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MIKHAIL L'VOVICH GOLDMAN

Doctor of physical and mathematical sciences, Professor
Mikhail L'vovich Goldman passed away on July 5, 2025, at the
age of 80 years.

Mikhail L'vovich was an internationally known expert in sci-
enceand education. His fundamental scienti�c articles and text
books in various�elds of the theory of functions of several variable-
sand functional analysis, the theory of approximation of functions,
embedding theorems and harmonic analysis are a signi�cant con-
tribution to the development of mathematics.

Mikhail L'vovich was born on Aprill 13, 1945 in Moscow. In
1963, he graduated from School No. 128 in Moscow with a gold
medal and entered the Physics Faculty of the Lomonosov Moscow
State University. He graduated in 1969 and became a postgradu-
ate student in the Mathematics Department. In 1972, he defended
his PhD thesis "On integral representations and Fourier series of

di�erentiable functions of several variables" under the supervision of Professor Ilyin Vladimir Alek-
sandrovich, and in 1988, his doctoral thesis "Study of spaces of di�erentiable functions of several
variables with generalized smoothness" at the S.L. Sobolev Institute of Mathematics in Novosibirsk.
Scienti�c degree "Professor of Mathematics" was awarded to him in 1991.

From 1974 to 2000 M.L. Goldman was successively an Assistant Professor, Full Professor, Head
of the Mathematical Department at the Moscow Institute of Radio Engineering, Electronics and
Automation (technical university). Since 2000 he was a Professor of the Department of Theory
of Functions and Di�erential Equations, then of the S.M. Nikol'skii Mathematical Institute at the
Patrice Lumumba Peoples' Friendship University of Russia (RUDN University).

Research interests of M.L. Goldman were: the theory of function spaces, optimal embeddings,
integral inequalities, spectral theory of di�erential operators.Among the most important scienti�c
achievements of M.L. Goldman, we note his research related to the optimal embedding of spaces
with generalized smoothness, exact conditions for the convergence of spectral decompositions, de-
scriptions of the integral and di�erential properties of generalized potentials of the Bessel and Riesz
types, exact estimates for operators on cones, descriptions of optimal spaces for cones of functions
with monotonicity properties.

M.L. Goldman has published more than 150 scienti�c articles in central mathematical journals.
He is a laureate of the Moscow government competition, a laureate of the RUDN University Prize in
Science and Innovation, and a laureate of the RUDN University Prize for supervision of postgraduate
students. Under the supervision of Mikhail L'vovich 11 PhD theses were defended. His pupilss
are actively involved in professional work at leading universities and research institutes in Russia,
Kazakhstan, Ethiopia, Rwanda, Colombia, and Mongolia.

Mikhail L'vovich has repeatedly been a guest lecturer and guest professor at universities in
Russia, Germany, Sweden, Great Britain, etc., and an invited speaker at many international con-
ferences. Mikhail L'vovich was not only an excellent mathematician and teacher (he always spoke
about mathematics and its teaching with great passion), but also a man of the highest culture and
erudition, with a deep knowledge of history, literature and art, a very bright, kind and responsive
person. This is how he will remain in the hearts of his family, friends, colleagues and students.

The Editorial Board of the Eurasian Mathematical Journal expresses deep condolences to the
family, relatives and friends of Mikhail L'vovich Goldman.
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Abstract. The main objective of the work is to identify the relationship between evolution equa-
tions with potential operators and geometries of related con�guration spaces of the given systems.
Using the Hamilton principle, a wide class of such equations is derived. Their structural analysis is
carried out, containing operator analogues of the Christo�el symbols of both the 1st and 2nd kind.
It is shown that the study of the obtained evolution equations can be associated, in general, with an
extended con�guration space, the metric of which is determined by the kinetic energy of the given
system.

DOI: https://doi.org/10.32523/2077-9879-2025-16-3-09-19

1 Introduction

One of the main properties of the metric tensor is that it completely de�nes the geometry of the
space to which it belongs. The relationship of expressions for the metric tensor and the kinetic
energy allows determining the components of the metric tensor of the con�guration space of the
system by the type of kinetic energy for the system and constructing its geometric model. The
subject of the present paper lies between analytical mechanics, geometry and variational calculus.
Tensor methods have long been applied in the dynamics of �nite-dimensional systems [11]. They
were initially aimed at using the ideas of Riemannian geometry in dynamics. In turn, the problems
of mechanics contributed to the development of geometry. Signi�cant results have been obtained
over more than a hundred years (see, for example, [1, 4, 3, 7, 11, 12] and references therein). In
particular, it was shown that the curvature of a manifold � an invariant distinguishing Riemannian
metrics aij (u1, . . . , un), i, j = 1, n, � signi�cantly a�ects the form of geodesics on it, i.e. the motion
in the corresponding dynamical system [2].

Geodesics are lines ui = ui (t), t ∈ [t0, t1], i = 1, n, which are solutions to the equations

d2uj

dt2
+ Γjki

duk

dt

dui

dt
= 0, j = 1, n,

where Γjki are the Christo�el symbols of the second kind.
Here and below, summation is implied by repeating indices of factors located at di�erent levels.
If the metric aij (u1, . . . , un) is non-degenerate (i.e. det (aij) 6= 0), then

Γkij =
1

2
akl
(
∂alj
∂ui

+
∂ail
∂uj
− ∂aij
∂ul

)
, (1.1)

where
(
akl
)
is the inverse matrix of the matrix (alk).



On some geometric aspects of evolution variational problems 10

The Christo�el symbols of the �rst kind are found through the components of the metric tensor
by the formulas

Γk,ij =
1

2

(
∂akj
∂ui

+
∂aik
∂uj
− ∂aji
∂uk

)
. (1.2)

As noted in work [6], in problems of mechanics it is natural to choose as a Riemannian metric
the metric that is determined by the kinetic energy of the system.

2 Statement of the problem. Geodesic equations

Let U = C2 ([t0, t1] , U1), V = C ([t0, t1] , V1), where U1, V1 are normed linear spaces over the �eld of
real numbers R, U1 ⊆ V1.

Let the state of an in�nite-dimensional dynamical system be determined by a function u ∈ U ,
satisfying the conditions u|t=t0 = u0, u|t=t1 = u1, where u0, u1 are given elements from U1. A curve
u in U1 is a mapping u : [t0, t1]→ U1.

We will follow the notation and terminology of [4, 5].
Let be given a symmetric non-degenerate bilinear form 〈·, ·〉 : V1×V1 → R and the kinetic energy

of the system

T [t, u, ut] =
1

2
〈ut, Auut〉+ 〈ut, B (t, u)〉+ 〈u,C (t, u)〉 ,

where Au is a linear G�ateaux di�erential operator, in general, depending nonlinearly on t and u;
ut = du

dt
= lim

∆t→0

u(t+∆t)−u(t)
∆t

∈ U1. Operators B, C are di�erentiable with respect to t, and u in the

sense of G�ateaux.

A′u (h; g) =
(
d
dε
Au+εgh

) ∣∣
ε=0

; F [u] =
t1∫
t0

T [t, u, ut] dt, u ∈ D (F ) =

{u ∈ U : u|t=t0 = u0, u|t=t1 = u1}; the G�ateaux di�erential δF [u, h] = d
dε
F [u + εh]

∣∣
ε=0

. The
construction of adjoint operators in the work is based on the Lagrange identity [8].

De�nition 1. A function u ∈ D (F ) is called stationary for a functional F if δF [u, h] = 0 ∀h ∈
D (F ′u).

Theorem 2.1. The stationary function of the functional F [u] is a solution to the operator equation

N(u) ≡ 1

2
(Au + A∗u)utt +

1

2

[
A′u (ut;ut) + A∗

′

u (ut;ut)− A
′∗
u (ut;ut)

]
−

−
(
B
′∗
u −B

′

u

)
ut +

1

2

(
∂Au
∂t

+
∂A∗u
∂t

)
ut +

∂B

∂t
− C − C ′∗u u = 0,

(2.1)

where (. . . )∗ is the operator adjoint to the operator (. . . ) with respect to the given bilinear form,
utt = d2u

dt2
, A

′∗
u (ut;ut) = (A′u (ut; ·))∗ ut.

Proof. For further use, we note that if the G�ateaux derivative N ′u of N exists, then [9]

N(u+ εh) = N(u) + εN ′uh+ r(u, εh), u ∈ D(N), (2.2)

where

lim
ε→0

r(u, εh)

ε
= 0.
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Let us denote

F1[u] =
1

2

t1∫
t0

〈ut, Auut〉 dt,

F2[u] =

t1∫
t0

[〈ut, B (t, u)〉+ 〈u,C (t, u)〉] dt, u ∈ D (F ) = D (F1) = D (F2) .

Using equality (2.2), we obtain

F1[u+ εh] =
1

2

t1∫
t0

〈ut + εht, Au+εh (ut + εht)〉 dt

=
1

2

t1∫
t0

〈ut + εht, Au+εhut + Au+εhεht〉 dt

=
1

2

t1∫
t0

〈ut + εht, Auut + A′u (ut; εh) + Auεht + A′u (εht; εh) + r(u, εh)〉 dt.

From here we �nd

δF1[u, h] =
1

2

t1∫
t0

[〈ht, Auut〉+ 〈ut, A′u (ut;h) + Auht〉] dt

=
1

2

t1∫
t0

[Dt 〈h,Auut〉 − 〈h,Dt (Auut)〉+

+
〈
A
′∗
u (ut; ·)ut, h

〉
+ 〈A∗uut, ht〉

]
dt ∀u ∈ D (F ) ,∀h ∈ D (F ′u) ,

(2.3)

where Dt is a total derivative with respect to t.
Since

〈A∗uut, ht〉 = Dt 〈A∗uut, h〉 − 〈Dt (A∗uut) , h〉

= Dt 〈A∗uut, h〉 −
〈
∂A∗u
∂t

ut + A∗
′

u (ut;ut) + A∗uutt, h

〉
,

then from (2.3) we get

δF1[u, h] =
1

2
〈(Au + A∗u)ut, h〉

∣∣∣∣t=t1
t=t0

+
1

2

t1∫
t0

[〈
A
′∗
u (ut; ·)ut − A∗

′

u (ut;ut)−

−A′u (ut;ut)− (Au + A∗u)utt −
(
∂Au
∂t

+
∂A∗u
∂t

)
ut, h

〉]
dt.

(2.4)

Taking into account that
h
∣∣
t=t0

= h
∣∣
t=t1

= 0,
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from (2.4) we �nd

δF1[u, h] = −1

2

t1∫
t0

[〈
(Au + A∗u)utt + A′u (ut;ut) + A∗

′

u (ut;ut)− A
′∗
u (ut;ut) +

+

(
∂Au
∂t

+
∂A∗u
∂t

)
ut, h

〉]
dt ∀u ∈ D (F ) ,∀h ∈ D (F ′u) .

Using equality (2.2), in a similar way we get

F2 [u+ εh] =

t1∫
t0

[〈ut + εht, B (t, u+ εh)〉+ 〈u+ εh, C (t, u+ εh)〉] dt,

δF2 [u, h] =

t1∫
t0

[
〈ht, B (t, u)〉+ 〈ut, B′h〉+ 〈h,C (t, u)〉+

〈
u,C

′

uh
〉]
dt.

From here we obtain

δF2 [u, h] =

t1∫
t0

[
Dt 〈h,B (t, u)〉 − 〈h,DtB (t, u)〉+

〈
h,B

′∗
u ut

〉
+

+ 〈h,C (t, u)〉+
〈
h,C

′∗
u

〉]
dt =

= 〈h,B (t, u)〉
∣∣∣∣t1
t0

+

t1∫
t0

〈
h,
(
B
′∗
u −B′u

)
ut −

∂B

∂t
+ C (t, u) + C

′∗
u u

〉
dt.

(2.5)

Since h
∣∣
t=t0

= h
∣∣
t=t1

= 0, from (2.5) we �nd

δF2 [u, h] =

t1∫
t0

〈
h,
(
B
′∗
u −B′u

)
ut −

∂B

∂t
+ C (t, u) + C

′∗
u u

〉
dt.

From the condition

δF [u, h] ≡ δF1[u, h] + δF2[u, h] = 0, u ∈ D (F ) ,∀h ∈ D (F ′u)

we obtain operator equation (2.1).

Corollary 2.1. If A∗u = Au, then equation (2.1) takes the form

Auutt +
1

2

[
A′u (ut;ut) + A∗

′

u (ut;ut)− A
′∗
u (ut;ut)

]
−

−
(
B
′∗
u −B′u

)
ut +

∂Au
∂t

ut +
∂B

∂t
− C − C ′∗u = 0.

(2.6)

Corollary 2.2. If A∗u = Au, B
′∗
u = B′u, Au and B are independent of t, C = 0 and there is an

inverse operator A−1
u , then equation (2.1) takes the form

utt +
1

2
A−1
u

[
A′u (ut;ut) + A∗

′

u (ut;ut)− A
′∗
u (ut;ut)

]
= 0. (2.7)
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Consider a �nite-dimensional system with coordinates (u1, . . . , un), ui (t0) = ui0 , ui (t1) = ui1,
t ∈ [t0, t1], i = 1, n, and the kinetic energy T = 1

2
u̇iaij(u)u̇j, where (aij)

n
i,j=1 is a symmetric matrix,

det (aij)
n
i,j=1 6= 0, u̇i = dui

dt
.

Theorem 2.2. If T = 1
2
u̇iaij(u)u̇j, then equation (2.7) coincides with the geodesic equation

d2uj

dt2
+ Γjiku̇

iu̇k = 0, j = 1, n, (2.8)

where

Γjik =
1

2
ajl
(
∂alk
∂ui

+
∂ail
∂uk
− ∂aik

∂ul

)
are the Christo�el symbols.

Proof. In the case under consideration

〈ut, Auut〉 = u̇iaij(u)u̇j, F [u] =
1

2

t1∫
t0

u̇iaij(u)u̇jdt.

We have

F [u+ εh] =
1

2

t1∫
t0

(
u̇i + εḣi

)
(aij(u+ εh))

(
u̇j + εḣj

)
dt.

From here we �nd

δF [u, h] =
d

dε
F [u+ εh]

∣∣
ε=0

=
1

2

t1∫
t0

[
ḣiu̇jaij(u) + u̇iḣjaij(u) + u̇iu̇j

∂aij(u)

∂uk
hk
]
dt.

Integrating by parts, we obtain

δF [u, h] =
1

2

[
hiu̇jaij + hju̇iaij

] ∣∣∣∣t=t1
t=t0

+

+
1

2

t1∫
t0

[
u̇iu̇j

∂aij
∂uk

hk − hi
(
üjaij + u̇j

∂aij
∂uk

u̇k
)
− hj

(
üiaij + u̇i

∂aij
∂uk

ük
)]

dt.

Since hi (t0) = hi (t1) = 0, i = 1, n, then changing the summation indices in the terms under the
integral sign, we �nd

δF [u, h] =
1

2

t1∫
t0

[
−hküj (akj + ajk) + hku̇iu̇j

(
∂aij
∂uk
− ∂akj

∂ui
− ∂aik
∂uj

)]
dt.

Taking into account the symmetry of the matrix (aij)
n
i,j=1, we arrive at the equality

δF [u, h] = −
t1∫
t0

hk
[
akjü

j +
1

2

(
∂akj
∂ui

+
∂aik
∂uj
− ∂aij
∂uk

)
u̇iu̇j

]
dt.

From the condition δF [u, h] = 0, u ∈ D (F ), ∀h ∈ D (F ′u) we conclude that u is a solution to
the system of equations

akjü
j + Γk,iju̇

iu̇j = 0, (2.9)
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where Γk,ij are the Christo�el symbols of the �rst kind (1.2).
Since det (aij)

n
i,j=1 6= 0, system of equations (2.9) can be solved with respect to üj(j = 1, n). As

a result, we arrive at system of equations (2.8).
Thus, equations of geodesics (2.8) are obtained.

In the absence of forces, the motion of a system with kinetic energy 1
2
〈ut, Auut〉 can be interpreted

as motion in U by inertia with the metric

ds2 = 〈ut, Auut〉 dt2.

Borrowing terminology from mechanics, for such a motion the trajectories are called geodesic
lines with respect to indicated metric. Thus, the problem of inertial motion is reduced to �nding
geodesic lines. Operator equation (2.6) expresses a far-reaching generalization of this fact.

Corollary 2.3. [10] Equation (2.7) is an operator analogue of geodesic equations (2.8), while the
operator

K1u[·] =
1

2

[
A′u (·; ·) + A∗

′

u (·; ·)− A′∗u (·; ·)
]

(2.10)

de�nes an analogue of the Christo�el symbols of the �rst kind Γk,ij, and

K2u[·] = A−1
u K1u[·] (2.11)

is an analogue of the Christo�el symbols of the second kind Γkij.

The operator D
dt
, de�ned by the formula

Dut
dt

= utt + A−1
u K1u [ut] ,

is an analogue of the covariant derivative of ut with respect to t.
The above analogues are of particular interest in terms of their relationship with Riemannian

geometry, as well as the geometry de�ned by the pseudo-Riemannian metric.
Using now operators (2.10), (2.11), we get the following.

Corollary 2.4. If A∗u = Au and there exists the inverse operator A−1
u , then evolution equation (2.1)

can be represented in the form

N1(u) ≡ utt +K2u [ut] + A−1
u

[
∂Au
∂t

ut −
(
B
′∗ −B′u

)
ut +

∂B

∂t
− C − C ′∗u u

]
= 0,

u ∈ D (N) = D (F ) .

(2.12)

It is an interesting problem to interpret this operator evolution equation in terms of rheonomic
geometry with the metric

ds2 =
1

2
〈ut, Auut〉 dt2 + 〈ut, B(t, u)〉 dt2 + 〈u,C(t, u)〉 dt2,

associated with the given kinetic energy T [t, u, ut].
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3 Evolution equation and relative integral invariant

Let us establish the connection between evolution equation (2.1) and an relative integral invariant
of the �rst order.

Let
u = u (λ; t) , λ ∈ Λ = [0, 1] (3.1)

be an arbitrary one-parameter set of elements from U continuously di�erentiable with respect to λ.
It can be considered as a curve γ in U . We assume that u (0; t) = u (1; t), i.e. γ is a closed curve.

Let us introduce the notation

δu =
∂u (λ; t)

∂λ
dλ.

Let us consider the functional

F [u (λ; t)] =

τ1∫
τ0

T [t, u (λ; t) , ut (λ; t)] dt,

where [τ0, τ1] is an arbitrary segment from [t0, t1].
We have

δF =
∂F [u (λ; t)]

∂λ
dλ =

τ1∫
τ0

∂T

∂λ
dλdt =

τ1∫
τ0

δTdt =

=
1

2

τ1∫
τ0

[〈δut, Auut〉+ 〈ut, A′u (ut; δu) + Auδut〉+ 〈δut, B(t, u)〉+

+ 〈ut, B′uδu〉+ 〈δu, C (t, u)〉+ 〈u,C ′uδu〉] dt.

(3.2)

Since δut = d
dt
δu, from (3.2) we get

δF =

τ1∫
τ0

{
1

2

[
Dt 〈δu,Auut〉 − 〈δu,Dt (Auut)〉+

〈
A
′∗
u (ut; ·)ut, δu

〉
+

+ 〈A∗uut, δut〉] +Dt 〈δu,B(t, u)〉 − 〈δu,DtB(t, u)〉+

+
〈
B
′∗
u ut, δu

〉
+ 〈δu, C(t, u)〉+

〈
C
′∗
u u, δu

〉}
dt.

(3.3)

Bearing in mind that

Dt (Auut) =
∂Au
∂t

ut + A′u (ut;ut) + Auutt,

〈A∗uut, δut〉 = Dt 〈A∗uut, δu〉 − 〈Dt (A∗uut) , δu〉

= Dt 〈A∗uut, δu〉 −
〈
∂A∗u
∂t

+ A∗
′

u (ut;ut) + A∗uutt, δu

〉
,

DtB(t, u) =
∂B

∂t
+B′uut,
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from (3.3) we obtain

δF =

〈
1

2
(Au + A∗u)ut +B(t, u), δu

〉 ∣∣∣∣t=τ1
t=τ0

−

−
τ1∫
τ0

〈
1

2
(Au + A∗u)utt +

1

2

[
A′u (ut;ut) + A∗

′

u (ut;ut)− A
′∗
u (ut; ·)ut

]
+

+
(
B′u −B

′∗
u

)
ut +

1

2

(
∂Au
∂t

+
∂A∗u
∂t

)
ut +

∂B

∂t
− C − C ′∗u u, δu

〉
=

=

〈
1

2
(Au + A∗u)ut +B(t, u), δu

〉 ∣∣∣∣t=τ1
t=τ0

−
τ1∫
τ0

〈N(u), δu〉 dt.

(3.4)

Along the real trajectories, the solutions to evolution equation (2.1), we have

δF =

〈
1

2
(Au + A∗u)ut +B(t, u), δu

〉 ∣∣∣∣t=τ1
t=τ0

.

Integrating this equality termwise with respect to λ from λ = 0 to λ = 1, we obtain

0 = F [u(1; t)]− F [u(0; t)] =

1∫
0

〈
1

2
(Au + A∗u)ut +B(t, u), δu

〉 ∣∣∣∣t=τ1
t=τ0

=

=

1∫
0

〈
1

2
(Au + A∗u)ut +B, δu

〉 ∣∣∣∣
t=τ1

−
1∫

0

〈
1

2
(Au + A∗u)ut +B, δu

〉 ∣∣∣∣
t=τ0

=

=

∮
γ1

〈
1

2
(Au + A∗u)ut +B, δu

〉
−
∮
γ0

〈
1

2
(Au + A∗u)ut +B, δu

〉
,

i.e. ∮
γ1

〈
1

2
(Au + A∗u)ut +B, δu

〉
=

∮
γ0

〈
1

2
(Au + A∗u)ut +B, δu

〉
,

where γ0, γ1 are arbitrary closed curves, embracing the tube of trajectories.
Thus we proved the following.

Theorem 3.1. Equation (2.1) has the relative integral invariant

I =

∮ 〈
1

2
(Au + A∗u)ut +B, δu

〉
.

4 Example

Let us denote U = C2 ([t0, t1] , U1), V = C ([t0, t1] , V1). Let Ω be a bounded domain in R3 with
piecewise smooth boundary ∂Ω, U1 = C4

(
Ω
)
, V1 = C

(
Ω
)
, ∆ = ∂2

(∂x1)2
+ ∂2

(∂x2)2
+ ∂2

(∂x3)2
the Laplace

operator, x = (x1, x2, x3). Let Au = ∆2 + αu + βu2, ∆2 = ∆∆, where α, β ∈ C1 [t0, t1]. We will
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assume that the domain of de�nition D (Au) of the operator Au consists of all those functions u ∈ U
that satisfy the conditions

u|t=t0 = u0, u|t=t1 = u1,

u|Γ = ψ(t, x),

∂u

∂n

∣∣∣∣
Γ

= ϕ(t, x),

where Γ = [t0, t1]× ∂Ω, ui ∈ C4
(
Ω
)

(i = 0, 1), ψ, ϕ ∈ C(Γ).
Let us de�ne the bilinear form

〈v, g〉 =

∫
Ω

v(t, x)g(t, x)dx.

Let us de�ne

T =
1

2
〈ut, Auut〉 ,

which we will interpret as the kinetic energy of some system.
We will �nd the form of equation (2.1) for this case.
For this purpose we obtain

Auv = ∆2v + αuv + βu2v,

Au+εhv = ∆2v + αv (u+ εh) + βv (u+ εh)2 ,

A′u(v;h) =
d

dε
Au+εhv

∣∣
ε=0

= αvh+ 2βvuh = (αv + 2βvu)h.

Let us �nd A∗u.
We have

t1∫
t0

∫
Ω

h · Augdxdt =

t1∫
t0

∫
Ω

h
(
∆2g + αug + βu2g

)
dxdt =

=

t1∫
t0

∫
Ω

g
(
∆2h+ αuh+ βu2h

)
dxdt =

t1∫
t0

∫
Ω

g · Auhdxdt ∀u ∈ D(Au),∀g, h ∈ D(A′u).

Thus,
A∗u = Au ∀u ∈ D (Au) .

Next, we get

A
′∗
u (v; ·)h = (αv + 2βuv)h,

∂Au
∂t

= αtu+ βtu
2.

According to formula (2.10), we �nd

K1u [ut] =
1

2
[αut + 2βuut]ut +

1

2
[αut + 2βuut]ut −

1

2
[αut + 2βuut]ut =

=
1

2
[α + 2βu]u2

t .

Thus, in the case under consideration, equation (2.1) takes the form(
∆2 + αu+ βu2

)
utt +

1

2
(α + 2βu)u2

t + αtu+ βtu
2 = 0.

It has the following relative integral invariant∮ ∫
Ω

(
∆2 + αu+ βu2

)
ut dx δu.
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5 Conclusion

In the work there is identi�ed the relationship between evolution equations with potential operators
and geometries of related con�guration spaces of the given systems. Using the Hamilton principle, a
wide class of such equations is derived. Their structural analysis is carried out, containing operator
analogues of the Christo�el symbols of both the 1st and 2nd kind. It is shown that the study of
the obtained evolution system can be associated, in general, with an extended con�guration space,
the metric of which is determined by the kinetic energy of the given system. It is shown that the
obtained evolution operator equation has a relative integral invariant.
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