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Abstract. Weighted estimate for a class of non-negative lower triangular matrices has
been established on the cone of monotone sequences.

1 Introduction

Let 1 < p, q < ∞, 1
p

+ 1
p′

= 1 and u = {ui}∞i=1, v = {vi}∞i=1 be positive sequences of
real numbers. Let lp,v be the space of sequences f = {fi}∞i=1 of real numbers such that

‖f‖p,v :=

(
∞∑
i=1

vi|fi|p
) 1

p

<∞, 1 < p <∞.

Let K−
p,v be the cone of non-negative and non-increasing sequences f = {fi}∞i=1 from

the lp,v space, briefly
K−

p,v = {0 ≤ f ↓: f ∈ lp,v}.

We consider inequality of the following form(
∞∑
i=1

ui

(
i∑

j=1

ai,jfj

)q) 1
q

≤ C

(
∞∑
i=1

vifi
p

) 1
p

, ∀f ∈ K−
p,v, (1.1)

where C is a positive constant independent of f and (ai,j) is a non-negative triangular
matrix with entries ai,j ≥ 0 for i ≥ j ≥ 1 and ai,j = 0 for i < j.

For ai,j ≡ 1, i ≥ j ≥ 1 inequality (1.1) was studied in [2] for 1 < p, q <∞.
In [5] necessary and sufficient conditions for the validity of (1.1) have been obtained

for 1 < p ≤ q < ∞ under the assumption that there exists d ≥ 1 such that the
inequalities

1

d
(ai,k + ak,j) ≤ ai,j ≤ d(ai,k + ak,j), i ≥ k ≥ j ≥ 1 (1.2)

hold.
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A sequence {ai}∞i=1 is called almost non-decreasing (non-increasing), if there exists
c > 0 such that cai ≥ ak (ak ≤ caj) for all i ≥ k ≥ j ≥ 1.

In [3], [6] estimate (1.1) for all f ∈ lp,v was studied under the assumption that there
exist d ≥ 1 and a sequence of positive numbers {ωk}∞k=1, and a non-negative matrix
(bi,j), where bi,j is almost non-decreasing in i and almost non-increasing in j, such that
the inequalities

1

d
(bi,kωj + ak,j) ≤ ai,j ≤ d(bi,kωj + ak,j) (1.3)

hold for all i ≥ k ≥ j ≥ 1.

In [7], [8] inequality (1.1) for all f ∈ lp,v was considered under the assumption that
there exist d ≥ 1, a sequence of positive numbers {ωk}∞k=1, and a non-negative matrix
(bi,j), whose entries bi,j are almost non-decreasing in i and almost non-increasing in j
such that the inequalities

1

d
(ai,k + bk,jωi) ≤ ai,j ≤ d(ai,k + bk,jωi) (1.4)

hold for all i ≥ k ≥ j ≥ 1.
Conditions (1.3) and (1.4) include condition (1.2), and complement each another.

Notation: If M and K are real valued functionals of sequences, then the symbol
M � K means that there exists c > 0 such that M ≤ cK, where c is a constant which
does not depend on the arguments of M and K. If M � K � M , then we write
M ≈ K.

In [2] there was established a statement which allows to reduce inequality (1.1)
on the cone of monotone sequences to inequality (1.1) on the cone of non-negative
sequences from lp,v.

Theorem A. [2] Let 1 < p, q <∞. Let Vk =
k∑

i=1

vi. Then inequality (1.1) is equivalent

to the following inequalities ∞∑
k=1

(
k∑

j=1

∞∑
i=j

ai,jgi

)p′ (
V
− p′

p

k − V
− p′

p

k+1

) 1
p′

≤ C̃

(
∞∑
i=1

gq′

i u
1−q′

i

) 1
q′

, ∀g ≥ 0, (1.5)

if V∞ = lim
k→∞

Vk = ∞,

 ∞∑
k=1

(
k∑

j=1

∞∑
i=j

ai,jgi

)p′ (
V
− p′

p

k − V
− p′

p

k+1

) 1
p′

(1.6)

+

(
∞∑

j=1

∞∑
i=j

ai,jgi

)(
∞∑

k=1

vk

)− 1
p

≤ Ĉ

(
∞∑
i=1

gq′

i u
1−q′

i

) 1
q′

, ∀g ≥ 0,
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if V∞ <∞.

For the proof of our main theorem we will need the following results for the discrete
weighted Hardy inequality.
Theorem B. ([1], [4]) Let 1 < p ≤ q <∞. Let {αj}∞j=1 be a non-negative sequence of
real numbers. Then the inequality(

∞∑
i=1

(
i∑

j=1

αjfj

)q

ui

) 1
q

≤ C

(
∞∑
i=1

fp
i vi

) 1
p

, 0 ≤ f ∈ lp,v (1.7)

holds if and only if

H := sup
n≥1

(
∞∑

j=n

uj

) 1
q
(

n∑
i=1

αp′

i v
1−p′

i

) 1
p′

<∞.

Moreover, H ≈ C, where C is the best constant in (1.7).

Theorem C. [7] Let 1 < p ≤ q < ∞ and the entries of the matrix (ai,j) satisfy
assumption (1.4). Inequality (1.1) holds for f ∈ lp,v if and only if B = max{B1, B2} <
∞, where

B1 = sup
n≥1

(
n∑

j=1

v1−p′

j

) 1
p′
(

∞∑
i=n

aq
i,nui

) 1
q

and

B2 = sup
n≥1

(
n∑

j=1

bp
′

n,jv
1−p′

j

) 1
p′
(

∞∑
i=n

ωq
i ui

) 1
q

.

Moreover, B ≈ C, where C is the best constant in (1.1).

Theorem D. ([1], [4]) Let 1 < q < p <∞. Then inequality (1.7) holds if and only if

H1 =

 ∞∑
k=1

(
∞∑

i=k

ui

) p
p−q
(

k∑
j=1

αp′

j v
1−p′

j

) p(q−1)
p−q

αp′

k v
1−p′

k


p−q
pq

<∞.

Moreover, H1 ≈ C, where C is the best constant in (1.7).

Theorem E. [8] Let 1 < q < p <∞. Let the entries of the matrix (ai,j) satisfy assump-
tion (1.4). Then inequality (1.1) holds for f ∈ lp,v if and only if E = max{E1, E2} <∞,
where

E1 =

 ∞∑
i=1

(
i∑

j=1

bp
′

i,jv
1−p′

j

) q(p−1)
p−q

(
∞∑

k=i

ωq
kuk

) q
p−q

ωq
i ui


p−q
pq

,
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E2 =

 ∞∑
i=1

(
i∑

j=1

v1−p′

j

) p(q−1)
p−q

(
∞∑

k=i

aq
k,iuk

) p
p−q

v1−p′

i


p−q
pq

.

Moreover, E ≈ C, where C is the best constant in (1.1).

2 Main results

We define

Vk =
k∑

i=1

vi, Aik =
k∑

j=1

ai,j, Bik =
k∑

j=1

bi,j,

C1 = sup
s∈N

V
− 1

p
s

(
s∑

i=1

Aq
iiui

) 1
q

,

C2 = sup
s∈N

(
s∑

k=1

kp′
(
V
− p′

p

k − V
− p′

p

k+1

)) 1
p′
(

∞∑
i=s

aq
i,sui

) 1
q

,

C3 = sup
s∈N

(
s∑

k=1

Bp′

sk

(
V
− p′

p

k − V
− p′

p

k+1

)) 1
p′
(

∞∑
i=s

ωq
i ui

) 1
q

,

F1 =

 ∞∑
k=1

V
q

q−p

k

(
k∑

i=1

Aq
iiui

) q
p−q

Aq
kkuk


p−q
pq

,

F2 =

 ∞∑
k=1

(
∞∑

i=k

wq
i ui

) p
p−q
(

k∑
j=1

Bp′

jj

(
V
− p′

p

j − V
− p′

p

j+1

)) p(q−1)
p−q

Bp′

kk

(
V
− p′

p

k − V
− p′

p

k+1

)
p−q
pq

,

F3 =

 ∞∑
k=1

(
k∑

j=1

jp′bp
′

k,j

(
V
− p′

p

j − V
− p′

p

j+1

)) q(p−1)
p−q

(
∞∑

i=k

wq
i ui

) q
p−q

wq
kuk


p−q
pq

,

F4 =

 ∞∑
k=1

(
∞∑

i=k

aq
i,kui

) p
p−q
(

k∑
j=1

jp′
(
V
− p′

p

j − V
− p′

p

j+1

)) p(q−1)
p−q

kp′
(
V
− p′

p

k − V
− p′

p

k+1

)
p−q
pq

.

Theorem 2.1. Let 1 < p ≤ q <∞. Let the entries of the matrix (ai,j) satisfy assump-
tion (1.4). Then inequality (1.1) holds if and only if C0 = max{C1, C2, C3} < ∞.
Moreover, C0 ≈ C, where C is the best constant in (1.1).
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Theorem 2.2. Let 1 < q < p <∞. Let the entries of the matrix (ai,j) satisfy assump-
tion (1.4). Then inequality (1.1) holds if and only if F0 = max{F1, F2, F3, F4} <∞.
Moreover, F0 ≈ C, where C is the best constant in (1.1).

Proof of Theorem 2.1. We consider two cases separately: V∞ = +∞ and V∞ < +∞.
1. Let V∞ = +∞. Then based on Theorem A inequality (1.1) holds if and only if

the following inequality holds ∞∑
k=1

(
k∑

j=1

∞∑
i=j

ai,jgi

)p′ (
V
− p′

p

k − V
− p′

p

k+1

) 1
p′

≤ C̃

(
∞∑
i=1

gq′

i u
1−q′

i

) 1
q′

, ∀g ≥ 0. (2.1)

Moreover, C̃ ≈ C, where C is the best constant in (1.1).
Since ai,j, gi are non-negative and according to assumption (1.4) we have

k∑
j=1

∞∑
i=j

ai,jgi =
k∑

j=1

k∑
i=j

ai,jgi +
k∑

j=1

∞∑
i=k+1

ai,jgi ≈
k∑

i=1

Aiigi +
∞∑

i=k

gi

k∑
j=1

ai,j

≈
k∑

i=1

Aiigi + k
∞∑

i=k

ai,kgi +Bkk

∞∑
i=k

ωigi. (2.2)

Therefore,(
k∑

j=1

∞∑
i=j

ai,jgi

)p′

≈

(
k∑

i=1

Aiigi

)p′

+

(
k

∞∑
i=k

ai,kgi

)p′

+

(
Bkk

∞∑
i=k

ωigi

)p′

.

Substituting the last inequality in the left hand side of inequality (2.1) we have ∞∑
k=1

( k∑
i=1

Aiigi

)p′

+

(
k

∞∑
i=k

ai,kgi

)p′

+

(
Bkk

∞∑
i=k

ωigi

)p′
(V − p′

p

k − V
− p′

p

k+1

) 1
p′

≤ C̃0

(
∞∑
i=1

gq′

i u
1−q′

i

) 1
q′

, ∀g ≥ 0, (2.3)

which is equivalent to the inequality (2.1). Moreover, C̃ ≈ C̃0.
Inequality (2.3) holds if and only if the following inequalities hold simultaneously ∞∑

k=1

(
k∑

i=1

Aiigi

)p′ (
V
− p′

p

k − V
− p′

p

k+1

) 1
p′

≤ C̃1

(
∞∑
i=1

gq′

i u
1−q′

i

) 1
q′

, ∀g ≥ 0, (2.4)

 ∞∑
k=1

(
k

∞∑
i=k

ai,kgi

)p′ (
V
− p′

p

k − V
− p′

p

k+1

) 1
p′

≤ C̃2

(
∞∑
i=1

gq′

i u
1−q′

i

) 1
q′

, ∀g ≥ 0, (2.5)
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 ∞∑
k=1

(
Bkk

∞∑
i=k

ωigi

)p′ (
V
− p′

p

k − V
− p′

p

k+1

) 1
p′

≤ C̃3

(
∞∑
i=1

gq′

i u
1−q′

i

) 1
q′

, ∀g ≥ 0. (2.6)

Moreover,

C̃ ≈ max{C̃1, C̃2, C̃3}. (2.7)

In (2.5) and (2.6) by passing to the dual inequalities we obtain(
∞∑

k=1

(
k∑

i=1

ak,iϕi

)q

uk

) 1
q

≤ C̃2

(
∞∑
i=1

ϕp
i i

−p

(
V
− p′

p

i − V
− p′

p

i+1

)− p
p′
) 1

p

, ∀ϕ ≥ 0. (2.8)

(
∞∑

k=1

(
k∑

i=1

ϕi

)q

ωq
kuk

) 1
q

≤ C̃3

(
∞∑

k=1

ϕp
kB

−p
kk

(
V
− p′

p

k − V
− p′

p

k+1

)− p
p′
) 1

p

, ∀ϕ ≥ 0. (2.9)

(2.4) and (2.9) are Hardy type inequalities. Hence, by Theorem B inequalities (2.4)
and (2.9) hold if and only if the following conditions hold respectively

sup
s∈N

(
∞∑

k=s

(
V
− p′

p

k − V
− p′

p

k+1

)) 1
p′
(

s∑
i=1

Aq
iiui

) 1
q

(2.10)

= sup
s∈N

V
− 1

p
s

(
s∑

i=1

Aq
iiui

) 1
q

= C1 <∞,

sup
s∈N

(
∞∑
i=s

ωq
i ui

) 1
q
(

s∑
k=1

Bp′

kk

(
V
− p′

p

k − V
− p′

p

k+1

)) 1
p′

= C4 <∞. (2.11)

Moreover,

C1 ≈ C̃1, C4 ≈ C̃3. (2.12)

By using Theorem C inequality (2.8) holds if and only if the following conditions
hold

sup
s∈N

(
s∑

k=1

kp′
(
V
− p′

p

k − V
− p′

p

k+1

)) 1
p′
(

∞∑
i=s

aq
i,sui

) 1
q

= C2 <∞, (2.13)

sup
s∈N

(
s∑

k=1

bp
′

s,kk
p′
(
V
− p′

p

k − V
− p′

p

k+1

)) 1
p′
(

∞∑
i=s

ωq
i ui

) 1
q

= C5 <∞ (2.14)
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and

C̃2 ≈ max{C2, C5}. (2.15)

Since bi,j is almost non-decreasing in i and almost non-increasing in j, for s ≥ k we
have

C3 ≈ C4 + C5. (2.16)

By (2.10),(2.11), (2.13), (2.14) and (2.16) we obtain that inequalities (2.4)-(2.6)
hold if and only if C0 = max{C1, C2, C3} < ∞. Moreover, C0 ≈ max{C̃1, C̃2, C̃3},
which implies that C0 ≈ C̃. Since C̃ ≈ C we get C0 ≈ C. The last equivalence gives
the statement of Theorem 2.1 in the case V∞ = ∞.

2. Let V∞ < +∞. By Theorem A inequality (1.1) holds if and only if along with
inequality (2.1) the following inequality holds(

∞∑
k=1

∞∑
i=k

ai,kgi

)(
∞∑
i=1

vi

)− 1
p

≤ Ĉ

(
∞∑
i=1

gq′

i u
1−q′

i

) 1
q′

, ∀g ≥ 0. (2.17)

Moreover, C ≈ max{C̃, Ĉ}.
Since ai,j, gi are non-negative, changing the order of summation in the left hand

side of (2.17) we obtain(
∞∑
i=1

giAii

)
≤ ĈV

1
p
∞

(
∞∑
i=1

gq′

i u
1−q′

i

) 1
q′

, ∀g ≥ 0.

By the reverse Hölder’s inequality we have(
∞∑
i=1

Aq
iiui

) 1
q

= ĈV
1
p
∞,

consequently

V
− 1

p
∞

(
∞∑
i=1

Aq
iiui

) 1
q

= Ĉ. (2.18)

Hence,
Ĉ ≤ C1.

Now we see that max{C̃, Ĉ} ≈ C0 = max{C1, C2, C3} regardless of whether V∞
is finite or infinite. Since max{C̃, Ĉ} ≈ C, we get C ≈ C0 = max{C1, C2, C3}. �

Proof of Theorem 2.2. We consider two cases separately: V∞ = +∞ and V∞ < +∞.
1. Let V∞ = +∞. Then in the same way using Theorem A as in the proof of

Theorem 2.1 we obtain inequalities (2.4), (2.8) and (2.9).
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By Theorem D inequalities (2.4), (2.9) hold if and only if the following conditions
hold respectively ∞∑

k=1

V
q

q−p

k

(
k∑

i=1

Aq
iiui

) q
p−q

Aq
kkuk


p−q
pq

= F1 <∞, (2.19)

 ∞∑
k=1

(
∞∑

i=k

wq
i ui

) p
p−q
(

k∑
j=1

Bp′

jj

(
V
− p′

p

j − V
− p′

p

j+1

)) p(q−1)
p−q

× (2.20)

Bp′

kk

(
V
− p′

p

k − V
− p′

p

k+1

)) p−q
pq

= F2 <∞.

Moreover,

F1 ≈ C̃1, F2 ≈ C̃3. (2.21)

The entries of the matrix (ak,i) satisfy assumption (1.4). Therefore, by Theorem E
inequality (2.8) holds if and only if the following conditions hold ∞∑

k=1

(
k∑

j=1

jp′bp
′

k,j

(
V
− p′

p

j − V
− p′

p

j+1

)) q(p−1)
p−q

(
∞∑

i=k

wq
i ui

) q
p−q

wq
kuk


p−q
pq

(2.22)

= F3 <∞,

 ∞∑
k=1

(
∞∑

i=k

aq
i,kui

) p
p−q
(

k∑
j=1

jp′
(
V
− p′

p

j − V
− p′

p

j+1

)) p(q−1)
p−q

× (2.23)

kp′
(
V
− p′

p

k − V
− p′

p

k+1

)) p−q
pq

= F4 <∞

and

C̃2 ≈ max{F3, F4}. (2.24)

By (2.19), (2.20) and (2.22), (2.23) we obtain that inequalities (2.4), (2.8) and (2.9)
hold if and only if F0 = max{F1, F2, F3, F4} <∞. Moreover, F0 ≈ max{C̃1, C̃2, C̃3},
which implies that F0 ≈ C̃. Since C̃ ≈ C we get F0 ≈ C. The last equivalence gives
the statement of Theorem 2.2 in the case V∞ = ∞.
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2. Let V∞ < +∞. By Theorem A inequality (1.1) holds if and only if along with
inequality (2.1) inequality (2.17) holds. Moreover, C ≈ max{C̃, Ĉ}.

As in the proof of Theorem 2.1 from inequality (2.17) we obtain inequality (2.18).
It is easy to prove that

F1 ≥ V
− 1

p
∞

 ∞∑
k=1

(
k∑

i=1

Aq
iiui

) q
p−q

Aq
kkuk


p−q
pq

� Ĉ.

Therefore, C ≈ max{C̃, Ĉ} ≈ F0 = max{F1, F2, F3, F4} regardless of whether V∞ is
finite or infinite. �
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