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MIKHAIL L'VOVICH GOLDMAN

Doctor of physical and mathematical sciences, Professor
Mikhail L'vovich Goldman passed away on July 5, 2025, at the
age of 80 years.

Mikhail L'vovich was an internationally known expert in sci-
enceand education. His fundamental scienti�c articles and text
books in various�elds of the theory of functions of several variable-
sand functional analysis, the theory of approximation of functions,
embedding theorems and harmonic analysis are a signi�cant con-
tribution to the development of mathematics.

Mikhail L'vovich was born on Aprill 13, 1945 in Moscow. In
1963, he graduated from School No. 128 in Moscow with a gold
medal and entered the Physics Faculty of the Lomonosov Moscow
State University. He graduated in 1969 and became a postgradu-
ate student in the Mathematics Department. In 1972, he defended
his PhD thesis "On integral representations and Fourier series of

di�erentiable functions of several variables" under the supervision of Professor Ilyin Vladimir Alek-
sandrovich, and in 1988, his doctoral thesis "Study of spaces of di�erentiable functions of several
variables with generalized smoothness" at the S.L. Sobolev Institute of Mathematics in Novosibirsk.
Scienti�c degree "Professor of Mathematics" was awarded to him in 1991.

From 1974 to 2000 M.L. Goldman was successively an Assistant Professor, Full Professor, Head
of the Mathematical Department at the Moscow Institute of Radio Engineering, Electronics and
Automation (technical university). Since 2000 he was a Professor of the Department of Theory
of Functions and Di�erential Equations, then of the S.M. Nikol'skii Mathematical Institute at the
Patrice Lumumba Peoples' Friendship University of Russia (RUDN University).

Research interests of M.L. Goldman were: the theory of function spaces, optimal embeddings,
integral inequalities, spectral theory of di�erential operators.Among the most important scienti�c
achievements of M.L. Goldman, we note his research related to the optimal embedding of spaces
with generalized smoothness, exact conditions for the convergence of spectral decompositions, de-
scriptions of the integral and di�erential properties of generalized potentials of the Bessel and Riesz
types, exact estimates for operators on cones, descriptions of optimal spaces for cones of functions
with monotonicity properties.

M.L. Goldman has published more than 150 scienti�c articles in central mathematical journals.
He is a laureate of the Moscow government competition, a laureate of the RUDN University Prize in
Science and Innovation, and a laureate of the RUDN University Prize for supervision of postgraduate
students. Under the supervision of Mikhail L'vovich 11 PhD theses were defended. His pupilss
are actively involved in professional work at leading universities and research institutes in Russia,
Kazakhstan, Ethiopia, Rwanda, Colombia, and Mongolia.

Mikhail L'vovich has repeatedly been a guest lecturer and guest professor at universities in
Russia, Germany, Sweden, Great Britain, etc., and an invited speaker at many international con-
ferences. Mikhail L'vovich was not only an excellent mathematician and teacher (he always spoke
about mathematics and its teaching with great passion), but also a man of the highest culture and
erudition, with a deep knowledge of history, literature and art, a very bright, kind and responsive
person. This is how he will remain in the hearts of his family, friends, colleagues and students.

The Editorial Board of the Eurasian Mathematical Journal expresses deep condolences to the
family, relatives and friends of Mikhail L'vovich Goldman.
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Abstract. We study a one-dimensional Stefan type problem which models the behavior of elec-
tromagnetic �elds and heat transfer in closed electrical contacts that arises, when an instantaneous
explosion of the micro-asperity occurs. This model involves vaporization, liquid and solid zones, in
which the temperature satis�es a generalized heat equation with the Thomson e�ect. Accounting
for the nonlinear thermal coe�cient, the model also incorporates temperature-dependent electrical
conductivity. By employing a similarity transformation, the Stefan-type problem is reduced to a
system of coupled nonlinear integral equations. The existence of a solution is established using the
�xed point theory in Banach spaces.

DOI: https://doi.org/10.32523/2077-9879-2025-16-3-68-89

1 Introduction

Stefan problems are fundamental in understanding the phase transition phenomena, particularly
in situations involving heat transfer and solidi�cation processes. They were �rst introduced by
J. Stefan in his seminal work in [24]. These problems concern the determination of the moving
boundary between phases during the process of solidi�cation or melting.

The classical Stefan problem arises in scenarios, in which a material undergoes a phase change,
such as freezing or melting, subject to certain boundary conditions and physical constraints. One
of the key aspects of Stefan problems is the existence of a sharp interface, known as the Stefan
interface, which separates the regions of di�erent phases.

Signi�cant theoretical contributions to Stefan problems have been done in [21], [1]. Further, the
study of free and moving boundary problems, including Stefan problems, has garnered considerable
attention. In [6] J. Crank provides a comprehensive treatment of such problems, o�ering valuable
insights into their mathematical formulation and solution techniques.

Stefan problems, which traditionally deal with phase-change phenomena under classical heat con-
duction assumptions, have seen extensions to encompass more complex physical scenarios. These
extensions, often referred to as non-classical Stefan problems, involve variations in thermal coe�-
cients, boundary conditions, or latent heat dependencies, among other factors. The investigation
of non-classical Stefan problems has signi�cant implications in various �elds, including materials
science, engineering, and mathematical physics.

One avenue of research in non-classical Stefan problems involves the consideration of thermal
coe�cients that vary with temperature or position. In [4], [2] were explored Stefan problems for
di�usion-convection equations with temperature-dependent thermal coe�cients, providing insights
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into the behavior of phase-change processes under such conditions. Similarly, in [18], [17] A. Kumar
et al. investigated Stefan problems with variable thermal coe�cients, highlighting the impact of
these variations on the phase-change dynamics. Furthermore, exact and approximate solutions to
the Stefan problem in ellipsoidal coordinates were obtained in [8]

Another aspect of non-classical Stefan problems involves incorporating convective boundary
conditions or heat �ux conditions on �xed faces. In paper [4] there is examined the existence of exact
solutions for one-phase Stefan problems with nonlinear thermal coe�cients, incorporating Tirskii's
method to handle such complexities. Additionally, paper [5] is devoted to the one-phase Stefan
problem for a non-classical heat equation with a heat �ux condition on the �xed face, contributing
to the understanding of phase-change phenomena under non-standard boundary conditions.

Non-linear Stefan problems o�er a valuable mathematical framework to model and analyze
complex phenomena, providing insights, for example, into heat transfer processes during phase
transitions within electrical contacts [3], [12]-[20].

Thermal phenomena in electrical apparatus, such as welding, arcing, and bridging, contribute
to their failure and are highly complex. These phenomena depend on various factors including
current, voltage, contact force, contact material properties, and arc duration [23], [7]. Experimental
investigations usually focus on cumulative probability representations of resulting values as direct
experimental observation of these processes is often challenging or even impossible due to their
extremely short duration.

Hence, mathematical modelling plays a crucial role in understanding the dynamics of such
processes, improving the endurance and reliability of contact systems, and predicting and preventing
failures in electrical apparatus.

E�orts have been made in [22], [9]-[11] to address these aspects and the study of electrical
contacts involves intricate thermal dynamics in�uenced by non-linearities in material properties
and heat generation mechanisms.

This paper aims to further develop the existing models to models, also incorporating the Thom-
son e�ect.

The Thomson e�ect refers to the phenomenon, in which a temperature di�erence is created
across an electrical conductor when an electric current �ows through it. This e�ect occurs due to
the interaction between the current-carrying electrons and the lattice structure of the conductor.

In the context of a closure of electrical contact after the instantaneous explosion of a micro-
asperity, it is important to take into account that micro-asperities are tiny protrusions or irreg-
ularities on the surface of a material. An explosion or sudden release of energy can cause these
micro-asperities to rupture or deform.

After such an explosion, the closure of electrical contact can manifest itself in several ways. The
intense energy release can lead to the melting or vaporization of micro-asperities, altering the surface
characteristics of the contact. This can potentially disrupt the normal �ow of electric current and
create temperature variations due to the Thomson e�ect.

The Thomson e�ect in this scenario could result in localized heating or cooling at the contact
points, depending on the direction of the current �ow. This temperature di�erence might a�ect the
electrical conductivity and overall performance of the closure of electrical contact.

In the initial phase of a closed electrical contact, when a micro-asperity undergoes sudden igni-
tion, the contact region comprises both a metallic vaporization zone and a liquid domain, see Figure
1. Modelling the metallic vapour zone, denoted as Z0 with a height range of 0 < z < s(t), is a
complex undertaking. We propose that the temperature within this region decreases linearly from
the ionization temperature of the metallic vapour, denoted as Tion, which occurs after the explosion
at the �xed face z = 0, to the boiling temperature Tb at the free boundary that separates the vapour
and liquid phases. The temperature �eld within the vapour zone Z0 exhibits a gradual and linear
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Figure 1: Contact zones: Z0 : (0 < z < s(t))-vaporization zone, Z1 : (s(t) < z < r(t))-liquid zone,
Z2 : (r(t) < z)-solid zone.

decrease
TV (z, t) =

z

s(t)
(Tb − Tion) + Tion, 0 ≤ z ≤ s(t), (1.1)

where the following boundary conditions hold

TV (0, t) = Tion, (1.2)

TV (s(t), t) = Tb. (1.3)

Temperature distribution and electrical potential �eld of the zones Z1 and Z2 are de�ned by the
following relations:
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∂T1
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=
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= 0, s(t) < z < r(t), t > 0, 0 < ν < 1, (1.5)
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]
= 0, r(t) < z, t > 0, 0 < ν < 1, (1.7)

T1(s(t), t) = Tb, t > 0, (1.8)
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ϕ1(s(t), t) = 0, t > 0, (1.10)

T1(r(t), t) = T2(r(t), t) = Tm > 0, t > 0, (1.11)

ϕ1(r(t), t) = ϕ2(r(t), t), t > 0, (1.12)
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T2(+∞, t) = 0, t > 0, (1.15)
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ϕ2(+∞, t) =
Uc
2
, t > 0, (1.16)

T2(z, 0) = ϕ2(z, 0) = 0, z > 0, s(0) = r(0) = 0, (1.17)

where T1, T2 and ϕ1, ϕ2 are temperatures and electrical potential �elds for liquid and solid zones,
c(Ti),γ(Ti) and λ(Ti) are speci�c heat, density and thermal conductivity which depend on the
temperature, σTi is the Thomson coe�cient, ρ(Ti) is the electrical resistivity, Q0 > 0 is the power of
the heat �ux, Tm is the melting temperature, Uc is the contact voltage, s(t) and r(t) are locations
of the boiling and melting interfaces.

This paper is structured as follows. In Section 2, we use the similarity transformation to obtain
an equivalent system of coupled integral equations for problem (1.4)-(1.17). In Section 3, we de�ne
proper spaces in order to apply the �xed point Banach theorem to prove the existence of a solution
to the system of coupled integral equations.

The contribution of the problem addressed in our paper has signi�cant implications for electrical
engineering. By developing a mathematical model that captures the behavior of electromagnetic
�elds and heat transfer in closed electrical contacts, particularly during instantaneous micro-asperity
explosions, we o�er valuable insights into the complex dynamics of these systems.

Our model accounts for the non-linear nature of thermal coe�cients and temperature-dependent
electrical conductivity, factors that are crucial in accurately representing real-world scenarios. By
considering vaporization, liquid, and solid zones within the contact, we provide a comprehensive
framework for analyzing the thermal and electromagnetic e�ects associated with such phenomena.

Furthermore, our approach, which utilizes similarity transformations to reduce the Stefan-type
problem to a system of nonlinear integral equations, o�ers practical methodologies for analysing and
predicting the closure of electrical contacts under extreme conditions. The rigorous establishment
of the validity of this approach through discussions and proofs supported by the �xed point theory
in Banach spaces enhances the reliability and applicability of our proposed solutions.

2 Integral formulation

In this section, taking into account that problem (1.4)-(1.17) can be thought as a Stefan-type
problem, we look for similarity type solutions that depend on the similarity variable

η =
z

2a
√
t
,

with a =
√

λ0
ρ0c0

where λ0, ρ0 and c0 are reference thermal coe�cients.

We propose the following transformation

fi(η) =
Ti(z, t)− Tm

Tm
, φi(η) = ϕi(z, t), , i = 1, 2. (2.1)

According to this transformation, the location of the boiling and melting fronts are given by

s(t) = 2as0

√
t, r(t) = 2ar0

√
t, (2.2)

where s0 and r0 must be determined as a part of the solution.
Therefore, problem (1.4)-(1.17) can be rewritten in the following form:

[L(fi)η
νf ′i ]

′
+ 2aην+1N(fi)f

′
i +

σfi
c0γ0a

ηνf ′iφ
′
i +

ην

c0γ0TmaK(fi)
(φ′i)

2
= 0, (2.3)

[
1

K(fi)
ηνφ′i

]′
= 0, (2.4)
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i = 1 : s0 < η < r0, i = 2 : η > r0,

f1(s0) = B, (2.5)

L(f1(s0))f ′1(s0) = −Qe−s20 , (2.6)

φ1(s0) = 0, (2.7)

f1(r0) = f2(r0) = 0, (2.8)

φ1(r0) = φ2(r0), (2.9)

− L(f1(r0))f ′1(r0) = −L(f2(r0))f ′2(r0) +Mr0, (2.10)

1

K(f1(r0))
φ′1(r0) =

1

K(f2(r0))
φ′2(r0), (2.11)

f2(+∞) = −1, (2.12)

φ2(+∞) =
Uc
2
, (2.13)

where

B =
Tb − Tm
Tm

, Q =
Q0

λ0Tm
√
π
> 0, M =

2lmγma
2

λ0Tm
> 0 (2.14)

and for i = 1, 2:

N(fi) =
c(fiTm + Tm)γ(fiTm + Tm)

c0γ0

, (2.15)

L(fi) =
λ(fiTm + Tm)

λ0

, (2.16)

K(fi) = ρ(fiTm + Tm), (2.17)

σfi = σTi , (2.18)

From (2.4), (2.7), (2.9), (2.11) and (2.13), we obtain the solution for electrical potential �eld for
liquid and solid zones explicitly depending on f1, f2, s0 and r0 as

φ1(η, s0, r0, f1, f2) =
UcF1(η, s0, f1)

2H(r0, s0, f1, f2)
, s0 ≤ η ≤ r0, (2.19)

φ2(η, s0, r0, f1, f2) =
Uc (F1(r0, s0, f1) + F2(η, r0, f2))

2H(r0, s0, f1, f2)
, η ≥ r0, (2.20)

where

F1(η, s0, f1) =

η∫
s0

K(f1(v))

vν
dv, s0 ≤ η ≤ r0, (2.21)

F2(η, r0, f2) =

η∫
r0

K(f2(v))

vν
dv, η ≥ r0, (2.22)

and
H(r0, s0, f1, f2) = F1(r0, s0, f1) + F2(+∞, r0, f2). (2.23)

In addition, from (2.3), (2.6) and (2.8), we get

f1(η) = sν0Q exp(−s2
0) [Φ1(r0, s0, f1, f2)− Φ1(η, s0, f1, f2)]
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+
D∗1

H2(r0, s0, f1, f2)
[G1(r0, s0, f1, f2)−G1(η, s0, f1, f2)] , s0 ≤ η ≤ r0, (2.24)

and from (2.3), (2.8) and (2.12) we get

f2(η) =

[
D∗2

H2(r0, s0, f1, f2)
G2(+∞, r0, f1, f2)− 1

]
Φ2(η, r0, f1, f2)

Φ2(+∞, r0, f1, f2)

− D∗2
H2(r0, s0, f1, f2)

G2(η, r0, f1, f2), η ≥ r0. (2.25)

Moreover, from conditions (2.5) and (2.10) we obtain the following equalities:

sν0Q exp(−s2
0)Φ1(r0, s0, f1, f2) +

D∗1
H2(r0, s0, f1, f2)

G1(r0, s0, f1, f2) = B, (2.26)

and

E1(r0, s0, f1, f2)

[
Q exp(−s2

0)sν0 +
D∗1

H2(r0, s0, f1, f2)
H1(r0, s0, f1, f2)

]
− 1

Φ2(+∞, r0, f1, f2)

[
1− D∗2

H2(r0, s0, f1, f2)
G2(+∞, r0, f1, f2)

]
= Mrν+1

0 , (2.27)

where

Φ1(η, s0, f1, f2) =

η∫
s0

E1(v, s0, f1, f2)

L(f1(v))vν
dv, s0 ≤ η ≤ r0, (2.28)

Φ2(η, r0, f1, f2) =

η∫
r0

E2(v, r0, f1, f2)

L(f2(v))vν
dv, η ≥ r0, (2.29)

G1(η, s0, f1, f2) =

η∫
s0

E1(v, s0, f1, f2)

L(f1(v))vν
H1(v, r0, f1, f2)dv, s0 ≤ η ≤ r0, (2.30)

G2(η, r0, f1, f2) =

η∫
r0

E2(v, s0, f1, f2)

L(f2(v))vν
H2(v, r0, f1, f2)dv η ≥ r0 (2.31)

H1(η, s0, f1, f2) =

η∫
s0

K(f1(v))

vνE1(v, s0, f1, f2)
dv, s0 ≤ η ≤ r0, (2.32)

H2(η, r0, f1, f2) =

η∫
r0

K(f2(v))

vνE2(v, r0, f1, f2)
dv η ≥ r0 (2.33)

E1(η, s0, f1, f2) = exp

− η∫
s0

[
2avN(f1(v))

L(f1(v))
+ D1

H(r0,s0,f1,f2)
K(f1(v))
L(f1(v))vν

]
dv

 , s0 ≤ η ≤ r0, (2.34)

E2(η, r0, f1, f2) = exp

− η∫
r0

[
2avN(f2(v))

L(f2(v))
+ D2

H(r0,s0,f1,f2)
K(f2(v))
L(f2(v))vν

]
dv

 , η ≥ r0, (2.35)
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and the coe�cients Di and D
∗
i for i = 1, 2 are given by

Di =
σfiUc
2c0γ0a

, D∗i =
UcDi

2
. (2.36)

In conclusion, to �nd a similarity solution to problem (1.4)-(1.17) is equivalent to obtain f1, f2,
s0 and r0 such that (2.24), (2.25), (2.26) and (2.27) hold. Notice that the electric potential �elds
φ1 and φ2 are explicitly given by (2.19) and (2.20) as functions of f1, f2, s0 and r0.

In the next section, to address the existence and uniqueness of solutions, we employ a rigorous
analytical approach. We leverage similarity transformations to reduce the problem to a set of
ordinary di�erential equations, facilitating a more tractable analysis. Additionally, we draw upon
the �xed point theory in Banach spaces to establish the validity of our proposed solutions.

3 Existence of solution

In order to prove the existence and uniqueness of solution f1, f2 to equations (2.24) and (2.25), we
�x positive constants 0 < s0 < r0 and consider the Banach space

C = C[s0, r0]× Cb[r0,+∞) (3.1)

endowed with the norm

||~f || = ‖(f1, f2)‖ = max
{
||f1||C[s0,r0], ||f2||Cb[r0,+∞)

}
,

where C[s0, r0] denotes the space of all continuous functions de�ned on the interval [s0, r0] and
Cb[r0,+∞) represents the space of all continuous and bounded functions on the interval [r0,+∞).
We de�ne the closed subsetM of Cb[r0,+∞) by

M = {f2 ∈ Cb[r0,+∞) : f2(r0) = 0, f2(+∞) = −1}.

We consider the operator Ψ on K = C[s0, r0]×M given by

Ψ(~f) = (V1(~f), V2(~f)), (3.2)

where V1(~f), V2(~f) are de�ned by

V1(~f)(η) = sν0Q exp(−s2
0) [Φ1(r0, s0, f1, f2)− Φ1(η, s0, f1, f2)]

+
D∗1

H2(r0,s0,f1,f2)

[
G1(r0, s0, f1, f2)−G1(η, s0, f1, f2)

]
, s0 ≤ η ≤ r0,

(3.3)

V2(~f)(η) =
[

D∗2
H2(r0,s0,f1,f2)

G2(+∞, r0, f1, f2)− 1
]

Φ2(η,r0,f1,f2)
Φ2(+∞,r0,f1,f2)

− D∗2
H2(r0,s0,f1,f2)

G2(η, r0, f1, f2), η ≥ r0.

(3.4)

Notice that solving the system of equations (2.24) and (2.25) is equivalent to obtaining a �xed point
to the operator Ψ.

Taking into account that K is a closed subset of C we will prove that Ψ(K) ⊂ K and Ψ is a
contraction mapping in order to apply the �xed point Banach theorem.

For this purpose we will assume that there exists positive coe�cients µ, Lim, LiM , Nim and
NiM , L̃i , Ñi and K̃i for i = 1, 2 such that
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(A1) for each f1 ∈ C[s0, r0] : s0 ≤ v ≤ r0

L1mη
µ ≤ L(f1)(η) ≤ L1Mη

µ, (3.5)

N1mη
−µ ≤ N(f1)(η) ≤ N1Mη

−µ, (3.6)

K1mη
−µ ≤ K(f1)(η) ≤ K1Mη

−µ, (3.7)

(A2) for each f2 ∈M, η ≥ r0 :
L2mη

µ ≤ L(f2)(η) ≤ L2Mη
µ, (3.8)

N2mη
−µ ≤ N(f2)(η) ≤ N2Mη

−µ, (3.9)

K2mη
−µ ≤ K(f2)(η) ≤ K2Mη

−µ, (3.10)

(A3) for each f1, g1 ∈ C[s0, r0], s0 ≤ η ≤ r0:

|L(f1(η))− L(g1(η))| ≤ L̃1||f1 − g1||, (3.11)

|N(f1(η))−N(g1(η))| ≤ Ñ1||f1 − g1||, (3.12)

|K(f1(η))−K(g1(η))| ≤ K̃1η
−µ||f1 − g1||, (3.13)

(A4) for each f2, g2 ∈M, η ≥ r0 :

|L(f2(η))− L(g2(η))| ≤ L̃2||f2 − g2||, (3.14)

|N(f2(η))−N(g2(η))| ≤ Ñ2||f2 − g2||, (3.15)

|K(f2(η))−K(g2(η))| ≤ K̃2η
−µ||f2 − g2||, (3.16)

(A5) µ > 2.

From now on, hypothesis (A1)-(A5) will be assumed to hold throughout the paper.
We will present preliminary results that will be useful to prove the existence and uniqueness of

a �xed point of the operator Ψ.

Lemma 3.1. For every ~f = (f1, f2), ~g = (g1, g2) ∈ K, the following inequalities hold:

H(r0, s0, f1, f2) ≥ Hinf (r0, s0), (3.17)

H(r0, s0, f1, f2) ≤ Hsup(r0, s0), (3.18)

|H(r0, s0, f1, f2)−H(r0, s0, g1, g2)| ≤ H̃(r0, s0)||~f − ~g||, (3.19)

where
Hinf (r0, s0) := K1m

µ+ν−1

(
1

sµ+ν−1
0

− 1

rµ+ν−1
0

)
, (3.20)

Hsup(r0, s0) := 1
µ+ν−1

(
K1M

sµ+ν−1
0

+ K2M

rµ+ν−1
0

)
, (3.21)

H̃(r0, s0) := 1
µ+ν−1

(
K̃1

sµ+ν−1
0

+ K̃2

rµ+ν−1
0

)
. (3.22)
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Proof. Taking into account the de�nition of H given by (2.23) and assumptions (3.7) and (3.10),
we have

H(r0, s0, f1, f2) ≥ K1m

µ+ν−1

(
1

sµ+ν−1
0

− 1

rµ+ν−1
0

)
+ K2m

µ+ν−1
1

rµ+ν−1
0

≥ K1m

µ+ν−1

(
1

sµ+ν−1
0

− 1

rµ+ν−1
0

)
,

and then we get (3.17). Inequality (3.18) follows analogously. In addition, taking into account
assumptions (3.13) and (3.16), we get

|H(r0, s0, f1, f2)−H(r0, s0, g1, g2)|

≤
(
K̃1

∫ r0
s0

1
vµ+ν

dv + K̃2

∫ +∞
r0

1
vµ+ν

dv
)
||~f − ~g||

≤ 1
µ+ν−1

(
K̃1

(
1

sµ+ν−1
0

− 1

rµ+ν−1
0

)
+ K̃2

rµ+ν−1
0

)
||~f − ~g||

≤ 1
µ+ν−1

(
K̃1

sµ+ν−1
0

+ K̃2

rµ+ν−1
0

)
||~f − ~g||,

and, as a corollary, inequality (3.19) holds.

Lemma 3.2. For every ~f = (f1, f2), ~g = (g1, g2) ∈ K, the following inequalities hold:

1)
E1(η, s0, f1, f2) ≥ E1inf (r0, s0), (3.23)

E1(η, s0, f1, f2) ≤ 1, (3.24)

|E1(η, s0, f1, f2)− E1(η, s0, g1, g2)| ≤ Ẽ1(r0, s0)||~f − ~g||, (3.25)

where

E1inf (r0, s0) := exp
(
−
[
a N1M

L1m(µ−1)
1

s2µ−2
0

+ D1K1M

Hinf (r0,s0)L1m(2µ+ν−1)
1

s2µ+ν−1
0

])
, (3.26)

Ẽ1(r0, s0) := 2a
[

Ñ1

L1m(µ−2)
1

sµ−2
0

+ N1M L̃1

L2
1m(3µ−2)

1

s3µ−2
0

]
+D1

(
K̃1

Hinf (r0,s0)L1m(2µ+ν−1)
1

s2µ+ν−1
0

+ K1M

Hinf (r0,s0)L1m

(
H̃(r0,s0)

Hinf (r0,s0)(2µ+ν−1)
1

s2µ+ν−1
0

+ L̃1

L1m(3µ+ν−1)
1

s3µ+ν−1
0

))
;

(3.27)

2)

|Φ1(η, s0, f1, f2)− Φ1(η, s0, g1, g2)| ≤ Φ̃1(r0, s0)||~f − ~g||, (3.28)

where

Φ̃1(r0, s0) := Ẽ1(r0,s0)
L1m(µ+ν−1)

1

sν+µ−1
0

+ L̃1

L2
1m(2µ+ν−1)

1

sν+2µ−1
0

; (3.29)

3)
H1(η, s0, f1, f2) ≥ H1inf (η, s0), (3.30)

H1(η, s0, f1, f2) ≤ H1sup(r0, s0), (3.31)

|H1(η, s0, f1, f2)−H1(η, s0, g1, g2)| ≤ H̃1(r0, s0)||~f − ~g||, (3.32)
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where
H1inf (η, s0) := K1m

(µ+ν−1)

(
1

sµ+ν−1
0

− 1
ηµ+ν−1

)
, (3.33)

H1sup(r0, s0) := K1M

E1inf (r0,s0)
1

(µ+ν−1)
1

sµ+ν−1
0

, (3.34)

H̃1(r0, s0) :=
(
K̃1 + K1M Ẽ1(r0,s0)

E1inf (r0,s0)

)
1

E1inf (r0,s0)(µ+ν−1)
1

sµ+ν−1
0

; (3.35)

4)
G1(η, s0, f1, f2) ≥ G1inf (η, r0, s0) (3.36)

G1(η, s0, f1, f2) ≤ G1sup(r0, s0) (3.37)

|G1(η, s0, f1, f2)−G1(η, s0, g1, g2)| ≤ G̃1(r0, s0)||~f − ~g|| (3.38)

where

G1inf (η, r0, s0) :=
K1mE1inf (r0,s0)

2L1M (µ+ν−1)2

(
1

sµ+ν−1
0

− 1
ηµ+ν−1

)2

, (3.39)

G1sup(r0, s0) := H1sup(r0,s0)

L1m

1
(µ+ν−1)

1

sµ+ν−1
0

, (3.40)

G̃1(r0, s0) := H1sup(r0, s0)Φ̃1(r0, s0) + H̃1(r0,s0)
L1m

1
(µ+ν−1)

1

sµ+ν−1
0

. (3.41)

Proof. From the de�nition of E1 given by (2.34), assumptions (3.5)-(3.7) and inequality (3.17) we
obtain that ∫ η

s0
2avN(f1(v))

L(f1(v)
+ D1

H(r0,s0,f1,f2)
K(f1(v))
L(f1(v))vν

dv

≤
∫ η
s0

2aN1M

L1m

1
v2µ−1 + D1K1M

Hinf (r0,s0)L1m

1
v2µ+ν

dv

≤ 2a N1M

L1m(2µ−2)
1

s2µ−2
0

+ D1K1M

Hinf (r0,s0)L1m(2µ+ν−1)
1

s2µ+ν−1
0

.

As a corollary it follows that E1(η, s0, f1, f2) ≥ E1inf (r0, s0) with E1inf (r0, s0) given by (3.26). In
addition, as E1 is a negative exponential function, it follows that E1(η, s0, f1, f2) ≤ 1.

Let us analyse the di�erence of E1. From the inequality | exp(−x)− exp(−y)| ≤ |x− y| we have

|E1(η, s0, f1, f2)− E1(η, s0, g1, g2)| ≤
∫ η
s0

2av
∣∣∣N(f1(v))
L(f1(v))

− N(g1(v))
L(g1(v))

∣∣∣ dv
+D1

∫ η
s0

∣∣∣ K(f1(v))
H(r0,s0,f1,f2)L(f1(v))vν

− K(g1(v))
H(r0,s0,g1,g2)L(g1(v))vν

∣∣∣ dv. (3.42)

On one hand, ∫ η
s0

2av
∣∣∣N(f1(v))
L(f1(v))

− N(g1(v))
L(g1(v))

∣∣∣ dv
≤ 2a

∫ η
s0

∣∣∣vN(f1(v))L(g1(v))−N(g1(v))L(g1(v))+N(f1(v))L(g1(v))−N(g1(v))L(f1(v))
L(f1(v))L(g1(v))

∣∣∣ dv
≤ 2a

[∫ η
s0

vÑ1||~f−~g||
L1mvµ

dv +
∫ η
s0

N1M L̃1v1−µ||~f−~g||
L2
1mv

2µ dv
]

≤ 2a
[

Ñ1

L1m(µ−2)
1

sµ−2
0

+ N1M L̃1

L2
1m(3µ−2)

1

s3µ−2
0

]
||~f − ~g||.

(3.43)
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On the other hand,

D1

∫ η
s0

∣∣∣ K(f1(v))
H(r0,s0,f1,f2)L(f1(v))vν

− K(g1(v))
H(r0,s0,g1,g2)L(g1(v))vν

∣∣∣ dv
≤ D1

(∫ η
s0

∣∣∣ K(f1(v))
H(r0,s0,f1,f2)L(f1(v))vν

− K(g1(v))
H(r0,s0,f1,f2)L(f1(v))vν

∣∣∣ dv
+
∫ η
s0

∣∣∣ K(g1(v))
H(r0,s0,f1,f2)L(f1(v))vν

− K(g1(v))
H(r0,s0,g1,g2)L(g1(v))vν

∣∣∣ dv)

≤ D1

(∫ η
s0

|K(f1(v))−K(g1(v))|
H(r0,s0,f1,f2)L(f1(v))vν

dv

+
∫ η
s0
|K(g1(v))|

∣∣∣ 1
H(r0,s0,f1,f2)L(f1(v))vν

− 1
H(r0,s0,g1,g2)L(g1(v))vν

∣∣∣ dv).

(3.44)

From assumptions (3.5), (3.7), (3.13) and inequalities (3.17), (3.19) we get that∫ η

s0

|K(f1(v))−K(g1(v))|
H(r0,s0,f1,f2)L(f1(v))vν

dv ≤ K̃1

Hinf (r0,s0)L1m(2µ+ν−1)
1

s2µ+ν−1
0

||~f − ~g|| (3.45)

and ∫ η
s0
|K(g1(v))|

∣∣∣ 1
H(r0,s0,f1,f2)L(f1(v))vν

− 1
H(r0,s0,g1,g2)L(g1(v))vν

∣∣∣ dv
≤ K1M

(∫ η
s0

|H(r0,s0,g1,g2)−H(r0,s0,f1,f2)|
H(r0,s0,f1,f2)L(f1(v))H(r0,s0,g1,g2)

dv
vµ+ν

+
∫ η
s0

|L(g1(v))−L(f1(v))|
L(f1(v))H(r0,s0,g1,g2)L(g1(v))

dv
vµ+ν

)

≤ K1M

Hinf (r0,s0)L1m

(
H̃(r0,s0)

Hinf (r0,s0)(2µ+ν−1)
1

s2µ+ν−1
0

+ L̃1

L1m(3µ+ν−1)
1

s3µ+ν−1
0

)
||~f − ~g||.

(3.46)

Then inequalities (3.42)-(3.46) imply that

|E1(η, s0, f1, f2)− E1(η, s0, g1, g2)| ≤ Ẽ1(r0, s0)||~f − ~g||

with Ẽ1 given by (3.27).
From the de�nition of Φ1 given by (2.19) we have that

|Φ1(η, s0, f1, f2)− Φ1(η, s0, g1, g2)| ≤
∫ η
s0

∣∣∣E1(v,s0,f1,f2)
L(f1(v))

− E1(v,s0,g1,g2)
L(g1(v))

∣∣∣ dvvν
≤
∫ η
s0

|E1(v,s0,f1,f2)−E1(v,s0,g1,g2)|
L(f1(v))

dv
vν

+
∫ η
s0

E1(v,s0,g1,g2)|L(f1(v))−L(g1(v))|
L(f1(v))L(g1(v))

dv
vν

≤
(
Ẽ1(r0,s0)
L1m

∫ η
s0

1
vµ+ν

dv + L̃1

L2
1m

∫ η
s0

1
v2µ+ν

dv
)
||~f − ~g|| ≤ Φ̃1(r0, s0)||~f − ~g||,
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where Φ̃1(r0, s0) is given by (3.29).
Taking into account the de�nition of H1 given by (2.32), we easily obtain that

H1(η, s0, f1, f2) ≥ K1m

∫ η

s0

1
vµ+ν

dv ≥ K1m

(µ+ν−1)

(
1

sµ+ν−1
0

− 1
ηµ+ν−1

)
,

|H1(η, s0, f1, f2)| ≤ K1M

E1inf (r0,s0)

∫ η

s0

1
vµ+ν

dv ≤ K1M

E1inf (r0,s0)
1

(µ+ν−1)
1

sµ+ν−1
0

,

then (3.30) and (3.31) hold. In addition,

|H1(η, s0, f1, f2)−H1(η, s0, g1, g2)| ≤
∫ η
s0

∣∣∣ K(f1(v))
E1(v,s0,f1,f2)

− K(g1(v))
E1(v,s0,g1,g2)

∣∣∣ dvvν
≤
∫ η
s0

|K(f1(v))−K(g1(v))|
E1(v,s0,f1,f2)

dv
vν

+
∫ η
s0

K(g1(v))|E1(v,s0,f1,f2)−E1(v,s0,g1,g2)|
E1(v,s0,f1,f2)E1(v,s0,g1,g2)

dv
vν

≤ 1
E1inf (r0,s0)

(
K̃1 + K1M Ẽ1(r0,s0)

E1inf (r0,s0)

) ∫ η
s0

1
vµ+ν

dv ||~f − ~g|| ≤ H̃1(r0, s0)||~f − ~g||,

where H̃1 is given by (3.35).
From the de�nition of G1 it follows that

G1(η, s0, f1, f2)| ≥ E1inf (r0,s0)

L1M

∫ η
s0

H1inf (v,s0)

vµ+ν
dv

≥ K1mE1inf (r0,s0)

L1M (µ+ν−1)

∫ η
s0

1
vµ+ν

(
1

sµ+ν−1
0

− 1
vµ+ν−1

)
dv ≥ G1inf (η, r0, s0),

where G1inf is given by (3.39) and

|G1(η, s0, f1, f2)| ≤
η∫
s0

∣∣∣E1(v,s0,f1,f2)H1(v,s0,f1,f2)
L(f1(v))

∣∣∣ dvvν
≤ H1sup(r0,s0)

L1m

∫ η
s0

dv
vµ+ν
≤ G1sup(r0, s0),

where G1sup is given by (3.40). Moreover,

|G1(η, s0, f1, f2)−G1(η, s0, g1, g2)|

≤
∫ η
s0
|H1(v, s0, f1, f2)|

∣∣∣E1(v,s0,g1,g2)
L(g1(v))

− E1(v,s0,f1,f2)
L(f1(v))

∣∣∣ dvvν
+
∫ η
s0

E1(v,s0,g1,g2)|H1(v,s0,f1,f2)−H1(v,s0,g1,g2)|
L(g1(v))

dv
vν

≤ G̃1(r0, s0)||~f − ~g||,

with G̃1 de�ned by (3.41).

Lemma 3.3. For every ~f = (f1, f2), ~g = (g1, g2) ∈ K, the following inequalities hold:

1)
E2(η, r0, f1, f2) ≥ E2inf (r0, s0), (3.47)

E2(η, r0, f1, f2) ≤ 1, (3.48)

|E2(η, r0, f1, f2)− E2(η, r0, g1, g2)| ≤ Ẽ2(r0, s0)||~f − ~g||, (3.49)
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where

E2inf (r0, s0) := exp
(
−
[
a N2M

L2m(µ−1)
1

r2µ−2
0

+ D2K2M

Hinf (r0,s0)L2m(2µ+ν−1)
1

r2µ+ν−1
0

])
, (3.50)

Ẽ2(r0, s0) := 2a
[

Ñ2

L2m(µ−2)
1

rµ−2
0

+ N2M L̃2

L2
2m(3µ−2)

1

r3µ−2
0

]
+D2

(
K̃2

Hinf (r0,s0)L2m(2µ+ν−1)
1

r2µ+ν−1
0

+ K2M

Hinf (r0,s0)L2m

(
H̃(r0)

Hinf (r0,s0)(2µ+ν−1)
1

r2µ+ν−1
0

+ L̃2

L2m(3µ+ν−1)
1

r3µ+ν−1
0

))
;

(3.51)

2)
Φ2(η, r0, f1, f2) ≥ Φ2inf (η, r0, s0), (3.52)

Φ2(η, r0, f1, f2) ≤ Φ2sup(r0), (3.53)

|Φ2(η, r0, f1, f2)− Φ2(η, r0, g1, g2)| ≤ Φ̃2(r0, s0)||~f − ~g||, (3.54)

where
Φ2inf (η, r0, s0) :=

E2inf (r0,s0)

L2M

1
(µ+ν−1)

(
1

rµ+ν−1
0

− 1
ηµ+ν−1

)
, (3.55)

Φ2sup(r0) := 1
L2m

1
(µ+ν−1)

1

rµ+ν−1
0

, (3.56)

Φ̃2(r0, s0) := Ẽ2(r0,s0)
L2m

1
(µ+ν−1)

1

rµ+ν−1
0

+ L̃2

L2
2m

1
(2µ+ν−1)

1

r2µ+ν−1
0

; (3.57)

3)
H2(η, r0, f1, f2) ≤ H2inf (η, r0, s0), (3.58)

H2(η, r0, f1, f2) ≤ H2sup(r0, s0), (3.59)

|H2(η, r0, f1, f2)−H2(η, r0, g1, g2)| ≤ H̃2(r0, s0)||~f − ~g||, (3.60)

where
H2inf (η, r0) := K2m

(µ+ν−1)

(
1

rµ+ν−1
0

− 1
ηµ+ν−1

)
, (3.61)

H2sup(r0, s0) := K2M

E2inf (r0,s0)
1

(µ+ν−1)
1

rµ+ν−1
0

, (3.62)

H̃2(r0, s0) :=
(
K̃2 + K2M Ẽ2(r0,s0)

E2inf (r0,s0)

)
1

E2inf (r0,s0)(µ+ν−1)
1

rµ+ν−1
0

; (3.63)

4)
G2(η, r0, f1, f2) ≤ G2inf (η, r0, s0), (3.64)

G2(η, r0, f1, f2) ≤ G2sup(r0, s0), (3.65)

|G2(η, r0, f1, f2)−G2(η, r0, g1, g2)| ≤ G̃2(r0, s0)||~f − ~g||, (3.66)

where

G2inf (η, r0, s0) :=
K2mE2inf (r0,s0)

2L2M (µ+ν−1)2

(
1

rµ+ν−1
0

− 1
ηµ+ν−1

)2

, (3.67)

G2sup(r0, s0) := H2sup(r0,s0)

L2m

1
(µ+ν−1)

1

rµ+ν−1
0

, (3.68)

G̃2(r0, s0) := H2sup(r0, s0)Φ̃2(r0, s0) + H̃2(r0,s0)
L2m

1
(µ+ν−1)

1

rµ+ν−1
0

. (3.69)

Proof. The proof follows analogously to the previous lemma.
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Lemma 3.4. For every ~f = (f1, f2), ~g = (g1, g2) ∈ K it follows that

||V1(~f)− V1(~g)||C[so,r0] ≤ ε1(r0, s0)||~f − ~g||,

where

ε1(r0, s0) = 2sν0Q exp(−s2
0)Φ̃1(r0, s0)

+ 2D∗1

(
G1sup(r0,s0)2Hsup(r0,s0)H̃(r0,s0)

H4
inf (r0,s0)

+ G̃1(r0,s0)

H2
inf (r0,s0)

)
.

(3.70)

Proof. Taking into account that∣∣∣∣ G1(η,s0,f1,f2)
H2(r0,s0,f1,f2)

− G1(η,s0,g1,g2)
H2(r0,s0,g1,g2)

∣∣∣∣ ≤ |G1(η,s0,f1,f2)||H2(r0,s0,f1,f2)−H2(r0,s0,g1,g2)|
H2(r0,s0,f1,f2)H2(g1,g2)

+ |G1(η,s0,f1,f2)−G1(η,s0,g1,g2)|
H2(r0,s0,g1,g2)

≤
[
G1sup(r0,s0)2Hsup(r0,s0)H̃(r0,s0)

H4
inf (r0,s0)

+ G̃1(r0,s0)

H2
inf (r0,s0

]
||~f − ~g||,

(3.71)

for each η ∈ [s0, r0] it follows that

|V1(~f)(η)− V1(~g)(η)| ≤

≤ sν0Q exp(−s2
0)
[
|Φ1(r0, s0, f1, f2)− Φ1(r0, s0, g1, g2)|

+|Φ1(η, s0, f1, f2)− Φ1(η, s0, g1, g2)|
]

+
∣∣D∗1G1(r0,s0,f1,f2)

H2(r0,s0,f1,f2)
− D∗1G1(r0,s0,g1,g2)

H2(r0,s0,g1,g2)

∣∣∣∣+

∣∣∣∣D∗1G1(η,s0,f1,f2)

H2(r0,s0,f1,f2)
− D∗1G1(η,s0,g1,g2)

H2(r0,s0,g1,g2)

∣∣
≤
[
2sν0Q exp(−s2

0)Φ̃1(r0, s0)

+2D∗1
(G1sup(r0,s0)2Hsup(r0,s0)H̃(r0,s0)

H4
inf (r0,s0)

+ G̃1(r0,s0)

H2
inf (r0,s0)

)]
||~f − ~g|| = ε1(r0, s0)||~f − ~g||.

(3.72)

Lemma 3.5. For every ~f = (f1, f2), ~g = (g1, g2) ∈ K it follows that

||V2(~f)− V2(~g)||Cb[r0,+∞) ≤ ε2(r0, s0)||~f − ~g||,

where
ε2(r0, s0) = ε21(r0, s0) + ε22(r0, s0) + ε23(r0, s0) (3.73)

with
ε21(r0, s0) = 2Φ̃2(r0,s0)

Φ2inf (+∞,r0,s0)
,

ε22(r0, s0) = G̃2(r0,s0)

H2
inf (r0,s0)

+ 2G2sup(r0,s0)Hsup(r0,s0)H̃(r0,s0)

H4
inf (r0,s0)

,

ε23(r0, s0) = Φ2sup(r0,s0)

Φ2inf (+∞,r0,s0)
ε22(r0, s0) + G2sup(r0,s0)

H2
inf (r0,s0)

ε21(r0, s0).

Proof. On one hand, we have that∣∣∣∣ Φ2(η,r0,f1,f2)
Φ2(+∞,r0,f1,f2)

− Φ2(η,r0,g1,g2)
Φ2(+∞,r0,g1,g2)

∣∣∣∣ ≤ |Φ2(η,r0,f1,f2)−Φ2(η,r0,g1,g2)|
Φ2(+∞,r0,f1,f2)

+ Φ2(η,r0,g1,g2)
Φ2(+∞,r0,g1,g2)

|Φ2(+∞,r0,f1,f2)−Φ2(+∞,r0,g1,g2)|
Φ2(+∞,r0,f1,f2)

≤ |Φ2(η,r0,f1,f2)−Φ2(η,r0,g1,g2)|
Φ2(+∞,r0,f1,f2)

+ |Φ2(+∞,r0,f1,f2)−Φ2(+∞,r0,g1,g2)|
Φ2(+∞,r0,f1,f2)

≤ 2Φ̃2(r0,s0)
Φ2inf (+∞,r0,s0)

||~f − ~g|| = ε21(r0, s0)||~f − ~g||.

(3.74)
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On the other hand, we obtain that∣∣∣∣ G2(η,r0,f1,f2)
H2(s0,r0,f1,f2)

− G2(η,r0,g1,g2)
H2(s0,r0,g1,g2)

∣∣∣∣
≤ |G2(η,r0,f1,f2)−G2(η,r0,g1,g2)|

H2(s0,r0,f1,f2)
+ |G2(η,r0,g1,g2)||H2(s0,r0,g1,g2)−H2(s0,r0,f1,f2)|

H2(s0,r0,f1,f2)H2(s0,r0,g1,g2)

≤
(

G̃2(r0,s0)

H2
inf (r0,s0)

+ 2G2sup(r0,s0)Hsup(r0,s0)H̃(r0,s0)

H4
inf (r0,s0)

)
||~f − ~g||

= ε22(r0, s0)||~f − ~g||.

(3.75)

In addition, ∣∣∣∣G2(+∞,r0,f1,f2)
H2(s0,r0,f1,f2)

Φ2(η,r0,f1,f2)
Φ2(+∞,r0,f1,f2)

− G2(+∞,r0,g1,g2)
H2(s0,r0,g1,g2)

Φ2(η,r0,g1,g2)
Φ2(+∞,r0,g1,g2)

∣∣∣∣
≤ Φ2(η,r0,f1,f2)

Φ2(+∞,r0,f1,f2)

∣∣∣∣G2(+∞,r0,f1,f2)
H2(s0,r0,f1,f2)

− G2(+∞,r0,g1,g2)
H2(s0,r0,g1,g2)

∣∣∣∣
+G2(+∞,r0,g1,g2)

H2(s0,r0,g1,g2)

∣∣∣∣ Φ2(η,r0,f1,f2)
Φ2(+∞,r0,f1,f2)

− Φ2(η,r0,g1,g2)
Φ2(+∞,r0,g1,g2)

∣∣∣∣
≤
(

Φ2sup(r0,s0)

Φ2inf (+∞,r0,s0)
ε22(r0, s0) + G2sup(r0,s0)

H2
inf (r0,s0)

ε21(r0, s0)
)
||~f − ~g||

= ε23(r0, s0)||~f − ~g||.

(3.76)

From the previous inequalities, for each η ≥ r0, it follows that

|V2(~f)(η)− V2(~g)(η)|

≤
∣∣∣∣D∗2G2(+∞,r0,f1,f2)

H2(r0,s0,f1,f2)
Φ2(η,r0,f1,f2)

Φ2(+∞,r0,f1,f2)
− D∗2G2(+∞,r0,g1,g2)

H2(r0,s0,g1,g2)
Φ2(η,r0,g1,g2)

Φ2(+∞,r0,g1,g2)

∣∣∣∣
+

∣∣∣∣ Φ2(η,r0,f1,f2)
Φ2(+∞,r0,f1,f2)

− Φ2(η,r0,g1,g2)
Φ2(+∞,r0,g1,g2)

∣∣∣∣+

∣∣∣∣D∗2G2(η,r0,f1,f2)

H2(r0,s0,f1,f2)
− D∗2G2(η,r0,g1,g2)

H2(r0,s0,g1,g2)

∣∣∣∣
≤ ε2(r0, s0)||~f − ~g||.

(3.77)

Theorem 3.1. For every ~f = (f1, f2), ~g = (g1, g2) ∈ K it follows that

||Ψ(~f)−Ψ(~g)|| ≤ ε(r0, s0)||~f − ~g||

with
ε(r0, s0) = max {ε1(r0, s0), ε2(r0, s0)} , (3.78)

where ε1(r0, s0) and ε2(r0, s0) are given by (3.70) and (3.73), respectively.

Proof. From the previous lemmas we have that

||Ψ(~f)−Ψ(~g)|| = max
{
||V1(~f)− V1(~g)||C[s0,r0], ||V2(~f)− V2(~g)||Cb[r0,+∞)

}
= max

{
ε1(r0, s0)||~f − ~g||, ε2(r0, s0)||~f − ~g||

}
= ε(r0, s0)||~f − ~g||.
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Now we will look for conditions that guarantee that Ψ is a contraction mapping.
For each s0 > 0 �xed, we de�ne the functions

ε1,s0(r0) = ε1(r0, s0) and ε2,s0(r0) = ε2(r0, s0), for all r0 > s0,

where ε1, ε2 are given by (3.70) and (3.73), respectively. The following results hold.

Lemma 3.6. a) The function ε1,s0 is a decreasing function that satis�es ε1,s0(s0) = +∞ and
ε1,s0(+∞) = j1(s0), where

j1(s0) = 2sν0Q exp(−s2
0)Φ̃1(+∞, s0)

+2D∗1

(
G1sup(+∞,s0)2Hsup(+∞,s0)H̃(+∞,s0)

H4
inf (+∞,s0)

+ G̃1(+∞,s0)

H2
inf+∞,s0)

)
.

(3.79)

b) If
2D∗1K̃1

L1mK2
1m

(
2K1M

K2
1m

+ 1
)
< 1, (3.80)

then there exists a unique s1 > 0 such that j1(s0) < 1 for all s0 > s1.

Moreover, for each s0 > s1 there exists r1 = r1(s0) > s0 such that ε1,s0(r1) = 1 and
ε1,s0(r0) < 1 for all r0 > r1.

Proof. a) According to the de�nition of ε1 given by (3.70), the proof follows straightforwardly
from Lemmas 3.1 and 3.2.

b) From the de�nition of j1 given by (3.79), we have that it is a decreasing function that satis�es

j1(0) = +∞ and j1(+∞) =
2D∗1K̃1

L1mK2
1m

(
2K1M

K2
1m

+ 1
)
. Then, assuming (3.80), it follows that there

exists a unique s1 > s0 such that j1(s1) = 1 and j1(s0) < 1 for all s0 > s1. Moreover, from
item a), for each s0 > s1 there exists r1 = r1(s0) > s0 such that ε1,s0(r1) = 1 and ε1,s0(r0) < 1
for all r0 > r1.

Lemma 3.7. a) The function ε2,s0 is a decreasing function that satis�es the equalities ε2,s0(s0) =
+∞ and ε2,s0(+∞) = 0.

b) For each s0 > 0 there exists r2 = r2(s0) > s0 such that ε2,s0(r2) = 1 and ε2,s0(r0) < 1 for all
r0 > r2.

Proof. a) It follows from Lemmas 3.1 and 3.3, by taking into account that ε2 is de�ned by (3.73).

b) It clearly follows from item a).

Theorem 3.2. If inequality (3.80) holds, then for each (r0, s0) ∈ Σ with

Σ = {(r0, s0) : s0 > s1, r0 > r0(s0)} (3.81)

we have that ε(r0, s0) < 1, where ε is given by (3.78) and

r0(s0) = max{r1(s0), r2(s0)} (3.82)

with s1, r1 and r2 de�ned in Lemmas 3.6 and 3.7, respectively.

Proof. The proof follows immediately by Lemmas 3.6 and 3.7.
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Corollary 3.1. Under assumption (3.80), for each (r0, s0) ∈ Σ, the operator Ψ de�ned by (3.2) is
a contraction mapping.

Theorem 3.3. Under assumption (3.80), for each (r0, s0) ∈ Σ, there exists a unique �xed point
(f ∗1 , f

∗
2 ) ∈ K of the operator Ψ.

Proof. First, notice that K is a closed subset of the Banach space C given by (3.1). In addition, it

is easy to see that Ψ(~f) ∈ K given that V1(~f) ∈ C[s0, r0], V2(~f) ∈ Cb[r0,+∞), V2(~f)(r0) = 0 and

V2(~f)(+∞) = 0. Finally, according to Corollary 3.1, under assumption (3.80), for each (r0, s0) ∈ Σ
it follows that Ψ is a contraction mapping. As a corollary, applying the �xed point Banach theorem,
we get that there exists a unique �xed point (f ∗1 , f

∗
2 ) ∈ K of the operator Ψ for each (r0, s0) ∈ Σ.

Corollary 3.2. If (3.80) holds, for each (r0, s0) ∈ Σ, then there exists a unique solution (f ∗1 , f
∗
2 ) to

the system of equations (2.24)-(2.25).

It remains to prove the existence of solution (r0, s0) ∈ Σ to the system of equations given by
(2.26) and (2.27), where f1 = f ∗1 and f2 = f ∗2 are the unique solutions to equations (2.24)-(2.25).
For that purpose we will need some preliminary results.

Let us notice that equation (2.26) can be rewritten as

X(r0, s0) = Y (r0, s0), (3.83)

where
X(r0, s0) = Z(r0, s0)−B, Z(r0, s0) =

D∗1G1(r0,s0,f∗1 ,f
∗
2 )

H2(r0,s0,f∗1 ,f
∗
2 )
, (3.84)

and
Y (r0, s0) = −Qsν0 exp(−s2

0)Φ1(r0, s0, f
∗
1 , f

∗
2 ). (3.85)

Lemma 3.8. The following properties hold:

a) Y (r0, s0) < 0 for each (r0, s0) ∈ Σ,

b) Z(r0, s0) > Zinf (r0, s0) for each (r0, s0) ∈ Σ, where

Zinf (r0, s0) =
D∗1E1inf (r0,s0)K1m

2L1M

(
rµ+ν−1
0 −sµ+ν−1

0

K1Mr
µ+ν−1
0 +K2Ms

µ+ν−1
0

)2

,

c) for a �xed s0 > s1, if we assume that

X(r0(s0), s0) < Y (r0(s0), s0), (3.86)

then Zinf (·, s0) is an increasing function that satis�es the conditions

Zinf (r0(s0), s0) < B, Zinf (+∞, s0) = j2(s0), (3.87)

where
j2(s0) =

D∗1E1inf (+∞,s0)K1m

L1MK
2
1M

(3.88)

is an increasing function that satis�es the equality

j2(+∞) =
D∗1K1m

2L1MK
2
1M
,

d) if we assume that
D∗1K1m

2L1MK
2
1M

> B, (3.89)

then there exists a unique s2 = min{s0 ≥ s1 : j2(s0) ≥ B}. Moreover, for each s0 > s2, we
have that j2(s0) > B,
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e) if (3.86) and (3.89) hold for each s0 > s2, then there exists a unique rB(s0) > s0 such that
Zinf (r0, s0) > B for all r0 > rB(s0).

Proof.

a) It is clear from the de�nition of the function Y given by (3.85).

b) It follows from the inequalities obtained in Lemmas 3.1 and 3.2.

c) From the de�nition of Zinf it it easy to see that Zinf (·, s0) is an increasing function for each �xed
s0 > s1. In addition, assumption (3.86) and item a) lead to the inequalities

Zinf (r0(s0), s0)−B < Z(r0(s0), s0)−B < Y (r0(s0), s0) < 0.

Hence, it follows that Zinf (r0(s0), s0) < B. Finally, taking a limit gives that Zinf (+∞, s0) = j2(s0)
for each s0 > s1.

d) First, notice that hypothesis (3.89) can be rewritten as j2(+∞) > B. From the fact that j2 is
an increasing function, we can conclude that there exists a unique s2 = min {s0 ≥ s1 : j2(s0) ≥ B}.
Notice that s2 = s1 in the case j2(s1) > B. As a corollary, for each s0 > s2, we get that j2(s0) > B.

e) For each �xed s0 > s2, we have that Zinf (r0(s0), s0) < B from item c) and Zinf (+∞, s0) > B
from item d). Then, there exists a unique rB = rB(s0) > r0(s0) such that Zinf (rB(s0), s0) = B and
Zinf (r0, s0) > B for all r0 > rB(s0).

Lemma 3.9. For each s0 > s2, if we assume that inequalities (3.86) and (3.89) hold, then there
exists at least one solution r∗0 = r∗0(s0, f

∗
1 , f

∗
2 ) ∈ (r0(s0), rB(s0)) to equation (2.26).

Proof. For each s0 > s2, taking into account assumption (3.86) and the fact that from item e) of
Lemma 3.8 the following inequality holds

X(rB(s0), s0) ≥ Zinf (rB(s0), s0)−B = 0 > Y (rB(s0), s0),

we obtain that there exists at least one solution r∗0 ∈ (r0(s0), rB(s0)) to equation (2.26).

Now we will analyze equation (2.27). If we replace r0 by r∗0(s0) and (f1, f2) by (f ∗1 , f
∗
2 ), the

resulting equation is equivalent to the equation

W (r∗0(s0), s0) = M, (3.90)

where

W (r∗0(s0), s0) =
E1(r∗0(s0),s0,f∗1 ,f

∗
2 )

rν+1
0

[
Q exp(−s2

0)sν0

+
D∗1

H2(r∗0(s0),s0,f∗1 ,f
∗
2 )
H1(r∗0(s0), s0, f

∗
1 , f

∗
2 )

]

− 1
r∗0(s0)ν+1Φ2(+∞,r∗0(s0),f∗1 ,f

∗
2 )

[
1− D∗2

H2(r∗0(s0),s0,f∗1 ,f
∗
2 )
G2(+∞, r∗0(s0), f ∗1 , f

∗
2 )

]
.

(3.91)

Lemma 3.10. If any of the following two systems of inequalities hold
Winf (s2) > M

Wsup(+∞) < M
or


Wsup(s2) < M

Winf (+∞) > M,
(3.92)
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then there exists at least one solution ŝ0 > s2 to equation (3.90), where

Winf (s0) =
E1inf (r∗0(s0),s0)

rν+1
B (s0)

[
Q exp(−s2

0)sν0 +
D∗1

H2
sup(r∗0(s0),s0)

H1inf (r
∗
0(s0), s0)

]

− 1
r0ν+1(s0)Φ2inf (+∞,r∗0(s0),s0)

+ 1
rν+1
B (s0)Φ2sup(r∗0(s0))

· D∗2
H2
sup(r∗0(s0),s0)

G2inf (+∞, r∗0(s0), s0),

(3.93)

Wsup(s0) = 1
r0ν+1(s0)

[
Q exp(−s2

0)sν0 +
D∗1

H2
inf (r∗0(s0),s0)

H1sup(r
∗
0(s0), s0)

+ 1
Φ2inf (+∞,r∗0(s0),s0)

D∗2
H2
inf (r∗0(s0),s0)

G2sup(r
∗
0(s0), s0).

]
.

(3.94)

The above analysis allows to establish the following existence theorem.

Theorem 3.4. If hypotheses (A1) − (A5) and inequalities (3.80), (3.86), (3.89) and (3.92) hold,
then there exists at least one solution (ŝ0, r

∗
0(ŝ0), f ∗1 , f

∗
2 ) to the system of equations (2.24)-(2.27),

where (f ∗1 , f
∗
2 ) is the unique �xed point of the operator Ψ corresponding to (ŝ0, r

∗
0(ŝ0)) ∈ Σ.

Corollary 3.3. If hypotheses (A1) − (A5) and inequalities (3.80), (3.86), (3.89) and (3.92) hold,
then there exists at least one solution to problem (1.4)-(1.17), where

T1(z, t) = Tmf
∗
1

(
z

2a
√
t

)
+ Tm, s(t) ≤ z ≤ r(t), t > 0,

T2(z, t) = Tmf
∗
2

(
z

2a
√
t

)
+ Tm, z ≥ r(t), t > 0,

ϕ1(z, t) =
Uc
2
·

F1

(
z

2a
√
t
, ŝ0, f

∗
1

)
H(r∗0(ŝ0), ŝ0, f ∗1 , f

∗
2 )
, s(t) ≤ z ≤ r(t), t > 0,

ϕ2(z, t) =
Uc
2
·
F1(r∗0(ŝ0), ŝ0, f

∗
1 ) + F2

(
z

2a
√
t
, r∗0(ŝ0), f ∗2

)
H(r∗0(ŝ0), ŝ0, f ∗1 , f

∗
2 )

, z ≥ r(t), t > 0,

with s(t) = 2aŝ0

√
t and r(t) = 2ar∗0(ŝ0)

√
t.

Conclusion

We have considered a two-phase Stefan type problem governed by the generalized heat equation with
the Thomson e�ect and nonlinear thermal coe�cients, that models the dynamics of electromagnetic
�elds and heat transfer within closed electrical contacts, particularly focusing on the instantaneous
explosion of micro-asperities.

By employing similarity transformations, we have e�ectively reduced the problem to a set of
coupled ordinary di�erential equations, thereby facilitating tractable analysis and solution.

The validity and utility of our approach have been rigorously demonstrated through discussions
and proofs grounded on the �xed point theory within the framework of Banach spaces. This theo-
retical underpinning not only enhances our con�dence in the proposed solutions, but also provides
a solid foundation for future research endeavors in related domains.
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Furthermore, the insights gained from this study hold signi�cant implications for various prac-
tical applications involving electrical contacts, such as in the design and optimization of electronic
devices, electrical connectors, and power transmission systems. By elucidating the intricate inter-
play between electromagnetic �elds and heat transfer phenomena, our work contributes to advancing
the understanding and engineering of such systems in both industrial and academic contexts.
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