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MIKHAIL L'VOVICH GOLDMAN

Doctor of physical and mathematical sciences, Professor
Mikhail L'vovich Goldman passed away on July 5, 2025, at the
age of 80 years.

Mikhail L'vovich was an internationally known expert in sci-
enceand education. His fundamental scienti�c articles and text
books in various�elds of the theory of functions of several variable-
sand functional analysis, the theory of approximation of functions,
embedding theorems and harmonic analysis are a signi�cant con-
tribution to the development of mathematics.

Mikhail L'vovich was born on Aprill 13, 1945 in Moscow. In
1963, he graduated from School No. 128 in Moscow with a gold
medal and entered the Physics Faculty of the Lomonosov Moscow
State University. He graduated in 1969 and became a postgradu-
ate student in the Mathematics Department. In 1972, he defended
his PhD thesis "On integral representations and Fourier series of

di�erentiable functions of several variables" under the supervision of Professor Ilyin Vladimir Alek-
sandrovich, and in 1988, his doctoral thesis "Study of spaces of di�erentiable functions of several
variables with generalized smoothness" at the S.L. Sobolev Institute of Mathematics in Novosibirsk.
Scienti�c degree "Professor of Mathematics" was awarded to him in 1991.

From 1974 to 2000 M.L. Goldman was successively an Assistant Professor, Full Professor, Head
of the Mathematical Department at the Moscow Institute of Radio Engineering, Electronics and
Automation (technical university). Since 2000 he was a Professor of the Department of Theory
of Functions and Di�erential Equations, then of the S.M. Nikol'skii Mathematical Institute at the
Patrice Lumumba Peoples' Friendship University of Russia (RUDN University).

Research interests of M.L. Goldman were: the theory of function spaces, optimal embeddings,
integral inequalities, spectral theory of di�erential operators.Among the most important scienti�c
achievements of M.L. Goldman, we note his research related to the optimal embedding of spaces
with generalized smoothness, exact conditions for the convergence of spectral decompositions, de-
scriptions of the integral and di�erential properties of generalized potentials of the Bessel and Riesz
types, exact estimates for operators on cones, descriptions of optimal spaces for cones of functions
with monotonicity properties.

M.L. Goldman has published more than 150 scienti�c articles in central mathematical journals.
He is a laureate of the Moscow government competition, a laureate of the RUDN University Prize in
Science and Innovation, and a laureate of the RUDN University Prize for supervision of postgraduate
students. Under the supervision of Mikhail L'vovich 11 PhD theses were defended. His pupilss
are actively involved in professional work at leading universities and research institutes in Russia,
Kazakhstan, Ethiopia, Rwanda, Colombia, and Mongolia.

Mikhail L'vovich has repeatedly been a guest lecturer and guest professor at universities in
Russia, Germany, Sweden, Great Britain, etc., and an invited speaker at many international con-
ferences. Mikhail L'vovich was not only an excellent mathematician and teacher (he always spoke
about mathematics and its teaching with great passion), but also a man of the highest culture and
erudition, with a deep knowledge of history, literature and art, a very bright, kind and responsive
person. This is how he will remain in the hearts of his family, friends, colleagues and students.

The Editorial Board of the Eurasian Mathematical Journal expresses deep condolences to the
family, relatives and friends of Mikhail L'vovich Goldman.
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Abstract. In this paper, we study the asymptotic behaviour of fundamental systems of solutions to
the Sturm-Liouville equation with rapidly oscillating potentials in a two-dimensional vector-function
space. We consider di�erent cases in which the coe�cients do not satisfy the regularity conditions.
Additionally, we investigate the asymptotic behaviour of solutions in resonance cases.
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1 Introduction

Numerous studies have focused on the asymptotic properties of solutions to singular Sturm-Liouville
equations and di�erential equations of arbitrary orders, as discussed in papers [1, 2, 12] and papers
cited there. These studies predominantly assumed that the equation's coe�cients exhibit regular
growth to in�nity. In contrast, works [3, 4, 5, 7, 8, 10, 11] explored the asymptotic properties of
solutions to ordinary di�erential equations with coe�cients from broader classes, particularly those
that do not meet the Titchmarsh-Levitan conditions.

In [11], a method was proposed to study the asymptotic behaviour of solutions of the Sturm-
Liouville equation

y′′ + (1 + q(x))y = 0, x0 < x <∞ (1.1)

for the case in which q(x) is a rapidly oscillating function belonging to the class σ as de�ned in [11].
This method enables the construction of asymptotic formulas for solutions whether q(x) in�uences
the leading term of the asymptotic expansion or not. However, this method does not address the
classes in which q(x) oscillates but does not belong to the class described in [11]. An example of
such a function is sin(x)/xα, where α > 0.

In [9], this approach was modi�ed to construct the asymptotics of perturbations of the form
p(x)/xα, where α > 0 and p(x) is a quasi-periodic function.

Note that for α > 1 the condition
∫
|p(x)/xα|dx < ∞ is satis�ed, hence, due to Theorem 1 in

[1] (p. 133), all solutions of equation (1.1) are bounded. Therefore, further study of this case is not
of interest.

In this paper, we extend the methods of [8, 9] to construct asymptotic formulas for the solution
of the Sturm-Liouville equation in the two-dimensional vector-function space:

~y′′ +

(
A0 +

p(x)

xα
A1

)
~y = 0, x0 < x <∞,
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where

~y =

(
y1

y2

)
, Aj =

(
ajlk
)
, Aj = const, j = 0, 1, A∗0 = A0 > 0,

and p(x) is a quasi-periodic function.

2 Construction of asymptotic formulas

We consider the Sturm-Liouville equation in the two-dimensional vector-function space:

~ϕ′′ +

(
A0 +

p(x)

xα
A1

)
~ϕ = 0, A∗0 = A0 > 0, α > 0, (2.1)

p(x) =
m∑
k=1

ske
ipkx, sk ∈ C, pk ∈ R \ {0}. (2.2)

The substitution
~ϕ = T~y, (2.3)

transforms equation (2.1) to the equation

~y′′ +

(
µ2

1 0
0 µ2

2

)
~y +

p(x)

xα
B~y = 0, x0 ≤ x <∞, α > 0, (2.4)

where

T−1A0T =

(
µ2

1 0
0 µ2

2

)
, B = T−1A1T =

(
bjk
)
, j, k = 1, 2.

We present the main result of this paper.

Theorem 2.1. Let α > 1/3, and let a function p(x) have form (2.2). Moreover, suppose that the
following conditions hold.

1. For any set of numbers {c1, ..., cm}, where cj ∈ 0 ∪ N,
m∑
j=1

cj 6= 0, the following condition is

satis�ed:
m∑
k=1

ckpk 6= 0. (2.5)

2. For any pk, k = 1, . . . ,m, it is true that

pk /∈ {±2µ1, ±2µ2, ±µ1 ± µ2}. (2.6)

Then, for the fundamental system of solutions of equation (2.4), as x→ +∞, the following asymp-
totic relation holds:

~y ∼
(
c11e

iµ1x c12e
−iµ1x

c21e
iµ2x c22e

−iµ2x

)
(I + o(1))~y0, cjk = const, j, k = 1, 2, ~y0 = const.

Proof. We reduce equation (2.4) to an equivalent �rst-order system of equations.
Let us introduce the following vector-function:

~z(x, µ) = col(z1, z2, z3, z4) : z1 = y1, z2 = y2, z3 = y′1, z4 = y′2.
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Then, equation (2.4) transforms into the following form:

~z′ = (L+
p(x)

xα
A)~z, (2.7)

where

L =


0 0 1 0
0 0 0 1
−µ2

1 0 0 0
0 −µ2

2 0 0

 , A =


0 0 0 0
0 0 0 0
−b11 −b12 0 0
−b21 −b22 0 0

 .

The substitution

~z(x) = T1~u, T1 =


− i
µ1

i
µ1

0 0

0 0 − i
µ2

i
µ2

1 1 0 0
0 0 1 1

 (2.8)

transforms system (2.7) into the system

~u′ = iΛ0~u+
1

xα
B̃(x)~u, (2.9)

Λ0 =


µ1 0 0 0
0 −µ1 0 0
0 0 µ2 0
0 0 0 −µ2

 , B̃(x) =
ip(x)

2


b11
µ1

−b11
µ1

b12
µ2

−b12
µ2

b11
µ1

−b11
µ1

b12
µ2

−b12
µ2

b21
µ1

−b21
µ1

b22
µ2

−b22
µ2

b21
µ1

−b21
µ1

b22
µ2

−b22
µ2

 .

We apply the following substitution:

~u = C(x)~v, C(x) = C0(x) +
1

xα
C1(x), (2.10)

which leads us to the following system:

C ′(x)~v + C(x)~v′ = iΛ0C(x)~v +
1

xα
B̃(x)C(x)~v. (2.11)

We seek the matrices C0(x) and C1(x) from the following system of matrix equations:{
C ′0(x) = iΛ0C0(x),

C ′1(x) = iΛ0C1(x) + B̃(x)C0(x).
(2.12)

From (2.12), we obtain

C0(x) = eiΛ0x =


eiµ1x 0 0 0

0 e−iµ1x 0 0
0 0 eiµ2x 0
0 0 0 e−iµ2x

 .

Also, from (2.12), we have

C1(x) = C0(x)− C0(x)D(x), D′(x) = D1(x) = −C−1
0 (x)B̃(x)C0(x), (2.13)

D1(x) =
ip(x)

2


b11
µ1

− b11
µ1
e−2iµ1x b12

µ2
ei(−µ1+µ2)x − b12

µ2
ei(−µ1−µ2)x

b11
µ1
e2iµ1x − b11

µ1

b12
µ2
ei(µ1+µ2)x − b12

µ2
ei(µ1−µ2)x

b21
µ1
ei(µ1−µ2)x − b21

µ1
ei(−µ1−µ2)x b22

µ2
− b22

µ2
e−2iµ2x

b21
µ1
ei(µ1+µ2)x − b21

µ1
ei(−µ1+µ2)x b22

µ2
e2iµ2 − b22

µ2

 .
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We de�ne the matrix D(x) as the antiderivative of the matrix function D1(x)

D(x) =


p11(x, 0) −p11(x,−2µ1) p12(x,−µ1 + µ2) −p12(x,−µ1 − µ2)
p11(x, 2µ1) −p11(x, 0) p12(x, µ1 + µ2) −p12(x, µ1 − µ2)

p21(x, µ1 − µ2) −p21(x,−µ1 − µ2) p22(x, 0) −p22(x,−2µ2)
p21(x, µ1 + µ2) −p21(x,−µ1 + µ2) p22(x, 2µ2) −p22(x, 0)

 ,

where

pjk(x, σml) =

∫
ibjkp(x)

2µk
eiσmlxdx, j, k = 1, 2, m, l = 1, 4,

σml ∈ {0,±2µ1,±2µ2,±µ1 ± µ2}.

Thus, the solution C1(x) of system (2.12) has the form

C1(x) = C0(x) · (I −D(x)). (2.14)

It is easy to prove that due to conditions (2.5) and (2.6) of Theorem 2.1, all elements of the
matrix D(x) are bounded. Hence, the matrices C0(x) and C1(x) are bounded. Taking into account
the last expressions, for the matrix C(x) we obtain

C(x) = C0(x)

(
I +

1

xα
(I −D(x))

)
. (2.15)

Since C0(x) is a diagonal matrix, D(x) is bounded, and x−α → 0 as x→∞, the matrix C(x) admits
a bounded inverse.

Considering (2.12) and (2.15), we can rewrite system (2.11) in the following form:

(~v)′ =
1

x2α

(
C0(x) +

1

xα
C1(x)

)−1

B̃(x)C1(x)~v

+
α

xα+1

(
C0(x) +

1

xα
C1(x)

)−1

C1(x)~v. (2.16)

From the boundedness of the matrices C0(x) and C1(x), it follows that the matrices C−1B̃C1,
C−1C1 are also bounded.

Let us consider the case α > 1/2. We rewrite system (2.16) as follows:

(~v)′ = C̃(x)~v, (2.17)

where

C̃(x) =
1

x2α
C−1(x)B̃(x)C1(x) +

α

xα+1
C−1(x)C1(x).

If α > 1/2, then the boundedness of C−1B̃C1 and C
−1C1 obviously implies that all elements of the

matrix C̃(x) are summable, i.e., ‖C̃(x)‖ ∈ L1(x0,∞). Therefore, using successive approximations
for system (2.17), we obtain

~v = ~v0 +

∞∫
x

C̃(ξ)~v(ξ)dξ, ~v0 = const,

which implies
~v = (I + o(1))~v0.
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Taking into account substitutions (2.10), (2.8), we obtain the solution to equation (2.7) as follows:

~z(x) = T1 ·
(
C0(x) +

1

xα
C1(x)

)
· (I + o(1)) · ~v0, v0 = const. (2.18)

Now, let us consider the case 1/3 < α < 1/2. In this case, the elements of the matrix α
xα+1C

−1C1

are summable. Given that 2α < 1, the asymptotic relation xα+1 = o(x3α) as x → ∞ holds.
Therefore, we can rewrite system (2.16) by using the Neumann series for the inverse matrix

C−1(x) =

(
I +

1

xα
(I −D(x))

)−1

C−1
0 (x) = C−1

0 (x) +O(x−α),

in the following form:

(~v)′ =
1

x2α
C−1

0 (x)B̃(x)C1(x)~v +
1

x3α
F (x, µ1, µ2)~v, (2.19)

where
1

x3α
F (x, µ1, µ2) =

1

x2α
O(x−α) +

α

xα+1
C−1(x)C1(x),

and
∥∥ 1
x3α
F (x, µ)

∥∥ ∈ L1(x0,∞). Taking into account (2.13) and (2.14), for the matrix

C−1
0 (x)B̃(x)C1(x) we have

C−1
0 (x)B̃(x)C1(x) = C−1

0 (x)B̃(x)C0(x)D(x) = D′(x)D(x).

Hence, the elements of the matrix C−1
0 B̃C1 are oscillating functions and can be represented as

G(x, µ1, µ2) =
∑

Gke
iσkx, σk ∈ {pk, ±2µ1, ±2µ2, ±µ1 ± µ2}, Gk = const.

Thus, system (2.19) takes the form

(~v)′ =
1

x2α
G(x, µ1, µ2)~v +

1

x3α
F (x, µ1, µ2)~v. (2.20)

The substitution

ξ =
x1−2α

1− 2α
, x = ((1− 2α)ξ)

1
1−2α , ~v(x) = ~w(ξ), (2.21)

β =
1

1− 2α
, γ =

α

1− 2α
,

transforms system (2.20) to the system

(~w)′ξ = G
(
aξβ, µ1, µ2

)
~w +

βγ

ξγ
F
(
aξβ, µ1, µ2

)
~w, (2.22)

where a = β−β is a constant, which does not a�ect the asymptotic behaviour of the solutions.
The condition 1/3 < α < 1/2 implies 3 < β < ∞, hence γ = α

1−2α
= βα > 1. Therefore, the

second term of system (2.22) is summable.
By by integration, from (2.22), we obtain

~w(ξ) = ~w(ξ0) +

∞∫
ξ

G
(
τβ, µ1, µ2

)
~w(τ)dτ + βγ

∞∫
ξ

τ−γF
(
τβ, µ1, µ2

)
~w(τ)dτ. (2.23)



Asymptotics of solutions of the Sturm-Liouville equation 95

Integrating by part the second term of expression (2.23), we have

∞∫
ξ

G
(
τβ, µ1, µ2

)
~w(τ)dτ = Ĝ

(
τβ, µ1, µ2

)
~w(τ)

∣∣∣∣∞
ξ

−
∞∫
ξ

Ĝ
(
τβ, µ1, µ2

)
~w′(τ)dτ, (2.24)

where

∣∣∣Ĝ (ξβ, µ1, µ2

)∣∣∣ =

∣∣∣∣∣∣
∞∫
ξ

G
(
τβ, µ1, µ2

)
dτ

∣∣∣∣∣∣ =

∣∣∣∣∣∣ 1β
∞∫
ξ

G
(
τβ, µ1, µ2

) dτβ
τβ−1

∣∣∣∣∣∣ = O

(
1

τβ−1

)
.

Hence, ‖Ĝ (ξ, µ1, µ2) ‖ ∈ L1(ξ0,∞). By using (2.22) for (2.24), we get

J :=

∞∫
ξ

G
(
τβ, µ1, µ2

)
~w(τ)dτ = Ĝ

(
τβ, µ1, µ2

)
~w(τ)

∣∣∣∣∞
ξ

−
∞∫
ξ

Ĝ
(
τβ, µ1, µ2

)(
G
(
τβ, µ1, µ2

)
~w(τ) +

βγ

τ γ
F
(
τβ, µ1, µ2

)
~w(τ)

)
dτ.

Taking into account the last expressions and (2.23), we obtain the following estimate:

‖~w − ~w0‖C(ξ0,∞) ≤ K‖~w‖C(ξ0,∞), K = const.

Hence, it follows that
~w(ξ) = ~w(ξ0) + o(1), (2.25)

where ~w(ξ) = ~w0. Returning from system (2.25) to system (2.7), taking into account substitutions
(2.21), (2.10) and (2.8), we obtain (2.18).

Let us consider the case α = 1/2. In this case, system (2.24) takes the form

(~v)′ =
1

x
G(x, µ1, µ2)~v +

1

x3/2
F (x, µ1, µ2)~v. (2.26)

Substituting
ξ = lnx, x = eξ, ~v(x) = ~w(ξ),

converts system (2.26) to the system

(~w)′ξ = G(eξ, µ1, µ2)~w + e−
ξ
2F (eξ, µ1, µ2)~w.

Similarly to (2.22), by using successive approximations, we obtain

~w(ξ) = ~w(ξ0) + o(1).

Taking into account (2.21), (2.10) and (2.8), we obtain (2.18).
Finally, we obtain the asymptotics of the solutions to system (2.4) in the following form

~y ∼
(
c11e

iµ1x c12e
−iµ1x

c21e
iµ2x c22e

−iµ2x

)
(I + o(1))~y0,

where cjk = const, j, k = 1, 2, ~y0 = const.
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Remark 1. From the proven theorem, it follows that the perturbation p(x)/xα does not a�ect the
dominant part of the asymptotics of the solution to equation (2.4) provided that conditions (2.5)
and (2.6) are satis�ed.

Remark 2. The condition α > 1/3 arises from the selection of the substitution:

C(x) = C0(x) +
1

xα
C1(x).

For the general case, the substitution takes the form:

C(x) =
m∑
k=0

1

xkα
Ck(x),

as provided in [9] for the scalar case.

Remark 3. If condition (2.5) of Theorem 2.1 is not satis�ed, a resonance case occurs, and the
asymptotics will signi�cantly di�er from those obtained above.

3 Resonance case

In this section, we will show that the conditions of Theorem 2.1 are essential. To do this, let us
consider the case in which pk ∈ {±2µ1, ±2µ2, ±µ1 ± µ2}, i.e., condition (2.5) is not satis�ed. For
the matrix C(x) in (2.15), we obtain

C(x) = C0(x)

(
I − 1

xα
D̃(x)− x1−αD2(x)

)
,

where
D̃(x) =

∑
D̃ke

iσk , D2(x) =
∑

(D2)ke
iσk , D̃k, (D2)k = const,

σk ∈ {±2µ1,±2µ2,±µ1 ± µ2, pk.}

For the case α < 1, the matrix C(x) becomes unbounded as x→∞. This generates the resonance
case and the method described in the previous section is no longer applicable. Therefore, we apply
a di�erent approach to study the asymptotic behaviour of solutions.

Let p(x) = cos(µ1 + µ2)x, µ1, µ2 ∈ R \ 0. Then, system (2.9) takes the following form:

~u′ =
i

2
Λ0~u+

i cos(µ1 + µ2)x

2xα
B~u, (3.1)

where

Λ0 =


µ1 0 0 0
0 −µ1 0 0
0 0 µ2 0
0 0 0 −µ2

 , B =


b11
µ1

−b11
µ1

b12
µ2

−b12
µ2

b11
µ1

−b11
µ1

b12
µ2

−b12
µ2

b21
µ1

−b21
µ1

b22
µ2

−b22
µ2

b21
µ1

−b21
µ1

b22
µ2

−b22
µ2

 .

In the case µ1 = µ2, system (3.1) becomes equivalent to two second-order scalar linear di�erential
equations. Therefore, we consider the case µ1 6= µ2.

The substitution
~u = e

i
2

Λ0x~v (3.2)

transforms system (3.1) to

~v′ =
i cos(µ1 + µ2)x

2xα
e−

i
2

Λ0xBe
i
2

Λ0x~v.
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After some modi�cations, we get

~v′ =
1

xα

(
B0 +

m∑
k=1

eiσkxBk

)
~v, (3.3)

where

B0 =


0 0 0 − ib12

4µ2

0 0 ib12
4µ2

0

0 − ib21
4µ1

0 0
ib21
4µ1

0 0 0

 , Bk = const, k = 1, . . . ,m,

σk ∈ {±2µ1; ±2µ2; ±2(µ1 + µ2); ±(µ1 ± µ2); ±(3µ1 + µ2); ±(µ1 + 3µ2)}.

Replacing independent variable x by ξ as in (2.21):

ξ =
x1−α

1− α
, x = ((1− α)ξ)

1
1−α , ~v(x) = ~w(ξ), (3.4)

β =
1

1− α
, a = (1− α)β,

we obtain

~w′ξ = B0 ~w +
m∑
k=1

eiaσkξ
β

Bk ~w. (3.5)

Denote

φk(ξ) =

∞∫
ξ

eiaσkτ
β

dτ, k = 1, . . . ,m.

Assume that 1/2 < α < 1, which implies β > 2. Then

φk(ξ) =

∞∫
ξ

eiaσkτ
β

dτ =
1

β

∞∫
ξ

eiaσkτ
β

τβ−1
dτβ ∈ L1(ξ0,∞). (3.6)

Applying the substitution
~w = e−φ1(ξ)B1 ~w1, (3.7)

we get

~w′1(ξ) = eφ1(ξ)B1B0e
−φ1(ξ)C1 ~w1 + eφ1(ξ)B1 ·

(
m∑
k=2

eiaσkξ
β

Bk

)
· e−φ1(ξ)B1 ~w1. (3.8)

Using the properties of the matrix exponent, from (3.6) we obtain

eφ1(ξ)B1 = I + F1(ξ), ‖F1(ξ)‖ ∈ L1(ξ0,∞),

and
e−φ1(ξ)B1 = I + F2(ξ), ‖F2(ξ)‖ ∈ L1(ξ0,∞).

Therefore,
eφ1(ξ)B1B0e

−φ1(ξ)B1 = B0 + F3(ξ), ‖F3(ξ)‖ ∈ L1(ξ0,∞),

where
F3(ξ) = B0F2(ξ) + F1(ξ)B0 + F1(ξ)B0F2(ξ).
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For the remaining terms of system (3.8), we have

eφ1(ξ)B1 ·
(
eiaσkξ

β

Bk

)
· e−φ1(ξ)B1 = (I + F1(ξ))eiaσkξ

β

Bk(I + F2(ξ)) = eiaσkξ
β

Bk +Gk(ξ),

Gk(ξ) = eiaσkξ
β

(BkF2(ξ) + F1(ξ)Bk + F1(ξ)BkF2) , k = 2, . . . ,m.

The matrices eiaσkξ
β
Bk are bounded, and the matrices F1(ξ), F2(ξ) are summable. Hence, the

matrices Gk(ξ) are summable. On the base of these relations, system (3.8) takes the form

~w′1(ξ) = B0 ~w1 +
m∑
k=2

eiaσkξ
β

Bk ~w1 +G(ξ)~w1, (3.9)

where

G(ξ) =
m∑
k=2

Gk(ξ), ‖G(ξ)‖ ∈ L1(ξ0,∞).

Using the substitutions
~wk−1 = eiaσkξ

βBk ~wk, k = 2, . . . ,m, (3.10)

one by one and conducting similar calculations, we �nally obtain

~w′m(ξ) = B0 ~wm + P (ξ)~wm, ‖P (ξ)‖ ∈ L1(ξ0,∞). (3.11)

Applying Levinson's Theorem to (3.11) (see [6], p. 292), we obtain the solution

~wm(ξ) = eξB0 · (I +M · o(1)), M = const.

Using substitutions (3.9), (3.7), (3.4), (3.2) and (2.8), we obtain the solution for system (2.7) in the
following form:

~z = T1 · e
i
2

Λ0ξβ ·
m∏
k=1

e−φk(ξ)BkeξB0(I +M · o(1))~wm(ξ0).

The dominant part of asymptotics of solutions is

~z ∼ e
i
2

Λ0x · exp

{
x1−α

1− α
B0

}
(I +M · o(1))z0, z0 = const.

Let us consider the case α = 1. Then, system (3.3) takes the form

~v′ =
1

x

(
B0 +

m∑
k=1

eiσkxBk

)
~v.

By using the substitution
ξ = lnx, x = eξ, ~v(x) = ~w(ξ) (3.12)

we obtain the system

~w′ξ =

(
B0 +

m∑
k=1

eiσke
ξ

Bk

)
~w.

Denote

ψk(ξ) =

∞∫
ξ

eiσke
τ

dτ, k = 1, . . . ,m.
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As ψk(ξ) ∈ L1(ξ0,∞), j = 1, . . . ,m, using the substitutions

~w = e−ψ1(ξ)B1 ~w1, ~wk−1 = e−ψk(ξ)Bk ~wk, k = 2, . . . ,m, (3.13)

and conducting similar calculations as in the previous case, we obtain

~w′m(ξ) = B0 ~wm +G(ξ)~wm, ‖G(ξ)‖ ∈ L1(ξ0,∞).

Applying Levinson's Theorem (see [6], p. 292) and using substitutions (3.13), (3.12), (3.2) and
(2.8), we obtain the following expression for the solution to system (2.7):

~z = T1 · e
i
2

Λ0eξ ·
m∏
k=1

e−ψk(ξ)Bk · eξB0 · (I +M · o(1)) · ~wm(ξ0).

The dominant part of the asymptotics of the solution is given by

~z ∼ e
i
2

Λ0x · elnxB0 · (I +M · o(1))~z0, ~z0 = const.

Remark 4. In both cases α < 1 and α = 1, the asymptotics of solutions to system (2.7), as
described by equation (2.4), will depend on the elements of the constant matrix B.
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