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MIKHAIL L'VOVICH GOLDMAN

Doctor of physical and mathematical sciences, Professor
Mikhail L'vovich Goldman passed away on July 5, 2025, at the
age of 80 years.

Mikhail L'vovich was an internationally known expert in sci-
enceand education. His fundamental scienti�c articles and text
books in various�elds of the theory of functions of several variable-
sand functional analysis, the theory of approximation of functions,
embedding theorems and harmonic analysis are a signi�cant con-
tribution to the development of mathematics.

Mikhail L'vovich was born on Aprill 13, 1945 in Moscow. In
1963, he graduated from School No. 128 in Moscow with a gold
medal and entered the Physics Faculty of the Lomonosov Moscow
State University. He graduated in 1969 and became a postgradu-
ate student in the Mathematics Department. In 1972, he defended
his PhD thesis "On integral representations and Fourier series of

di�erentiable functions of several variables" under the supervision of Professor Ilyin Vladimir Alek-
sandrovich, and in 1988, his doctoral thesis "Study of spaces of di�erentiable functions of several
variables with generalized smoothness" at the S.L. Sobolev Institute of Mathematics in Novosibirsk.
Scienti�c degree "Professor of Mathematics" was awarded to him in 1991.

From 1974 to 2000 M.L. Goldman was successively an Assistant Professor, Full Professor, Head
of the Mathematical Department at the Moscow Institute of Radio Engineering, Electronics and
Automation (technical university). Since 2000 he was a Professor of the Department of Theory
of Functions and Di�erential Equations, then of the S.M. Nikol'skii Mathematical Institute at the
Patrice Lumumba Peoples' Friendship University of Russia (RUDN University).

Research interests of M.L. Goldman were: the theory of function spaces, optimal embeddings,
integral inequalities, spectral theory of di�erential operators.Among the most important scienti�c
achievements of M.L. Goldman, we note his research related to the optimal embedding of spaces
with generalized smoothness, exact conditions for the convergence of spectral decompositions, de-
scriptions of the integral and di�erential properties of generalized potentials of the Bessel and Riesz
types, exact estimates for operators on cones, descriptions of optimal spaces for cones of functions
with monotonicity properties.

M.L. Goldman has published more than 150 scienti�c articles in central mathematical journals.
He is a laureate of the Moscow government competition, a laureate of the RUDN University Prize in
Science and Innovation, and a laureate of the RUDN University Prize for supervision of postgraduate
students. Under the supervision of Mikhail L'vovich 11 PhD theses were defended. His pupilss
are actively involved in professional work at leading universities and research institutes in Russia,
Kazakhstan, Ethiopia, Rwanda, Colombia, and Mongolia.

Mikhail L'vovich has repeatedly been a guest lecturer and guest professor at universities in
Russia, Germany, Sweden, Great Britain, etc., and an invited speaker at many international con-
ferences. Mikhail L'vovich was not only an excellent mathematician and teacher (he always spoke
about mathematics and its teaching with great passion), but also a man of the highest culture and
erudition, with a deep knowledge of history, literature and art, a very bright, kind and responsive
person. This is how he will remain in the hearts of his family, friends, colleagues and students.

The Editorial Board of the Eurasian Mathematical Journal expresses deep condolences to the
family, relatives and friends of Mikhail L'vovich Goldman.
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1 Preliminaries

Algebras of binary formulas are a tool for describing relationships between elements of the sets of
realizations of a one-type at the binary level with respect to the superposition of binary de�nable
sets. A binary isolating formula is a formula of the form ϕ(x, y) such that for some parameter a
the formula ϕ(a, y) isolates a complete type in S({a}). The concepts and notations related to these
algebras can be found in papers [27, 28]. In recent years, algebras of binary formulas have been
studied intensively and have been continued in works [1], [3], [7]�[14], [26], [29].

Let L be a countable �rst-order language. Throughout we consider L-structures and assume
that L contains a ternary relational symbol K, interpreted as a circular order in these structures
(unless otherwise stated).

Let M = 〈M,≤〉 be a linearly ordered set. If we connect two endpoints ofM (possibly, −∞ and
+∞), then we obtain a circular order. More formally, the circular order is described by a ternary
relation K satisfying the following conditions:

(co1) ∀x∀y∀z(K(x, y, z)→ K(y, z, x));
(co2) ∀x∀y∀z(K(x, y, z) ∧K(y, x, z)⇔ x = y ∨ y = z ∨ z = x);
(co3) ∀x∀y∀z(K(x, y, z)→ ∀t[K(x, y, t) ∨K(t, y, z)]);
(co4) ∀x∀y∀z(K(x, y, z) ∨K(y, x, z)).
The following observation relates linear and circular orders.

Fact 1.1. [4] (i) If 〈M,≤〉 is a linear ordering and K is the ternary relation derived from ≤ by the
rule

K(x, y, z) :⇔ (x ≤ y ≤ z) ∨ (z ≤ x ≤ y) ∨ (y ≤ z ≤ x),

then K is a circular order relation on M .
(ii) If 〈N,K〉 is a circular ordering and a ∈ N , then the relation ≤a de�ned on M := N \ {a}

by the rule y ≤a z :⇔ K(a, y, z) is a linear order.

Thus, any linearly ordered structure is circularly ordered, since the relation of circular order is ∅-
de�nable in an arbitrary linearly ordered structure. However, the opposite is not true. The following
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example shows that there are circularly ordered structures not being linearly ordered (in the sense
that a linear ordering relation is not ∅-de�nable in an arbitrary circularly ordered structure).

Example 1. [5, 6] Let Q∗2 := 〈Q2, K, L〉 be a circularly ordered structure, where L = {σ2
0, σ

2
1}, for

which the following conditions hold:
(i) its domain Q2 is a countable dense subset of the unit circle, no two points making the central

angle π;
(ii) for distinct a, b ∈ Q2

(a, b) ∈ σ0 ⇔ 0 < arg(a/b) < π,

(a, b) ∈ σ1 ⇔ π < arg(a/b) < 2π,

where arg(a/b) means the value of the central angle between a and b clockwise.
Indeed, one can check that the linear order relation is not ∅-de�nable in this structure.

The notion of weak circular minimality was studied initially in [15]. Let A ⊆ M , where M is a
circularly ordered structure. The set A is called convex if for any a, b ∈ A the following property is
satis�ed: for any c ∈M with K(a, c, b), c ∈ A holds, or for any c ∈M with K(b, c, a), c ∈ A holds.
A weakly circularly minimal structure is a circularly ordered structure M = 〈M,K, . . .〉 such that
any de�nable (with parameters) subset of M is a union of �nitely many convex sets in M . The
study of weakly circularly minimal structures was continued in papers [16]�[22].

Let M be an ℵ0-categorical weakly circularly minimal structure, G := Aut(M). Following the
standard group theory terminology, the group G is called k-transitive if for any pairwise distinct
a1, a2, . . . , ak ∈ M and pairwise distinct b1, b2, . . . , bk ∈ M there exists g ∈ G such that g(a1) =
b1, g(a2) = b2, . . . , g(ak) = bk. A congruence on M is an arbitrary G-invariant equivalence relation
on M . The group G is called primitive if G is 1-transitive and there are no non-trivial proper
congruences on M .

Notation 1. (1) K0(x, y, z) := K(x, y, z) ∧ y 6= x ∧ y 6= z ∧ x 6= z.
(2) K(u1, . . . , un) denotes a formula saying that all subtuples of the tuple 〈u1, . . . , un〉 having

the length 3 (in ascending order) satisfy K; similar notations are used for K0.
(3) Let A,B,C be disjoint convex subsets of a circularly ordered structure M . We write

K(A,B,C) if for any a, b, c ∈ M with a ∈ A, b ∈ B, c ∈ C we have K(a, b, c). We extend
naturally that notation, using, for instance, the notation K0(A, d,B,C) if d 6∈ A ∪ B ∪ C and
K0(A, d,B) ∧K0(d,B,C) holds.

Further, we need the notion of the de�nable completion of a circularly ordered structure, in-
troduced in [15]. Its linear analogue was introduced in [25]. A cut C(x) in a circularly ordered
structure M is the maximal consistent set of formulas of the form K(a, x, b), where a, b ∈ M . A
cut is said to be algebraic if there exists c ∈ M that realizes it. Otherwise, such a cut is said to
be non-algebraic. Let C(x) be a non-algebraic cut. If there is some a ∈ M such that either for all
b ∈ M the formula K(a, x, b) ∈ C(x), or for all b ∈ M the formula K(b, x, a) ∈ C(x), then C(x)
is said to be rational. Otherwise, such a cut is said to be irrational. A de�nable cut in M is a cut
C(x) with the following property: there exist a, b ∈ M such that K(a, x, b) ∈ C(x) and the set
{c ∈ M | K(a, c, b) and K(a, x, c) ∈ C(x)} is de�nable. The de�nable completion M of a structure
M consists of M together with all de�nable cuts in M that are irrational (essentially M consists of
endpoints of de�nable subsets of the structure M).

Notation 2. [15] Let F (x, y) be an L-formula such that F (M, b) is convex in�nite co-in�nite for
each b ∈M . Let F `(y) be the formula saying y is a left endpoint of F (M, y):

∃z1∃z2[K0(z1, y, z2) ∧ ∀t1(K(z1, t1, y) ∧ t1 6= y → ¬F (t1, y))∧

∀t2(K(y, t2, z2) ∧ t2 6= y → F (t2, y))].
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We say that F (x, y) is convex-to-right if

M |= ∀y∀x[F (x, y)→ F l(y) ∧ ∀z(K(y, z, x)→ F (z, y))].

If F1(x, y), F2(x, y) are arbitrary convex-to-right formulas we say F2 is bigger than F1 if there is
a ∈ M with F1(M,a) ⊂ F2(M,a). If M is 1-transitive and this holds for some a, it holds for all a.
This gives a total ordering on the (�nite) set of all convex-to-right formulas F (x, y) (viewed up to
equivalence modulo Th(M)).

Consider F (M,a) for arbitrary a ∈M . In general, F (M,a) has no the right endpoint in M . For
example, if dcl(a) = {a} holds for some a ∈ M , then for any convex-to-right formula F (x, y) and
any a ∈ M the formula F (M,a) has no the right endpoint in M . We write f(y) := rend F (M, y),
assuming that f(y) is the right endpoint of the set F (M, y) that lies, in general, in the de�nable
completion M of M . Then, f is a function mapping M in M .

Let F (x, y) be a convex-to-right formula. We say that F (x, y) is equivalence-generating if for
any a, b ∈M such that M |= F (b, a) the following holds:

M |= ∀x(K(b, x, a) ∧ x 6= a→ [F (x, a)↔ F (x, b)]).

Lemma 1.1. [22] Let M be an ℵ0-categorical 1-transitive weakly circularly minimal structure,
F (x, y) be a convex-to-right formula that is equivalence-generating. Then E(x, y) := F (x, y)∨F (y, x)
is an equivalence relation partitioning M into in�nite convex classes.

Let M , N be circularly ordered structures. The 2-reduct of M is a circularly ordered structure
with the same universe ofM and consisting of predicates for each ∅-de�nable relation onM of arity
≤ 2 as well as of the ternary predicate K for the circular order, but does not have other predicates
of arities more than two. We say that the structure M is isomorphic to N up to binarity or binarily
isomorphic to N if the 2-reduct of M is isomorphic to the 2-reduct of N .

The following de�nition can be used in a circular ordered structure as well.

De�nition 1. [23], [24] Let T be a weakly o-minimal theory, M be a su�ciently saturated model
of T , A ⊆M . The rank of convexity of the set A (RC(A)) is de�ned as follows:

1) RC(A) = −1 if A = ∅.
2) RC(A) = 0 if A is �nite and non-empty.
3) RC(A) ≥ 1 if A is in�nite.
4) RC(A) ≥ α + 1 if there exist a parametrically de�nable equivalence relation E(x, y) and an

in�nite sequence of elements bi ∈ A, i ∈ ω, such that:

• for every i, j ∈ ω whenever i 6= j we have M |= ¬E(bi, bj);

• for every i ∈ ω, RC(E(x, bi)) ≥ α and E(M, bi) is a convex subset of A.

5) RC(A) ≥ δ if RC(A) ≥ α for all α < δ, where δ is a limit ordinal.
If RC(A) = α for some α, we say that RC(A) is de�ned. Otherwise (i.e. if RC(A) ≥ α for all

α), we put RC(A) =∞.
The rank of convexity of a formula φ(x, ā), where ā ∈ M , is de�ned as the rank of convexity of

the set φ(M, ā), i.e. RC(φ(x, ā)) := RC(φ(M, ā)).
The rank of convexity of an 1-type p is de�ned as the rank of convexity of the set p(M), i.e.

RC(p) := RC(p(M)).

The following theorem characterizes up to binarity ℵ0�categorical 1-transitive non-primitive
weakly circularly minimal structures of convexity rank greater than 1 having both a trivial de�nable
closure and the condition that any convex-to-right formula is equivalence-generating:
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Theorem 1.1. [16] Let M be an ℵ0-categorical 1-transitive non-primitive weakly circularly minimal
structure of convexity rank greater than 1 with dcl(a) = {a} for some a ∈M such that any convex-
to-right formula is equivalence-generating.

Then, M is isomorphic up to binarity to Ms,m := 〈M,K3, E2
1 , E

2
2 , . . . , E

2
s , E

2
s+1〉, where M is

a circularly ordered structure, M is densely ordered, s,m ≥ 1; Es+1 is an equivalence relation,
partitioning M into m in�nite convex classes without endpoints; Ei for every 1 ≤ i ≤ s is an
equivalence relation, partitioning each Ei+1-class into in�nitely many in�nite convex Ei-subclasses
without endpoints so that the induced ordering on Ei-subclasses is dense without endpoints.

In [9] algebras of binary isolating formulas are described for ℵ0-categorical weakly circular-
ly minimal theories with a primitive automorphism group. In [11] algebras of binary isolating
formulas are described for ℵ0-categorical weakly circularly minimal theories of convexity rank 1
with a 1-transitive non-primitive automorphism group and a non-trivial de�nable closure. In [12]�
[13] algebras of binary isolating formulas are described for ℵ0-categorical weakly circularly minimal
theories of convexity rank greater than 1 with a 1-transitive non-primitive automorphism group and
a non-trivial de�nable closure. In [14] algebras of binary isolating formulas are described for ℵ0-
categorical weakly circularly minimal theories of convexity rank 1 with a 1-transitive non-primitive
automorphism group and a trivial de�nable closure.

Here, we describe algebras of binary isolating formulas for ℵ0-categorical weakly circularly mini-
mal theories of convexity rank greater than 1 with a 1-transitive non-primitive automorphism group
and a trivial de�nable closure.

2 Results

De�nition 2. [28] Let p ∈ S1(∅) be non-algebraic. The algebra Pν(p) is said to be deterministic if
u1 · u2 is a singleton for any labels u1, u2 ∈ ρν(p).

Generalizing the last de�nition, we say that the algebra Pν(p) is m-deterministic if the product
u1·u2 consists of at mostm elements for any labels u1, u2 ∈ ρν(p). We also say that anm-deterministic
algebra Pν(p) is strictly m-deterministic if it is not (m− 1)-deterministic.

We say that the algebra Pν(p) is ∃-maximally absorbing if there exist u1, u2 ∈ ρν(p) such that
u1 · u2 consists of all the labels of Pν(p).

Example 2. Consider the structure M1,1 := 〈M,K3, E2
1〉 from Theorem 1.1. We assert that

Th(M1,1) has four binary isolating formulas:

θ0(x, y) := x = y,

θ1(x, y) := E1(x, y) ∧ x 6= y ∧ ∀t[K(x, t, y)→ E1(x, t)],

θ2(x, y) := ¬E1(x, y),

θ3(x, y) := E1(x, y) ∧ x 6= y ∧ ∀t[K(y, t, x)→ E1(x, t)].

Clearly,
K0(θ0(a,M), θ1(a,M), θ2(a,M), θ3(a,M))

holds for every a ∈M .
De�ne the labels for these formulas as follows:

label k for θk(x, y), where 0 ≤ k ≤ 3.

It easy to check that for the algebra PM1,1 the Cayley table has the following form:
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· 0 1 2 3
0 {0} {1} {2} {3}
1 {1} {1} {2} {0, 1, 3}
2 {2} {2} {0, 1, 2, 3} {2}
3 {3} {0, 1, 3} {2} {3}

By the Cayley table the algebra PM1,1 is commutative and strictly 4-deterministic.

Example 3. Consider now the structure M1,2 := 〈M,K3, E2
1 , E

2
2〉 from Theorem 1.1. We assert

that Th(M1,2) has six binary isolating formulas:

θ0(x, y) := x = y,

θ1(x, y) := E1(x, y) ∧ x 6= y ∧ ∀t[K(x, t, y)→ E1(x, t)],

θ2(x, y) := E2(x, y) ∧ ¬E1(x, y) ∧ ∀t[K(x, t, y)→ E2(x, t)],

θ3(x, y) := ¬E2(x, y),

θ4(x, y) := E2(x, y) ∧ ¬E1(x, y) ∧ ∀t[K(y, t, x)→ E2(x, t)],

θ5(x, y) := E1(x, y) ∧ x 6= y ∧ ∀t[K(y, t, x)→ E1(x, t)].

Clearly,
K0(θ0(a,M), θ1(a,M), θ2(a,M), θ3(a,M), θ4(a,M), θ5(a,M))

holds for every a ∈M .
De�ne the labels for these formulas as follows:

label k for θk(x, y), where 0 ≤ k ≤ 5.

It easy to check that for the algebra PM1,2 the Cayley table has the following form:

· 0 1 2 3 4 5
0 {0} {1} {2} {3} {4} {5}
1 {1} {1} {2} {3} {4} {0, 1, 5}
2 {2} {2} {2} {3} {0, 1, 2, 4, 5} {2}
3 {3} {3} {3} {0, 1, 2, 4, 5} {3} {3}
4 {4} {4} {0, 1, 2, 4, 5} {3} {4} {4}
5 {5} {0, 1, 5} {2} {3} {4} {5}

By the Cayley table the algebra PM1,2 is commutative and strictly 5-deterministic.

Proposition 2.1. The algebra PM1,m of binary isolating formulas has m+ 4 labels, is commutative
and strictly 5-deterministic for every natural number m ≥ 2.

Proof. The universe M of the structure M1,m is partitioned by the equivalence relation E2 into m
in�nite convex classes. Take an arbitrary element a ∈M . It belongs to one of these convex classes.
In this convex class �ve binary isolating formulas appear:

θ0(x, y) := x = y,

θ1(x, y) := E1(x, y) ∧ x 6= y ∧ ∀t[K(x, t, y)→ E1(x, t)],

θ2(x, y) := E2(x, y) ∧ ¬E1(x, y) ∧ ∀t[K(x, t, y)→ E2(x, t)],

θm+2(x, y) := E2(x, y) ∧ ¬E1(x, y) ∧ ∀t[K(y, t, x)→ E2(x, t)],
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θm+3(x, y) := E1(x, y) ∧ x 6= y ∧ ∀t[K(y, t, x)→ E1(x, t)].

There remain m − 1 convex classes, where there are no elements lying in the algebraic closure
of the element a, de�ning additionally m− 1 binary isolating formulas. These formulas are de�ned
as follows:

θi(x, y) := ¬E2(x, y) ∧ ∀t[K(x, t, y) ∧ ¬E1(x, t) ∧ ¬E2(t, y)→ ∨i−1
s=2θs(x, t)], 3 ≤ i ≤ m+ 1.

Thus, there are 5 + (m−1) = m+ 4 binary isolating formulas, and we have de�ned the formulas
so that for any a ∈M the following holds:

K0(θ0(a,M), θ1(a,M), θ2(a,M), . . . , θm(a,M), θm+1(a,M), θm+2(a,M), θm+3(a,M)).

Prove now the commutativity. First, it is obvious, 0 · k = k · 0 = {k} for every 0 ≤ k ≤ m + 3.
Suppose further that both k1 6= 0 and k2 6= 0.

Case 1. k1 + k2 = m+ 4.
If k1 = 1, then k2 = m+ 3. In this case each of the formulas θk1(x, y) and θk2(x, y) contains, as

a conjunctive member, the formula E1(x, y), i.e. the formula E1(x, y) is compatible with

∃t[θk1(x, t) ∧ θk2(t, y)].

We have: for any t, satisfying the formula θk1(x, t), it follows that t ∈ E1(x,M) and t is in
this class to the right of the element x. Considering an arbitrary element y, satisfying the formula
θk2(t, y), we obtain that y ∈ E1(t,M) and y is in this class to the left of the element t, i.e. the
formula

∃t[θk1(x, t) ∧ θk2(t, y)]

is compatible with every formula from the list of formulas with labels {0, 1,m+ 3}. Consequently,
k1 · k2 = {0, 1,m+ 3}. We can show similarly that k2 · k1 = {0, 1,m+ 3}.

If k1 = 2, then k2 = m + 2. In this case each of the formulas θk1(x, y) and θk2(x, y) contains
as a conjunctive member the formula E2(x, y) ∧ ¬E1(x, y), i.e. the formula E2(x, y) ∧ ¬E1(x, y) is
compatible with

∃t[θk1(x, t) ∧ θk2(t, y)].

We have: for any t, satisfying the formula θk1(x, t), it follows that t ∈ E2(x,M), t 6∈ E1(x,M),
and t is in this class to the right of the element x. Considering an arbitrary element y, satisfying
the formula θk2(t, y), we obtain that y ∈ E2(t,M), y 6∈ E1(t,M), and y is in this class to the left of
the element t, i.e. the formula

∃t[θk1(x, t) ∧ θk2(t, y)]

is compatible with every formula from the list of formulas with labels {0, 1, 2,m+ 2,m+ 3}. Con-
sequently, k1 · k2 = {0, 1, 2,m+ 2,m+ 3}. We can show similarly that

k2 · k1 = {0, 1, 2,m+ 2,m+ 3}.

Let now 2 < k1 < m + 2. Then, we also have that 2 < k2 < m + 2. Consequently, each of the
formulas θk1(x, y) and θk2(x, y) contains as a conjunctive member the formula ¬E2(x, y). We have:
t lies in the (k1 − 1)-th E2-class from E2(x,M) (i.e. the E2-class, containing x is the �rst E2-class;
the next clockwise E2-class is the second, etc.); y lies in the (k2 − 1)-th E2-class from E2(t,M).
Then, we obtain that y lies in the (k1 +k2− 2)-th E2-class from E2(x,M). But k1 +k2− 2 = m+ 2,
i.e. y falls into E2(x,M). Therefore, we get that

k1 · k2 = k2 · k1 = {0, 1, 2,m+ 2,m+ 3}.

Case 2. k1 + k2 < m+ 4.
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Let us �rst assume that k1 = 1. If k2 = 1, then

∃t[θk1(x, t) ∧ θk2(t, y)]

is compatible with the formula E1(x, y). We have: t lies in the same E1-class with x and in this
class to the right of it; y lies in the same E1-class with t and also to the right of it in this class.
Consequently, y lies in the same E1-class with x and in this class to the right of it, i.e. 1 · 1 = {1}.

Suppose now that k1 = 2. If k2 = 2 then

∃t[θk1(x, t) ∧ θk2(t, y)]

is compatible with the formula E2(x, y). We have: t lies in the same E2-class with x and in this
class to the right of it; y lies in the same E2-class with t and also in this class to the right of it.
Consequently, y lies in the same E2-class with x and in this class to the right of it, i.e. 2 · 2 = {2}.

Let now k2 > 2. Clearly, k2 < m + 2 (since k1 + k2 < m + 4). We have: t lies in the same
E2-class with x and in this class to the right of it; y lies in the (k2 − 1)-th E2-class from E2(t,M).
Consequently, y lies in the (k2 − 1)-th E2-class from E2(x,M), i.e. 2 · k2 = {k2}. We can show
similarly that k2 · 2 = {k2}.

Suppose now that k1 > 2 and k2 > 2. Clearly, k1 < m + 2 and k2 < m + 2. Then each of the
formulas θk1(x, y) and θk2(x, y) contains as a conjunctive member the formula ¬E2(x, y). We have:
t lies in the (k1 − 1)-th E2-class from E2(x,M); y lies in the (k2 − 1)-th E2-class from E2(t,M).
Then, we obtain that y lies in the (k1 +k2−2)-th E2-class from E2(x,M), i.e. k1 ·k2 = {k1 +k2−2}.
We can show similarly that k2 · k1 = {k1 + k2 − 2}.

Case 3. k1 + k2 > m+ 4.
In this case k1 > 1 and k2 > 1 (since otherwise we would obtain that k1 + k2 ≤ m+ 4).
Suppose �rst that k1 = 2. Then, we unambiguously obtain that k2 = m + 3. We have: t lies

in E2(x,M) and t is in this class to the right of the element x; y lies in E1(t,M) and t is in this
class to the left of the element t, whence we obtain that k1 · k2 = {k1}. We can show similarly that
k2 · k1 = {k1}.

Let now k1 > 2. We have: t lies in the (k1 − 1)-th E2-class from E2(x,M). In this case
k2 ≥ m + 2, i.e. k2 can take only the following values: m + 2 and m + 3. Then, we obtain: y lies
in E2(t,M) \ E1(t,M) or E1(t,M) and t is in the corresponding class to the left of the element t,
whence we obtain that k1 · k2 = {k1}. We can show similarly that k2 · k1 = {k1}.

Suppose now that k1 = m + 2. We have: t lies in E2(x,M) and t is in this class to left of the
element x. In this case k2 > 2. If k2 ≥ m + 2, then again we get that k1 · k2 = {k1}. We can show
similarly that k2 · k1 = {k1}.

Further, suppose that 2 < k1 < m + 2 and 2 < k2 < m + 2. We have: t lies in the (k1 − 1)-th
E2-class from E2(x,M); y lies in the (k2 − 1)-th E2-class from E2(t,M), but at the same time y
jumps over E2(x,M) that is consistent with �ve binary isolating formulas. Therefore, y lies in the
(k1 + k2 + 2)[mod m+ 4]-th E2-class from E2(x,M). Consequently, the formula

∃t[θk1(x, t) ∧ θk2(t, y)]

uniquely determines the formula θ
(k1+k2+2)[mod m+4]

(x, y). We can show similarly that

k2 · k1 = (k1 + k2 + 2)[mod m+ 4].

Example 4. Consider now the structure M2,1 := 〈M,K3, E2
1 , E

2
2〉 from Theorem 1.1. We assert

that Th(M2,1) has six binary isolating formulas:

θ0(x, y) := x = y,
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θ1(x, y) := E1(x, y) ∧ x 6= y ∧ ∀t[K(x, t, y)→ E1(x, t)],

θ2(x, y) := E2(x, y) ∧ ¬E1(x, y) ∧ ∀t[K(x, t, y)→ E2(x, t)],

θ3(x, y) := ¬E2(x, y),

θ4(x, y) := E2(x, y) ∧ ¬E1(x, y) ∧ ∀t[K(y, t, x)→ E2(x, t)],

θ5(x, y) := E1(x, y) ∧ x 6= y ∧ ∀t[K(y, t, x)→ E1(x, t)].

Clearly, K0(θ0(a,M), θ1(a,M), θ2(a,M), θ3(a,M), θ4(a,M), θ5(a,M)) holds for every a ∈M .
De�ne the labels for these formulas as follows:

label k for θk(x, y), where 0 ≤ k ≤ 5.

It easy to check that for the algebra PM2,1 the Cayley table has the following form:

· 0 1 2 3 4 5
0 {0} {1} {2} {3} {4} {5}
1 {1} {1} {2} {3} {4} {0, 1, 5}
2 {2} {2} {2} {3} {0, 1, 2, 4, 5} {2}
3 {3} {3} {3} {0, 1, 2, 3, 4, 5} {3} {3}
4 {4} {4} {0, 1, 2, 4, 5} {3} {4} {4}
5 {5} {0, 1, 5} {2} {3} {4} {5}

By the Cayley table the algebra PM2,1 is commutative and strictly 6-deterministic.

Proposition 2.2. The algebra PMs,1 of binary isolating formulas has 2s+ 2 labels, is commutative
and strictly (2s+ 2)-deterministic for every natural number s ≥ 1.

Proof. The universe M of the structure Ms,1 is partitioned by the equivalence relation Es into
in�nitely many in�nite convex classes, so that the induced ordering on Es-classes is dense without
endpoints; in addition, for any 2 ≤ i ≤ s, each Ei-class is partitioned into in�nitely many convex
Ei−1-subclasses, so that the induced order on Ei−1-subclasses is dense without endpoints.

We have the following binary isolating formulas:

θ0(x, y) := x = y,

θ1(x, y) := E1(x, y) ∧ x 6= y ∧ ∀t[K(x, t, y)→ E1(x, t)],

θi(x, y) := Ei(x, y) ∧ ¬Ei−1(x, y) ∧ ∀t[K(y, t, x)→ Ei(x, t)], 2 ≤ i ≤ s,

θs+1(x, y) := ¬Es(x, y),

θj(x, y) := E2s+2−j(x, y) ∧ ¬E2s+1−j(x, y) ∧ ∀t[K(y, t, x)→ E2s+2−j(x, t)], s+ 2 ≤ j ≤ 2s,

θ2s+1(x, y) := E1(x, y) ∧ x 6= y ∧ ∀t[K(y, t, x)→ E1(x, t)].

Thus, there exist 2s+ 2 binary isolating formulas, and we have de�ned the formulas so that

K0(θ0(a,M), θ1(a,M), θ2(a,M), . . . , θ2s(a,M), θ2s+1(a,M))

holds for any a ∈M .
Prove now the commutativity. First, it is obvious that 0 ·k = k ·0 = {k} for any 0 ≤ k ≤ 2s+ 1.

Suppose further that k1 6= 0 and k2 6= 0.
Case 1. k1 + k2 = 2s+ 2.
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If k1 = l for some 1 ≤ l ≤ s, then k2 = 2s + 2 − l. Then, each of the formulas θk1(x, y)
and θk2(x, y) contains, as a conjunctive member, the formula El(x, y), i.e. the formula El(x, y) is
compatible with

∃t[θk1(x, t) ∧ θk2(t, y)].

We have: for any t, satisfying the formula θk1(x, t), it follows that t ∈ El(x,M) \ El−1(x,M)
(if l = 1 , then t ∈ E1(x,M)) and t is in this class to the right of the element x. Considering an
arbitrary element y, satisfying the formula θk2(t, y), we obtain that y ∈ El(t,M) \ El−1(t,M) (if
l = 1 , then y ∈ E1(t,M)) and y is in this class to the left of the element t, i.e. the formula

∃t[θk1(x, t) ∧ θk2(t, y)]

is compatible with every formula from the list of formulas with labels {0, 1, . . . , l, 2s+2−l, . . . , 2s+1}.
Consequently, k1 · k2 = {0, 1, . . . , l, 2s+ 2− l, . . . , 2s+ 1}. We can show similarly that

k2 · k1 = {0, 1, . . . , l, 2s+ 2− l, . . . , 2s+ 1}.

Let now k1 = s + 1. Then, we also have that k2 = s + 1 and each of the formulas θk1(x, y) and
θk2(x, y) contains as a conjunctive member the formula ¬Es(x, y).

We have: for any t satisfying the formula θk1(x, t), ¬Es(x, t) holds. Considering an arbitrary
element y, satisfying the formula θk2(t, y), we obtain that ¬Es(t, y). Thus, both ¬Es(x, y) and
Es(x, y) are possible. Consequently, k1 · k2 = {0, 1, 2, . . . , 2s, 2s+ 1}. We can show similarly that

k2 · k1 = {0, 1, 2, . . . , 2s, 2s+ 1}.

If k1 = l for some s+ 2 ≤ l ≤ 2s+ 1, then k2 = 2s+ 2− l, i.e. 1 ≤ k2 ≤ l. We can show similarly
that

k1 · k2 = {0, 1, . . . , l, 2s+ 2− l, . . . , 2s+ 1}

and
k2 · k1 = {0, 1, . . . , l, 2s+ 2− l, . . . , 2s+ 1}.

Thus, in the case k1 = k2 = s+ 1 we obtain that the product of labels k1 and k2 contains all the
labels of the algebra, whence we conclude that the algebra PMs,1 is strictly (2s+ 2)-deterministic.

Case 2. k1 + k2 < 2s+ 2.
Suppose �rst that 1 ≤ k1, k2 ≤ s. If k1 = k2, then since each of the formulas θk1(x, y) and

θk2(x, y) contains as a conjunctive member the formula El(x, y) for some 1 ≤ l ≤ s, we obtain
that k1 · k2 = k2 · k1 = {l}. If k1 < k2, then since θk1(x, y) contains as a conjunctive member the
formula El1(x, y), and θk2(x, y) contains as a conjunctive member the formula El2(x, y) for some
1 ≤ l1 < l2 ≤ s, we obtain that k1 · k2 = k2 · k1 = {l2}. Similar reasoning is for the case k1 > k2.

Suppose now that 1 ≤ k1 ≤ s and k2 > s. If k2 = s + 1, then for any t satisfying the formula
θk1(x, t), it follows that t ∈ El(x,M) for some 1 ≤ l ≤ s; while for any y, satisfying the formula
θk2(t, y), ¬Es(t, y) holds. Whence we conclude that k1 · k2 = k2 · k1 = {s + 1}. If k2 6= s + 1, then
s + 2 ≤ k2 < 2s + 1 and for any y satisfying the formula θk2(t, y), it follows that y ∈ El2(t,M) for
some 1 ≤ l2 ≤ s (here l2 = 2s+ 2− k2).

If l > l2, then k1 · k2 = k2 · k1 = {l}. If l < l2, then k1 · k2 = k2 · k1 = {l2}. The case l = l2 is
impossible, since otherwise we obtain l + l2 = 2s+ 2.

The case in which k1 > s is considered similarly (in this case 1 ≤ k2 < s).
Case 3. k1 + k2 > 2s+ 2.
In this case k1 > 1 and k2 > 1 (indeed, if we suppose that k1 = 1, then k2 must be greater than

2s+ 1 that is impossible). If 2 ≤ k1 ≤ s, then k2 > s+ 2, i.e. s+ 3 ≤ k2 ≤ 2s+ 1.
We have: t ∈ El1(x,M) for some 2 ≤ l1 ≤ s, y ∈ El2(t,M) for some 1 ≤ l2 ≤ s− 1.
If l1 > l2, then k1 · k2 = k2 · k1 = {l1}. If l1 < l2, then k1 · k2 = k2 · k1 = {l2}.
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The case l1 = l2 is also impossible, since otherwise we obtain l1 + l2 = 2s+ 2.
Let now k1 > s. In this case s + 2 ≤ k2 ≤ 2s + 1. If k1 = s + 1, then we obtain ¬Es(x, t).

Consequently, k1 · k2 = k2 · k1 = {s+ 1}.
If k1 ≥ s+ 2, then s+ 1 ≤ k2 ≤ 2s+ 1. If k2 = s+ 1, then we obtain k1 · k2 = k2 · k1 = {s+ 1}.

If k2 ≥ s + 2, then we have: t ∈ El1(x,M) for some 1 ≤ l1 ≤ s, y ∈ El2(t,M) for some 1 ≤ l2 ≤ s.
If l1 ≥ l2, then k1 · k2 = k2 · k1 = {l1}. If l1 < l2, then k1 · k2 = k2 · k1 = {l2}.

Corollary 2.1. The algebra PMs,1 of binary isolating formulas is ∃-maximally absorbing for every
natural number s ≥ 1.

Example 5. Consider now the structure M2,2 := 〈M,K3, E2
1 , E

2
2 , E

2
3〉 from Theorem 1.1. Here

E3(x, y) is an equivalence relation partitioning the universe of the structure into two in�nite convex
classes. We assert that Th(M2,2) has eight binary isolating formulas:

θ0(x, y) := x = y,

θ1(x, y) := E1(x, y) ∧ x 6= y ∧ ∀t[K(x, t, y)→ E1(x, t)],

θ2(x, y) := E2(x, y) ∧ ¬E1(x, y) ∧ ∀t[K(x, t, y)→ E2(x, t)],

θ3(x, y) := E3(x, y) ∧ ¬E2(x, y) ∧ ∀t[K(x, t, y)→ E3(x, t)],

θ4(x, y) := ¬E3(x, y),

θ5(x, y) := E3(x, y) ∧ ¬E2(x, y) ∧ ∀t[K(y, t, x)→ E3(x, t)],

θ6(x, y) := E2(x, y) ∧ ¬E1(x, y) ∧ ∀t[K(y, t, x)→ E2(x, t)],

θ7(x, y) := E1(x, y) ∧ x 6= y ∧ ∀t[K(y, t, x)→ E1(x, t)].

Clearly,

K0(θ0(a,M), θ1(a,M), θ2(a,M), θ3(a,M), θ4(a,M), θ5(a,M), θ6(a,M), θ7(a,M))

holds for every a ∈M .
De�ne the labels for these formulas as follows:

label k for θk(x, y), where 0 ≤ k ≤ 7.

It easy to check that for the algebra PM2,2 the following equalities hold:
0 · k = k · 0 = {k} for every 0 ≤ k ≤ 7,
1 · k = k · 1 = {k} for every 1 ≤ k ≤ 6, and 1 · 7 = {0, 1, 7},
2 · k = k · 2 = {k} for every 2 ≤ k ≤ 5, 2 · 6 = {0, 1, 2, 6, 7}, and 2 · 7 = {2},
3 · k = k · 3 = {k} for every 3 ≤ k ≤ 4, 3 · 5 = {0, 1, 2, 3, 5, 6, 7}, and
3 · 6 = 6 · 3 = {3}, 3 · 7 = 7 · 3 = {3},
4 · k = k · 4 = {4} for every 1 ≤ k ≤ 3, 4 · 4 = {0, 1, 2, 3, 5, 6, 7}, and
4 · 5 = 5 · 4 = {4}, 4 · 6 = 6 · 4 = {4}, 4 · 7 = 7 · 4 = {4},
5 · k = k · 5 = {5} for every 5 ≤ k ≤ 7, and 5 · 3 = {0, 1, 2, 3, 5, 6, 7},
6 · 6 = {6}, 6 · 7 = 7 · 6 = {6}, and 6 · 2 = {0, 1, 2, 6, 7},
7 · 7 = {7}, and 7 · 1 = {0, 1, 7}.
According to these equalities, the algebra PM2,2 is commutative and strictly 7-deterministic.

Theorem 2.1. The algebra PMs,m of binary isolating formulas has 2s+m+2 labels, is commutative
and strictly (2s+ 3)-deterministic for any natural numbers s,m ≥ 1.
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Proof. The universe M of the structure Ms,m is partitioned by the equivalence relation Es+1 into m
in�nite convex classes. Take an arbitrary element a ∈ M . It falls into one of these convex classes.
In this convex class, 2s+ 3 binary isolating formulas arise:

θ0(x, y) := x = y,

θ1(x, y) := E1(x, y) ∧ x 6= y ∧ ∀t[K(x, t, y)→ E1(x, t)],

θi(x, y) := Ei(x, y) ∧ ¬Ei−1(x, y) ∧ ∀t[K(x, t, y)→ Ei(x, t)], 2 ≤ i ≤ s+ 1,

θj(x, y) := E2s+m+2−j(x, y) ∧ ¬E2s+m+1−j(x, y) ∧ ∀t[K(x, t, y)→ E2s+m+2−j(x, t)],

where s+m+ 1 ≤ j ≤ 2s+m,

θ2s+m+1(x, y) := E1(x, y) ∧ x 6= y ∧ ∀t[K(y, t, x)→ E1(x, t)].

There remain m − 1 convex classes, where there are no elements lying in the algebraic closure
of the element a, de�ning additionally m− 1 binary isolating formulas. These formulas are de�ned
as follows:

θl(x, y) := ¬Es+1(x, y) ∧ ∀t[K(x, t, y) ∧ ¬Es(x, t) ∧ ¬Es+1(t, y)→ ∨l−1
k=s+1θk(x, t)],

where s+ 2 ≤ l ≤ s+m.

Thus, we get 2s+ 3 + (m− 1) = 2s+m+ 2 binary isolating formulas, and we have de�ned the
formulas, so that

K0(θ0(a,M), θ1(a,M), θ2(a,M), . . . , θ2s+m(a,M), θ2s+m+1(a,M)).

holds for any a ∈M .
Prove now the commutativity. First, it is obvious that 0·k = k·0 = {k} for any 0 ≤ k ≤ 2s+m+1.

Suppose further that k1 6= 0 and k2 6= 0.
Case 1. k1 + k2 = 2s+m+ 2.
If k1 = 1, then clearly k2 = 2s+m+ 1 and each of the formulas θk1(x, y) and θk2(x, y) contains,

as a conjunctive member, the formula E1(x, y), i.e. the formula E1(x, y) is compatible with

∃t[θk1(x, t) ∧ θk2(t, y)].

We have: for any t, satisfying the formula θk1(x, t), it follows that t ∈ E1(x,M) and t is to the
right of the element x. Considering an arbitrary element y satisfying the formula θk2(t, y), we obtain
that y ∈ E1(t,M) and y is to the left of the element t, i.e. we obtain that the formula

∃t[θk1(x, t) ∧ θk2(t, y)]

is compatible with every formula of the list of formulas with labels {0, 1, 2s+m+1}. Consequently,
k1 · k2 = {0, 1, 2s+m+ 1}. We can show similarly that k2 · k1 = {0, 1, 2s+m+ 1}.

If k1 = l for some 2 ≤ l ≤ s + 1, we have k2 = 2s + m + 2 − l. Then, each of the formulas
θk1(x, y) and θk2(x, y) contains as a conjunctive member the formula

El(x, y) ∧ ¬El−1(x, y).

We have the following: t ∈ El(x,M)\El−1(x,M) and t is in this class to the right of the element
x; y ∈ El(t,M) \ El−1(t,M) and y is in this class to the left of the element t. Whence we obtain
that

k1 · k2 = k2 · k1 = {0, 1, . . . , l, 2s+m+ 2− l, . . . , 2s+m+ 1}.
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We can show similarly that

k2 · k1 = {0, 1, . . . , l, 2s+m+ 2− l, . . . , 2s+m+ 1}.

Suppose now that s + 2 ≤ k1 ≤ s + m. Then, k2 = 2s + m + 2 − k1, i.e. we also have
s + 2 ≤ k2 ≤ s + m and each of the formulas θk1(x, y) and θk2(x, y) contains as a conjunctive
member the formula ¬Es+1(x, y).

We have the following: t lies in the (k1−s)-th Es+1-class from Es+1(x,M); y lies in the (k2−s)-th
Es+1-class from Es+1(t,M). Then, we obtain that y lies in the (k1 + k2− 2s− 1)-th Es+1-class from
Es+1(x,M). But k1 + k2 − 2s− 1 = m+ 1, i.e. y falls into Es+1(x,M), whence

k1 · k2 = {0, 1, . . . , s+ 1, s+m+ 1, . . . , 2s+m+ 1}.

We can show similarly that

k2 · k1 = {0, 1, . . . , s+ 1, s+m+ 1, . . . , 2s+m+ 1}.

Let now s + m + 1 ≤ k1 ≤ 2s + m + 1. Then, obviously 1 ≤ k2 ≤ s + 1. If k1 = l for some
s+m+ 1 ≤ l ≤ 2s+m+ 1, we can show similarly that

k1 · k2 = k2 · k1 = {0, 1, . . . , 2s+m+ 2− l, s+m+ 1, . . . , l}.

Case 2. k1 + k2 < 2s+m+ 2.
First, suppose that 1 ≤ k1 ≤ s + 1. If 1 ≤ k2 ≤ s + 1, then we have: t ∈ El1(x,M) for

some 1 ≤ l1 ≤ s + 1 and t is in this class to the right of the element x; y ∈ El2(t,M) for some
1 ≤ l2 ≤ s + 1 and y is in this class to the right of the element t. Then, we obtain that if l1 ≥ l2,
y ∈ El1(x,M) and consequently k1 · k2 = k2 · k1 = {l1}. If l1 < l2, then y ∈ El2(x,M), and
consequently k1 · k2 = k2 · k1 = {l2}.

If s+ 2 ≤ k2 ≤ s+m, then we have: t ∈ El(x,M) for some 1 ≤ l ≤ s+ 1, and y ∈ ¬Es+1(t,M),
whence we obtain ¬Es+1(x, y), i.e. k1 · k2 = k2 · k1 = {k2}.

Suppose now that k2 > s + m. We have the following: t ∈ El1(x,M) for some 1 ≤ l1 ≤ s + 1
and t is in this class to the right of the element x; y ∈ El2(t,M) for some 1 ≤ l2 ≤ s+ 1 and y is in
this class to the left of the element t. And the case l1 = l2 is impossible, since k1 + k2 < 2s+m+ 2.
If l1 > l2, then k1 · k2 = k2 · k1 = {l1}. If l1 < l2, then k1 · k2 = k2 · k1 = {l2}.

Other cases are considered similarly.
Case 3. k1 + k2 > 2s+m+ 2.
In this case k1 > 1 and k2 > 1 (since otherwise we would obtain that k1 + k2 ≤ 2s+m+ 2).
If 2 ≤ k2 ≤ s+1 then k2 > s+m+1. We have the following: t ∈ El1(x,M) for some 2 ≤ l1 ≤ s+1

and t is in this class to the right of the element x; y ∈ El2(t,M) for some 2 ≤ l2 ≤ s and y is in this
class to the left of the element t. And the case l1 = l2 is impossible, since k1 + k2 > 2s+m+ 2. If
l1 > l2 then k1 · k2 = k2 · k1 = {l1}. If l1 < l2 then k1 · k2 = k2 · k1 = {l2}.

Suppose now that s+2 ≤ k1 ≤ s+m. Then, k2 > s+m. We have the following: t ∈ ¬Es+1(x,M)
and y ∈ El(t,M) for some 2 ≤ l ≤ s+ 1, whence we obtain k1 · k2 = k2 · k1 = {k1}.

Let now s + m + 1 ≤ k1 ≤ 2s + m + 1. If 2 ≤ k2 ≤ s + 1, we have that t ∈ El1(x,M) for
some 2 ≤ l1 ≤ s + 1 and t is in the this class to the left of the element x; y ∈ El2(t,M) for some
2 ≤ l2 ≤ s and y is in this class to the right of the element t. And the case l1 = l2 is impossible, since
k1 + k2 > 2s+m+ 2. If l1 > l2, then k1 · k2 = k2 · k1 = {l1}. If l1 < l2, then k1 · k2 = k2 · k1 = {l2}.

If s+ 2 ≤ k2 ≤ s+m, then we have: t ∈ El(x,M) for some 1 ≤ l ≤ s+ 1, and y ∈ ¬Es+1(t,M),
whence we obtain ¬Es+1(x, y), i.e. k1 · k2 = k2 · k1 = {k2}.

Suppose now that k2 > s + m. We have the following: t ∈ El1(x,M) for some 1 ≤ l1 ≤ s + 1
and t is in this class to the left of the element x; y ∈ El2(t,M) for some 1 ≤ l2 ≤ s + 1 and y is
in this class to the left of the element t. If l1 ≥ l2, then k1 · k2 = k2 · k1 = {l1}. If l1 < l2, then
k1 · k2 = k2 · k1 = {l2}.
Corollary 2.2. The algebra PMs,m is ∃-maximally absorbing if and only if m = 1.
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