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Abstract. In this paper, we compute the determinants of several pentadiagonal ma-
trices with the generalized Fibonacci, generalized Lucas numbers and the determinant
of a pentadiagonal matrix with the classical Fibonacci numbers, and then we show how
the classical Fibonacci numbers arise as determinants of some pentadiagonal matrices.

1 Introduction

Study of recurrence sequences is clearly of intrinsic interest and has been a central
part of number theory for many years. Moreover, these sequences appear "almost
everywhere" in mathematics and computer science. For example, in the theory of
power series representing rational functions [48], pseudo-random number generators
[43, 44, 45, 58], k-regular [1] and automatic sequences [36], and cellular automata [39].
Sequences of solutions of classes of interesting Diophantine equations form linear recur-
rence sequences, see e.g., [49, 50, 59, 60]. A great variety of power series, for example
zeta-functions of algebraic varieties over finite fields [35], dynamical zeta functions of
many dynamical systems [7, 31, 38], generating functions coming from group theory
[15, 16], Hilbert series in commutative algebra [41], Poincare series [6, 13, 47] and the
like are all known to be rational in many interesting cases. In such cases the coeffi-
cients of the series representing such functions are linear recurrence sequences, so many
results from the present study may be applied. Linear recurrence sequences even enter
the proof of Hilbert’s Tenth Problem over Z [40, 61, 62]. In the proceedings [14], the
problem is resolved for many other rings. The article [46] by Pheidas suggests using
the arithmetic of bilinear recurrence sequences to deal with the still open rational case.
Recurrence sequences also appear in many parts of the mathematical sciences in the
wide sense (which includes applied mathematics and applied computer science). For
example, many systems of orthogonal polynomials, including the Tchebychev poly-
nomials and their finite field analogues, the Dickson polynomials, satisfy recurrence
relations. Linear recurrence sequences are also of importance in approximation the-
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ory and cryptography and they have arisen in computer graphics [42] and time series
analysis [8].

One of the simplest and most celebrated recurrence sequences is the Fibonacci
sequence. The Fibonacci numbers are given by the sequence 0, 1, 1, 2, 3, 5, ... where each
term is the sum of the previous two. This sequence can be defined via the recursive
formulas: F0 = 0, F1 = 1, and Fn = Fn−1 + Fn−2, n ≥ 2, [32]. This recursive
relation was introduced for the first time by the famous Italian mathematician Leonardo
of Pisa (nicknamed Fibonacci). It is well known that the ratio of two consecutive
classical Fibonacci numbers converges to the Golden Mean, or the Golden Section,
τ = 1+

√
5

2
, which appears in modern research in many fields from architecture [51, 52]

to physics of high energy particles [17] – [19] or theoretical physics [20] – [26]. As
is shown in [30], [53] – [56], the hyperbolic Fibonacci functions can lead to creation
of the Lobachevsky–Fibonacci and Minkovsky–Fibonacci geometry which is of great
importance for theoretical physics. In the 19th century the French mathematician
Francois Edouard Anatole Lucas (1842 - 1891) introduced the so-called Lucas numbers
given by the recursive relation Ln = Ln−1 + Ln−2, n ≥ 2, with the seeds L0 = 2 and
L1 = 1.

In [63], the relations have been studied between the Bell matrix and the Fibonacci
matrix, which provide a unified approach to some lower triangular matrices, such as
the Stirling matrices of both kinds, the Lah matrix, and the generalized Pascal matrix.
To make the results more general, the discussion is also extended to the (s, t)-Fibonacci
numbers and the corresponding matrix. Moreover, based on the matrix representations,
various identities are derived.

For any integer numbers s > 0 and t 6= 0 with s2 + 4t > 0; the nth (s, t)-Fibonacci
{Fn (s, t)}n∈N and (s, t)-Lucas {Ln (s, t)}n∈N sequences are defined recurrently by

Fn+1 (s, t) = sFn (s, t) + tFn−1 (s, t) for n ≥ 1, (1.1)

and
Ln+1 (s, t) = sLn (s, t) + tLn−1 (s, t) for n ≥ 1, (1.2)

with
F0 (s, t) = 0, F1 (s, t) = 1,

and
L0 (s, t) = 2, L1 (s, t) = s,

respectively.
It is well known that the (s, t)-Fibonacci and Lucas numbers are generalized Fi-

bonacci and Lucas numbers. The following table summarizes special cases of Fn (s, t)
and Ln (s, t) :

(s, t) Fn Ln
(1, 1) Fibonacci numbers Lucas numbers
(2, 1) Pell numbers Pell-Lucas numbers
(1, 2) Jacobsthal numbers Jacobsthal-Lucas numbers
(3,−2) Mersenne numbers Fermat numbers
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In this paper we will write simply Fn, fn, Ln, and ln instead of Fn (s, t), Fn (1, 1),
Ln (s, t), and Ln (1, 1) respectively.

Binet’s formula is well known in theory of Fibonacci numbers [33]. Binet’s formula
allows us to express the generalized Fibonacci and Lucas numbers as functions of the
roots α = s+

√
s2+4t
2

and β = s−
√
s2+4t
2

of the characteristic equation x2 = sx + t
associated with recurrence relations (1.1) and (1.2).

The following result is well known, and can be found, for example, in [33].

Theorem 1 (Binet’s formula). The n-th generalized Fibonacci and Lucas numbers
are given by

Fn =
αn − βn

α− β
and Ln = αn + βn.

There is a long tradition of using matrices and determinants to study the Fibonacci
numbers. For example, Bicknell-Johnson and Spears [5] use elementary matrix op-
erations and determinants to generate classes of identities for generalized Fibonacci
numbers, and Cahill and Narayan [9] show how the Fibonacci and Lucas numbers arise
as determinants of some tridiagonal matrices. The Hessenberg matrix [27]

2 1 0 · · · 0

1 2
. . . . . . ...

... . . . . . . 0
1 1
1 · · · 1 2


has as its determinant fn+2. Several other Hessenberg matrices whose determinants
are the Fibonacci numbers were introduced in [10] and [27], where cofactor expan-
sions were used to compute these determinants. Combinatorial proofs were given for
the determinant of Van-der-Monde’s matrix [2] and of matrices whose entries are the
Fibonacci [3] and Catalan [4] numbers. Strang [57] presents a family of tridiagonal
matrices given by:

A (n) =


3 1
1 3 1

1 3
. . .

. . . . . . 1
1 3

 ,

where A (n) is a n × n matrix. The determinants |A (k)| are the Fibonacci numbers
f2k+2. Webb and Parberry [64] have showed the following complex factorization:

fn =
n−1∏
k=1

(
1− 2i cos

πk

n

)
, n ≥ 2,

where fn is the nth Fibonacci number, by considering the roots of the Fibonacci poly-
nomials. In [37] it is proposed to compute∣∣∣∣∣∣

l4n+8 + 1 l4n+6 − 3 7− l4n
l4n+4 + 1 l4n+2 − 3 7− l4n−4

l4n + 1 l4n−2 − 3 7− l4n−8

∣∣∣∣∣∣ ,



On the determinants of pentadiagonal matrices with the . . . 63

where ln is the nth Lucas number. To study its generalization Kwong [34] first defined,
for any real numbers a, b, c, d, e and f with a, c, e 6= 0, any integers i, j, k ≥ 1, and any
integer n,

∆ (l) =

∣∣∣∣∣∣
aln+i+j+k+2 + b cln+i+j+k + d eln+i+j + f
aln+i+k+2 + b cln+i+k + d eln+i + f
aln+k+2 + b cln+k + d eln + f

∣∣∣∣∣∣ ,
and analogously

∆ (f) =

∣∣∣∣∣∣
afn+i+j+k+2 + b cfn+i+j+k + d efn+i+j + f
afn+i+k+2 + b cfn+i+k + d efn+i + f
afn+k+2 + b cfn+k + d efn + f

∣∣∣∣∣∣ ,
where fn is the nth Fibonacci number, and then he found that the values of these
two determinants can be expressed in a rather neat manner, and that only differ by
a constant. Civciv [12] studied the following determinant of a pentadiagonal matrix
with Fibonacci numbers

Ek =



1− fkfk−1 fk+1 fkfk−1

−fk+1 1− 2fkfk−1
. . . . . .

fkfk−1 −fk+1
. . . . . . . . .

. . . . . . . . . fk+1 fkfk−1

. . . . . . 1− 2fkfk−1 fk+1

fkfk−1 −fk+1 1− fkfk−1


k×k

.

In this note, we compute the determinants of several pentadiagonal matrices with
the generalized Fibonacci, generalized Lucas numbers and the following determinant
of pentadiagonal matrix with the classical Fibonacci numbers

Gk =



1 + fkfk−1 fk+1 fkfk−1

fk+1 1 + 2fkfk−1
. . . . . .

fkfk−1 fk+1
. . . . . . . . .

. . . . . . . . . fk+1 fkfk−1

. . . . . . 1 + 2fkfk−1 fk+1

fkfk−1 fk+1 1 + fkfk−1


k×k

,

and then show how the classical Fibonacci numbers arise as determinants of some
pentadiagonal matrices.

2 Main results

In order to prove Theorems 2 – 5, we must first present the following lemma and its
corollary.
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Lemma 1. For n ≥ 0,

L2
n + 4 (−1)n+1 tn = (α− β)2 F 2

n . (2.1)

Proof. By Theorem 1 we get

L2
n − (α− β)2 F 2

n = (αn + βn)2 − (α− β)2

(
αn − βn

α− β

)2

= α2n + β2n − 2 (−1)n+1 tn −
(
α2n + β2n + 2 (−1)n+1 tn

)
,

from where the result follows.

Corollary 1.

αn =

√
(s2 + 4t)F 2

n + 4 (−1)n tn +
√
s2 + 4tFn

2
, (2.2)

or

αn =
Ln +

√
L2
n + 4 (−1)n+1 tn

2
, (2.3)

and

βn =

√
(s2 + 4t)F 2

n + 4 (−1)n tn −
√
s2 + 4tFn

2
, (2.4)

or

βn =
Ln −

√
L2
n + 4 (−1)n+1 tn

2
. (2.5)

Theorem 2. Let Ak be the following k × k (k ≥ 3) pentadiagonal matrix

Ak =



1− (−t)k Lk (−t)k

−Lk 1− 2 (−t)k Lk (−t)k

(−t)k −Lk
. . . . . . . . .

(−t)k . . . . . . Lk (−t)k
. . . −Lk 1− 2 (−t)k Lk

(−t)k −Lk 1− (−t)k


k×k

.

Then

detAk =
k∏
j=1

[
1− 2iLk cos

πj

k + 1
− 4 (−t)k cos2 πj

k + 1

]
, k ≥ 3.

Proof. In order to derive the value of the determinant of the matrix Ak, we introduce
the real sequences

{
S

(A)
k

}∞
k=1

and
{
T

(A)
k

}∞
k=1

such that

S
(A)
1 = 1,

S
(A)
2 = 1 + α4,

S
(A)
k = S

(A)
k−1 + a2kSk−2, k ≥ 3,
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and

T
(A)
1 = 1,

T
(A)
2 = 1 + β4,

T
(A)
k = T

(A)
k−1 + β2kT

(A)
k−2, k ≥ 3.

Then, by identities (2.3) and (2.5) we obtain

detAk = S
(A)
k T

(A)
k , k ≥ 3. (2.6)

In order to compute
{
S

(A)
k , k = 1, 2, ...

}
, we define the k × k tridiagonal matrix of the

form
M

(A)
k = iαkNk,with i =

√
−1, (2.7)

where

Nk =


0 1
1 0 1

1 0
. . .

. . . . . . 1
1 0


k×k

.

Note that S(A)
k = det

(
I +M

(A)
k

)
, k ≥ 1. Here I is the k × k identity matrix. We

know that the determinant of a square matrix can be found by taking the product of
its eigenvalues. Therefore, we will compute the spectrum of M (A)

k in order to find an
alternative expression for S(A)

k . Let λj, j = 1, 2, ..., k, be the eigenvalues of I + M
(A)
k

and let µj, j = 1, 2, ..., k, be the eigenvalues of M (A)
k (with the associated eigenvectors

xk). Thus, since, for each j, (
I +M

(A)
k

)
xj = [1 + µj]xj,

we write λj = 1 + µj, j = 1, 2, ..., k. Therefore,

S
(A)
k =

k∏
j=1

(1 + µj) , k ≥ 1. (2.8)

Since [11] the eigenvalues of the matrix Nk are

θj = −2 cos
πj

n+ 1
, j = 1, 2, ..., n, (2.9)

from (2.7) we have

µj = −2iαk cos
πj

k + 1
, j = 1, 2, ..., k. (2.10)

Combining (2.8) and (2.10), we get

S
(A)
k =

k∏
j=1

(
1− 2iαk cos

πj

k + 1

)
, k ≥ 1. (2.11)
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Similarly, for
{
T

(A)
k

}∞
k=1

we obtain

T
(A)
k =

k∏
j=1

(
1− 2iβk cos

πj

k + 1

)
, k ≥ 1. (2.12)

Taking into account (2.6), (2.11) and (2.12) we compute

detAk =
k∏
j=1

[
1− 2iLk cos

πj

k + 1
− 4 (−t)k cos2 πj

k + 1

]
, k ≥ 3,

and the proof is completed.

Theorem 3. Let Bk be the following k × k (k ≥ 3) pentadiagonal matrix

Bk =



1 + (−t)k Lk (−t)k

Lk 1 + 2 (−t)k Lk (−t)k

(−t)k Lk
. . . . . . . . .

(−t)k . . . . . . Lk (−t)k
. . . Lk 1 + 2 (−t)k Lk

(−t)k Lk 1 + (−t)k


k×k

.

Then

detBk =
k∏
j=1

[
1− 2Lk cos

πj

k + 1
+ 4 (−t)k cos2 πj

k + 1

]
, k ≥ 3.

Proof. The proof is similar to the proof of Theorem 2, and we only show an outline
of it. In order to compute the determinant of the matrix Bk, we introduce the real
sequences

{
S

(B)
k

}∞
k=1

and
{
T

(B)
k

}∞
k=1

such that

S
(B)
1 = 1,

S
(B)
2 = 1− α4,

S
(B)
k = S

(B)
k−1 − a2kS

(B)
k−2, k ≥ 3,

and

T
(B)
1 = 1,

T
(B)
2 = 1− β4,

T
(B)
k = T

(B)
k−1 − β2kT

(B)
k−2, k ≥ 3.

Then, by identities (2.3) and (2.5) we get

detBk = S
(B)
k T

(B)
k , k ≥ 3. (2.13)
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In order to compute
{
S

(B)
k , k = 1, 2, ...

}
, we define the k × k tridiagonal matrix of the

form
M

(B)
k = αkNk. (2.14)

Therefore, since S(B)
k = det

(
I + αkNk

)
, k ≥ 1, and T

(B)
k = det

(
I + βkNk

)
, k ≥ 1,

taking into account (2.9) and (2.13) we compute

detBk =
k∏
j=1

[
1− 2Lk cos

πj

k + 1
+ 4 (−t)k cos2 πj

k + 1

]
, k ≥ 3,

and the proof is completed.

Theorem 4. Let Ck be the following k × k (k ≥ 3) pentadiagonal matrix

Ck =



1− ω Fk ω
−Fk 1− 2ω Fk ω

ω −Fk
. . . . . . . . .

ω
. . . . . . Fk ω
. . . −Fk 1− 2ω Fk

ω −Fk 1− ω


k×k

,

where ω = (−1)k+1tk

s2+4t
. Then

detCk =
k∏
j=1

[
1− i

2√
s2 + 4t

Lk cos
πj

k + 1
− 4

(−t)k

s2 + 4t
cos2 πj

k + 1

]
, k ≥ 3.

Proof. In order to compute the determinant of the matrix Ck, we introduce the real
sequences

{
S

(C)
k

}∞
k=1

and
{
T

(C)
k

}∞
k=1

such that

S
(C)
1 = 1,

S
(C)
2 = 1 +

α4

s2 + 4t
,

S
(C)
k = S

(C)
k−1 +

α2k

s2 + 4t
S

(C)
k−2, k ≥ 3,

and

T
(C)
1 = 1,

T
(C)
2 = 1 +

β4

s2 + 4t
,

T
(C)
k = T

(C)
k−1 +

β2k

s2 + 4t
T

(C)
k−2, k ≥ 3.

Then, by identities (2.2) and (2.4) we have

detCk = S
(C)
k T

(C)
k , k ≥ 3. (2.15)
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In order to compute
{
S

(C)
k , k = 1, 2, ...

}
, we define the k × k tridiagonal matrix of the

form

M
(C)
k = i

αk√
s2 + 4t

Nk,with i =
√
−1. (2.16)

Thus we get

S
(C)
k =

k∏
j=1

(
1− 2i

αk√
s2 + 4t

cos
πj

k + 1

)
, k ≥ 1. (2.17)

Similarly, for
{
T

(C)
k

}∞
k=1

we obtain

T
(C)
k =

k∏
j=1

(
1− 2i

βk√
s2 + 4t

cos
πj

k + 1

)
, k ≥ 1. (2.18)

Taking into account (2.15), (2.17) and (2.18) we compute

detCk =
k∏
j=1

[
1− i

2√
s2 + 4t

Lk cos
πj

k + 1
− 4

(−t)k

s2 + 4t
cos2 πj

k + 1

]
, with k ≥ 3,

which completes the proof.

Theorem 5. Let Dk be the following k × k (k ≥ 3) pentadiagonal matrix

Dk =



1 + ω Fk ω
Fk 1 + 2ω Fk ω

ω Fk
. . . . . . . . .

ω
. . . . . . Fk ω
. . . Fk 1 + 2ω Fk

ω Fk 1 + ω


k×k

,

where ω = (−1)k+1tk

s2+4t
. Then

detDk =
k∏
j=1

[
1− 2√

s2 + 4t
Lk cos

πj

k + 1
+ 4

(−t)k

s2 + 4t
cos2 πj

k + 1

]
, with k ≥ 3.

Proof. The proof is similar to the proof of Theorem 4, and we only show an outline
of it. In order to compute the determinant of the matrix Dk, we introduce the real
sequences

{
S

(D)
k

}∞
k=1

and
{
T

(D)
k

}∞
k=1

such that

S
(D)
1 = 1,

S
(D)
2 = 1− α4

s2 + 4t
,

S
(D)
k = S

(D)
k−1 −

α2k

s2 + 4t
S

(D)
k−2, k ≥ 3,
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and

T
(D)
1 = 1,

T
(D)
2 = 1− β4

s2 + 4t
,

T
(D)
k = T

(D)
k−1 −

β2k

s2 + 4t
T

(D)
k−2, k ≥ 3.

Then, by identities (2.2) and (2.4) we obtain

detDk = S
(D)
k T

(D)
k , k ≥ 3. (2.19)

In order to compute
{
S

(D)
k , k = 1, 2, ...

}
, we define the k × k tridiagonal matrix of the

form:

M
(D)
k =

αk√
s2 + 4t

Nk. (2.20)

Therefore, since S(D)
k = det

(
I + αk

√
s2+4t

Nk

)
, k ≥ 1, and T

(D)
k = det

(
I + βk

√
s2+4t

Nk

)
,

k ≥ 1, taking into account (2.9) and (2.19) we compute

detDk =
k∏
j=1

[
1− 2√

s2 + 4t
Lk cos

πj

k + 1
+ 4

(−t)k

s2 + 4t
cos2 πj

k + 1

]
, with k ≥ 3,

which completes the proof.

Now using equations (2.2) and (2.4), similarly to the proof of Theorem 5 we can
prove the following corollary.

Theorem 6. Let Gk be the following k × k (k ≥ 3) pentadiagonal matrix

Gk =



1 + fkfk−1 fk+1 fkfk−1

fk+1 1 + 2fkfk−1
. . . . . .

fkfk−1 fk+1
. . . . . . . . .

. . . . . . . . . fk+1 fkfk−1

. . . . . . 1 + 2fkfk−1 fk+1

fkfk−1 fk+1 1 + fkfk−1


k×k

,

where fk is the kth classical Fibonacci number. Then

detGk =
k∏
j=1

[
1− 2fk+1 cos

πj

k + 1
+ 4fkfk−1 cos2 πj

k + 1

]
, k ≥ 3.

Proof. The proof is similar to the proof of Theorem 5, and we only show an outline of
it. From (2.19) we obtain

detGk = S
(G)
k T

(G)
k , k ≥ 3, (2.21)
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where
{
S

(G)
k

}
and

{
T

(G)
k

}
are the real sequences such that

S
(G)
1 = 1,

S
(G)
2 = 1− f 2

k ,

S
(G)
k = S

(G)
k−1 − f 2

kS
(G)
k−2, k ≥ 3,

and

T
(G)
1 = 1,

T
(G)
2 = 1− f 2

k−1,

T
(G)
k = T

(G)
k−1 − f 2

k−1T
(G)
k−2, k ≥ 3.

In order to compute
{
S

(G)
k , k = 1, 2, ...

}
, we define the k × k tridiagonal matrix of the

form
M

(G)
k = fkNk. (2.22)

Therefore, since S(G)
k = det (I + fkNk), k ≥ 1, and T

(G)
k = det (I + fk−1Nk), k ≥ 1,

taking into account (2.9) and (2.21) we compute

detGk =
k∏
j=1

[
1− 2 (fk + fk−1) cos

πj

k + 1
+ 4fkfk−1 cos2 πj

k + 1

]
, k ≥ 3,

which completes the proof.

Example 1. ∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 2 1
−2 −1 2 1

1 −2 −1
. . . . . .

1
. . . . . . . . . 1
. . . . . . −1 2

1 −2 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
k×k

= f 2
k+1, k ≥ 3.

Example 2.∣∣∣∣∣∣∣∣∣∣∣∣∣∣

10/9 2/3 1/9
2/3 11/9 2/3 1/9

1/9 2/3 11/9
. . . . . .

1/9
. . . . . . . . . 1/9
. . . . . . 11/9 2/3

1/9 2/3 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
k×k

= 3−2kf 2
2k+2, k ≥ 3.
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