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MIKHAIL L'VOVICH GOLDMAN

Doctor of physical and mathematical sciences, Professor
Mikhail L'vovich Goldman passed away on July 5, 2025, at the
age of 80 years.

Mikhail L'vovich was an internationally known expert in sci-
enceand education. His fundamental scienti�c articles and text
books in various�elds of the theory of functions of several variable-
sand functional analysis, the theory of approximation of functions,
embedding theorems and harmonic analysis are a signi�cant con-
tribution to the development of mathematics.

Mikhail L'vovich was born on Aprill 13, 1945 in Moscow. In
1963, he graduated from School No. 128 in Moscow with a gold
medal and entered the Physics Faculty of the Lomonosov Moscow
State University. He graduated in 1969 and became a postgradu-
ate student in the Mathematics Department. In 1972, he defended
his PhD thesis "On integral representations and Fourier series of

di�erentiable functions of several variables" under the supervision of Professor Ilyin Vladimir Alek-
sandrovich, and in 1988, his doctoral thesis "Study of spaces of di�erentiable functions of several
variables with generalized smoothness" at the S.L. Sobolev Institute of Mathematics in Novosibirsk.
Scienti�c degree "Professor of Mathematics" was awarded to him in 1991.

From 1974 to 2000 M.L. Goldman was successively an Assistant Professor, Full Professor, Head
of the Mathematical Department at the Moscow Institute of Radio Engineering, Electronics and
Automation (technical university). Since 2000 he was a Professor of the Department of Theory
of Functions and Di�erential Equations, then of the S.M. Nikol'skii Mathematical Institute at the
Patrice Lumumba Peoples' Friendship University of Russia (RUDN University).

Research interests of M.L. Goldman were: the theory of function spaces, optimal embeddings,
integral inequalities, spectral theory of di�erential operators.Among the most important scienti�c
achievements of M.L. Goldman, we note his research related to the optimal embedding of spaces
with generalized smoothness, exact conditions for the convergence of spectral decompositions, de-
scriptions of the integral and di�erential properties of generalized potentials of the Bessel and Riesz
types, exact estimates for operators on cones, descriptions of optimal spaces for cones of functions
with monotonicity properties.

M.L. Goldman has published more than 150 scienti�c articles in central mathematical journals.
He is a laureate of the Moscow government competition, a laureate of the RUDN University Prize in
Science and Innovation, and a laureate of the RUDN University Prize for supervision of postgraduate
students. Under the supervision of Mikhail L'vovich 11 PhD theses were defended. His pupilss
are actively involved in professional work at leading universities and research institutes in Russia,
Kazakhstan, Ethiopia, Rwanda, Colombia, and Mongolia.

Mikhail L'vovich has repeatedly been a guest lecturer and guest professor at universities in
Russia, Germany, Sweden, Great Britain, etc., and an invited speaker at many international con-
ferences. Mikhail L'vovich was not only an excellent mathematician and teacher (he always spoke
about mathematics and its teaching with great passion), but also a man of the highest culture and
erudition, with a deep knowledge of history, literature and art, a very bright, kind and responsive
person. This is how he will remain in the hearts of his family, friends, colleagues and students.

The Editorial Board of the Eurasian Mathematical Journal expresses deep condolences to the
family, relatives and friends of Mikhail L'vovich Goldman.
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Abstract. In the paper there are investigated the oscillatory properties of a 2nth order di�erential
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conditions, ensuring the existence of a certain combination of boundary values at in�nity and at
zero for the function involved in this inequality.
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1 Introduction

Let I = (0,∞), 1 < p, q < ∞, 1
p

+ 1
p′

= 1, λ > 0, and n > 1 be an integer. Let u be a positive
function continuous on the interval I. Suppose that v is a positive function in�nitely di�erentiable
on I.

Let W n
p,v ≡ W n

p,v(I) represent the space of functions f : I → R possessing weak derivatives up

to the nth order on the interval I, satisfying ‖f (n)‖p,v < ∞, where ‖f‖p,v =

(∞∫
0

v(t)|f(t)|pdt
) 1

p

denotes the norm of the weighted space Lp,v(I). Under certain conditions on the function v, we
observe that C∞0 (I) ⊂ W n

p,v(I), where C∞0 (I) denotes the set of all functions in�nitely di�erentiable

and compactly supported on I. Let W̊ n
p,v ≡ W̊ n

p,v(I) denote the closure of the set C∞0 (I) with respect

to the norm ‖f (n)‖p,v.
In the paper there are discussed oscillatory properties of the following 2nth order di�erential

equation
(−1)n(v(t)y(n)(t))(n) − λu(t)y(t) = 0, t ∈ I, (1.1)

and spectral properties of the self-adjoint di�erential operator L generated by the di�erential ex-
pression

ly(t) = (−1)n
1

u(t)
(v(t)y(n)(t))(n), (1.2)

in the space L2,u(I) equipped with the inner product (f, g)2,u =
∞∫
0

f(t)g(t)u(t)dt.



Oscillatory and spectral analysis of higher-order di�erential operators 21

In the qualitative analysis of di�erential equations, there exist e�ective techniques for determin-
ing the oscillatory behavior of second-order equations of the form:

(v(t)y′(t))′ − u(t)y(t) = 0, t ∈ I.

However, extending these methods to higher-order equations poses challenges. Recent studies have
explored approaches suited for higher-order equations, often by selecting one of the coe�cients to be
a power function (see, e.g., [2], [3], [20], and [21]). In this paper, we employ the variational method.
This method relies on establishing a connection between the oscillatory properties of equation (1.1)
and characterizations of the following inequality: ∞∫

0

u(t)|f(t)|qdt

 1
q

≤ C

 ∞∫
0

v(t)|f (n)(t)|pdt

 1
p

, f ∈ W̊ n
p,v(I). (1.3)

This approach allows us to relax the requirement that the weights in the equation must be power
functions exclusively. Furthermore, we derive explicit conditions for oscillation and spectral prop-
erties in terms of the coe�cients u and v of equation (1.1) and the operator L. Inequality (1.3) is a
generalization of the famous Hardy inequality, which has a long-standing history (see, e.g., [9]). Its
di�erent extensions and applications have evolved into an independent area known as the �theory of
Hardy-type inequalities� with numerous papers being published annually (see, e.g., the most recent
works [12], [17], and [22]).

The investigation of inequality (1.3) hinges on the behavior of the function v at the endpoints
of the interval I. According to [10] and [16], if v1−p′ /∈ L1(1,∞), then there exists f ∈ W n

p,v such

that the limits lim
t→∞

f (i)(t) do not exist for all i = 0, 1, ..., n − 1; if v1−p′ ∈ L1(0, 1), then for any

f ∈ W n
p,v the limits lim

t→0+
f (i)(t) ≡ f (i)(0) exist for all i = 0, 1, ..., n − 1. The oscillation of equation

(1.1) under the conditions v1−p′ /∈ L1(1,∞) and v1−p′ ∈ L1(0, 1) was investigated in [14] using the
variational method, as will be done here. This case can be termed the �standard case�, since for
the nth order inequality (1.3), there exist precisely n boundary conditions at the endpoints of the
interval I, namely no conditions at in�nity and n �nite limits at zero. The spectral properties of
the operator L in this �standard case� were examined in paper [18].

From [10] and [16] it also follows that if v1−p′ ∈ L1(1,∞) and tp
′
v1−p′ /∈ L1(1,∞), then for any

f ∈ W n
p,v there exists exactly one limit lim

t→∞
f (n−1)(t) ≡ f (n−1)(∞). Therefore, together with the

above condition for v at zero v1−p′ ∈ L1(0, 1), they entail n+ 1 conditions at the endpoints:

f (i)(0) = 0, i = 0, 1, ..., n− 1, and f (n−1)(∞) = 0.

This �overdetermined� case was studied in work [7].
In our study, we explore equation (1.1) and the operator L under the conditions:

tp
′(n−1)v1−p′ ∈ L1(1,∞), tp

′(n−2)v1−p′ /∈ L1(0, 1), and tp
′(n−1)v1−p′ ∈ L1(0, 1), (1.4)

which, according to [10] and [16], guaranty the existence of another n + 1 values lim
t→0+

f(t) ≡ f(0)

and lim
t→∞

f (i)(t) ≡ f (i)(∞), i = 0, 1, ..., n− 1, at the endpoints of the interval I, so that

W̊ n
p,v(I) = {f ∈ W n

p,v(I) : f(0) = 0 and f (i)(∞) = 0, i = 0, 1, ..., n− 1}. (1.5)

Note that the same problems as here, but speci�cally for n = 2, where the di�erential equation
and operator are of fourth-order, were considered in the paper [15]. Consequently, this paper
expands its scope to include the problems for any n ≥ 2.
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The paper is organized as follows. In Section 2, we present all the main results regarding the
oscillatory properties of equation (1.1) and the spectral properties of the operator L. Additionally,
Section 2 encompasses the characterizations of inequality (1.3). Section 3 o�ers a proof concerning
inequality (1.3). In Section 4, we compile the proofs of the main results concerning equation (1.1)
and the operator L. In Section 5, we improve some results obtained earlier.

Let us present notations used in the paper. Assume that v(t) = v(t)

tp(n−1) , t ∈ I. Since

tp
′(n−1)v1−p′ = tp

′(n−1)v1−p′tp(n−1)(1−p′) = v1−p′t(n−1)(p′+p−pp′) = v1−p′ ,

from (1.4) we have that v1−p′ ∈ L1(I). Therefore, for any τ ∈ I there exists kτ such that

τ∫
0

v1−p′(t)dt = kτ

∞∫
τ

v1−p′(t)dt, (1.6)

in addition, kτ increases in τ , lim
τ→0+

kτ = 0, and lim
τ→∞

kτ =∞.

The symbol A � B means A ≤ CB with some constant C. Additionally, we de�ne χM as the
characteristic function of a set M .

2 Oscillatory properties of equation (1.1) and spectral properties of the

operator L

Equation (1.1) is termed oscillatory at zero if, for any T > 0, there exists a (non-trivial) solution
of this equation possessing more than one zero with multiplicity n to the left of T ([4, p. 69]).
Otherwise, equation (1.1) is termed non-oscillatory at zero.

Equation (1.1) is termed strongly oscillatory or non-oscillatory at zero if it is oscillatory or
non-oscillatory at zero for all values λ > 0, respectively.

The oscillatory properties of di�erential equation (1.1) can be established using the variational
method, relying on the following well-known statement.

Lemma A. Equation (1.1) is non-oscillatory at zero if and only if there exists T > 0 such that

T∫
0

(
v(t)|f (n)(t)|2 − λu(t)|f(t)|2

)
dt ≥ 0, f ∈ W̊ n

2,v(0, T ).

It is obvious that Lemma A can be reformulated as follows.

Lemma 2.1. (i) Equation (1.1) is non-oscillatory at zero if and only if there exists T > 0 and
CT > 0, depending only on T, such that the inequality

T∫
0

λu(t)|f(t)|2dt ≤ λCT

T∫
0

v(t)|f (n)(t)|2dt, f ∈ W̊ n
2,v(0, T ), (2.1)

holds with the least constant λCT such that 0 < λCT ≤ 1;
(ii) Equation (1.1) is oscillatory at zero if and only if for any T > 0 the least constant in (2.1) is
such that λCT > 1.

Inequality (2.1) is a particular case of inequality (1.3), the characterizations of which are provided
in the following theorem.
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Theorem 2.1. Let 1 < p ≤ q <∞ and (1.4) hold. For τ ∈ I suppose that

B1(τ) = sup
z>τ

 z∫
τ

u(t)dt

 1
q
 ∞∫

z

(s− z)p
′(n−1)v1−p′(s)ds

 1
p′

,

B2(τ) = sup
z>τ

 z∫
τ

(z − t)q(n−1)u(t)dt

 1
q
 ∞∫

z

v1−p′(s)ds

 1
p′

,

B3(τ) =
1

τ

 τ∫
0

tqu(t)dt

 1
q
 ∞∫

τ

(s− τ)p
′(n−1)v1−p′(s)ds

 1
p′

,

B4(τ) =
1

τ

 τ∫
0

tq(τ − t)q(n−2)u(t)dt

 1
q
 ∞∫

τ

(s− τ)p
′
v1−p′(s)ds

 1
p′

,

F1(τ) = sup
0<z<τ

1

τn−1

 z∫
0

tq(τ − t)q(n−2)u(t)dt

 1
q
 τ∫

z

(τ − s)p′sp′(n−2)v1−p′(s)ds

 1
p′

,

F2(τ) = sup
0<z<τ

1

τn−1

 τ∫
z

(τ − t)q(n−1)u(t)dt

 1
q
 z∫

0

sp
′(n−1)v1−p′(s)ds

 1
p′

,

B(τ) = max{B1(τ), B2(τ), B3(τ), B4(τ)}, F (τ) = max{F1(τ), F2(τ)},

BF = inf
τ∈I

max{B(τ), F (τ)},

εl(n) =
4−

1
p

(n− 1)!
, εr(n) =

1

(n− 1)!

(
(n− 1)2n−2 + (n+ 8)p

1
q (p′)

1
p′
)
.

Then for the least constant C in (1.3) the estimates

εl(n)BF ≤ C ≤ εr(n)BF, (2.2)

1

(n− 1)!
sup
τ∈I

(1 + kp−1
τ )−

1
pF (τ) ≤ C ≤ εr(n)F (τ0) (2.3)

hold, where
τ0 = inf{τ > 0 : B(τ) ≤ F (τ)}. (2.4)

By following the same steps as in the proof of Lemma 4.3 in [7], using Lemma 2.1, we can deduce
the following statement.

Lemma 2.2. Let CT be the least constant in (2.1).
(i) Equation (1.1) is strongly non-oscillatory at zero if and only if lim

T→0+
CT = 0.

(ii) Equation (1.1) is strongly oscillatory at zero if and only if CT =∞ for any T > 0.

Based on Lemma 2.2 and Theorem 2.1, we establish the criteria for strong oscillation and non-
oscillation of equation (1.1) as follows:
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Theorem 2.2. Let t2(n−1)v−1 ∈ L1(I) and t2(n−2)v−1 /∈ L1(0, 1).
(i) Equation (1.1) is strongly non-oscillatory at zero if and only if

lim
τ→0+

sup
0<z<τ

z∫
0

t2u(t)dt

τ∫
z

s2(n−2)v−1(s)ds = 0, (2.5)

lim
τ→0+

sup
0<z<τ

τ∫
z

u(t)dt

z∫
0

s2(n−1)v−1(s)ds = 0. (2.6)

(ii) Equation (1.1) is strongly oscillatory at zero if and only if

lim
τ→0+

sup
0<z<τ

z∫
0

t2u(t)dt

τ∫
z

s2(n−2)v−1(s)ds =∞ (2.7)

or

lim
τ→0+

sup
0<z<τ

τ∫
z

u(t)dt

z∫
0

s2(n−1)v−1(s)ds =∞. (2.8)

Let the minimal di�erential operator Lmin be generated by di�erential expression (1.2), i.e.,
Lminy = ly is an operator with the domain D(Lmin) = C∞0 (I). It is known that all self-adjoint
extensions of the minimal di�erential operator Lmin have the same spectrum ([4]).

Now, we present conditions under which any self-adjoint extension L of the operator Lmin has a
spectrum which is discrete and bounded below. The signi�cance of studying these spectral properties
is fully elucidated in [5].

The relationship between the non-oscillation of equation (1.1) and the above spectral properties
of the operator L is expounded in the following statement ([4]).

Lemma B. The operator L is bounded below and has a discrete spectrum if and only if equation
(1.1) is strongly non-oscillatory.

On the basis of Lemma B and Theorem 2.2, we obtain the following statement.

Theorem 2.3. Let the assumptions of Theorem 2.2 hold. Then the operator L has a spectrum
discrete and bounded below if and only if both (2.5) and (2.6) hold.

If the operator Lmin is nonnegative, it possesses the Friedrichs extension LF . According to
Theorem 2.3, the operator LF exhibits a discrete spectrum if and only if both conditions (2.5) and
(2.6) are satis�ed.

For p = q = 2 inequality (1.3) can be rewritten as (f, f)2C
−2 ≤ (LFf, f)2,u. Then from Theorem

2.3 we have the following theorem, where the introduced above values BF , εl(n), and εr(n) are taken
for p = q = 2.

Theorem 2.4. Let the assumptions of Theorem 2.2 hold. Then the operator LF is positive de�nite

if and only if BF <∞. Moreover, εl(n)BF ≤ λ
− 1

2
1 ≤ εr(n)BF holds for the smallest eigenvalue λ1

of the operator LF .

By Rellih's lemma ([11, p. 183]), the operator L−1
F possesses a spectrum that is discrete and

bounded below in L2,u if and only if the space equipped with the norm (LFf, f)
1
2
2,u is compactly

embedded into the space L2,u. Consequently, we derive another statement from Theorem 2.3.
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Theorem 2.5. Under the assumptions of Theorem 2.2, the embedding W̊ n
2,v(I) ↪→ L2,u is compact,

and the operator L−1
F is uniformly continuous on L2,u if and only if both conditions (2.5) and (2.6)

are satis�ed.

Let the operator L−1
F be completely continuous on L2,u. Suppose that {λk}∞k=1 are the eigenvalues

and {ϕk}∞k=1 is the corresponding complete orthonormal system of eigenfunctions of the operator
L−1
F . Assume that

D(t) =

∞∫
t

 t∫
0

(s− x)n−2dx

2

v−1(s)ds+

t∫
0

 s∫
0

(s− x)n−2dx

2

v−1(s)ds.

Theorem 2.6. Let the assumptions of Theorem 2.2 hold. Let (2.5) and (2.6) hold.
(i)

1

((n− 2)!)2
D(t) ≤

∞∑
k=1

|ϕk(t)|2

λk
≤ 2

((n− 2)!)2
D(t). (2.9)

(ii) The operator L−1
F is nuclear if and only if

∞∫
0

u(t)D(t)dt <∞, and for the nuclear norm ‖L−1
F ‖σ1

of the operator L−1
F the relation

1

((n− 2)!)2

∞∫
0

u(t)D(t)dt ≤ ‖L−1
F ‖σ1 =

∞∑
k=1

1

λk
≤ 2

((n− 2)!)2

∞∫
0

u(t)D(t)dt (2.10)

holds.

3 Proof of Theorem 2.1

Let −∞ ≤ a < b ≤ ∞. To prove Theorem 2.1 we use characterizations of the standard weighted
Hardy inequality provided in the following statement (see, e.g., [9]).

Theorem A. Let 1 < p ≤ q <∞.
(i) The inequality  b∫

a

u(t)

∣∣∣∣∣∣
t∫

a

f(s)ds

∣∣∣∣∣∣
q

dt


1
q

≤ C

 b∫
a

v(t) |f(t)|p dt


1
p

(3.1)

holds if and only if

A+ = sup
a<z<b

 b∫
z

u(t)dt


1
q
 z∫

a

v1−p′(s)ds

 1
p′

<∞,

moreover,

A+ ≤ C ≤ p
1
q (p′)

1
p′A+,

where C is the least constant in (3.1).
(ii) The inequality  b∫

a

u(t)

∣∣∣∣∣∣
b∫
t

f(s)ds

∣∣∣∣∣∣
q

dt


1
q

≤ C

 b∫
c

v(t) |f(t)|p dt


1
p

(3.2)
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holds if and only if

A− = sup
a<z<b

 z∫
a

u(t)dt

 1
q
 b∫

z

v1−p′(s)ds


1
p′

<∞,

moreover,

A− ≤ C ≤ p
1
q (p′)

1
pA−,

where C is the least constant in (3.2).

We also need the statement, which follows from the results of the works [19] and [6]. Let

B1 = sup
a<z<b

 z∫
a

(z − t)q(n−1)u(t)dt

 1
q
 b∫

z

v1−p′(s)ds


1
p′

,

B2 = sup
a<z<b

 z∫
a

u(t)dt

 1
q
 b∫

z

(s− z)p
′(n−1)v1−p′(s)ds


1
p′

.

Theorem B. Let 1 < p ≤ q <∞. The inequality b∫
a

u(t)

∣∣∣∣∣∣
b∫
t

(s− t)n−1f(s)ds

∣∣∣∣∣∣
q

dt


1
q

≤ C

 b∫
a

v(t) |f(t)|p dt


1
p

(3.3)

holds if and only if max{B1, B2} <∞. Moreover,

max{B1, B2} ≤ C ≤ 8p
1
q (p)

1
p′ max{B1, B2},

where C is the least constant in (3.3).
To establish Theorem 2.1, we adopt the approach outlined in the proof of Theorem 2.2 in [13].

Proof of Theorem 2.1. Su�ciency. By the conditions, we have (1.5). Let τ ∈ I. We assume that

f(t) =
t∫

0

f ′(x)dx for 0 < t < τ , f(t) = −
∞∫
t

f ′(x)dx for t > τ and f ′(x) = (−1)n−1

(n−2)!

∞∫
x

(s−x)n−2f (n)(s)ds

for x ∈ I. Then for f ∈ W̊ n
p,v(I) we have

f(t) =
(−1)n

(n− 1)!

∞∫
t

(s− t)n−1f (n)(s)ds (3.4)

for t > τ . Moreover, we have

f(t) =
(−1)n−1

(n− 2)!

t∫
0

∞∫
x

(s− x)n−2f (n)(s)dsdx =
(−1)n−1

(n− 2)!

 t∫
0

t∫
x

(s− t)n−2f (n)(s)dsdx

+

t∫
0

τ∫
t

(s− x)n−2f (n)(s)dsdx+

t∫
0

∞∫
τ

(s− x)n−2f (n)(s)dsdx


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=
(−1)n−1

(n− 2)!

 t∫
0

f (n)(s)

s∫
0

(s− x)n−2dxds+

τ∫
t

f (n)(s)

t∫
0

(s− x)n−2dxds

+

∞∫
τ

f (n)(s)

t∫
0

(s− x)n−2dxds

 (3.5)

=
(−1)n−1

(n− 2)!

 t∫
0

f (n)(s)
sn−1

n− 1
ds+

τ∫
t

f (n)(s)sn−1

(
1−

(
1− t

s

)n−1
)

n− 1
ds

+

∞∫
τ

f (n)(s)sn−1

(
1−

(
1− t

s

)n−1
)

n− 1
ds

 .
Assuming g(s) = f (n)(s)sn−1, the last equality gives that

f(t) =
(−1)n

(n− 1)!

− ∞∫
τ

g(s)

(
1−

(
1− t

s

)n−1
)
ds

−
τ∫
t

g(s)

(
1−

(
1− t

s

)n−1
)
ds−

t∫
0

g(s)ds

 . (3.6)

Since
∞∫
0

f ′(x)dx = 0, we get

f(t) = c1

∞∫
0

∞∫
x

(s− x)n−2f (n)(s)dsdx = c2

∞∫
0

f (n)(s)sn−1ds = 0,

which gives that
∞∫
0

g(s)ds = 0. Therefore, for f ∈ W̊ n
p,v(I) from (3.6) we get

f(t) =
(−1)n

(n− 1)!

− ∞∫
τ

g(s)

(
1−

(
1− t

s

)n−1
)
ds

−
τ∫
t

g(s)

(
1−

(
1− t

s

)n−1
)
ds−

t∫
0

g(s)ds+

(
1−

(
1− t

τ

)n−1
) ∞∫

0

g(s)ds


=

(−1)n

(n− 1)!

 ∞∫
τ

g(s)

((
1− t

s

)n−1

−
(

1− t

τ

)n−1
)
ds

−
τ∫
t

g(s)

((
1− t

τ

)n−1

−
(

1− t

s

)n−1
)
ds−

(
1− t

τ

)n−1
t∫

0

g(s)ds

 (3.7)
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for 0 < t < τ . Then, for f ∈ W̊ n
p,v(I) from (3.4) and (3.7) we obtain

(n− 1)!

(−1)n
f(t) = χ(0,τ)(t)

 ∞∫
τ

g(s)

((
1− t

s

)n−1

−
(

1− t

τ

)n−1
)
ds

−
τ∫
t

g(s)

((
1− t

τ

)n−1

−
(

1− t

s

)n−1
)
ds−

(
1− t

τ

)n−1
t∫

0

g(s)ds


+ χ(τ,∞)(t)

∞∫
t

(s− t)n−1 g(s)

sn−1
ds. (3.8)

Since
∞∫

0

v(s)|f (n)(s)|pds =

∞∫
0

v(s)

sp(n−1)
|f (n)(s)sn−1|pds =

∞∫
0

v(s)|g(s)|p,

the condition f ∈ W̊ n
p,v(I) is equivalent to the condition g ∈ L̃p,v(I), where L̃p,v(I) =

{
g ∈ Lp,v(I) :

∞∫
0

g(s)ds = 0
}
. Taking into account that for s > τ

(
1− t

s

)n−1

−
(

1− t

τ

)n−1

≤ (n− 1)
(s− t)n−2

sn−2

(
t

τ
− t

s

)

≤ (n− 1)2n−3 [(s− τ)n−2 + (τ − t)n−2] t(s− τ)

sn−1τ

= (n− 1)2n−3

[
(s− τ)n−1t

sn−1τ
+

(s− τ)(τ − t)n−2t

sn−1τ

]
and for τ > s (

1− t

τ

)n−1

−
(

1− t

s

)n−1

≤ (n− 1)
(τ − t)n−2(τ − s)t

τn−1s
,

by (3.8) inequality (1.3) can be written in the form

1

(n− 1)!

 τ∫
0

u(t)

∣∣∣∣∣∣(n− 1)2n−3 t

τ

∞∫
τ

(s− τ)n−1 g(s)

sn−1
ds

+ (n− 1)2n−3 t

τ
(τ − t)n−2

∞∫
τ

(s− τ)
g(s)

sn−1
ds

− (τ − t)n−1

τn−1

t∫
0

g(s)ds −(n− 1)
t

τn−1
(τ − t)n−2

τ∫
t

(τ − s)g(s)

s
ds

∣∣∣∣∣∣
q

dt

+

∞∫
τ

u(t)

∣∣∣∣∣∣
∞∫
t

(s− t)n−1 g(s)

sn−1
ds

∣∣∣∣∣∣
q

dt


1
q

 ≤ C

 ∞∫
0

v(s)|g(s)|pds

 1
p

. (3.9)
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In the left-hand side of (3.9) applying the Minkowski inequality for sums, then the H�older inequality,
Theorem A, and Theorem B, we get

 ∞∫
0

u(t)|f(t)|qdt

 1
q

≤ 1

(n− 1)!

(
p

1
q (p′)

1
p′F1(τ) + (n− 1)p

1
q (p′)

1
p′F2(τ)

) τ∫
0

v(s)|f (n)(s)|pds

 1
p

+
1

(n− 1)!

(
(n− 1)2n−3B3(τ) + (n− 1)2n−3B4(τ)

+ 8 p
1
q (p′)

1
p′ max{B1(τ), B2(τ)}

) ∞∫
τ

v(s)|f (n)(s)|pds

 1
p

≤ 1

(n− 1)!

(
n p

1
q (p′)

1
p′F (τ) +

(
(n− 1)2n−2 + 8p

1
q (p′)

1
p′
)
B(τ)

) ∞∫
0

v(s)|f (n)(s)|pds

 1
p

≤ εr(n) max{B(τ), F (τ)}

 ∞∫
0

v(s)|f (n)(s)|pds

 1
p

. (3.10)

Since the left-hand side of (3.10) is independent of τ ∈ I, (3.10) implies the right estimate in (2.2).
Now, let us prove the right estimate in (2.3). Since

lim
τ→∞

F1(τ) = lim
τ→∞

sup
0<z<τ

 z∫
0

tq
(

1− t

τ

)q(n−2)

u(t)dt

 1
q

×

 τ∫
z

(
1− s

τ

)p′
sp
′(n−2)v1−p′(s)ds

 1
p′

= sup
z>0

 z∫
0

tqu(t)dt

 1
q
 ∞∫

z

sp
′(n−2)v1−p′(s)ds

 1
p′

,

we have that

B4(τ) =

 τ∫
0

tq
(

1− t

τ

)q(n−2)

u(t)dt

 1
q

τn−3

 ∞∫
τ

(s− τ)p
′
v1−p′(s)ds

 1
p′

<

 τ∫
0

tqu(t)dt

 1
q
 ∞∫

τ

sp
′(n−2)v1−p′(s)ds

 1
p′

≤ lim
τ→∞

F1(τ). (3.11)
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For 0 < N < τ we obtain

B3(τ) <

 N∫
0

(
t

τ

)q
u(t)dt


1
q
 ∞∫

τ

sp
′(n−1)v1−p′(s)ds

 1
p′

+

 τ∫
N

(
t

τ

)q
u(t)dt

 1
q
 ∞∫

τ

sp
′(n−1)v1−p′(s)ds

 1
p′

≤

 N∫
0

(
t

τ

)q
u(t)dt


1
q
 ∞∫

τ

sp
′(n−1)v1−p′(s)ds

 1
p′

+

 τ∫
N

u(t)dt

 1
q
 ∞∫

τ

sp
′(n−1)v1−p′(s)ds

 1
p′

.

Since

lim
τ→∞

 N∫
0

(
t

τ

)q
u(t)dt


1
q
 ∞∫

τ

sp
′(n−1)v1−p′(s)ds

 1
p′

= 0,

then

B3(τ)�

 τ∫
N

u(t)dt

 1
q
 ∞∫

τ

sp
′(n−1)v1−p′(s)ds

 1
p′

for a su�ciently large τ > N . If lim
τ→∞

F2(τ) =∞, where

lim
τ→∞

F2(τ) = lim
τ→∞

sup
0<z<τ

 τ∫
z

(
1− t

τ

)q(n−1)

u(t)dt

 1
q
 z∫

0

sp
′(n−1)v1−p′(s)ds

 1
p′

= sup
z>0

 ∞∫
z

u(t)dt

 1
q
 z∫

0

sp
′(n−1)v1−p′(s)ds

 1
p′

,

then
∞∫
z

u(t)dt = ∞ for any z > 0. Therefore, B3(τ) < lim
τ→∞

F2(τ) = ∞ for a su�ciently large

τ > N . If lim
τ→∞

F2(τ) < ∞, then
∞∫
z

u(t)dt < ∞, which implies that lim
τ→∞

B3(τ) = 0, and we �nd

that B3(τ) < F (τ) for a su�ciently large τ . It is also obvious that Bi(τ) < F (τ), i = 1, 2.
Combining these estimates with the obtained estimates B3(τ) < F (τ) and (3.11), we have that
B(τ) ≤ F (τ) in some neighborhood of in�nity. Therefore, in relation (2.4) there exists τ0 > 0 such
that B(τ0) ≤ F (τ0). Consequently,

BF = inf
τ∈I

max{B(τ), F (τ)} ≤ F (τ0)

and the right estimate in (2.3) holds.
Necessity. Since v1−p′ ∈ L1(I), then (1.6) holds. For τ ∈ I we consider two sets L1 = {g ∈

Lp,v(0, τ) : g ≤ 0} and L2 = {g ∈ Lp,v(τ,∞) : g ≥ 0}. Repeating the proof of the necessary part
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of Theorem 1 in [8], for each g1 ∈ L1 we construct a function g2 ∈ L2 and for each g2 ∈ L2 we
construct a function g1 ∈ L1 such that g(t) = g1(t) for 0 < t ≤ τ and g(t) = g2(t) for t > τ belongs

to the set L̃p,v(I). For the constructed function g we have (see [8, (26)])
∞∫

0

v(t)|g(t)|pdt = (1 + kp−1
τ )

τ∫
0

v(t)|g1(t)|pdt = (1 + k1−p
τ )

∞∫
τ

v(t)|g2(t)|pdt <∞. (3.12)

Taking into account (3.8) for the function g ∈ L̃p,v(I), we have

1

(n− 1)!

 τ∫
0

u(t)

∣∣∣∣∣∣
∞∫
τ

g2(s)

((
1− t

s

)n−1

−
(

1− t

τ

)n−1
)
ds

+

τ∫
t

|g1(s)|

((
1− t

τ

)n−1

−
(

1− t

s

)n−1
)
ds+

(
1− t

τ

)n−1
t∫

0

|g1(s)|ds

∣∣∣∣∣∣
q

dt

+

∞∫
τ

u(t)

∣∣∣∣∣∣
∞∫
t

(s− t)n−1 g2(s)

sn−1
ds

∣∣∣∣∣∣
q

dt


1
q

 ≤ C

 ∞∫
0

v(s)|g(s)|pds

 1
p

. (3.13)

In the left-hand side of (3.13), all terms are nonnegative. Using the estimate for s > τ(
1− t

s

)n−1

−
(

1− t

τ

)n−1

≥
(

1− t

s

)n−1

−
(

1− t

s

)n−2(
1− t

τ

)
=

(s− t)n−2(s− τ)t

sn−1τ
≥ max

[
(s− τ)n−1t

sn−1τ
,
(s− τ)(τ − t)n−2t

sn−1τ

]
,

assuming that the function g ∈ L̃p,v(I) is constructed by the function g2 ∈ L2, from (3.12) and
(3.13), we have

1

(n− 1)!

 τ∫
0

u(t)

 t

τ

∞∫
τ

(s− τ)n−1 g2(s)

sn−1
ds

q

dt


1
q

=
1

(n− 1)!

 τ∫
0

tqu(t)dt

 1
q
1

τ

∞∫
τ

(s− τ)n−1 g2(s)

sn−1
ds


≤ C(1 + k1−p

τ )
1
p

 ∞∫
τ

v(t)|g2(t)|pdt

 1
p

,

1

(n− 1)!

 τ∫
0

u(t)

 t

τ
(τ − t)n−2

∞∫
τ

(s− τ)
g2(s)

sn−1
ds

q

dt


1
q

=
1

(n− 1)!

 τ∫
0

tq(τ − t)q(n−2)u(t)dt

 1
q
1

τ

∞∫
τ

(s− τ)
g2(s)

sn−1
ds


≤ C(1 + k1−p

τ )
1
p

 ∞∫
τ

v(t)|g2(t)|pdt

 1
p

,
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1

(n− 1)!

 ∞∫
τ

u(t)

 ∞∫
t

(s− t)n−1 g2(s)

sn−1
ds

q

dt


1
q

≤ C(1 + k1−p
τ )

1
p

 ∞∫
τ

v(t)|g2(t)|pdt

 1
p

.

Due to the arbitrariness of g2 ∈ L2, applying the reverse H�older inequality to the �rst two inequalities
and Theorem B to the last inequality, we obtain

1

(n− 1)!
max{B1(τ), B2(τ), B3(τ)B4(τ)} =

1

(n− 1)!
B(τ) ≤ C(1 + k1−p

τ )
1
p . (3.14)

Similarly, using the estimate for τ > s(
1− t

τ

)n−1

−
(

1− t

s

)n−1

≥ (τ − t)n−2(τ − s)t
τn−1s

,

for the function g ∈ L̃p,v(I) constructed by the function g1 ∈ L1, from (3.12) and (3.13) we have

1

(n− 1)!

 τ∫
0

u(t)

(τ − t)n−1

τn−1

t∫
0

|g1(s)|ds

q

dt


1
q

≤ C(1 + kp−1
τ )

1
p

 τ∫
0

v(t)|g1(t)|pdt

 1
p

,

1

(n− 1)!

 τ∫
0

u(t)

 t

τn−1
(τ − t)n−2

τ∫
t

(τ − s) |g1(s)|
s

ds

q

dt


1
q

≤ C(1 + kp−1
τ )

1
p

 τ∫
0

v(t)|g1(t)|pdt

 1
p

.

The latter, due to the arbitrariness of g1 ∈ L1, by Theorem A, gives that

1

(n− 1)!
F (τ) ≤ C(1 + kp−1

τ )
1
p . (3.15)

From (3.14) and (3.15) we �nd that

1

(n− 1)!
BF ≤ C inf

τ∈I

[
max{(1 + kp−1

τ )(1 + k1−p
τ )}

] 1
p ≤ 4

1
pC,

which yields the left estimate in (2.2). From (3.15) we get the left estimate in (2.3).

4 Proofs of Theorems 2.2 and 2.6

Theorems 2.3, 2.4, and 2.5 directly follow as corollaries from the combination of results presented
in Section 2 and Theorem 2.1 proved above. Here we present the proofs of Theorems 2.2 and 2.6.

For clarity, let us write the squared values F1(τ) and F2(τ) for p = q = 2 in the form:

F 2
1 (τ) = sup

0<z<τ

z∫
0

t2
(

1− t

τ

)2(n−2)

u(t)dt

τ∫
z

(
1− s

τ

)2

s2(n−2)v−1(s)ds,

F 2
2 (τ) = sup

0<z<τ

τ∫
z

(
1− t

τ

)2(n−1)

u(t)dt

z∫
0

s2(n−1)v−1(s)ds,

F 2(τ) = max{F 2
1 (τ), F 2

2 (τ)}.
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Proof of Theorem 2.2. (i) Suppose that equation (1.1) is strongly non-oscillatory at zero. Then by
Lemma 2.2, we have that lim

T→0+
CT = 0. From the left estimate in (2.3) we have

1

(n− 1)!
sup

0<τ<T
(1 + kτ )

−1F 2(τ) ≤ CT ,

which gives that
lim
T→0+

sup
0<τ<T

(1 + kτ )
−1F 2(τ) = 0.

Hence,
lim
τ→0+

(1 + kτ )
−1F 2(τ) = lim

τ→0+
F 2(τ) = 0,

i.e., lim
τ→0+

F 2
1 (τ) = lim

τ→0+
F 2

2 (τ) = 0. Thus,

0 = lim
τ→0+

F 2
1 (τ) ≥ lim

τ→0+
sup

0<z< τ
2

z∫
0

t2
(

1− t

τ

)2(n−2)

u(t)dt

τ
2∫

z

(
1− s

τ

)2

s2(n−2)v−1(s)ds

≥ 4−(n−1) lim
τ→0+

sup
0<z< τ

2

z∫
0

t2u(t)dt

τ
2∫

z

s2(n−2)v−1(s)ds,

i.e., (2.5) holds. Similarly, we prove that (2.6) also holds.
Inversely, let (2.5) and (2.6) hold. Since 1− t

τ
≤ 1 for 0 < t < τ , we obtain

0 = lim
τ→0+

sup
0<z<τ

z∫
0

t2u(t)dt

τ∫
z

s2(n−2)v−1(s)ds

≥ lim
τ→0+

sup
0<z<τ

z∫
0

t2
(

1− t

τ

)2(n−2)

u(t)dt

τ∫
z

(
1− s

τ

)2

s2(n−2)v−1(s)ds = lim
τ→0+

F 2
1 (τ).

Similarly, we �nd that lim
τ→0+

F 2
2 (τ) = 0, i.e., lim

τ→0+
F 2(τ) = 0. From the right estimate in (2.3) we

have
CT ≤ εr(n)F 2(τ0), 0 < τ0 < T. (4.1)

Therefore, we get
0 = εr(n) lim

T→0+
F 2(τ0) = εr(n) lim

τ→0+
F 2(τ) ≥ lim

T→0+
CT .

Thus, lim
T→0+

CT = 0 and, by Lemma 2.2, equation (1.1) is strongly non-oscillatory at zero.

(ii) Let equation (1.1) be strongly oscillatory at zero, then by Lemma 2.2, we have CT =∞ for
any T > 0. Consequently, from (4.1), we deduce lim

T→0+
F (τ0) = lim

τ→0+
F (τ) =∞. This indicates that

at least one of conditions (2.7) or (2.8) holds.



Oscillatory and spectral analysis of higher-order di�erential operators 34

Inversely, let (2.7) hold. Then

∞ = lim
τ
2
→0+

sup
0<z< τ

2

z∫
0

t2u(t)dt

τ
2∫

z

s2(n−2)v−1(s)ds

= lim
τ
2
→0+

sup
0<z< τ

2

z∫
0

t2u(t)4−(n−2)dt

τ
2∫

z

4−1s2(n−2)v−1(s)ds

≤ lim
τ
2
→0+

sup
0<z< τ

2

z∫
0

t2
(

1− t

τ

)2(n−2)

u(t)dt

τ
2∫

z

(
1− s

τ

)2

s2(n−2)v−1(s)ds

= lim
τ
2
→0+

F 2
1

(τ
2

)
= lim

τ→0+
F 2

1 (τ).

Thus, lim
τ→0+

F 2
1 (τ) =∞. Since 1

(n−1)!
sup

0<τ<T
(1 + kτ )

−1F 2
1 (τ) ≤ CT and

1

(n− 1)!
lim
T→0+

sup
0<τ<T

(1 + kτ )
−1F 2

1 (τ) ≥ 1

(n− 1)!
lim
τ→0+

(1 + kτ )
−1F 2

1 (τ) = lim
τ→0+

F 2
1 (τ),

from lim
τ→0+

F 2
1 (τ) = ∞ we get that CT = ∞ for any T > 0. Therefore, by Lemma 2.2, we conclude

that equation (1.1) is strongly oscillatory at zero. Arguing similarly, we prove that if (2.8) holds,
then equation (1.1) is strongly oscillatory at zero.

To prove Theorem 2.6 we need the following lemma.

Lemma 4.1. Let the assumptions of Theorem 2.2 hold. Then for t ∈ I

1

(n− 1)!
sup
τ∈I

D(t, τ) ≤ sup
f∈W̊n

2,v

|f(t)|
‖f (n)‖2,v

≤
√

2

(n− 1)!
inf
τ∈I

D(t, τ), (4.2)

where

D(t, τ) =

χ(0,τ)(t)(n− 1)2

∞∫
τ

 t∫
0

(s− x)n−2dx

2

v−1(s)ds

+ χ(τ,∞)(t)

∞∫
t

(s− t)2(n−1)v−1(s)ds+ χ(0,τ)(t)(n− 1)2

τ∫
t

 t∫
0

(s− x)n−2dx

2

v−1(s)ds

+χ(0,τ)(t)(n− 1)2

t∫
0

 s∫
0

(s− x)n−2dx

2

v−1(s)ds


1
2

.
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Proof of Lemma 4.1. From (3.4) and (3.5) for the function f ∈ W̊ n
2,v we have

f(t) =
(−1)n−1

(n− 1)!

(n− 1)χ(0,τ)

 t∫
0

f (n)(s)

s∫
0

(s− x)n−2dxds

+

τ∫
t

f (n)(s)

t∫
0

(s− x)n−2dxds +

∞∫
τ

f (n)(s)

t∫
0

(s− x)n−2dxds


−χ(τ,∞)(t)

∞∫
t

(s− t)n−1f (n)(s)ds

 . (4.3)

Applying the H�older inequality, we obtain

|f(t)| ≤ 1

(n− 1)!


(n− 1)χ(0,τ)(t)

 ∞∫
τ

 t∫
0

(s− x)n−2dx

2

v−1(s)ds


1
2

+ χ(τ,∞)(t)

 ∞∫
t

(s− t)2(n−1)v−1(s)ds

 1
2

×
 ∞∫

τ

v(s)|f (n)(s)|2ds

 1
2

+ (n− 1)χ(0,τ)(t)


 τ∫

t

 t∫
0

(s− x)n−2dx

2

v−1(s)ds


1
2

+

 t∫
0

 s∫
0

(s− x)n−2dx

2

v−1(s)ds


1
2
×

 τ∫
0

v(s)|f (n)(s)|2ds

 1
2



≤ 1

(n− 1)!


(n− 1)χ(0,τ)(t)

 ∞∫
τ

 t∫
0

(s− x)n−2dx

2

v−1(s)ds


1
2

+ χ(τ,∞)(t)

 ∞∫
t

(s− t)2(n−1)v−1(s)ds

 1
2


2
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+ χ(0,τ)(t)(n− 1)2


 τ∫

t

 t∫
0

(s− x)n−2dx

2

v−1(s)ds


1
2

+

 t∫
0

 s∫
0

(s− x)n−2dx

2

v−1(s)ds


1
2


2


1
2

‖f (n)‖2,v

≤ 1

(n− 1)!

χ(0,τ)(t)(n− 1)2

∞∫
τ

 t∫
0

(s− x)n−2dx

2

v−1(s)ds

+ χ(τ,∞)(t)

∞∫
t

(s− t)2(n−1)v−1(s)ds+ 2χ(0,τ)(t)(n− 1)2

τ∫
t

 t∫
0

(s− x)n−2dx

2

v−1(s)ds

+2χ(0,τ)(t)(n− 1)2

t∫
0

 s∫
0

(s− x)n−2dx

2

v−1(s)ds


1
2

‖f (n)‖2,v

≤
√

2

(n− 1)!
D(t, τ)‖f (n)‖2,v.

Therefore, |f(t)| ≤
√

2
(n−1)!

inf
τ∈I

D(t, τ)‖f (n)‖2,v and the right estimate in (4.2) holds.

Let us prove the left estimate in (4.2). We �x t ∈ I in (4.3) and select a function f (n) depending
on t as follows:

f
(n)
t (s) =



χ(0,t)(s)(n− 1)
s∫

0

(s− x)n−2dx v−1(s) if 0 < t < τ,

χ(t,τ)(s)(n− 1)
t∫

0

(s− x)n−2dx v−1(s) if 0 < t < τ,

χ(τ,∞)(s)(n− 1)
t∫

0

(s− x)n−2dx v−1(s) if 0 < t < τ,

−χ(t,∞)(s)(s− t)n−1v−1(s) if t > τ.

Placing this function in (4.3), we get

ft(t) =
(−1)n−1

(n− 1)!

χ(0,τ)(t)(n− 1)2

∞∫
τ

 t∫
0

(s− x)n−2dx

2

v−1(s)ds

+ (n− 1)2

τ∫
t

 t∫
0

(s− x)n−2dx

2

v−1(s)ds+ (n− 1)2

t∫
0

 s∫
0

(s− x)n−2dx

2

v−1(s)ds

+χ(τ,∞)(t)

∞∫
t

(s− t)2(n−1)v−1(s)ds

 =
(−1)n−1

(n− 1)!
D2(t, τ). (4.4)
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Let us calculate ‖f (n)
t ‖2,v: ∞∫

0

v(s)|f (n)
t (s)|2ds

 1
2

=

 τ∫
0

v(s)|f (n)
t (s)|2ds+

∞∫
τ

v(s)|f (n)
t (s)|2ds

 1
2

=

χ(0,τ)(t)(n− 1)2

∞∫
τ

 t∫
0

(s− x)n−2dx

2

v−1(s)ds

+ χ(0,τ)(t)(n− 1)2

τ∫
t

 t∫
0

(s− x)n−2dx

2

v−1(s)ds

+ χ(0,τ)(t)(n− 1)2

t∫
0

 s∫
0

(s− x)n−2dx

2

v−1(s)ds

+χ(τ,∞)(t)

∞∫
t

(s− t)2(n−1)v−1(s)ds


1
2

= D(t, τ). (4.5)

From (4.4) and (4.5) we get

sup
f∈W̊n

2,v

|f(t)|
‖f (n)‖2,v

≥ |ft(t)|
‖f (n)

t ‖2,v

=
1

(n− 1)!
D(t, τ)

for any τ ∈ I. This relation proves the validity of the left estimate in (4.2).

Together with Lemma 4.1 we need the following statement from work [1].

Lemma C. Let H = H(I) be a Hilbert function space, and C[0,∞)
⋂
H be dense in it. For any

point t ∈ I, we de�ne the operator Etf = f(t) on C[0,∞)
⋂
H, which acts to the space of complex

numbers. We assume that Et is a closed operator. Then, the norm of this operator is equal to the

value
( ∞∑
k=1

|ϕk(t)|2
) 1

2
(�nite or in�nite), where {ϕk(·)}∞k=1 is any complete orthonormal system of

continuous functions in H.

Proof of Theorem 2.6. By the condition, the operator L−1
F is completely continuous on L2,u. We

assume that the space W̊ n
2,v(I) with the norm ‖f (n)‖2,v is the space H(I) of Lemma C. Since the

system of functions {λ−
1
2

k ϕk}∞k=1 is a complete orthonormal system in the space W̊ n
2,v(I), then by

Lemma C we have

‖Et‖2 =

(
sup

f∈W̊n
2,v(I)

|f(t)|
‖f (n)‖2,v

)2

=
∞∑
k=1

|ϕk(t)|2

λk
,

where Etf = f(t). The latter and (4.2) give

1

((n− 1)!)2
sup
τ∈I

D2(t, τ) ≤
∞∑
k=1

|ϕk(t)|2

λk
≤ 2

((n− 1)!)2
inf
τ∈I

D2(t, τ). (4.6)

Since
inf
τ∈I

D2(t, τ) ≤ lim
τ→∞

D2(t, τ) = (n− 1)2D(t) ≤ sup
τ∈I

D2(t, τ),

from (4.6) we have (2.9). Multiplying both sides of (2.9) by u and integrating them from zero to
in�nity, we get (2.10).
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5 Remarks

As pointed out in Introduction, from [10] and [16] it follows that if

v−1 ∈ L1(0, 1), v−1 ∈ L1(1,∞), and t2v−1 /∈ L1(1,∞), (5.1)

then for any f ∈ W n
2,v there exist the limits lim

t→0+
f (i)(t) ≡ f (i)(0) for all i = 0, 1, ..., n − 1, and

lim
t→∞

f (n−1)(t) ≡ f (n−1)(∞). In paper [7] there are investigated oscillatory properties of equation

(1.1) and spectral properties of the operator L under conditions (5.1), which give that

W̊ n
2,v(I) = {f ∈ W n

2,v(I) : f (i)(0) = 0, i = 0, 1, ..., n− 1, f (n−1)(∞) = 0}.

Item (i) of Theorem 4.2 in [7] can be equivalently rewritten in the form.

Theorem 5.1. Let assumption (5.1) hold. Then the operator L has a spectrum discrete and bounded
below if and only if

lim
z→∞

∞∫
z

t2(n−2)u(t)dt

z∫
0

s2v−1(s)ds = 0, (5.2)

lim
z→∞

z∫
0

t2(n−1)u(t)dt

∞∫
z

v−1(s)ds = 0. (5.3)

Theorem 4.6 in [7] can be also rewritten in the following simpler form.

Theorem 5.2. Let assumption (5.1) hold. Let (5.2) and (5.3) hold.
(i)

1

((n− 2)!)2
D(t) ≤

∞∑
k=1

|ϕk(t)|2

λk
≤ 2

((n− 2)!)2
D(t), (5.4)

where

D(t) =

t∫
0

 s∫
0

(t− x)n−2dx

2

v−1(s)ds+
1

(n− 1)2
t2(n−1)

∞∫
t

v−1(s)ds.

(ii) The operator L−1
F is nuclear if and only if

∞∫
0

u(t)D(t)dt <∞ and for the nuclear norm ‖L−1
F ‖σ1

of the operator L−1
F the relation

1

((n− 2)!)2

∞∫
0

u(t)D(t)dt ≤ ‖L−1
F ‖σ1 =

∞∑
k=1

1

λk
≤ 2

((n− 2)!)2

∞∫
0

u(t)D(t)dt (5.5)

holds.

This statement follows from the relation

1

(n− 1)!
sup
τ∈I
D(t, τ) ≤ sup

f∈W̊n
2,v

|f(t)|
‖f (n)‖2,v

≤
√

2

(n− 1)!
inf
τ∈I
D(t, τ), (5.6)
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where

D(t, τ) =

χ(0,τ)(t)

t∫
0

(t− s)2(n−1)v−1(s)ds

+χ(τ,∞)(t)(n− 1)2

τ∫
0

 τ∫
s

(t− x)n−2dx

2

v−1(s)ds

+χ(τ,∞)(t)(n− 1)2

t∫
τ

 s∫
τ

(t− x)n−2dx

2

v−1(s)ds

+χ(τ,∞)(t)(t− τ)2(n−1)

∞∫
t

v−1(s)ds


1
2

,

found in [7, Lemma 4.5]. Arguing similarly as in the proof of Lemma 4.1 and taking into account
that

inf
τ∈I
D2(t, τ) ≤ lim

τ→0+
D2(t, τ) = (n− 1)2D(t) ≤ sup

τ∈I
D2(t, τ),

from (5.6) we get (5.4). Multiplying both sides of (5.4) by u and integrating them from zero to
in�nity, we obtain (5.5).
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