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MIKHAIL L'VOVICH GOLDMAN

Doctor of physical and mathematical sciences, Professor
Mikhail L'vovich Goldman passed away on July 5, 2025, at the
age of 80 years.

Mikhail L'vovich was an internationally known expert in sci-
enceand education. His fundamental scienti�c articles and text
books in various�elds of the theory of functions of several variable-
sand functional analysis, the theory of approximation of functions,
embedding theorems and harmonic analysis are a signi�cant con-
tribution to the development of mathematics.

Mikhail L'vovich was born on Aprill 13, 1945 in Moscow. In
1963, he graduated from School No. 128 in Moscow with a gold
medal and entered the Physics Faculty of the Lomonosov Moscow
State University. He graduated in 1969 and became a postgradu-
ate student in the Mathematics Department. In 1972, he defended
his PhD thesis "On integral representations and Fourier series of

di�erentiable functions of several variables" under the supervision of Professor Ilyin Vladimir Alek-
sandrovich, and in 1988, his doctoral thesis "Study of spaces of di�erentiable functions of several
variables with generalized smoothness" at the S.L. Sobolev Institute of Mathematics in Novosibirsk.
Scienti�c degree "Professor of Mathematics" was awarded to him in 1991.

From 1974 to 2000 M.L. Goldman was successively an Assistant Professor, Full Professor, Head
of the Mathematical Department at the Moscow Institute of Radio Engineering, Electronics and
Automation (technical university). Since 2000 he was a Professor of the Department of Theory
of Functions and Di�erential Equations, then of the S.M. Nikol'skii Mathematical Institute at the
Patrice Lumumba Peoples' Friendship University of Russia (RUDN University).

Research interests of M.L. Goldman were: the theory of function spaces, optimal embeddings,
integral inequalities, spectral theory of di�erential operators.Among the most important scienti�c
achievements of M.L. Goldman, we note his research related to the optimal embedding of spaces
with generalized smoothness, exact conditions for the convergence of spectral decompositions, de-
scriptions of the integral and di�erential properties of generalized potentials of the Bessel and Riesz
types, exact estimates for operators on cones, descriptions of optimal spaces for cones of functions
with monotonicity properties.

M.L. Goldman has published more than 150 scienti�c articles in central mathematical journals.
He is a laureate of the Moscow government competition, a laureate of the RUDN University Prize in
Science and Innovation, and a laureate of the RUDN University Prize for supervision of postgraduate
students. Under the supervision of Mikhail L'vovich 11 PhD theses were defended. His pupilss
are actively involved in professional work at leading universities and research institutes in Russia,
Kazakhstan, Ethiopia, Rwanda, Colombia, and Mongolia.

Mikhail L'vovich has repeatedly been a guest lecturer and guest professor at universities in
Russia, Germany, Sweden, Great Britain, etc., and an invited speaker at many international con-
ferences. Mikhail L'vovich was not only an excellent mathematician and teacher (he always spoke
about mathematics and its teaching with great passion), but also a man of the highest culture and
erudition, with a deep knowledge of history, literature and art, a very bright, kind and responsive
person. This is how he will remain in the hearts of his family, friends, colleagues and students.

The Editorial Board of the Eurasian Mathematical Journal expresses deep condolences to the
family, relatives and friends of Mikhail L'vovich Goldman.
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1 Introduction

In this work, we study inverse problems for the boundary value problems generated by the di�erential
equation

ly := −y′′ + q (x) y = λy, x ∈ (0, a) ∪ (a, T ) (1.1)

with the Robin boundary conditions

U (y) := y′ (0)− hy (0) = 0, V (y) := y′ (T ) +Hy (T ) = 0, (1.2)

and the transmission conditions at the point x = a

I (y) :=

{
y (a+ 0) = y (a− 0) ≡ y (a)

y′ (a+ 0)− y′ (a− 0) = −αλy (a) ,
(1.3)

where q (x) is a real function belonging to the space L2 [0, T ] , λ is a spectral parameter and h,H,
and α are real numbers with α > 0. Denote the boundary value problems, de�ned above, by
L (q (x) , h,H).

It is important to note that, we can interpret problem (1.1) and (1.3) as analyzing the equation

− y′′ + q (x) y = λρ (x) y, x ∈ (0, T ) , (1.4)

when ρ (x) = 1 + αδ (x) where δ (x) is the Dirac Delta-function (see [1]).
One type of problems, the direct problem, consists of examining the spectral properties of an

operator. But some problems in mathematical physics require the investigation of inverse prob-
lems of spectral analysis for various di�erential operators, which require the recovery of operators
from some of their given spectral data. Such problems are often considered in mathematics and
various branches of natural science and technical science. Direct and inverse problems for the clas-
sical Sturm-Liouville operators have been comprehensively investigated in [6, 10, 15] and references
therein. Some classes of direct and inverse problems for discontinuous boundary value problems in
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various statements have been considered in [2, 7, 8, 12, 13, 16, 17, 18]. Notice that, spectral char-
acteristics for weighted Sturm-Liouville operator with point δ−interactions have been investigated
in [9, 14]. Here, we provide procedures for �nding the potential of a problem and its boundary
conditions basing either on the Weyl function, on spectral data, or on two spectra in terms of the
method of spectral mappings.

2 Constructing the Hilbert space relevant to the problem and some of

its spectral properties

We will start this section by de�ning the Hilbert space H := L2 [0, T ] ⊕ C of the two component
vectors, equipped with the inner product

〈f, g〉H :=

∫ T

0

f1(x)g1(x)dx+
1

α
f2g2

for

f =

(
f1(x)
f2

)
, g =

(
g1(x)
g2

)
,

where f1(x), g1(x) ∈ L2(0, T ) and f2, g2 ∈ C. In the space H, we de�ne the operator L

L : H→ H

with the domain

D(L) = {f ∈ H|f1, f
′
1 ∈ AC((0, a) ∪ (a, T )), lf1 ∈ L2[(0, T ) \ {a}], f2 = αf1(a), U(f1) = V (f1) = 0}

and the operator rule

L(f) =

(
lf1

f ′1(a− 0)− f ′(a+ 0)

)
.

Here, AC(·) stands for the set of all functions that are absolutely continuous on a related interval.

Theorem 2.1. The operator L is symmetric.

Proof. We obtain the equality 〈Lf, g〉H =〈f, Lg〉H for f, g ∈ D(L) immediately from the conditions
at the point x = a and the fact that f and g satisfy the same boundary conditions (1.2). So, L is
symmetric.

Corollary 2.1. The function W de�ned by W{f, g;x} = f(x)g′(x) − f ′(x)g(x) is continuous on
(0, T ).

Lemma 2.1. If y(x, λ) and z(x, µ) are solutions to the equations ly = λy and lz = µz, respectively,
then

d

dx
W{y, z;x} = (λ− µ)yz.

Let C(x, λ), S(x, λ), ϕ(x, λ) and ψ(x, λ) be solutions to equation (1.1) under the following initial
conditions:

C(0, λ) = 1, C ′(0, λ) = 0, S(0, λ) = 0, S ′(0, λ) = 1,

ϕ(0, λ) = 1, ϕ′(0, λ) = h, ψ(T, λ) = 1, ψ′(T, λ) = −H
and under transmission conditions (1.3). Then,

U(ϕ) = V (ψ) = 0.
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Let us denote
∆(λ) = W{ϕ, ψ;x}. (2.1)

Due to Corollary 1 and the Ostrogradskii-Liouville theorem (see [4, p. 83]) W{ϕ, ψ;x} does not
depend on x. Here, the function ∆(λ) is called the characteristic function of L. It is easly seen that

∆(λ) = −V (ϕ) = U(ψ), (2.2)

and ∆(λ) is an entire function of λ, so it has at most countable set of zeros {λn}n≥0.

Lemma 2.2. The zeros {λn}n≥0 of the characteristic function are the eigenvalues of the boundary
value problem L. Also the functions ϕ(x, λn) and ψ(x, λn) are the eigenfunctions, and there exists
a sequence {βn} such that

ψ(x, λn) = βn.ϕ(x, λn), βn 6= 0.

Denote

αn :=

∫ T

0

ϕ2(x, λn)dx+ αϕ2(a, λn). (2.3)

The set Ω = {λn, αn}n≥0 is called the spectral data associated with problem (1.1)�(1.3).

Lemma 2.3. The following relation holds

∆̇(λn) = αnβn,

where ∆̇(λ) = d∆(λ)/dλ.

We omit the proofs of Lemma 2.2 and Lemma 2.3 since they are similiar to those for the classical
Sturm-Liouville operators (see [11]).

Corollary 2.2. The eigenvalues {λn} and the eigenfunctions ϕ(x, λn), ψ(x, λn) are real. Also all
zeros of ∆(λ) are simple, i.e. ∆̇(λn) 6= 0.

Now, consider the solution ϕ(x, λ). Let C0(x, λ) and S0(x, λ) be smooth solutions to equation
(1.1) on the interval [0, T ] under the initial condition

C0(x, λ) = S ′(0, λ) = 1, S0(x, λ) = C ′0(0, λ) = 0. (2.4)

Then,
C(x, λ) = C0(x, λ), S(x, λ) = S0(x, λ), 0 < x < a (2.5)

C(x, λ) = A1C0(x, λ) +B1S0(x, λ),

S(x, λ) = A2C0(x, λ) +B2S0(x, λ), a < x < T,
(2.6)

where

A1 = 1 + αλC0(a, λ)S0(a, λ), B1 = −αλC2
0(a, λ),

A2 = αλS2
0(a, λ), B2 = 1− αλC0(a, λ)S0(a, λ).

(2.7)

Let λ = ρ2, ρ = σ + iτ . It is easy to show that, the function C0(x, λ) satis�es the following
integral equation:

C0(x, λ) = cos ρx+
1

ρ

∫ x

0

sin ρ(x− t)q(t)C0(t, λ)dt. (2.8)
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Using the method of successive approximations to solve problem (2.8), we obtain

C0(x, λ) = cos ρx+
sin ρx

2ρ

∫ x

0

q(t)dt+
1

2ρ

∫ x

0

q(t) sin ρ(x− 2t)dt

+O

(
1

ρ2
exp(|τ |)x

)
.

(2.9)

Analogously,

S0(x, λ) =
sin ρx

ρ
− cos ρx

2ρ2

∫ x

0

q(t)dt+
1

2ρ2

∫ x

0

q(t) cos ρ(x− 2t)dt

+O

(
1

ρ3
exp(|τ |)x

)
.

(2.10)

By virtue of (2.7) and (2.9)-(2.10),

A1 =
α

2
ρ sin 2ρa− 1− α

2
cos 2ρa

∫ a

0

q(t)dt+O

(
1

ρ

)
,

B1 = −α
2
ρ2 (1 + cos 2ρa)− α

2
ρ sin ρa

∫ a

0

q(t)dt+O (1) ,

A2 =
α

2
(1− cos 2ρa) +O

(
1

ρ

)
, B2 = −α

2
ρ sin 2ρa+O (1)

Since ϕ(x, λ) = C(x, λ) + hS(x, λ), by using (2.5)-(2.10), we �nd

ϕ(x, λ) = cos ρx+

(
h+

1

2

∫ x

0

q(t)dt

)
sin ρx

ρ
+O

(
1

ρ
exp (|τ |x)

)
, 0 < x < a, (2.11)

ϕ′(x, λ) = −ρ sin ρx+

(
h+

1

2

∫ x

0

q(t)dt

)
cos ρx+O (exp (|τ |x)) , 0 < x < a, (2.12)

ϕ(x, λ) =
α

2
ρ (sin ρ (2a− x)− sin ρx) + f1(x) cos ρx+ f2(x) cos ρ (2a− x)

+O (exp (|τ |x)) , a < x < T,
(2.13)

ϕ′(x, λ) = −α
2
ρ2 (cos ρx+ cos ρ (2a− x))− ρf1(x) sin ρx+ ρf2(x) sin ρ (2a− x)

+O (ρ exp (|τ |x)) , a < x < T,
(2.14)

where

f1(x) = 1 +
α

2
h+

α

4

∫ x

0

q(t)dt, f2(x) =
α

4

(
−2h+

∫ x

a

q(t)dt−
∫ a

0

q(t)dt

)
.

It follows from (2.2),(2.13), and (2.14) that

∆(λ) =
α

2
ρ2 (cos ρT + cos ρ (2a− T )) + ω1ρ sin ρT + ω2ρ sin ρ (2a− T )

+O (ρ exp (|τ |T )) ,
(2.15)

where

ω1 = −
(

1 +
α

2
h+

α

2
H +

α

4

∫ T

0

q(t)dt

)

ω2 =
α

2

(
h−H − 1

2

∫ T

a

q(t)dt+
1

2

∫ a

0

q(t)dt

)
.
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Let λ0
n = (ρ0

n)
2
and λn = (ρn)2 be the zeros of the functions ∆0(λ) = α

2
ρ2(cos ρT + cos ρ (2a− T ))

and ∆(λ), respectively.
The following properties of the characteristic function ∆(λ) and the eigenvalues λn = ρ2

n of the
boundary value problem of L can be discovered using (2.15) and the well-known methods (see, for
example [3]).

(i) Denote Gδ ={ρ : |ρ− ρ0
n|≥ δ, n ≥ 0}. There is a constant Cδ > 0 such that

|∆0(λ)| ≥ Cδ|λ| exp (|τ |T |) , ρ ∈ Gδ.

(ii) For su�ciently large value of n, the following inequality is valid

|∆(λ)−∆0(λ)| ≤ 1

2
Cδ exp (|τ |T ) , ρ ∈ Γn = {ρ : |ρ| = |ρ0

n|+
1

2
inf
n6=m
|ρ0
n − ρ0

m|}.

Thus, for su�ciently large natural number n and ρ ∈ Γn,

|∆0(λ)| ≥ Cδ|λ| exp (|τ |T ) >
1

2
Cδ|λ| exp (|τ |T ) > |∆(λ)−∆0(λ)|.

Then by Rouche's theorem, the number of zeros of ∆0(λ), counting multiplicities, inside circuit
Gn coincides with the number of zeros of ∆(λ). Analogously, applying Rouche's theorem, we say
that for su�ciently large values of n, the function ∆(λ) has exactly one zero ρn inside each circle
Gδ = {ρ : |ρ− ρ0

n|≤ δ}. Since δ is arbitrary su�ciently small number, we have

ρn = ρ0
n + εn, εn = o (1) , n→∞ (2.16)

Since the function ∆0(λ) is type of sinus (see [5, p. 119]), there exist the number dδ > 0 such that,
for all n, | d

dλ
∆0(λ)|λ=λn ≥ dδ > 0. Since ρn are zeros of ∆(λ), from (2.15) we get

εn = − 2

αρ0
n

[
ω1 sin ρ0

nT + ω2 sin ρ0
n (2a− T )

] [ d
dλ

∆0(λ)|λ=λ0n

]
. (2.17)

Substituting (2.17) into (2.16) we get

ρn = ρ0
n +

dn
ρ0
n

+
γn
ρ0
n

, (2.18)

where

dn = − 2

α

[
ω1 sin ρ0

nT + ω2 sin ρ0
n (2a− T )

] [ d
dλ

∆0(λ)|λ=λ0n

]
and γn = o (1).

Finally, using (2.11),(2.12) and (2.18) into (2.3) we obtain

αn = α0
n + o (1) , n→∞, (2.19)

where

α0
n =

∫ T

0

ϕ2(x, λ0
n)dx+ αϕ2(a, λ0

n).
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3 Algorithm of solving the inverse problem

In this section, we �rst give the spectral characteristics of the boundary value problem L and then
demonstrate relationships between their spectral characteristics. Moreover, we provide the formula
to solve the inverse problem of the reconstruction of the problem L basing on the Weyl function,
on the spectral data, and on two spectra.

We de�ne the Weyl function by

M(λ) =
ψ(0, λ)

∆(λ)
. (3.1)

Here the function ψ(0, λ) is the characteristic function of the boundary value problem which consists
of equation (1.1) along with the boundary conditions y(0) = V (y) = 0 and transmission conditions
(1.3). Let {µn}n≥0 be the zeros of the entire function ψ(0, λ). It is clear that, ψ(0, λ) and ∆(λ) have
no common zeros. Thus, the Weyl function M(λ) is meromorphic which has poles at the points
{λn}n≥0 and zeros at the points {µn}n≥0.

The following lemma gives the relationships between the spectral characteristic of L : the spectral
data Ω, the Weyl function M(λ) and the two spectra {λn, µn}n≥0.

Lemma 3.1. Let M(λ), Ω and ∆(λ) be de�ned as above. Then the following representation holds:

M(λ) =
∞∑
h=0

1

αn(λ− λn)
. (3.2)

Moreover, ∆(λ) is uniquely determined up to a multiplicative constant by its zeros:

∆(λ) = T (λ0 − λ)
∞∏
n=1

λn − λ
λ0
n

. (3.3)

Since the arguments for proving this lemma are similar to those in [2], we skip the proof. Now,
we will consider the following inverse problems of recovering L :

• Inverse problem 1: constructing q(x), h, and H when the spectral data {λn, αn}n≥0 is given.

• Inverse problem 2: constructing q(x), h and H when the Weyl function M(λ) is given.

• Inverse problem 3: constructing q(x), h and H when the two spectra Ω = {λn, µn}n≥0 are
given.

Let us note that, according to (3.1), (3.2) and (3.3), the inverse problems of recovering L basing
on the spectral data and on the two spectra are speci�cations of the inverse problem of recovering
L from the Weyl function. Consequently, the inverse problems 1�3 are equivalent.

The inverse problems studied here can be seen as generalizations of the inverse problems for
the classical Sturm-Liouville operators, see [6, Chapter 1]. In the next section, using results stated
above, we provide a constructive procedure for solving these inverse problems.

4 Finding solutions to inverse problems

In this section, with the help of Cauchy's integral formula and the Residue theorem, we will solve
the inverse problems of recovering the Sturm-Liouville problem L(q(x), h,H) using the spectrum
mappings approach. We �rst reduce an inverse problem to the so-called main equation which is a
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linear equation in a corresponding Banach space of sequences. Finally, we provide the algorithms
for solving the inverse problems by using the solution of the main equation.

For this purpose we introduce a new problem with new notations: together with L we consider a
boundary value problem L̃ of the same form but with di�erent coe�cients q̃(x), h̃, H̃. Throughout
next sections, if a certain symbol e denotes an object related to L, then the symbol ẽ with tilde
denotes the analogous object related to L̃. Now we introduce the following notations for convenience
of further discussions.

λn0 = λn, λn1 = λ̃n, αn0 = αn, αn1 = α̃n,

ϕni(x) = ϕ(x, λni), ϕ̃ni(x) = ϕ̃(x, λni),

Qkj(x, λ) =
< ϕ(x, λ), ϕkj(x) >

αkj(λ− λkj)
=

1

αkj

∫ x

0

ϕ(t, λ)ϕkj(t)dt,

Qni,kj(x) = Qkj(x, λni),

for i, j = 0, 1 and n, k ≥ 0. Here ϕ̃(x, λ) is the solution of (1.4) with the potential q̃ under the initial
conditions ϕ̃(0, λ) = 1, ϕ̃′(0, λ) = h̃. Similarly, we can de�ne Q̃kj(x, λ) by replacing ϕ by ϕ̃ in the
above de�nition.

Using the Schwartz lemma, see [5, p. 130] and (2.11)-(2.14), (2.17) we obtain the following
asymptotic estimates:

|ϕni(x)| ≤ C(|ρ0
n|+ 1), |ϕn0(x)− ϕn1(x)| ≤ C(|ρ0

n|+ 1)
1
2 , (4.1)

|Qni,kj(x)| ≤ C(|ρ0
n|+ 1)

(|ρ0
n − ρ0

k|+ 1)(|ρ0
k|+ 1)

,

|Qni,k0(x)−Qni,k1(x)| ≤ C(|ρn|+ 1)

(|ρ0
n − ρ0

k|+ 1)(|ρ0
k|+ 1)

3
2

,

|Qn0,kj(x)−Qn1,j1(x)| ≤ C(|ρn|+ 1)
1
2

(|ρ0
n − ρ0

k|+ 1)(|ρ0
k|+ 1)

(4.2)

where n, k ≥ 0, 1 and C > 0 is independent of n, k, i, j. Similar estimates are also valid for ϕ̃ni(x),
Q̃ni,kj(x).

Lemma 4.1. Let ϕni(x) and Qni,kj(x) be de�ned as above. Then the following representations hold
for i, j = 0, 1 and n, k ≥ 0:

ϕ̃ni(x) = ϕni(x) +
∞∑
l=1

(Q̃ni,l0(x)ϕk0(x)− Q̃ni,l1(x)ϕk1(x)), (4.3)

Qni,kj(x)− Q̃ni,kj(x) +
∞∑
l=0

(Q̃ni,l0(x)Ql0,kj(x)− Q̃ni,l1(x)Ql1,kj(x)) = 0, (4.4)

Both series converge absolutely and uniformly with respect to x ∈ [0, T ] \ {a}.
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The proof of this lemma is similar to that of the lemma given in [13] and, hence, is omitted.
From all arguments mentioned above, it is seen that, for each �xed x ∈ (0, T ) \ {a}, relation

(4.3) can be thought as a system of linear equations with respect to ϕni(x) for n ≥ 0 and i = 0, 1.
But the series in (4.3) converges only with brackets. So, it is not convenient to use (4.3) as a main
equation of the inverse problem. Below, we will transfer (4.3) to a linear equation in a corresponding
Banach space of sequences.

Let V be a set of all indices u = (n, i), n ≥ 0, i = 0, 1. For each �xed x ∈ (0, T ) \ {a}, we de�ne
the vector

φ(x) = [φu(x)] =

[
φn0(x)
φn1(x)

]
n≥0

by the formulas [
φn0(x)
φn1(x)

]
=

[
ρ0n+1
ρn

−ρ0n+1
ρn

0 1
ρ0n

][
ϕn0(x)
ϕn1(x)

]
=

[
(ρ0n+1)(ϕn0(x)−ϕn1(x))

ρn
ϕn1(x)
ρn

]
(4.5)

Further, we de�ne the block matrix

H(x) = [Hu,v(x)]u,v∈V =

[
Hn0,k0(x) Hn0,k1(x)
Hn1,k0(x) Hn1,k1(x)

]
n,k≥0

,

where u = (n, i), v = (k, j) and[
Hn0,k0(x) Hn0,k1(x)
Hn1,k0(x) Hn1,k1(x)

]
=

[
ρ0n+1
ρn

−ρ0n+1
ρn

0 1
ρ0n

][
Qn0,k0(x) Qn0,k1(x)
Qn1,k0(x) Qn1,k1(x)

] [ ρk
ρ0k+1

ρk

0 −ρk

]
.

Analogously, we de�ne ϕ̃(x), H̃(x) by replacing in the previous de�nitions ϕni(x), Qni,kj(x) by
ϕ̃ni(x), Q̃ni,kj(x), respectively. It follows from (2.11) - (2.14), (2.17), (2.18), (4.1), (4.2) and the
Schwarz lemma that

|φnj(x)|, |φ̃nj(x)| ≤ C, (4.6)

and

|Hni,kj(x)|, |H̃ni,kj(x)| ≤ C

(|ρ0
n − ρ0

k|+ 1)(|ρ0
k|+ 1)

, (4.7)

where C > 0 is independent of n, k, i, j.
Let us consider the Banach space B of bounded sequences α = [αu]u∈V with the norm ‖α‖B =

supu∈V |αu| and consider the operator E+H̃(x) acting from B to B. Here E is the identity operator.
It follows from (4.6), (4.7) that for each �xed x, this operator is a linear bounded operator, and

‖H(x)‖, ‖H̃(x)‖ ≤ C sup
n

∞∑
k=0

1

(|ρ0
n − ρ0

k|+ 1)(|ρ0
k|+ 1)

<∞.

Now we are ready to give the main result of this section.

Theorem 4.1. For each �xed x ∈ (0, T ) \ {a}, the vector ϕ(x) ∈ B satis�es the equation

ϕ̃(x) = (E + H̃(x))ϕ(x), (4.8)

in the Banach space B. Moreover, the operator E + H̃(x) has a bounded inverse operator, hence,
equation (4.8) is uniquely solvable.
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Proof. Using the notation φ̃(x), rewrite (4.3) as

φ̃ni(x) = φni +
∑
n,j

H̃ni,kj(x)φkj(x), (n, i) ∈ V, (k, j) ∈ V,

which is equivalent to (4.3). Interchanging places for L and L̃, we obtain analogously the equalities

φ(x) = (E −H(x))ϕ̃(x), (E −H(x))(E + H̃(x)) = E.

Hence, the operator (E + H̃(x))−1 exist, and it is a linear bounded operator.

Equation (4.8) is named a basic equation of the inverse problem. Solving (4.8) we �nd the vector
φ(x), and hence, the functions ϕni(x). Thus, we get the following algorithms to �nd the solution of
an inverse problem.

Algorithm 1. When the spectral data {λn, αn}n≥0 is given, to construct q(x), h and H, we follow
the steps:

(i) �rst contruct L̃ and then calculate φ̃(x) and H̃(x),

(ii) by solving equation (4.8) �nd φ(x) and calculate ϕn0(x) by using (4.5),

(iii) choose some n (for example, n = 0) and construct q(x), h and H by using the following
formulas:

q(x) =
ϕ′′n0(x)

ϕn0(x)
+ λn, h = ϕ′n0(0), H = −ϕn0(T )

ϕn0(T )
.

Algorithm 2. When the function M(λ) is given, to construct q(x), h and H, we follow the steps:

(i) construct the spectral data Ω by using (3.2),

(ii) construct q(x), h and H by using Algorithm 1.

Algorithm 3. When two spectra {λn, µn}n≥0 are given, to construct q(x), h and H, we follow the
steps:

(i) calculate M(λ) by using (3.1),

(ii) construct q(x), h and H by using Algorithm 2.
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