)W ′

n+1(x) + L(x;n)Wn+1(x) = 0, n ≥ 0, (114)

with
J(x;n) = φ(x)Dn+1(x), n ≥ 0,

K(x;n) =
(
φ′(x) + C0(x)

)
Dn+1(x)− φ(x)D′

n+1(x), n ≥ 0, (115)

L(x;n) =
1

2

(
Cn+1(x)− C0(x)

)
D′
n+1(x)−

1

2

(
C ′
n+1(x)− C ′

0(x)
)
Dn+1(x)−

−Dn+1(x)
n∑
ν=0

Dν(x), n ≥ 0.

Proposition 6. For these polynomials the following formulas hold

J(x;n) = 2
(
n+ α+ β + 2

)
x
(
x2 − 1

)(
x− (−1)n

)
, n ≥ 0, (116)

K(x;n) = 2
(
n+ α+ β + 2

)
×

×
{(
x− (−1)n

)(
2(α+ β + 2)x2 − x− 2β − 1

)
− x(x2 − 1)

}
, n ≥ 0, (117)

L(x, n) = 2(n+ α+ β + 2)
{
d2(n)x2 + d1(n)x+ d0(n)

}
, n ≥ 0, (118)

where
d2(n) = −(n+ 1)(n+ 2α+ 2β + 3), n ≥ 0

d1(n) = (−1)n
(
n2 + 2(α+ β + 2)n+ α+ β + 5

2

)
− α− β − 1

2
, n ≥ 0

d0(n) = (β + 1
2
)
(
1 + (−1)n

)
, n ≥ 0

. (119)
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Proof. From (96) and (97) we obtain (116) and (117). By using the formulas

an =
n∑
ν=0

ν =
n(n+ 1)

2
, bn =

n∑
ν=0

(−1)ν =
1 + (−1)n

2
,

dn =
n∑
ν=0

ν(−1)ν =
(2n+ 1)(−1)n − 1

4
, n ≥ 0,

and (97) we have

n∑
ν=0

Dν(x) = 2x
(
an + (α+ β + 1)(n+ 1)

)
+ 2dn + 2(α+ β + 1)bn =

= (n+1)
(
n+2(α+β+1)

)
x+

1

2

(
(2n+1)(−1)n− 1

)
+(α+β+1)

(
(−1)n+1

)
, n ≥ 0.

Relations (96), (97) and the previous yield (118) with (119). �

Remark 5. 1) We denote {xn+1,k}1≤k≤n+1 the zeros of Wn+1. Evaluating the linear
differential equation (113) at xn+1,k, 1 ≤ k ≤ n+ 1, we obtain

W ′′
n+1(xn+1,k)

W ′
n+1(xn+1,k)

+
K(xn+1,k;n)

J(xn+1,k;n)
= 0, n ≥ 0.

Using (116) and (117), we get

W ′′
n+1(xn+1,k)

W ′
n+1(xn+1,k)

+
2β + 1

xn+1,k

+
α+ 1

xn+1,k − 1
+

α+ 2

xn+1,k + 1
− 1

xn+1,k − (−1)n
= 0, n ≥ 0.

Applying the following property (see [9] and [22])

W ′′
n+1(xn+1,k)

W ′
n+1(xn+1,k)

= −2
n+1∑

j=1,j 6=k

1

xn+1,j − xn+1,k

we obtain
n+1∑

j=1,j 6=k

1

xn+1,j − xn+1,k

− 1

2

2β + 1

xn+1,k

− 1

2

α+ 1

xn+1,k − 1
− 1

2

α+ 2

xn+1,k + 1
+

1

2

1

xn+1,k − (−1)n
= 0,

n ≥ 0, 1 ≤ k ≤ n+ 1, α > −1, β > −1/2.

This relation can be interpreted in terms of a logarithmic potential interaction of
positive unit charges under an external field. (For more details see [8]).
2) Notice that, the second order differential equation given in [18, p. 533] is not correct,
it must be read as

X(x;n)B′′
n+1(x) + Y (x;n)B′

n+1(x) + Z(x;n)Bn+1(x) = 0, n ≥ 0,

with
X(x;n) = x(x2 − 1)(x+ (−1)n+1),
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Y (x;n) = (2α+2β+3)x3−(1+(−1)n(2α+2β+4))x2−
(
2β+2−(−1)n

)
x−(−1)n+1(2β+3),

Z(x;n) = −(n+ 1)(n+ 2α+ 2β + 3)x2−

−
(
(−1)n+1

(
n2 + (2α+ 2β + 4)n+ α+ β +

5

2

)
+ α+ β +

1

2

)
x+ (β +

3

2
)(1 + (−1)n).
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