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Abstract. The present work is a survey paper devoted to studying two variants
of o-minimality: weak o-minimality and weak circular minimality (mostly in the ℵ0-
categorical case.

1 Introduction

In recent years there have been several approaches to generalizing the notion of o-
minimality. Typically, for a structure, one imposes strong restrictions on the 1-variable
definable sets. An o-minimal structure M can be viewed as an L-structure where
L ⊃ L0 = {<}, < is a total order on M , and every definable subset of M is quantifier-
free L0-definable. This provides a template for other notions: replace L0 by some other
familiar language, consider L-structures such that the L0-reduct is of stipulated type
(e.g. a total order), and require that every definable subset of M is (quantifier-free) L0-
definable (one may require this for all models of the theory). This route was followed
in [19], where notions such as circularly minimal and C-minimal were proposed and
slightly explored. Other notions such as P -minimal [10] and Boolean o-minimal [24, 22]
have since been developed.

In a slightly different direction, a totally ordered structure M is weakly o-minimal
if every definable subset of M is a finite union of convex sets, and its theory is weakly
o-minimal if this holds for all N ≡ M . Real closed fields with a proper convex val-
uation ring [8] provide an important example of weakly o-minimal (non-o-minimal)
structures. The notion of weak o-minimality of a linearly ordered structure was intro-
duced by M. Dickmann and originally deeply studied by D. Macpherson, D. Marker
and C. Steinhorn in [20]. Some problems posed in [20] have been solved by logicians
from Kazakhstan: B.S. Baizhanov [5] has obtained a classification of 1-types over a set
of model of a weakly o-minimal theory and solved the problem of expanding a model
of a weakly o-minimal theory by a unary convex predicate; R.D. Arefiev [3] has proved

1This survey contains results included in the DSc thesis by the author which was successfully
defended on December 22, 2009 at the Institute of Mathematics of the Ministry of Education and Sci-
ence of Republic of Kazakhstan (Scientific advisor: B.S. Baizhanov, opponents: K.Zh. Kudaibergenov,
A.A. Stepanova, S.V. Sudoplatov and Novosibirsk State Tecnical University).
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the monotonicity property for weakly o-minimal structures; V.V. Verbovskiy [23] has
constructed an example of a weakly o-minimal ordered group not having a weakly
o-minimal theory.

Here we continue studying the notion of weak o-minimality. The special accent is
made on studying the ℵ0-categorical case. As is known ℵ0-categorical weakly o-minimal
structures have been deeply studied in [11]: the 1-indiscernible case has been described
up to binarity, the 2-indiscernible case has been described up to ternarity, and it has
been proved that any 3-indiscernible structure is k-indiscernible for any natural k ≥ 3.
Here we consider questions of interacting types that have not been studied before.

Alongside with it we investigate the notion of weak circular minimality being a
variant of o-minimality for circularly ordered sets. A circular (or cyclic) order relation
is described by a ternary relation K satisfying the following conditions:

(co1) ∀x∀y∀z(K(x, y, z) → K(y, z, x));
(co2) ∀x∀y∀z(K(x, y, z) ∧K(y, x, z) ⇔ x = y ∨ y = z ∨ z = x);
(co3) ∀x∀y∀z(K(x, y, z) → ∀t[K(x, y, t) ∨K(t, y, z)]);
(co4) ∀x∀y∀z(K(x, y, z) ∨K(y, x, z)).

The following observation relates linear and circular orderings.

Fact 1.1 ([6], Theorem 11.9). (i) If 〈M,≤〉 is a linear ordering and K is the ternary
relation derived from ≤ by the rule

K(x, y, z) :⇔ (x ≤ y ≤ z) ∨ (z ≤ x ≤ y) ∨ (y ≤ z ≤ x)

then K is a circular order relation on M .
(ii) If 〈N,K〉 is a circular ordering and a ∈ N , then the relation ≤a defined on

M := N \ {a} by the rule
y ≤a z :⇔ K(a, y, z)

is a linear order. Furthermore, if we extend this linear order to the one, denoted by ≤′,
on N by assuming that a ≤′ b for all b ∈M , then the derived circular order relation is
the original circular order K.

Any totally ordered structure carries an ∅-definable circularly ordered structure,
and given a circularly ordered structure, over any parameter there is a definable linear
order. There is a very tight connection between weak circular minimality and weak
o-minimality. At the same time there are distinctions arising between these notions
that involve definability over ∅, and thus determining independent interest for studying
weak circular minimality.

2 Linear case

Let L be a countable first-order language. Everywhere in this section we consider L-
structures and assume that L contains a binary relation symbol < that is interpreted
as a linear ordering in these structures.
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Definition 2.1 ([12]). Let T be a weakly o-minimal theory, M be a sufficiently sat-
urated model of T, and let φ(x) be an M -definable formula.
A rank of convexity for the formula φ(x) (RC(φ(x))) is defined as follows:

1) RC(φ(x)) ≥ 0 if M |= ∃xφ(x).
2) RC(φ(x)) ≥ 1 if φ(M) is infinite.
3) RC(φ(x)) ≥ α + 1 if there is a parametrically definable equivalence relation

E(x, y) such that there are bi, i ∈ ω which satisfy the following:

• For every i, j ∈ ω, whenever i 6= j then M |= ¬E(bi, bj)

• For every i ∈ ω RC(E(x, bi)) ≥ α and E(M, bi) is a convex subset of φ(M)

4) RC(φ(x)) ≥ δ if RC(φ(x)) ≥ α for all α ≤ δ (δ is limit).
If RC(φ(x)) = α for some α we say that RC(φ(x)) is defined. Otherwise (i.e. if

RC(φ(x)) ≥ α for all α) we put RC(φ(x)) = ∞.

In particular, a theory has convexity rank 1 if there is no definable (with parameters)
equivalence relation with infinitely many convex infinite classes. Obviously any o-
minimal theory has convexity rank 1.

Example 2.1 ([11]). Let Mn := 〈Qn; =, <,E2
1 , E

2
2 , . . . , E

2
n−1〉, where Qn is the set of

n-tuples x = (x0, . . . , xn−1) of rational numbers, ordered lexicographically by <, and
for each i = 1, . . . , n− 1 let the equivalence relation Ei be given by Ei(x, y) ⇔ for all
j < n− i, xj = yj. Then for each i the equivalence classes of Ei are convex subsets of
Qn. Moreover, Ei−1 refines Ei for each 2 ≤ i ≤ n− 1.

In [11] it is proved that ℵ0-categorical 1-indiscernible weakly o-minimal structures
are described up to a binary structure by this example. Obviously Th(Mn) has con-
vexity rank n.

Definition 2.2 (B.S. Baizhanov, [4]). Let M be a weakly o-minimal structure,
A ⊆M , p ∈ S1(A) be non-algebraic.
(1) An A–definable formula F (x, y) is said to be p–stable if there are α, γ1, γ2 ∈ p(M)
such that F (M,α) \ {α} 6= ∅ and γ1 < F (M,α) < γ2.
(2) A p–stable formula F (x, y) is said to be convex to the right (left) if there is α ∈ p(M)
such that F (M,α) is convex, α is a left (right) endpoint of F (M,α) and α ∈ F (M,α).

In Example 2.1 Ei(x, y) for each 1 ≤ i ≤ n− 1 is p–stable, where p(x) := {x = x};
Fi(x, y) := Ei(x, y)∧ y ≤ x and F ′

i (x, y) := Ei(x, y)∧ y ≥ x are p–stable convex to the
right and convex to the left formulas respectively.

Let F (x, y) be a p–stable convex to the right (left) formula. We say F (x, y) is
equivalence-generating if for any α, β ∈ p(M) such that M |= F (β, α) the following
holds:

M |= ∀x[x ≥ β → [F (x, α) ↔ F (x, β)]]

(M |= ∀x[x ≤ β → [F (x, α) ↔ F (x, β)]])

Obviously the above mentioned formulas Fi(x, y) and F ′
i (x, y) are equivalence-

generating.
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Example 2.2. Let M = 〈Q,=, <,R2〉. M is a linearly ordered structure, Q is the
ordering of rational numbers, for any a, b ∈ M M |= R(b, a) ⇔ a ≤ b < a +

√
2 and

consequently R(M,a) = {b ∈ M |a ≤ b < a +
√

2} and R(a,M) = {b ∈ M |a −
√

2 <
b ≤ a}.

For each n < ω consider the following formulas:

Rn(x, y) := ∃z1, . . . , zn[R(z1, y) ∧ ∧1≤i<nR(zi+1, zi) ∧R(x, zn)]

One can see that for any a, b ∈M Rn(b, a) ⇔ a ≤ b < (n+ 1)(a+
√

2). Consequently,
for any a ∈ M we have R(M,a) ⊂ R1(M,a) ⊂ . . . ⊂ Rn(M,a) ⊂ . . . i.e. Th(M)
is not ℵ0–categorical. The formulas Rn(x, y) for each n < ω including in addition
atomic formulas we declare to be basic. It can now be shown by standard arguments
that Th(M) admits elimination of quantifiers relative to these basic formulas, and
consequently M is weakly o-minimal. Let p(x) := {x = x}. It is easy to see that
p(x) ∈ S1(∅), R(x, y) is p-stable convex to the right and R(x, y) is not equivalence-
generating.

The following theorem is a characterization of behaviour of p-stable convex to the
right (to the left) formulas ordered by type ω∗ (the reverse ordering on the natural
numbers). As is known, in the o-minimal case any such formula is the graph of a strictly
increasing function and consequently the set of such 2-formulas cannot be ordered by
ω∗. In the weakly o-minimal case any such formula generates an equivalence relation
partitioning the set of realizations of 1-type into infinite convex classes.

Theorem 2.1. Let T be a weakly o-minimal theory, M |= T , A ⊆ M , M be |A|+–
saturated, p ∈ S1(A) be non-algebraic. Suppose that the set of all p-stable convex to the
right formulas is ordered by ω∗. Then any p-stable convex to the right (left) formula is
equivalence-generating.

Definition 2.3 (B.S. Baizhanov, [5]). Let M be a weakly o-minimal structure,
A ⊆ M , p, q ∈ S1(A) be non-algebraic. We say that p is not weakly orthogonal to q
(p 6⊥w q) if there are A-definable formula H(x, y), α ∈ p(M) and β1, β2 ∈ q(M) such
that β1 ∈ H(M,α) and β2 6∈ H(M,α).

Lemma 2.1 ([5], Corollary 34 (iii)). A non-weak orthogonality relation is an equiv-
alence relation on S1(A).

We say that p is not quite orthogonal to q (p 6⊥q q) if there is an A-definable bijection
f : p(M) → q(M). We say that a weakly o-minimal theory is quite o-minimal if the
notions of weak and quite orthogonality of 1-types coincide. Obviously, any o-minimal
theory is quite o-minimal. An example of a quite o-minimal (non-o-minimal) theory is
the field of algebraic numbers expanded by an unary predicate (−α, α) where α is an
arbitrary real transcendent number.

Fact 2.1. A non-quite orthogonality relation is an equivalence relation on S1(A).

Example 2.3 ([20]). Let M be the structure 〈M,<,P 1, f1〉. Here P is a unary
predicate and f is a unary function with Dom(f) = ¬P,Ran(f) = P (therefore,
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formally, M is 2-sorted). The universe of the structure M is a disjoint union of P
and ¬P , where x < y whenever x ∈ P and y ∈ ¬P . To define f identify P with Q
(where Q is the order of rational numbers) and ¬P с Q×Q (which is lexicographically
ordered),and for any m,n ∈ Q let f(m,n) = n.

It is not difficult to prove that Th(M) is a weakly o-minimal theory. Let p(x) :=
{¬P}, q(x) := {P}. Obviously p, q ∈ S1(∅), p 6⊥a q, but p ⊥q q, i.e. Th(M) is not
quite o-minimal. Observe that the Exchange Principle for algebraic closure does not
hold in M .

In the following theorem it is stated that the Exchange Principle for algebraic clo-
sure holds in quite o-minimal theories of finite convexity rank. A complete description
of ℵ0–categorical quite o-minimal theories will be later presented which implies their
binarity (Theorem 2.6). Observe that the Exchange Principle for algebraic closure
holds in any o-minimal theory, and ℵ0–categorical o-minimal theories are binary. All
these results testify that quite o-minimal theories “quite” inherit many properties of
o-minimal theories.

Theorem 2.2. Let T be a quite o-minimal theory of finite convexity rank. Then the
Exchange Principle for algebraic closure holds in every model of T .

We say an n-tuple ā = 〈a1, a2, . . . , an〉 ∈ Mn is increasing if a1 < a2 < . . . < an.
Let A ⊆ M , p ∈ S1(A) be non-algebraic, n ∈ ω. We say p(M) is n–indiscernible over
A if for any increasing n–tuples ā = 〈a1, a2, . . . , an〉, ā′ = 〈a′1, a′2, . . . , a′n〉 ∈ [p(M)]n

tp(ā/A) = tp(ā′/A); also we say p(M) is indiscernible over A if for every n ∈ ω
p(M) is n–indiscernible over A. Let A ⊆ M , A be finite, p1, p2, . . . , ps ∈ S1(A) be
non-algebraic. We say that the family of 1-types {p1, . . . , ps} is orthogonal over A if
for any sequence (n1, . . . , ns) ∈ ωs for any increasing tuples ā1, ā

′
1 ∈ [p1(M)]n1 , . . .,

ās, ā
′
s ∈ [ps(M)]ns such that tp(ā1/A) = tp(ā′1/A), . . ., tp(ās/A) = tp(ā′s/A) we have

tp(〈ā1, . . . , ās〉/A) = tp(〈ā′1, . . . , ā′s〉/A).
Orthogonality of families of pairwise weakly orthogonal non-algebraic 1-types for

ℵ0-categorical o-minimal theories was proved in [21]. However it isn’t true for ℵ0–
categorical weakly o-minimal theories in general. We present an example of an ℵ0–
categorical weakly o-minimal theory of infinite convexity rank in which the condition of
orthogonality of two weakly orthogonal non-algebraic 1-types fails (Example 2.4). The
following theorem proves orthogonality for ℵ0–categorical weakly o-minimal theories of
finite convexity rank:

Theorem 2.3 ([13]). Let T be an ℵ0–categorical weakly o-minimal theory of finite con-
vexity rank, M |= T , p1, p2, . . . , ps ∈ S1(∅) be non-algebraic pairwise weakly orthogonal
1–types. Then {p1, p2, . . . , ps} is orthogonal over ∅.

Example 2.4. Let M = 〈Q∪W , <, E3, P 1〉 be a linearly ordered structure, where Q
is the set of rational numbers, W is the set of all Q-sequences from {0, 1} with finitely
many non-zero coordinates ordered lexicographically, P (M) = Q, ¬P (M) = W and
P (M) < ¬P (M). For any a ∈ P (M) E(a, y1, y2) is an equivalence relation on ¬P (M)
defined as follows: for any a ∈ P (M), b1, b2 ∈ ¬P (M) E(a, b1, b2) ⇔ b1(q) = b2(q) for
all q ≤ a, i.e. q–th coordinates of b1 and b2 coincide for all q ≤ a.
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It can be proved M is an ℵ0–categorical weakly o-minimal structure. Obviously
if a < a′ ∈ P (M) we have E(a′, x1, x2) implies E(a, x1, x2) and consequently Th(M)
has an infinite convexity rank. Let p1 := {P (x)}, p2 := {¬P (x)}. It isn’t difficult to
see p1 ⊥w p2. Consider arbitrary a, a′ ∈ p1(M), b1 < b2, b′1 < b′2 ∈ p2(M) with a <
a′, E(a, b1, b2) and ¬E(a′, b′1, b

′
2). Then tp(〈a, b1, b2〉/∅) 6= tp(〈a′, b′1, b′2〉/∅), although

tp(〈b1, b2〉/∅) = tp(〈b′1, b′2〉/∅).
Recall that a complete theory is binary if any formula is equivalent to a Boolean

combination of formulas in at most two free variables. A. Pillay and C. Steinhorn
have described all ℵ0–categorical o-minimal theories [21]. Their description implies
binarity for these theories. However ℵ0–categorical weakly o-minimal theories aren’t
binary in general (Example 2.4). The following theorem is a criterion for binarity of
ℵ0–categorical weakly o-minimal theories:

Theorem 2.4 ([13]). Let T be an ℵ0–categorical weakly o-minimal theory. Then T is
binary if and only if T has finite convexity rank.

This criterion allows us in particular to describe the following two subclasses of the
class of ℵ0–categorical weakly o-minimal theories. These theorems generalize the result
of A. Pillay and C. Steinhorn in the o-minimal case.

Theorem 2.5 ([14]). Let T be an ℵ0–categorical weakly o-minimal theory of convexity
rank 1, M |= T, |M | = ℵ0. Then there exist
(i) a finite C = {c0, . . . , cn} ⊆M (M ∪ {−∞,+∞}, if M does not have a first or last
element), consisting of all of the ∅–definable elements in M (with the possible exceptions
of −∞,+∞), such that M |= ci < cj for all i < j ≤ n and for each j ∈ {1, . . . , n}
either M |= ¬(∃x)cj−1 < x < cj or Ij = { x ∈ M : M |= cj−1 < x < cj } is a dense
linear order without endpoints and there are kj ∈ ω and pj1, . . . , p

j
kj
∈ S1(∅) so that

Ij =
⋃kj

s=1 p
j
s(M);

(ii) equivalence relations E1, E2 ⊆ ({s : 1 ≤ s ≤ k})2, where {ps | s ≤ k < ω} is an
arbitrary enumeration of all non-algebraic 1-types over ∅, such that

• for each (i, j) ∈ E1 there is a unique ∅–definable monotonic bijection fi,j :
pi(M) → pj(M) so that fi,i = idpi(M) and fj,k ◦ fi,j = fi,k for all (i, j), (j, k)
∈ E1;

• for each (i, j) ∈ E2 there is a unique ∅–definable formula Ri,j(x, y) such that for
any a ∈ pi(M) Ri,j(a,M) ⊂ pj(M), Ri,j(a,M)− = pj(M)−, Ri,j(a,M) is convex
and open and gi,j(x) := sup Ri,j(x,M) is strictly monotonic on pi(M)

• for each (i, j) ∈ E1 we have (i, j) ∈ E2 and Ri,j(x, y) ≡ y < fi,j(x)

so that T admits elimination of quantifiers down to the language {=, <}
⋃
{ci : i ≤

n}
⋃
{Us : s ≤ k}

⋃
{fi,j : (i, j) ∈ E1}

⋃
{Ri,j : (i, j) ∈ E2 \ E1}, where Us isolates ps

for each s ≤ k.
Moreover to any ordering with distinguished elements as in (i) and any suitable equiva-
lence relations E1, E2 as in (ii), there corresponds an ℵ0–categorical weakly o-minimal
theory of convexity rank 1.



Binarity and ℵ0-categoricity for variants of o-minimality 95

Recall that convexity rank for an one-type p (RC(p)) is an infimum of the set {RC
(φ(x))| φ(x) ∈ p}. The following theorem completely describes ℵ0–categorical quite
o-minimal theories:

Theorem 2.6. Let T be an ℵ0–categorical quite o-minimal theory, M |= T , |M | = ℵ0.
Then there exist
(i) a finite C = {c0, . . . , cn} ⊆M (M ∪ {−∞,+∞}, if M does not have a first or last
element), consisting of all of the ∅–definable elements in M (with the possible exceptions
of −∞,+∞), such that M |= ci < cj for all i < j ≤ n and for each j ∈ {1, . . . , n}
either M |= ¬(∃x)cj−1 < x < cj or Ij = { x ∈ M : M |= cj−1 < x < cj } is a dense
linear order without endpoints and there are kj ∈ ω and pj1, . . . , p

j
kj
∈ S1(∅) so that

Ij =
⋃kj

s=1 p
j
s(M);

(ii) for every non-algebraic type p ∈ S1(∅) there is np ∈ ω such that RC(p) = np, i.e.
there exist ∅-definable equivalence relations Ep

1(x, y), . . ., E
p
np−1(x, y) such that

• Ep
np−1 partitions p(M) into infinitely many Ep

np−1-classes, every Ep
np−1-class is

convex and open so that the induced order on classes is a dense linear order
without endpoints

• for each i ∈ {1, . . . , np − 2} Ep
i partitions every Ep

i+1-class into infinitely many
Ep
i -classes, every Ep

i -class is convex and open so that Ep
i -subclasses of each Ep

i+1-
class are densely ordered without endpoints

(iii) there exists an equivalence relation ε ⊆ ({s : 1 ≤ s ≤ k})2 where {ps | s ≤ k < ω}
is an arbitrary enumeration of all non-algebraic 1-types over ∅ such that for every
(i, j) ∈ ε there is a unique ∅–definable locally monotonic bijection fi,j : pi(M) → pj(M)
so that RC(pi) = RC(pj), fi,i = idpi(M) and fj,l ◦ fi,j = fi,l for all (i, j), (j, l) ∈ ε

so that T admits elimination of quantifiers down to the language {=, <}
⋃
{ci : i ≤

n}
⋃
{Us : s ≤ k}

⋃
{fi,j : (i, j) ∈ ε}, where Us isolates ps for each s ≤ k.

Moreover to any ordering with distinguished elements as in (i)-(ii) and any suitable
equivalence relations ε as in (iii), there corresponds an ℵ0–categorical quite o-minimal
theory.

3 Circular case

Let L be a countable first-order language. Everywhere in this section we consider L-
structures and assume that L contains a ternary relation symbol K that is interpreted
as a circular ordering in these structures.

A set A ⊆ M is said to be convex if for any a, b ∈ A the following holds: for any
c ∈ M with K(a, c, b) we have c ∈ A or for any c ∈ M with K(b, c, a) we have c ∈ A.
If M = 〈M,≤, . . .〉 be a linearly ordered structure, we denote by c(M) the structure
〈M,K, . . .〉 where we replace the linear order ≤ by a ternary relation K, which is
derived from ≤.

Definition 3.1 ([19], [15]). A circularly ordered structure M is said to be circularly
minimal (weakly circularly minimal) if any definable (with parameters) subset of M is
a finite union of intervals and points (convex sets) in M .
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The next two examples indicate some issues, concerning parameters, on which min-
imality in the linear and circular cases have a different behaviour.

Example 3.1. Let M = c(ω + ω∗ + Q + ω + ω∗ + Q) where ω is the ordering of the
natural numbers, ω∗ the reverse ordering on the natural numbers and Q the ordering
of the rational numbers. Then M is a circularly minimal structure. Denote the first
elements of the copies of ω+ω∗ by a and c, and the last elements by b and d. Consider
the following formulas:

K0(x, y, z) := K(x, y, z) ∧ y 6= x ∧ y 6= z ∧ x 6= z

φ(x) := ∀y∀z[K0(y, x, z) → ∃t1∃t2(K0(y, t1, x) ∧K0(x, t2, z))]

We have φ(M) = {x ∈ M |M |= K0(b, x, c) ∨ K0(d, x, a)}, i.e. φ(M) is a union
of two open intervals, but we see the endpoints of these intervals are not definable
over ∅: a, b, c, d ∈ acl(∅) \ dcl(∅). This is in contrast with the o-minimal case where
acl(A) = dcl(A) for all A ⊆M . Also, in this example, φ(M) is the set of realisations of
a complete type, but is not convex; this is not possible in weakly o-minimal structures.

Example 3.2. Let M = 〈c(Q1+Q2+Q3+Q4), P 〉 where Qi is a copy of the ordering of
rational numbers for each i ≤ 4, and P (M) = Q1 ∪Q3. Then M is a weakly circularly
minimal structure. It is easy to see P (M) is a union of two convex sets which are not
intervals and points. Therefore, M is not circularly minimal. Also, P (M) is the union
of of two convex sets neither of which is ∅-definable. This is in contrast with the weakly
o-minimal case where every parametrically definable set is a finite union of convex sets
definable over the same parameters.

A cut in a circularly ordered structure M is a maximal consistent set of formulas
over M of the form K(a, x, b), where a, b ∈ M . We will say a cut is algebraic if there
is c ∈ M which realizes it. Otherwise, such a cut is said to be non-algebraic. Let
C(x) be a non-algebraic cut. If there is some a ∈ M such that either for any b ∈ M ,
K(a, x, b) ∈ C(x) or for any b ∈M , K(b, x, a) ∈ C(x) then C(x) is said to be rational.
Otherwise, such a cut is said to be irrational.

In [21], a criterion is given for o-minimality of a linearly ordered structure in terms
of cuts and one-types, and in [12] there is given a criterion for weak o-minimality of a
linearly ordered structure in terms of realisations of one-types. As noted in Example
3.1, in a circularly minimal structure the set of realisations of a complete type over ∅
may not be convex. This is in contrast with the weakly o-minimal case where the set
of realisations of any p ∈ S1(A) with A ⊆M is convex in any elementary extension of
M . Nevertheless, the following is an analogue of Theorem 3.1 of [12].

Theorem 3.1 ([15]). Let M be a circularly ordered structure. Then the following
conditions are equivalent:
(1) M is weakly circularly minimal;
(2) for any non-empty A ⊆M the set of realizations of any complete 1-type over A is
a convex set in any elementary extension of M ;
(3) the set of realizations of any complete 1-type over M is a convex set in any ele-
mentary extension of M .
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Definition 3.2. Let M be a circularly ordered structure.
(i) Let p ∈ S1(∅). We say p is n-convex if for any elementary extensionN ofM , p(N)

is the disjoint union of n maximal convex sets (which are called the convex components
of p(N)). We say p is convex if p is 1-convex. Otherwise, we say p is non-convex.

(ii) We say M is n-convex if every type p ∈ S1(∅) is n-convex, and we say Th(M)
is n-convex if this holds for all N ≡M .

Theorem 3.2 ([15]). Let M be a weakly circularly minimal structure. Then there is
n < ω such that M is n-convex.

In particular, if M is weakly circularly minimal and p ∈ S1(∅), then p(M) is a finite
union of convex sets.

In [21] there is a characterisation of all o-minimal linear orderings in the signature
{<}, and in [12] there is a characterisation of all weakly o-minimal orderings in the
same signature. Here we present our characterisation of weakly circularly minimal
orderings in the signature {K}.

Let F be the set of all finite linear orderings, and

G := F ∪ {ω, ω∗, ω + ω∗, ω∗ + ω,Q}.

Here, as usual, ω represents the ordering of the natural numbers, ω∗ its reverse, and
Q is the ordering of the rationals. Also, let WCO be the collection of all circularly
ordered sums of the form c(M1 + . . .+Mm), where each Mi is elementarily equivalent
to some member of G.

Theorem 3.3 ([15]). Any weakly circularly minimal structure M restricted to the
signature {K} is a member of WCO, and conversely, the first-order theory of any
member of WCO is a weakly circularly minimal theory.

Observe that if 〈M,<〉 is an o-minimal ordering then 〈M,K〉 is not a circularly
minimal ordering in general. Nevertheless, we can present a slightly different charac-
terization of circularly minimal orderings. Let CO be the collection of all circularly
ordered sums of the form c(M1 + . . . + Mm), where Mi is elementarily equivalent to
some member of G for each i ≤ m, and for each i ≤ m− 1 if Mi does not have a last
element then Mi+1 has a first element and if Mm does not have a last element then M1

has a first element.

Theorem 3.4 ([15]). Any circularly minimal structure M restricted to the signature
{K} is a member of CO, and conversely, the first-order theory of any member of CO
is a circularly minimal theory of circular order.

We further investigate unary definable functions from a weakly circularly minimal
structure M not just to M , but to a definable completion of M (as done in [20], Section
3, in the weakly o-minimal setting).

The formalism is as follows. Let M be weakly circularly minimal. A definable
cut in M is a cut C(x) with the following property: there are a, b ∈ M such that
K(a, x, b) ∈ C(x) and {y ∈ M : K(a, y, b) and K(a, x, y) ∈ C(x)} is definable. The
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definable completion M of M consists of M together with all definable cuts of M which
are irrational. There is a natural way to extend the circular ordering K to M which
we do not give explicitly. Observe that M is essentially a union of certain sorts of M eq.
We shall consider definable (strictly speaking, interpretable) partial functions M →M .

Let f be a unary function to M with Dom(f) = I ⊆M where I is an open convex
set. We say f is monotonic on I if it either preserves or reverses the relation K0, i.e.
either for any a, b, c ∈ I such that K0(a, b, c) we have K0(f(a), f(b), f(c)) or for any
a, b, c ∈ I such that K0(a, b, c) we have K0(f(c), f(b), f(a)). In particular, we say f is
monotonic-to-right (left) on I if f preserves (reverses) the relation K0.

Finally, if 〈M,K〉 is circularly ordered, then the set of open intervals is the basis of
a topology on M . If I is convex, we write Int(I) for the interior of I with respect to
this topology.

Let f be a unary function to M with Dom(f) = I ⊆M where I is an open convex
set. We say f is locally monotonic-to-right (locally monotonic-to-left, locally constant)
on I if for all x ∈ I there is an open convex set J ⊆ I such that x ∈ Int(J) and f is
monotonic-to-right (monotonic-to-left, constant) on J .

We say that a weakly circularly minimal structure M has monotonicity if whenever
A ⊆ M and f is an A-definable unary function to M , there are some m < ω and a
partition of Dom(f) into sets X, I1, . . . , Im such that X is finite, each Ii is open and
convex, and on each set Ii the function f is locally monotonic or locally constant.

Theorem 3.5 ([15]). Any weakly circularly minimal structure has monotonicity.

We also have investigated weakly circularly minimal (ordered) groups and proved
their dense ordering. As it has been earlier proved that both weakly o-minimal groups
and circularly minimal ones are divisible. Here we present an example of weakly
circularly minimal group which is not divisible. By Lemma 5.2 [20] any definable
subgroup of a weakly o-minimal group is convex. However there are non-convex sub-
groups in the circular case. For example, in the weakly circularly minimal group
G = 〈{z ∈ C||z| = 1},=, K, ∗, 1〉 the set H := {1,−1} is a finite non-convex ∅–
definable subgroup.

Proposition 3.1. There is a weakly circularly minimal group that is abelian and non-
divisible.

Proof of Proposition 3.1. Consider the multiplication group G′ := 〈R′,=, ∗, 1〉
where R′ := R \ {0}, R is the set of real numbers. It is not difficult to see that G′

is abelian and −1 is the only non-unity element of finite order (all the rest non-unity
elements have an infinite order). Let’s order group circularly as follows. Let R+ be
the set of positive real numbers, i.e. R+ = {a ∈ R | a > 0}, R− be the set of negative
real numbers, i.e. R− = {a ∈ R | a < 0}. Let R∗

− be the reverse order on the set of
negative real numbers. Then let G := 〈c(R+ + R∗

−),=, K, ∗, 1〉. We assert that G is
the required group. �

It has been proved earlier that any circularly minimal group doesn’t contain proper
infinite definable subgroups (Claim 5.1.1, [19]). However for a weakly circularly mini-
mal group it is not true in general:
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Proposition 3.2. There is a weakly circluarly minimal group having an infinite non-
convex ∅–definable subgroup.

Proof of Proposition 3.2. Consider the set R′ := R \ {0} where R is the set of real
numbers. Let R+ := {a ∈ R′ | a > 0}, R− := {a ∈ R′ | a < 0}, and i be the imaginary
unit of the field of complex numbers, i.e. i2 = −1. Consider iR+ := {ir | r ∈ R+},
iR− := {ir | r ∈ R−}, and for this iR+ is ordered as follows: for any r1, r2 ∈ R+

ir1 < ir2 ⇔ r1 < r2. iR− is ordered similarly. Let R∗
− and iR∗

− denote the reverse
orderings on R− and iR− respectively. Let G := 〈c(R+ + iR∗

− +R∗
− + iR+),=, K, ∗, 1〉.

We assert that G is the required group. �

Let M be a circularly ordered structure and G := Aut(M). We say M is k-
homogeneous, where k ∈ ω, if for any two k-element sets A,B ⊆M there is g ∈ G with
g(A) = B; also, M is called highly homogeneous if it is k-homogeneous for all k ∈ N .
We say M is k-transitive if for distinct a1, a2, . . . , ak and distinct b1, b2, . . . , bk there is
g ∈ G with g(a1) = b1, g(a2) = b2, . . . , g(ak) = bk. By a congruence on M we mean a
G-invariant equivalence relation on M . We say M is primitive if it is 1-transitive and
there are no non-trivial proper congruences on M .

Obviously the notions of 1-homogeneity and 1-transitivity coincide. These notions
also coincide with the notion of 1-indiscernibility (ordered indiscernibility) introduced
for linearly ordered structures. Also obviously that if M is n-transitive circularly
ordered structure then n ≤ 2.

In [11] it is proved that ℵ0-categorical 1-indiscernible weakly o-minimal structures
are described up to binary structure by Example 2.1. However, in the circular case
we have a greater richness of examples, even under a primitivity assumption. For the
ℵ0-categorical weakly circularly minimal case we present descriptions of 1-transitive
theories up to binarity with partition into the following classes: 2-homogeneous non-
2-transitive (Theorem 3.6), primitive non-2-homogeneous (Theorem 3.7) and non-
primitive (Theorems 3.12–3.15) and 2-transitive theories up to quaternarity (Theorems
3.8 and 3.9).

Example 3.3 ([9], [7]). Let n be a positive integer with n ≥ 2, and let L =
{σ0, . . . , σn−1} where σ0, . . . , σn−1 are binary relation symbols.
Let Q∗

n be a structure 〈Qn, K, L〉 such that
i) its domain Qn is a countable dense subset of the unit circle, no two points making
an angle of 2πk/n at the centre, where k ranges over integers, and
(ii) for distinct x, y ∈ Qn, (x, y) ∈ σi ⇔ 2πi/n < arg(x/y) < 2π(i+ 1)/n.

It can be proved that Q∗
n is an ℵ0-categorical primitive weakly circularly minimal

structure. The structure Q∗
2 is essentially the countable homogeneous local order, or

circular tournament, discussed for example in [7] and [18].

Let M,N be circularly ordered structures. By 2–reduct of M we mean a circularly
ordered structure with the same domain as M , and having a relation symbol for each
∅–definable relation of M of arity at most 2 and also a ternary relation symbol K for
circular ordering, but no other relation symbols of higher arity. We say M is isomorphic
to N up to binarity if the 2–reduct of M is isomorphic to N .
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The following two theorems describe ℵ0–categorical primitive weakly circularly min-
imal structures up to binarity:

Theorem 3.6 ([15]). Let M be an ℵ0-categorical weakly circularly minimal structure
such that Aut(M) is 2-homogeneous but not 2-transitive. Then either there is an ∅-
definable linear order on M so that M is 2-indiscernible weakly o-minimal under this
order, or M is isomorphic to Q∗

2 up to binarity.

Theorem 3.7 ([15]). Let M be an ℵ0-categorical weakly circularly minimal structure
such that Aut(M) is primitive but not 2-homogeneous. Then there is some natural
n ≥ 3 such that M is isomorphic to Q∗

n up to binarity.

Further we consider the 2-transitive case by the notions of C-relation andD-relation
investigated in detail in [2], [1].

Definition 3.3. (1) A ternary relation C(x; y, z) on a set X is a C-relation if it satisfies
the following:

(C1) ∀x∀y∀z[C(x; y, z) → C(x; z, y)];
(C2) ∀x∀y∀z[C(x; y, z) → ¬C(y;x, z)];
(C3) ∀x∀y∀z∀w[(C(x; y, z) ∧ ¬C(w; y, z)) → C(x;w, z)];
(C4) ∀x∀y[x 6= y → ∃z(z 6= y ∧ C(x; y, z))];
(C5) ∀y∀z∃xC(x; y, z).

(2) A quaternary relation D(x, y; z, w) on X is a D-relation if we have:
(D1) ∀x∀y∀z∀w[D(x, y; z, w) → (D(y, x; z, w) ∧D(z, w; y, x))];
(D2) the restriction of D to its last three arguments is a C-relation; that is, if we

fix x and define on X \ {x} the relation E(y; z, w) to hold if and only if D(x, y; z, w),
then E satisfies (C1)-(C5).

Theorem 3.8 ([15]). Let M be ℵ0-categorical 2-transitive weakly circularly minimal
structure. Then M is 3-homogeneous.

We now investigate the possible 4-ary relations in the 3-homogeneous 2-transitive
case. We recall that in Section 4 of [11], a complete structure theory (up to ternary rela-
tions) is given for ℵ0-categorical weakly o-minimal structures which are 2-indiscernible.
Essentially, any example consists of a ‘nested’ family of C-relations, as described in
Lemma 4.2 of [11]. Let Mn be an ℵ0-categorical 2-indiscernible weakly o-minimal
structure with n 3-types of strictly increasing elements where n > 1. The structure
Mn can be parsed as having just the relation of linear ordering < and finitely many C-
relations C1, . . . , Cm. We define for each n an ℵ0-categorical weakly circularly minimal
structure Pn as follows: the structure Pn has domain Mn ∪ {α} where α < x for all x
in Mn. Replace the relation of linear ordering < by the relation of circular ordering
K derived from < in the natural way. In addition, for each relation Ci of Mn, there is
a quaternary relation Di on Pn, which holds precisely when determined by one of the
following clauses:

(I) If x = y and x 6= z, x 6= w, or if z = w and z 6= x, z 6= y, then Di(x, y; z, w);
(II) if x, y, z ∈Mn are distinct, then

Ci(x; y, z) ↔ (Di(α, x; y, z) ∨Di(x, α; y, z) ∨Di(y, z;α, x) ∨Di(y, z;x, α)).
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(III) If x, y, z, w ∈Mn are distinct, then Di(x, y; z, w) holds if and only if

(Ci(x; z, w) ∧ Ci(y; z, w)) ∨ (Ci(z;x, y) ∧ Ci(w;x, y)).

Lemma 3.1 ([15]). (i) The structure Pn is ℵ0-categorical and weakly circularly min-
imal.

(ii) Aut(Pn) is 2-transitive and 3-homogeneous, and if n = 2 then it is 5-homoge-
neous.

(iii) Aut(P2) is not 6-homogeneous, and for n ≥ 3, Aut(Pn) is not 4-homogeneous.

By k-reduct of M , where k ≥ 3, we mean a structure with the same domain as M ,
and having a relation symbol for each ∅-definable relation of M of arity at most k, but
no relation symbols of higher arity.

Theorem 3.9 ( [15]). Let M be an ℵ0-categorical weakly circularly minimal structure
with 3-homogeneous and 2-transitive automorphism group, and let M∗ be the 4-reduct
of M . Assume that M is not highly homogeneous. Then M∗ is isomorphic to Pn for
some n > 1.

It has been earlier proved that any 3-indiscernible ℵ0-categorical weakly o-minimal
structure is k-indiscernible for any k ≥ 3. For the circular case there is an analogue
for k-indiscernibility which is k-homogeneity. There is an example of 5-homogeneous
structure which is not 6-homogeneous (Lemma 3.1). Nevertheless we prove that any
6-homogeneous structure is k-homogeneous for any k ≥ 6.

Theorem 3.10 ([15]). Let M be an ℵ0-categorical 6-homogeneous weakly circularly
minimal structure. Then M is highly homogeneous.

Further we investigate the behaviour of unary definable functions in an ℵ0-
categorical 1-transitive weakly circularly minimal structure and give their complete
characterization. As against the weakly o-minimal case where each such function is
locally constant, i.e. generates an equivalence relation with infinitely many infinite
convex classes, in the weakly circularly minimal case a unary function has a series of
different types of behaviour. Such a function can be constant, piecewise constant (i.e.
generate an equivalence relation with finitely many infinite convex classes) and locally
monotonic (including strict monotonicity).

Let F (x, y) be an ∅-definable formula such that F (M, b) is convex infinite co-infinite
for each b ∈M . Let F `(y) be the formula saying y is a left endpoint of F (M, y):

∃z1∃z2[K0(z1, y, z2) ∧ ∀t1(K(z1, t1, y) ∧ t1 6= y → ¬F (t1, y))∧

∀t2(K(y, t2, z2) ∧ t2 6= y → F (t2, y))].

We say that F (x, y) is convex-to-right if

M |= ∀y∀x[F (x, y) → F l(y) ∧ ∀z(K(y, z, x) → F (z, y))].

Obviously if F (x, y) is convex-to-right then M |= ∀yF (y, y). Let F1(x, y), F2(x, y)
be arbitrary convex-to-right formulas. We say F2 is bigger than F1 if there is a ∈ M
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with F1(M,a) ⊂ F2(M,a). If M is transitive and this holds for some a, it holds for all
a. This gives a total ordering on the (finite) set of all convex-to-right formulas F (x, y)
(viewed up to equivalence modulo Th(M)). If for some a ∈ M we have acl(a) = {a},
then for each convex-to-right formula F (x, y) and each a ∈ M , F (M,a) has no right
endpoint in M (unless this is a). We will write f(y) := rendF (M, y), meaning that
f(y) is a right endpoint of F (M, y) which lies in the definable completion M of M .
Then f is a function which maps M into M .

Let f be an ∅-definable function in M such that f is locally monotonic on M ,
E(x, y) be an ∅-definable equivalence relation partitioning M into infinitely many con-
vex classes. We say that f is piecewise monotonic-to-right (left) on M/E if there
is an ∅-definable non-trivial equivalence relation E ′(x, y) partitioning M into finitely
many infinite convex classes so that f is monotonic-to-right (left) on E ′(M,a)/E for
each a ∈ M and f is not monotonic-to-right (left) on M/E ′. We also say that f is
monotonic-to-right (left) on E ′/E if f is monotonic-to-right (left) on E ′(M,a)/E for
each a ∈M .

Definition 3.4. Let f be an ∅-definable function in M that is locally monotonic-to-
right (left) on M , n,m ∈ ω. We say that f has rank 〈n,m〉 if there are ∅-definable
equivalence relations Ef

1 (x, y), . . . , Ef
n(x, y) such that Ef

i partitions M into infinitely
many infinite convex classes for each i ≤ n− 1, Ef

n partitions M into m infinite convex
classes so that

• Ef
1 (M,a) ⊂ Ef

2 (M,a) ⊂ . . . ⊂ Ef
n−1(M,a) ⊂ Ef

n(M,a) for any a ∈M

• f is monotonic-to-right (left) on every Ef
1 -class

• f is monotonic-to-left (right) on Ef
j /E

f
j−1 for every even 2 ≤ j ≤ n

• f is monotonic-to-right (left) on Ef
j /E

f
j−1 for every odd 2 ≤ j ≤ n

• If m = 1 and n is odd (even) then f is monotonic-to-right (left) on M/Ef
n−1

• If m 6= 1 and n is odd then f is monotonic-to-left (right) on M/Ef
n

• If m 6= 1 and n is even then f is monotonic right (left) on M/Ef
n

Example 3.4. Let M = 〈M,=, K,E2, f1〉 be a circularly ordered structure, Q2 =
〈{(x0, x1)|xi ∈ Q}, <lex〉 be the set of all possible pairs of the rational numbers ordered
lexicographically, and M is a disjoint union of Q2

1 and Q2
2 where for each i = 1, 2

Q2
i is copy of Q2. The equivalence relation E is defined as follows: for any elements

x = (x0, x1), y = (y0, y1) ∈ M E(x, y) ⇔ x0 = y0, i.e. their first coordinates coincide.
Define the function f : f(Q2

1) = Q2
2, f(Q2

2) = Q2
1 and for any x = (x0, x1) ∈ M

f((x0, x1)) = (−x0, x1).

It can be proved that M is ℵ0-categorical 1-transitive weakly circularly minimal
and f is locally monotonic-to-right of rank 〈2, 1〉.
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Theorem 3.11 ([16]). Let M be an ℵ0-categorical 1-transitive weakly circularly min-
imal structure, F (x, y) be a convex-to-right formula. Then f(y) := rendF (M , y) has
only one of the following behaviours on M :
(1) f is locally constant;
(2) f is monotonic-to-right and fn(a) = a for some n ∈ ω;
(3) f is monotonic-to-left and f 2(a) = a;
(4) f is locally monotonic-to-right (left) of rank 〈n, 1〉, n > 1 and fm(a) = a for some
even m ∈ ω; moreover if n is even (odd) then f 2(a) = a;
(5) f is locally monotonic-to-right (left) of rank 〈n,m〉, where m > 2, n is even (odd)
and fk(a) = a for some even k ∈ ω and k divides m.

We finish our investigations by considering the 1-transitive non-primitive case. The
following two theorems completely characterize all ℵ0–categorical 1-transitive non-
primitive weakly circularly minimal structures of convexity rank 1 up to binarity:

Theorem 3.12 ([17]). Let M be an ℵ0–categorical 1-transitive non-primitive weakly
circularly minimal structure of convexity rank 1 with dcl(a) 6= {a} for some a ∈ M .
Then M is isomorphic to one of the following structures up to binarity:

• Mm := 〈M,=, K, f1〉 is a circularly ordered structure, M is dense, f is a
monotonic-to-right bijection on M so that fm(a) = a for all a ∈M (m ≥ 2).

• M∗ := 〈M,=, K, f1〉 is a circularly ordered structure, M is dense, f is a
monotonic-to-left bijection on M so that f 2(a) = a for all a ∈M .

• M1
n,m := 〈M,=, K,E2, f1〉 is a circularly ordered structure, M is dense, E is an

equivalence relation partitioning M into n infinite convex classes without end-
points, f is a monotonic-to-right bijection on M so that fm(a) = a, ¬E(a, f(a))
and f(E(M,a)) = E(M, f(a)) for all a ∈M , m divides n (m ≥ 2).

• M2
n,m := 〈M,=, K,E2, f1〉 is a circularly ordered structure, M is dense, E is

an equivalence relation partitioning M into n infinite convex classes without
endpoints, f is a bijection so that f is monotonic-to-left on each E-class and
f is monotonic-to-right on M/E, fm(a) = a, ¬E(a, f(a)) and f(E(M,a)) =
E(M, f(a)) for all a ∈M , m is even, m divides n (n ≥ 4).

Let E(x, y) be an ∅–definable equivalence relation partitioning M into infinite con-
vex classes. Suppose that y lies in M (possibly not in M). Then

E∗(x, y) := ∃y1∃y2[y1 6= y2 ∧ ∀t(K(y1, t, y2) → E(t, x)) ∧K0(y1, y, y2)]

If E(x, y) partitionsM into finitely many infinite convex classes, F (x, y) is a convex-
to-right formula, f(y) := rendF (M, y) and k ∈ ω, then

Φf,E
k (x) := ¬E∗(x, f(x)) ∧ ∃u1 . . . ∃uk[∧i6=j¬E(ui, uj) ∧ ∧ki=1{¬E(ui, x)∧

∧¬E∗(ui, f(x))} ∧K0(x, u1, . . . , uk, f(x)) ∧ ∀t[K(x, t, f(x)) →

→ ∨ki=1E(t, ui) ∨ E(t, x) ∨ E∗(t, f(x))]]
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Theorem 3.13 ( [17]). Let M be an ℵ0–categorical 1-transitive non-primitive weakly
circularly minimal structure of convexity rank 1 with dcl(a) = {a} for some a ∈ M .
Then M is isomorphic to one of the following structures up to binarity:

• M ′
n := 〈M,=, K,E2〉 is a circularly ordered structure, M is dense, E is an equiv-

alence relation partitioning M into n infinite convex classes without endpoints
(n ≥ 2).

• M ′
∗ := 〈M,=, K,R2〉 is a circularly ordered structure, M is dense, R(x, y) is

convex-to-right so that R(M,a) has no right endpoint in M for all a ∈ M and
r(y) := rendR(M, y) is monotonic-to-left on M .

• M3
n,k := 〈M,=, K,E2, R2〉 is a circularly ordered structure, M is dense, E is an

equivalence relation partitioning M into n infinite convex classes without end-
points, R(x, y) is convex-to-right so that R(M,a) has no right endpoint in M for
all a ∈ M and r(y) := rendR(M, y) is monotonic-to-right on M , ¬E∗(a, r(a))
and there is k ≥ 0 with Φr,E

k (a) for all a ∈M , k + 1 divides n (n ≥ 2).

• M4
n,k := 〈M,=, K,E2, R2〉 is a circularly ordered structure, M is dense, E is an

equivalence relation partitioning M into n infinite convex classes without end-
points, R(x, y) is convex-to-right so that R(M,a) has no right endpoint in M
for all a ∈ M , r(y) := rendR(M, y) is monotonic-to-left on each E–class, r is
monotonic-to-right on M/E, ¬E∗(a, r(a)) and there is k ≥ 0 with Φr,E

k (a) for all
a ∈M , k + 1 divides n, n is even (n ≥ 4).

The following two theorems completely characterize all ℵ0–categorical 1-transitive
non-primitive weakly circularly minimal structures of convexity rank greater than 1 up
to binarity:

Theorem 3.14 ([16]). Let M be an ℵ0–categorical 1-transitive non-primitive weakly
circularly minimal structure of convexity rank greater that 1 so that dcl(a) 6= {a} for
some a ∈ M . Then M is isomorphic to Ms,m,k := 〈M , =, K, f 1, E2

1 , . . . , E2
s , E

2
s+1〉

up to binarity, where M is a circularly ordered structure, M is dense, s ≥ 1, k ≥ 2,
m = 1 or k divides m; Es+1 is an equivalence relation partitioning M into m infinite
convex classes without endpoints, for each 1 ≤ i ≤ s Ei is an equivalence relation
partitioning every Ei+1–class into infinitely many infinite convex Ei–subclasses so that
the induced order on Ei–subclasses is dense without endpoints; f is a bijection on M
so that fk(a) = a for any a ∈ M , for each 1 ≤ i ≤ s + 1 f(Ei(M,a)) = Ei(M, f(a))
and ¬Ei(a, f(a)), and f has only one of the following behaviours on M :

• f is monotonic-to-right

• f is monotonic-to-left, k = m = 2

• f is piecewise monotonic-to-left, k is even, m ≥ 4, f is monotonic-to-left on
every Es+1–class and f is monotonic-to right on M/Es+1

• f is locally monotonic-to-right (left) of rank 〈n + 1, 1〉 for some 1 ≤ n ≤ s, and
there are 1 ≤ i1 < i2 < . . . < in ≤ s such that Ef

j ≡ Eij for each 1 ≤ j ≤ n, k is
even, moreover if n is odd then k = 2
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• f is locally monotonic-to-right (left) of rank 〈n+ 1,m〉 for some 1 ≤ n ≤ s, and
there are 1 ≤ i1 < i2 < . . . < in < in+1 = s + 1 such that Ef

j ≡ Eij for each
1 ≤ j ≤ n+ 1, k is even, m > 2, n is odd (even).

Theorem 3.15 ([16]). Let M be an ℵ0–categorical 1-transitive non-primitive weakly
circularly minimal structure of convexity rank greater than 1 so that dcl(a) = {a} for
some a ∈M . Then M is isomorphic to one of the following structures up to binarity:

• Ms,m := 〈M,=, K,E2
1 , . . . , E

2
s , E

2
s+1〉, where M is a circularly ordered structure,

M is dense, s,m ≥ 1; Es+1 is an equivalence relation partitioning M into m
infinite convex classes without endpoints, for each 1 ≤ i ≤ s Ei is an equivalence
relation partitioning every Ei+1–class into infinitely many infinite convex Ei–
subclasses without endpoints so that the induced order on Ei–subclasses is dense
without endpoints

• M ′
s,m,k := 〈M,=, K,E2

1 , . . . , E
2
s , E

2
s+1, R

2〉, where M is a circularly ordered struc-
ture, M is dense, s,m ≥ 1; Es+1 is an equivalence relation partitioning M into
m infinite convex classes without endpoints, for each 1 ≤ i ≤ s Ei is an equiv-
alence relation partitioning every Ei+1–class into infinitely many infinite convex
Ei–subclasses without endpoints so that the induced order on Ei–subclasses is
dense without endpoints; R(x, y) is a convex-to-right formula such that R(M,a)
doesn’t have right endpoint in M for all a ∈ M and r(y) := rendR(M, y) is
non-identity locally monotonic function on M so that for some k ≥ 2 rk(a) = a
for all a ∈M , where rk(y) := r(rk−1(y)); for each 1 ≤ i ≤ s+ 1 and any a ∈M

M ′
s,m,k |= ¬E∗

i (a, r(a)) ∧ ∀y(Ei(y, a) → ∃u[E∗
i (u, r(a)) ∧ E∗

i (u, r(y))])

m = 1 or k divides m, and r has only one of the following behaviours on M :

1. r is monotonic-to-right

2. r is monotonic-to-left, k = m = 2

3. r is piecewise monotonic-to-left, k is even, m ≥ 4, and r is monotonic-to-left
on every Es+1–class and r is monotonic-to-right on M/Es+1

4. r is locally monotonic-to-right (left) of rank 〈n + 1, 1〉 for some 1 ≤ n ≤ s,
and there are 1 ≤ i1 < i2 < . . . < in ≤ s such that Er

j ≡ Eij for each
1 ≤ j ≤ n, k is even, moreover if n is odd then k = 2

5. r is locally monotonic-to-right (left) of rank 〈n+ 1,m〉 for some 1 ≤ n ≤ s,
and there are 1 ≤ i1 < i2 < . . . < in < in+1 = s + 1 such that Er

j ≡ Eij for
each 1 ≤ j ≤ n+ 1, k is even, m > 2, n is odd (even).
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