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Abstract. We consider a nonlinear integro-differential equation with a Hammerstein
type noncompact operator, arising in the theory of income distribution. We prove the
existence of a positive solution of the nonlinear problem in Sobolev space W 1

1 (R+).
We list some examples arising in applications. For one modeling problem a uniqueness
theorem is proved. At the end of the paper the results of numerical calculations are
given.

1 Introduction and statement of problem

Let consider the following equation

df

dx
+ λ(x)f(x) =

∞∫
0

K(x, t)G0(f(t))dt, x ∈ R+ ≡ [0,+∞) (1.1)

with the initial condition
f(0) = η0 > 0 (1.2)

for the unknown real valued measurable function f . Here λ- is a measurable function,
defined on R+, moreover it is assumed that

essinf
x∈R+

λ(x) ≡ λ0 > 0, esssup
x∈R+

λ(x) ≡ λ1 < +∞. (1.3)

The kernel K(x, t) ≥ 0 is a measurable function on the set R+×R+. It is also assumed
that there exist measurable functions µ and

◦
K defined on sets R+ and R respectively

such that

0 ≤
◦
K ∈ L1(R),

+∞∫
−∞

◦
K(τ)dτ = λ0, ν(

◦
K) ≡

+∞∫
−∞

x
◦
K(x)dx < −1, (1.4)
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mj(
◦
K) ≡

+∞∫
−∞

|x|j
◦
K(x)dx < +∞, j = 1, 2. (1.5)

0 ≤ µ(x) ≤ 1, x ∈ R+, (1− µ(x))xj ∈ L1(R+), j = 0, 1, (1.6)

and
0 ≤ K(x, t) ≤ µ(x)

◦
K(x− t), (x, t) ∈ R+ × R+, (1.7)

K(x, t) 6≡ 0, (x, t) ∈ R+ × R+. (1.8)

Moreover we assume that G0 is a measurable function on R, for which there exists a
number η ≥ η0 such that

G0 ∈ C[0, η), G0(τ) 6≡ 0, τ ∈ [0, η), 0 ≤ G0(τ) ≤ τ, of τ ∈ [0, η), (1.9)

We also assume that G0 is non-increasing on [0, η), briefly

G0 ↑ on [0, η). (1.10)

The problem (1.1)-(1.2) arises in a wide variety of applications, including particle
systems, biology and mathematical finance. In particular the distribution of income in
an economy can be defined by distribution function f(x) , where f(x)dx is the num-
ber of separate income owners in the economy, whose wealth is between x and x+ dx
(see [9]). K–is the redistribution function, conditioned by different economic causes,
particularly by mean savings and capital gains, gifts (capital transfers) between dif-
ferent agencies, establishment of new organizations, disappearance of old enterprizes
and assignment of their property (completely or partially) to other enterprizes as her-
itage. The function λ describes capital growth, mean savings as well as loss of wealth
of enterprizes due to their bankruptcy. The basic problem is to find the quantity

κ =
∞∫
0

xf(x)dx which represents the mean income.

The problem (1.1)-(1.2) is also of great interest for its purely mathematical content.
In particular when G0(x) ≡ x the problem (1.1)-(1.2) has been recently studied by the
authors (see [6]). In the case, when λ(x) = const, K(x, t) ≡ µ(x)

◦
K(x − t), and

function G0 satisfies the conditions

G0 ∈ C[0, ξ], G0(x) ≥ x, x ∈ [0, ξ]

G0 ↑ on [0, ξ], G0(ξ) = ξ,

for some ξ ≥ η0 > 0, equation (1) was investigated in work [7].
A number of works (see for example [3-5,8]) are dedicated to investigation of non-

linear integral equations with compact operators. It should be noted that in this paper
the Hammerstein type operator, standing on right hand of (1.1) is noncompact.

In the present work taking into consideration conditions (1.3)-(1.10) we prove
the existence of a positive solution of nonlinear problem (1.1)-(1.2) in Sobolev space
W 1

1 (R+) (the space of all functions summerable on R+ together with their first weak
derivatives). We list some examples of the functions K and G0 arising in applications.
For one modeling problem a uniqueness theorem is proved. At the end of the work
some numerical calculations are given.
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2 Some auxiliary facts from linear theory of convolution type
integral equations

Let E–be one of the following Banach spaces: Lp(R+), p ≥ 1, M(R+), CM(R+),
C0(R+), where M(R+) is the space of all essentially bounded functions on R+,
CM(R+) = M(R+) ∩ C(R+) denotes the Banach space of all bounded, continuous
functions on R+. Finally C0(R+) is the space of all continuous functions on R+, tend-
ing to zero limit at infinity.

We consider the following Wiener-Hopf operator

(T̂ f)(x) =

∞∫
0

T (x− t)f(t)dt, f ∈ E, (2.1)

with the kernel

T (x) =

∞∫
0

◦
K(x− z)e−λ1zdz + (λ1 − λ0)e

−λ1xθ(x), x ∈ R, (2.2)

where θ is the well known Heaviside function.
Taking into account (1.4) and Fubini’s theorem by (2.2) we get

0 ≤ T ∈ L1(R),

+∞∫
−∞

T (x)dx = 1, ν(T ) =

+∞∫
−∞

xT (x)dx < 0. (2.3)

The following lemma holds.

Lemma 1. Let conditions (1.4), (1.5) are fulfilled. Then mj(T ) < +∞, j = 1, 2.

Proof. Let δ1, δ2 be arbitrary real numbers and mj(
◦
K) < +∞,

+∞∫
−∞

◦
K(τ)dτ = λ0. By

(2.2) we have

J =

δ2∫
δ1

|x|jT (x)dx =

δ2∫
δ1

|x|j
∞∫

0

◦
K(x− z)e−λ1zdzdx+ (λ1 − λ0)

δ2∫
δ1

|x|je−λ1xθ(x)dx =

=

δ2∫
δ1

|x|j
∞∫

0

◦
K(x− z)e−λ1zdzdx+ (λ1 − λ0)

∫
E0

|x|je−λ1xdx,

where E0 = (δ1, δ2) ∩ R+.
It is easy to check that∫

E0

|x|je−λ1xdx ≤
∞∫

0

xje−λ1xdx < +∞, j = 1, 2.
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Now we estimate (above) the following integral

J∗ ≡
δ2∫
δ1

|x|j
∞∫

0

◦
K(x− z)e−λ1zdzdx

Changing the order of integration we get

J∗ =

∞∫
0

e−λ1z

δ2∫
δ1

|x|j
◦
K(x− z)dxdz =

=

∞∫
0

e−λ1z

δ2+z∫
δ1−z

|t+ z|j
◦
K(t)dtdz ≤

∞∫
0

e−λ1z

+∞∫
−∞

|t+ z|j
◦
K(t)dtdz =

=

∞∫
0

e−λ1z

 1−z∫
−∞

|t+ z|j
◦
K(t)dt+

∞∫
1−z

|t+ z|j
◦
K(t)dt

 dz ≤
∞∫

0

e−λ1z

1−z∫
−∞

|t+z|j
◦
K(t)dtdz+

+

∞∫
0

e−λ1z

∞∫
1−z

(t+z)2
◦
K(t)dtdz ≤

∞∫
0

e−λ1z

1−z∫
−1−z

◦
K(t)dtdz+2

∞∫
0

e−λ1z

+∞∫
−∞

(t+z)2
◦
K(t)dtdz ≤

≤ λ0

λ1

+ 4

∞∫
0

e−λ1z

+∞∫
−∞

(t2 + z2)
◦
K(t)dtdz =

λ0

λ1

+
4

λ1

m2(
◦
K) +

8λ0

λ3
1

< +∞.

Since δ1 and δ2 are arbitrary numbers and

J ≤
∞∫

0

xje−λ1xdx+
λ0

λ1

+
4

λ1

m2(
◦
K) +

8λ0

λ3
1

,

it follows that mj(T ) < +∞, j = 1, 2.

From the results of work [1] it follows that the operator I − T̂ admits the following
factorization:

I − T̂ = (I − V̂−)(I − V̂+), (2.4)

where I is the unite operator and V̂± are the lower and upper Volterra type operators
of the form

(V̂+f)(x) =

x∫
0

V+(x− t)f(t)dt, f ∈ E, (2.5)

(V̂−f)(x) =

∞∫
x

V−(t− x)f(t)dt, f ∈ E, (2.6)
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where

0 ≤ V± ∈ L1(R+), γ± =

∞∫
0

V±(τ)dτ, (2.7)

γ− = 1, γ+ < 1. (2.8)

Let us consider the Wiener-Hopf homogeneous equation with the kernel T

S(x) =

∞∫
0

T (x− t)S(t)dt, x ∈ R+ (2.9)

Using factorization (2.4) solving of equation (2.9) is reduced solving of the following
couple of equations:

(I − V̂−)S∗ = 0, (2.10)

(I − V̂+)S = S∗ (2.11)

We rewrite the equation (2.10) in operator form

S∗(x) =

∞∫
x

V−(t− x)S∗(t)dt, x ∈ R+. (2.12)

Since γ− = 1, the function S∗(x) = const satisfies equation (2.10).
We choose S∗(x) = η(1 − γ+) > 0. Substituting this S∗ in (2.11) we arrive at the

following nonhomogeneous equation

S(x) = η(1− γ+) +

x∫
0

V+(x− t)S(t)dt, x ∈ R+. (2.13)

Taking into consideration the results of work [1] and since γ+ < 1 we conclude that
equation (2.13) has monotonically increasing, bounded solution S. Furthermore

η(1− γ+) ≤ S(x) ≤ η, S(x) ↑ η, as x→ +∞. (2.14)

Lemma 2. Let mj(
◦
K) < +∞, j = 1, 2. Then the solution S of equation (2.13) beside

(2.14) possesses also the following property

η − S ∈ L1(R+). (2.15)

Proof. We denote ϕ(x) = η − S(x) ≥ 0. Then equation (2.13) with respect to the
unknown function ϕ takes the form

ϕ(x) = η

∞∫
x

V+(τ)dτ +

x∫
0

V+(x− t)ϕ(t)dt, x ∈ R+. (2.16)

It is easy to check that , if
∞∫
0

xV+(x)dx < +∞, then 0 ≤ g(x) ≡ η
∞∫
x

V+(τ)dτ ∈ L1(R+).
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Indeed, let r > 0 an arbitrary number. Taking into consideration Fubini’s theorem
we get

Ir =

r∫
0

g(x)dx = η

r∫
0

∞∫
x

V+(τ)dτdx = η

r∫
0

r∫
x

V+(τ)dτdx+ η

r∫
0

∞∫
r

V+(τ)dτdx =

= η

 r∫
0

V+(τ)τdτ + r

∞∫
r

V+(τ)dτ

 ≤ η

∞∫
0

τV+(τ)dτ < +∞.

Since r > 0 is arbitrary, it follows that g ∈ L1(R+). On the other hand, if mj(T ) <

+∞, j = 1, 2, then
∞∫
0

xV+(x)dx < +∞ (see [1]).

Using Lemma 1 and the above mentioned facts we conclude that from mj(
◦
K) <

+∞, j = 1, 2, it follows that
∞∫
0

xV+(x)dx < +∞. Since γ+ < 1, the operator V̂+ will be

contractive in each Banach spaces E, in particular in L1(R+). As g ∈ L1(R+) equation
(2.16) has a unique positive solution in L1(R+). Thus ϕ ∈ L1(R+).

Remark. By Lemma 2 it follows that Wiener-Hopf homogeneous equation (2.9) pos-
sesses positive solution with properties (2.14), (2.15).

3 Solvability of Basic Equation (1)

We denote by W 1
1 (R+) the space of all functions that belong to L1(R+) together with

their first weak derivatives (Sobolev space).
The following theorem is true

Theorem 1. We assume that conditions (1.3)-(1.10) are satisfied. Then problem (1.1)-
(1.2) in Sobolev space W 1

1 (R+) has a positive solution.

Proof. We consider the following auxiliary equation

B(x) = µ(x)

∞∫
0

T (x− t)B(t)dt, x ∈ R+ (3.1)

with respect to the unknown function B, where µ satisfies condition (1.6). It is known
that equation (3.1) has a nontrivial, bounded and nonnegative solution B. Furthermore
B may be represented in the form (see [2])

B(x) = S(x)− ψ(x), x ∈ R+, (3.2)

where S is the solution of equation (2.9) with properties (2.14), (2.15) and ψ satisfies
the conditions ψ(x) 6≡ S(x), (1− µ(x))S(x) ≤ ψ(x) ≤ S(x).
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The function ψ be determined from the following nonhomogeneous equation

ψ(x) = (1− µ(x))S(x) + µ(x)

∞∫
0

T (x− t)ψ(t)dt (3.3)

and belong to that space L1(R+) ∩M(R+)
Taking into account Lemma 2 and ψ ∈ L1(R+) ∩M(R+) from (3.2) it follows

0 ≤ η −B(x) ∈ L1(R+). (3.4)

Below we shall use this fact essentially.
We denote

F (x) =
df

dx
+ λ1f(x), x ∈ R+. (3.5)

From (1.1), (1.2) we have

F (x) = (λ1 − λ(x))

 x∫
0

e−λ1(x−t)F (t)dt+ η0e
−λ1x

+

+

∞∫
0

K(x, t)G0

 t∫
0

e−λ1(t−τ)F (τ)dτ + η0e
−λ1t

 dt, x ∈ R+.

(3.6)

We introduce in consideration the following iteration

Fn+1(x) = (λ1 − λ(x))

 x∫
0

e−λ1(x−t)Fn(t)dt+ η0e
−λ1x

+

+

∞∫
0

K(x, t)G0

 t∫
0

e−λ1(t−τ)Fn(τ)dτ + η0e
−λ1t

 dt,

F0(x) ≡ 0, n = 0, 1, 2, . . . , x ∈ R+.

(3.7)

First we prove that

a) 0 ≤ Fn(x) ≤ λ1(η −B(x)), n = 0, 1, 2, . . . , x ∈ R+, (3.8)

b) Fn(x) 6≡ 0, n = 1, 2, 3, . . . , x ∈ R+, (3.9)

In the case n = 0 inequality a) is obvious. Let it be true for some n ∈ N. We prove it
for n+ 1. Since

0 ≤ Fn(x) ≤ λ1η,

it follows that

0 ≤
x∫

0

e−λ1(x−t)Fn(t)dt+ η0e
−λ1x ≤ η, x ∈ R+. (3.10)
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Therefore from (3.7) we get

Fn+1(x) ≥ η(λ1 − λ0)e
−λ1x +

∞∫
0

K(x, t)G0(ηe
−λ1t)dt ≥ 0, (3.11)

Fn+1(x) ≤ λ1(λ1 − λ0)

 x∫
0

e−λ1(x−t)(η −B(t))dt+ η0e
−λ1x

+

+

∞∫
0

K(x, t)G0

λ1

t∫
0

e−λ1(t−τ)(η −B(τ))dτ + η0e
−λ1t

 dt ≤

≤ (λ1 − λ0)

η − λ1

x∫
0

e−λ1(x−t)B(t)dt

+

+µ(x)

∞∫
0

◦
K(x− t)

η − λ1

t∫
0

e−λ1(t−τ)B(τ)dτ

 dt = (λ1 − λ0)η + λ0η−

−λ1

(λ1 − λ0)

x∫
0

e−λ1(x−t)B(t)dt+ µ(x)

∞∫
0

◦
K(x− t)

t∫
0

e−λ1(t−τ)B(τ)dτdt

 ≤
≤ ηλ1−λ1

(λ1 − λ0)µ(x)

x∫
0

e−λ1(x−t)B(t)dt+µ(x)

∞∫
0

◦
K(x− t)

t∫
0

e−λ1(t−τ)B(τ)dτdt

 =

= ηλ1 − λ1µ(x)

∞∫
0

T (x− τ)B(τ)dτ = λ1(η −B(x)).

Now we prove b). From (3.7) it immediately follows that F1 6≡ 0, because of G0 6≡ 0
when on [0, η].

Assuming that Fn(x) 6= 0 for any n ≥ 2, n ∈ N, and taking into account the
properties of the function G0 on interval [0, η), from (3.7) we have Fn+1 6= 0.

Below we prove that
Fn(x) ↑ by n. (3.12)

Inequality F1(x) ≥ F0(x) immediately follows by statement a). Assuming that Fn(x) ≥
Fn−1(x) and taking into consideration both inequalities (3.10), from (3.7) we get

Fn+1(x) ≥ (λ1 − λ0)

 x∫
0

e−λ1(x−t)Fn−1(t)dt+ ηe−λ1x

+

+

∞∫
0

K(x, t)G0

 t∫
0

e−λ1(t−τ)Fn−1(τ)dτ + ηe−λ1t

 dt = Fn(x).



On solvability of a nonlinear problem in theory of income distribution 83

Thus the sequence of functions {Fn(x)}∞0 has pointwise limit

lim
n→∞

Fn(x) = F (x)

moreover in accordance with the B. Levi theorem the limit function satisfies equation
(3.6) and the inequalities:

F (x) 6= 0, 0 ≤ F (x) ≤ λ1(η −B(x)), x ∈ R+. (3.13)

Since η − B ∈ L1(R+), we have F ∈ L1(R+). Solving equation (1.1) with condition
(1.2) we obtain

f(x) = ηe−λ1x +

x∫
0

e−λ1(x−t)F (t)dt, x ∈ R+. (3.14)

As F ∈ L1(R+) from last formula it follows that f ∈ W 1
1 (R+).

Below we list some examples of the functions K(x, t) and G0(x).

I) K(x, t) = µ(x)
◦
K(x− t),

II) K(x, t) = µ(x)(
◦
K(x − t) −

◦
K(x + t)) with the additional conditions on

◦
K :

◦
K(−x) >

◦
K(x), x ∈ R+,

◦
K ↓ in x on R

III) K(x, t) = R(x, t)
◦
K(x− t), where 0 ≤ R(x, t) ≤ µ(x), (x, t) ∈ R+ × R+.

1) G0(x) = xp, x ∈ R+, p ≥ 1, p ∈ R, η = 1,

2) G0(x) = sin x, x ∈ R+, η =
π

2
3) G0(x) =

x

x+ 1
, x ∈ R+, ∀η > 0

4 Uniqueness theorem for one modeling problem

Let G(x) = xp, p ≥ 2, p ∈ R+, x ∈ R+. It is easy to see that as η we can take 1.
Therefore by Theorem 1 it follows that if G(x) = xp, p ≥ 2, x ∈ R+, then problem
(1.1)-(1.9) in W 1

1 (R+) has a positive solution, satisfying the inequality f(x) ≤ 1 −
S(x) ≤ γ+ (see formulae (2.14) and (3.14)).

Below we prove that if 0 ≤ γ+ < 1
2

then problem (1.1)-(1.2) has a unique solution
in the following class of functions

M = {f(x) : f(x) ∈ W 1
1 (R+), 0 ≤ f(x) ≤ γ+}.

Theorem 2. Let 0 < γ+ <
1

2
, p ≥ 2, p ∈ R+, and let the functions λ and K possess

properties (1.3)-(1.5). Then the problem

dy

dx
+ λ(x)y =

∞∫
0

K(x, t)yp(t)dt, x ∈ R+ (4.1)

y(0) = 1. (4.2)
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in the class of functions

M = {f(x) : f ∈ W 1
1 (R+), 0 ≤ f(x) ≤ γ+} (4.3)

has a unique solution.

Proof. Let problem (1.1), (1.2) has two different solutions y1, y2 ∈ M. Then the function
∆y = y1 − y2 satisfies the following relation

d∆y

dx
+ λ(x)∆y =

∞∫
0

K(x, t)(yp1(t)− yp2(t))dt, x ∈ R+, (4.4)

∆y(0) = 0. (4.5)

We denote
F (x) =

d∆y

dx
+ λ1∆y (4.6)

Taking into account (4.5) from (4.6) we have

∆y(x) =

x∫
0

e−λ1(x−t)F (t)dt, x ∈ R+. (4.7)

Using (4.7) from (4.4) we get

F (x) = (λ1 − λ(x))

x∫
0

e−λ1(x−t)F (t)dt+

∞∫
0

K(x, t)(yp1(t)− yp2(t))dt

By the Lagrange formulae and due to (1.3), (1.7) we get

|F (x)| ≤ (λ1 − λ0)

x∫
0

e−λ1(x−t)|F (t)|dt+

∞∫
0

K(x, t)|yp1(t)− yp2(t)|dt ≤

≤ (λ1 − λ0)

x∫
0

e−λ1(x−t)|F (t)|dt+

∞∫
0

K(x, t)p|θ|p−1|y1(t)− y2(t)|dt ≤

≤ (λ1 − λ0)

x∫
0

e−λ1(x−t)|F (t)|dt+ p

∞∫
0

K(x, t)γp−1
+ |∆y(t)|dt =

≤ (λ1 − λ0)

x∫
0

e−λ1(x−t)|F (t)|dt+ p

∞∫
0

K(x, t)γp−1
+ |

t∫
0

e−λ1(t−τ)F (τ)dτ |dt ≤

≤ (λ1 − λ0)

x∫
0

e−λ1(x−t)|F (t)|dt+ pγp−1
+

∞∫
0

K(x, t)

t∫
0

e−λ1(t−τ)|F (τ)|dτdt ≤
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≤ (λ1 − λ0)

x∫
0

e−λ1(x−t)|F (t)|dt+ pγp−1
+ esssup

0≤τ≤+∞
|F (τ)|

∞∫
0

K(x, t)

t∫
0

e−λ1(t−τ)dτdt ≤

≤ λ1 − λ0

λ1

esssup
0≤τ≤+∞

|F (τ)|+ pγp−1
+

λ1

esssup
0≤τ≤+∞

|F (τ)|
∞∫

0

K(x, t)dt ≤

≤
(
λ1 − λ0

λ1

+
λ0

λ1

pγp−1
+

)
esssup
0≤τ≤+∞

|F (τ)|. (4.8)

Below we prove, that if 0 < γ+ <
1

2
, then for arbitrary p ≥ 2, p ∈ R+ the following

inequality holds
ρ ≡ pγp−1

+ < 1. (4.9)

We consider the function

ψ(p) = 1− pγp−1
+ , p ∈ [2,+∞).

We have
ψ(2) = 1− 2γ+ > 0

and

ψ′(p) = pγp−1
+ ln

1

γ+

− γp−1
+ ≥ γp−1

+ (2 ln
1

γ+

− 1) ≥ γp−1
+ (2 ln 2− 1) = γp−1

+ ln
4

e
> 0

Therefore ψ ↑ on [2,+∞), from which it follows that

ψ(p) ≥ ψ(2) = 1− 2γ+

or
ρ ≡ pγp−1

+ ≤ 2γ+ < 1.

From estimate (4.9) and taking into consideration (4.8) we obtain
λ0

λ1

(1 −
ρ) esssup

x∈R+

|F (x)| ≤ 0, i.e. F (x) = 0 almost everywhere on R+. Solving simple Cauchy

problem {
d∆y
dx

+ λ1∆y = 0,
∆y(0) = 0

we that get ∆y = 0 almost everywhere in R+. The theorem is proved.

5 Numerical results

For demonstration of the developed method as an example K(x) we take the function

◦
K(x) =

{
βe−αx, if x > 0
(α− β)eαx, if x < 0.

(5.1)
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Then T (x) in terms of K(x) (see (2.2)) will be

T (x) =

{
α2−α+2β
α2+1

e−x + β
α−1

e−αx, if x > 0
α−β
α+1

eαx, if x < 0.
(5.2)

It is easy to check that all conditions (1.4) and (2.3) are satisfied, if α+ 2β
α
< 1 (α > β).

If we rewrite operator equality (2.4) in terms of its kernel we arrive at Yengibaryan’s
nonlinear factorization equations (see [1]).

V±(x) = T (±x) +

∞∫
0

V∓(t)V±(x+ t)dt. (5.3)

Simple computations show that

V+(x) = αe−x +
2β

α− 1
(e−x − e−αx), V−(x) = αe−αx. (5.4)

It is obvious that

γ− =

∞∫
0

V−(x)dx = 1, γ+ =

∞∫
0

V+(x)dx = α+
2β

α
< 1.

We consider the following iteration (see (3.7)) in the case when λ = λ1 = λ0 = 1,
η0 = η = 1, G0(x) = xp, µ(x) ≡ 1:

Fn+1(x) = β

x∫
0

e−α(x−t)

 t∫
0

e−(t−τ)Fn(τ)dτ + e−t

p dt+

+(α− β)

∞∫
x

e−α(t−x)

 t∫
0

e−(t−τ)Fn(τ)dτ + e−t

p dt
F0(x) ≡ 0, n = 0, 1, 2

The iteration process is stopped when |Fn+1(x)− Fn(x)| < 10−6 for all x.
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α/β p = 1 p = 1.2 p = 1.5 p = 2
α = 1

3
, β = 1

12
κ = 5.708 κ = 3.297 κ = 2.196 κ = 1.682

α = 1
4
, β = 1

16
κ = 4.677 κ = 2.926 κ = 2.084 κ = 1.656

α = 1
6
, β = 1

24
κ = 3.518 κ = 2.472 κ = 1.915 κ = 1.592

Table. The table shows the values of the mean income κ =
∞∫
0

xf(x)dx for different

powers of nonlinearity.

The graphs of the function

f(x) = e−x

1 +

x∫
0

etF (t)dt


are shown in the Figure. As we have already proved the solution of the linear problem
is the largest of all the solutions of the nonlinear problem. Simple example show that
nonlinearity may lead to large relative errors in calculation of the mean income value
(see the Table).

It is hoped that the result stated in Theorem 1 will stimulate further work toward
developing numerical methods at calculation of mean income for different economical
models.
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