
EURASIAN MATHEMATICAL JOURNAL
ISSN 2077-9879
Volume 3, Number 4 (2012), 99 – 110

THE DIRICHLET PROBLEM FOR THE GENERALIZED
BI-AXIALLY SYMMETRIC HELMHOLTZ EQUATION

M.S. Salakhitdinov, A. Hasanov

Communicated by Sh.A. Alimov

Key words: singular partial differential equation, generalized bi-axially symmetric
Helmholtz equation, fundamental solutions, Green’s function, Dirichlet problem, Kum-
mer’s confluent hypergeometric function in three variables.

AMS Mathematics Subject Classification: 35A08.

Abstract. In [18], fundamental solutions for the generalized bi-axially symmetric
Helmholtz equation were constructed in R+

2 = {(x, y) : x > 0, y > 0} . They contain
Kummer’s confluent hypergeometric functions in three variables. In this paper, using
one of the constructed fundamental solutions, the Dirichlet problem is solved in the
domain Ω ⊂ R+

2 . Using the method of Green’s functions, solution of this problem is
found in an explicit form.

1 Introduction

In the monograph of Gilbert [16], by applying methods of complex analysis, integral
representations of solutions of the generalized bi-axially Helmholtz equation

Hλ
α,β (u) ≡ uxx + uyy +

2α

x
ux +

2β

y
uy − λ2u = 0,

(
Hλ

α,β

)
were constructed via analytic functions. Here 0 < 2α, 2β < 1, α, β, λ are constants.
When λ = 0 this equation is known as the equation of generalized axially symmetric
potential theory. This terminology was used for the first time by Weinstein, who first
considered fractional dimensional spaces in the potential theory [33, 34]. The special
case with λ = 0 has also been investigated by Erdelyi [5, 6], Gilbert [9-15], Ranger
[29], Henrici [21, 22]. There are many works [1-3, 8, 17, 23, 25-28, 30, 32] in which some
problems for equation

(
Hλ

α,β

)
were studied. In the paper [18] for equation

(
Hλ

α,β

)
the

following fundamental solutions on R+
2 = {(x, y) : x > 0, y > 0} have been constructed:

q1 (x, y;x0, y0) = k1

(
r2
)−α−β

A
(3)
2 (α+ β;α, β; 2α, 2β; ξ, η, ζ) , (1.1)

q2 (x, y;x0, y0) = k2 (r2)
α−β−1

x1−2αx1−2α
0 A

(3)
2

× (1− α+ β; 1− α, β; 2− 2α, 2β; ξ, η, ζ) ,
(1.2)

q3 (x, y;x0, y0) = k3 (r2)
−α+β−1

y1−2βy1−2β
0 A

(3)
2

× (1 + α− β;α, 1− β; 2α, 2− 2β; ξ, η, ζ) ,
(1.3)
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q4 (x, y;x0, y0) = k4 (r2)
α+β−2

x1−2αy1−2βx1−2α
0 y1−2β

0 A
(3)
2

× (2− α− β; 1− α, 1− β; 2− 2α, 2− 2β; ξ, η, ζ) ,
(1.4)

where

k1 =
22α+2β

4π

Γ (α) Γ (β) Γ (α+ β)

Γ (2α) Γ (2β)
, (1.5)

k2 =
22−2α+2β

4π

Γ (1− α) Γ (β) Γ (1− α+ β)

Γ (2− 2α) Γ (2β)
, (1.6)

k3 =
22+2α−2β

4π

Γ (α) Γ (1− β) Γ (1 + α− β)

Γ (2α) Γ (2− 2β)
, (1.7)

k4 =
24−2α−2β

4π

Γ (1− α) Γ (1− β) Γ (2− α− β)

Γ (2− 2α) Γ (2− 2β)
, (1.8)

r2 = (x− x0)
2 + (y − y0)

2 , r2
1 = (x+ x0)

2 + (y − y0)
2 , r2

2 = (x− x0)
2 + (y + y0)

2 ,

ξ =
r2 − r2

1

r2
, η =

r2 − r2
2

r2
, ζ = −λ

2

4
r2, (1.9)

A
(3)
2 (a; b1, b2; c1, c2;x, y, z) =

∞∑
m,n,p=0

(a)m+n−p (b1)m (b2)n

(c1)m (c2)nm!n!p!
xmynzp, (1.10)

and (a)n = Γ (a+ n) /Γ (a) is the Pochhammer symbol.

2 Green’s formulas

We consider an identity

x2αy2β
[
uHλ

α,β (v)− vHλ
α,β (u)

]
= ∂

∂x

[
x2αy2β (vxu− vux)

]
+ ∂

∂y

[
x2αy2β (vyu− vuy)

]
.

(2.1)

Integrating both parts of identity (2.1) over Ω ⊂ R+
2 , and using Green’s formula we

find ∫
Ω

x2αy2β
[
uHλ

α,β (v)− vHλ
α,β (u)

]
dxdy =

∫
S

x2αy2βu (vxdy − vydx)

−x2αy2βv (uxdy − uydx) ,
(2.2)

where S = ∂Ω is the boundary of the domain Ω. Formula (2.2) named as Green’s
formula is deduced under the following assumptions:
- the functions u and v are continuous on the closure of the domain Ω, i.e. on Ω̄,
- the partial derivatives of the first and second orders of u and v are continuous on Ω,
- the integrals over Ω, containing partial derivatives of the first and second orders of u
and v have sense.
If u, v are solutions of equation

(
Hλ

α,β

)
, then by formula (2.2) we get∫

S

x2αy2β

(
u
∂v

∂n
− v

∂u

∂n

)
ds = 0, (2.3)
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where
∂

∂n
=
dy

ds

∂

∂x
− dx

ds

∂

∂y
,
dy

ds
= cos (n, x) ,

dx

ds
= − cos (n, y) , (2.4)

n is the exterior normal to the curve S. The following identity also takes place:∫
Ω

x2αy2β
[
u2

x + u2
y + λ2u2

]
dxdy =

∫
S

x2αy2βu
∂u

∂n
ds, (2.5)

where u is a solution of equation
(
Hλ

α,β

)
.

3 The formulation and the uniqueness of the Dirichlet problem

Let Ω ⊂ R+
2 = {(x, y) : x > 0, y > 0} be a domain limited by intervals I1 = (0, a) , a =

const > 0, I2 = (0, b) , b = const > 0 of the axis OX, OY respectively, and a curve
Γ with endpoints A (a, 0) , B (0, b) . The parametrical equation of the curve Γ will be
x = x (s) , y = y (s) , where s is the length of the arc counted from the point A (a, 0) .
Concerning the curve Γ we shall assume that:
- the functions x = x (s) , y = y (s) have continuous derivatives x′ (s) , y′ (s) on the
segment [0, l], where l is length of the curve Γ, not simultaneously equal to zero;
- the derivatives x′′ (s) , y′′ (s) satisfy to the Hölder condition on [0, l];
- in neighborhoods of the points A (a, 0) and B (0, b) the conditions∣∣∣∣dxds

∣∣∣∣ ≤ Cy1+ε (s) ,

∣∣∣∣dyds
∣∣∣∣ ≤ Cx1+ε (s) , 0 < ε < 1, C = const,

are satisfied.
Problem D. Find a solution u of equation

(
Hλ

α,β

)
belonging to the class C

(
Ω̄
)
∩C2 (Ω) ,

satisfying the conditions

u (x, y)|y=0 = τ1 (x) , x ∈ Ī1, (3.1)

u (x, y)|x=0 = τ2 (y) , y ∈ Ī2, (3.2)

u (x, y)|Γ = ϕ (s) , 0 ≤ s ≤ l, (3.3)

where τ1, τ2, ϕ are given continuous functions and τ1 (0) = τ2 (0) , τ1 (a) = ϕ (0) , τ2 (b) =
ϕ (l) .

Theorem 3.1. If the problem D has a solution in the domain Ω, then it is unique.

Proof. Let τ1 (x) = τ2 (y) = ϕ (s) = 0 then, by virtue of identity (2.5), we have∫
Ω

x2αy2β
[
u2

x + u2
y + λ2u2

]
dxdy = 0. (3.4)

By (3.4) it follows that ux (x, y) = uy (x, y) = u (x, y) = 0. Hence, we have u (x, y) ≡ 0
in the domain Ω.

We note that the uniqueness of a solution of the problem D in the domain Ω also
follows by the extremum principle for elliptic differential equations.
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4 The existence theorem

Let a = b and Γ =: {(x, y) ∈ R+
2 : x2 + y2 = a2}. We denote this domain by Ω0. The

function G4 (x, y;x0, y0) satisfying the following conditions is called Green’s function
of the problem D :
- inside the domain Ω0, except for the point (x0, y0) , this function is a regular solution
of equation

(
Hλ

α,β

)
;

- it satisfies the boundary condition

G4 (x, y;x0, y0)|Γ∪I1∪I2
= 0; (4.1)

- it can be represented in the form

G4 (x, y;x0, y0) = q4 (x, y;x0, y0)−
(
R2

0

)−α−β
q4 (x, y; x̄0, ȳ0) , (4.2)

where
R2

0 = x2
0 + y2

0, x̄0 =
x0

R2
0

, ȳ0 =
y0

R2
0

, (4.3)

q4 (x, y;x0, y0) is a fundamental solution, q4 (x, y; x̄0, ȳ0) is a regular solution of equation(
Hλ

α,β

)
in the domain Ω0.

Let (x0, y0) ∈ Ω0. We cut out from Ω0 a circle of small radius ρ with the center at
the point (x0, y0) and the remaining part of Ω0, we denote by Ωρ

0. Cρ is a boundary of
the cutted out circle. Applying formula (2.3), we obtain∫

Cρ

x2αy2βu
∂G4 (x, y;x0, y0)

∂n
ds −

∫
Cρ

x2αy2βG4 (x, y;x0, y0)
∂u

∂n
ds

=

a∫
0

x2αy2βτ1 (x)
∂

∂y
G4 (x, y;x0, y0)

∣∣∣∣
y=0

dx

+

a∫
0

x2αy2βτ2 (y)
∂

∂x
G4 (x, y;x0, y0)

∣∣∣∣
x=0

dy

−
∫
Γ

x2αy2βϕ (s)
∂G4 (x, y;x0, y0)

∂n
ds.

(4.4)

Using the derivation formula

∂i+j+k

∂xi∂yj∂zk
A

(3)
2 (a; b1, b2; c1, c2;x, y, z)

=
(a)i+j−k (b1)i (b2)j

(c1)i (c2)j

A
(3)
2 (a+ i+ j − k; b1 + i, b2 + j; c1 + i, c2 + j;x, y, z) ,

(4.5)

and considering the adjacent relation
ab1
c1
xA

(3)
2 (1 + a; 1 + b1, b2; 1 + c1, c2;x, y, z)

+
ab2
c2
yA

(3)
2 (1 + a; b1, 1 + b2; c1, 1 + c2;x, y, z)

− 1

a− 1
zA

(3)
2 (a− 1; b1, b2; c1, c2;x, y, z)

= aA
(3)
2 (1 + a; b1, b2; c1, c2;x, y, z)− aA

(3)
2 (a; b1, b2; c1, c2;x, y, z) ,

(4.6)
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we find that

x2α ∂

∂x
q4 (x, y;x0, y0) = k4 (1− 2α) (r2)

α+β−2
x1−2α

0 (yy0)
1−2β A

(3)
2

× (2− α− β; 1− α, 1− β; 2− 2α, 2− 2β; ξ, η, ζ)

−2k4 (2− α− β)x (r2)
α+β−3

x2−2α
0 (yy0)

1−2β A
(3)
2

× (3− α− β; 2− α, 1− β; 3− 2α, 2− 2β; ξ, η, ζ)

−2k4 (2− α− β)x (r2)
α+β−3

x1−2α
0 (yy0)

1−2β (x− x0)A2

× (3− α− β; 1− α, 1− β; 2− 2α, 2− 2β; ξ, η, ζ)
(4.7)

and

y2β ∂

∂y
q4 (x, y;x0, y0) = k4 (1− 2β) (r2)

α+β−2
(xx0)

1−2α y1−2β
0

×A(3)
2 (2− α− β; 1− α, 1− β; 2− 2α, 2− 2β; ξ, η, ζ)

−2k4 (2− α− β) y (r2)
α+β−3

(xx0)
1−2α y2−2β

0

×A(3)
2 (3− α− β; 1− α, 2− β; 2− 2α, 3− 2β; ξ, η, ζ)

−2k4 (2− α− β) y (r2)
α+β−3

(xx0)
1−2α y1−2β

0 (y − y0)

×A(3)
2 (3− α− β; 1− α, 1− β; 2− 2α, 2− 2β; ξ, η, ζ) .

(4.8)

It is easy to prove that the following formulas are true:

A
(3)
2 (a; b1, b2; c1, c2; 0, y, z) =

∞∑
n,p=0

(a)n−p (b2)n

(c2)n n!p!
ynzp = H3 (a, b2; c2; y, z) , (4.9)

A2 (a; b1, b2; c1, c2;x, 0, z) =
∞∑

m,p=0

(a)m−p (b1)m

(c1)mm!p!
xmzp = H3 (a, b1; c1;x, z) , (4.10)

where H3 (a, b; c;x, y) is Kummer’s hypergeometric function in two arguments ([7],
p. 221, formula (31)). By virtue of equalities (4.7),(4.8),(4.9), (4.10) and taking into
account that ξ|x=0 = 0, η|y=0 = 0, we get

y2β ∂

∂y
G4 (x, y;x0, y0)

∣∣∣∣
y=0

= k4 (1− 2β)x1−2α
0 y1−2β

0 x1−2α

×


H3(2−α−β,1−α;2−2α;ρ1,ρ∗1)

[(x−x0)2+y2
0]

2−α−β − H3(2−α−β,1−α;2−2α;ρ2,ρ∗2)(a−
xx0

a

)2

+
1

a2
x2y2

0

2−α−β


(4.11)

and

x2α ∂

∂x
G4 (x, y;x0, y0)

∣∣∣∣
x=0

= k4 (1− 2α)x1−2α
0 y1−2β

0 y1−2β

×


H3(2−α−β,1−β;2−2β;ρ3,ρ∗3)[

x2
0+(y−y2

0)
2
]2−α−β − H3(2−α−β,1−β;2−2β;ρ4,ρ∗4)(a−

yy0

a

)2

+
1

a2
x2
0y2

2−α−β

 ,
(4.12)
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where

ρ1 =
−4xx0

(x− x0)
2 + y2

0

, ρ∗1 = −λ
2

4

[
(x− x0)

2 + y2
0

]
,

ρ2 =
−4xx0(

a− xx0

a

)2

+
1

a2
x2y2

0

, ρ∗2 = −a
2λ2

4R2
0

[(
a− xx0

a

)2

+
1

a2
x2y2

0

]
,

ρ3 =
−4yy0

x2
0 + (y − y0)

2 , ρ∗3 = −λ
2

4

[
x2

0 + (y − y0)
2] ,

ρ4 =
−4yy0(

a− yy0

a

)2

+
1

a2
x2

0y
2
, ρ∗4 = −a

2λ2

4R2
0

[(
a− yy0

a

)2

+
1

a2
x2

0y
2

]
.

Now we shall consider the right-hand side of identity (4.4). Taking into account (4.7)
and (4.8), we find that

∂q4
∂n

= −k4 (2− α− β)
(
r2
)α+β−2

(xx0)
1−2α (yy0)

1−2β

×A(3)
2 (3− α− β; 1− α, 1− β; 2− 2α, 2− 2β; ξ, η, ζ)

∂

∂n

[
ln r2

]
+k4

(
r2
)α+β−2

x1−2α
0 y1−2β

0 x−2αy−2β

[
(1− 2α) y

dy

ds
− (1− 2β)x

dx

ds

]
×A(3)

2 (2− α− β; 1− α, 1− β; 2− 2α, 2− 2β; ξ, η, ζ)

−2k4 (2− α− β)
(
r2
)α+β−3

(xx0)
1−2α (yy0)

1−2β A
(3)
2

× (3− α− β; 2− α, 1− β; 3− 2α, 2− 2β; ξ, η, ζ) dy
ds

+2k4 (2− α− β)
(
r2
)α+β−3

(xx0)
1−2α (yy0)

1−2β A
(3)
2

× (3− α− β; 1− α, 2− β; 2− 2α, 3− 2β; ξ, η, ζ) dx
ds
.

(4.13)

Further we have

∫
Cρ

x2αy2βu
∂G4 (x, y;x0, y0)

∂n
ds =

∫
Cρ

x2αy2βu
∂q4 (x, y;x0, y0)

∂n
ds

− (R2
0)
−α−β ∫

Cρ

x2αy2βu∂q4(x,y;x̄0,ȳ0)
∂n

ds

= J1 + J2.

(4.14)

Substituting (4.13) in (4.14) and passing to the polar coordinates x = x0 + ρ cos ϕ,
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y = y0 + ρ sin ϕ, we have

J1 = 2k4 (2− α− β)x1−2α
0 y1−2β

0

×
2π∫
0

(x0 + ρ cos ϕ) (y0 + ρ sin ϕ)u (x0 + ρ cos ϕ, y0 + ρ sin ϕ)

× (ρ2)
α+β−2

A
(3)
2 (3− α− β; 1− α, 1− β; 2− 2α, 2− 2β; ξ, η, ζ) dϕ

+k4x
1−2α
0 y1−2β

0

2π∫
0

u (x0 + ρ cos ϕ, y0 + ρ sin ϕ)

× [(1− 2α) y0 cos ϕ+ (1− 2β)x0 sinϕ+ (1− α− β) ρ sin 2ϕ]

×
(
ρ2
)α+β−1

A
(3)
2 (2− α− β; 1− α, 1− β; 2− 2α, 2− 2β; ξ, η, ζ) dϕ

−2k4 (2− α− β)x1−2α
0 y1−2β

0

×
2π∫
0

(x0 + ρ cos ϕ) (y0 + ρ sin ϕ)u (x0 + ρ cos ϕ, y0 + ρ sin ϕ)

× (ρ2)
α+β−2

A
(3)
2 (3− α− β; 2− α, 1− β; 3− 2α, 2− 2β; ξ, η, ζ) cos ϕdϕ

−2k4 (2− α− β)x1−2α
0 y1−2β

0

×
2π∫
0

(x0 + ρ cos ϕ) (y0 + ρ sin ϕ)u (x0 + ρ cos ϕ, y0 + ρ sin ϕ)

× (ρ2)
α+β−2

A
(3)
2 (3− α− β; 1− α, 2− β; 2− 2α, 3− 2β; ξ, η, ζ) sinϕdϕ

= J11 + J12 + J13 + J14.

(4.15)

For evaluation of (4.15) we use the expansion formula ((2.27) in [18], p. 678)

A
(3)
2 (a; b1, b2; c1, c2;x, y, z)

= (1− x)−b1 (1− y)−b2

∞∑
i,j=0

(a)i−j (b1)i (b2)i

(c1)i (c2)i i!j!

(
x

1− x

)i(
y

1− y

)i

zj

×F
(
c1 − a+ j, b1 + i; c1 + i;

x

x− 1

)
F

(
c2 − a+ j, b2 + i; c2 + i;

y

y − 1

)
,

(4.16)

where F (a, b; c;x) is the Gauss hypergeometric function ([7], p. 69, formula (2)). Hence
we obtain

A
(3)
2 (3− α− β; 1− α, 1− β; 2− 2α, 2− 2β; ξ, η, ζ)

=
(
ρ2
)2−α−β (

ρ2 + 4x2
0 + 4x0ρ cos ϕ

)α−1 (
ρ2 + 4y2

0 + 4y0ρ sin ϕ
)β−1

P11,
(4.17)
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where

P11 =
∞∑

i,j=0

(3− α− β)i−j (1− α)i (1− β)i

(2− 2α)i (2− 2β)i i!j!

×
(

4x2
0 + 4x0ρ cos ϕ

ρ2 + 4x2
0 + 4x0ρ cos ϕ

)i(
4y2

0 + 4y0ρ sin ϕ

ρ2 + 4y2
0 + 4y0ρ sin ϕ

)i(
−λ

2

4
ρ2

)j

×F
(
−α+ β − 1 + j, 1− α+ i; 2− 2α+ i;

4x2
0 + 4x0ρ cos ϕ

ρ2 + 4x2
0 + 4x0ρ cos ϕ

)
×F

(
α− β − 1 + j, 1− β + i; 2− 2β + i;

4y2
0 + 4y0ρ sin ϕ

ρ2 + 4y2
0 + 4y0ρ sin ϕ

)
,

(4.18)

Using equality (46) in [7], p. 112,

F (a, b; c; 1) =
Γ (c) Γ (c− a− b)

Γ (c− a) Γ (c− b)
, c 6= 0,−1,−2, ..., Re (c− a− b) > 0,

it is not complicated to calculate

lim
ρ→0

P11 =
Γ (2− 2α) Γ (2− 2β)

Γ (1− α) Γ (1− β) Γ (3− α− β)
. (4.19)

By virtue of (4.17) we calculate J11:

J11 = 2k4 (2− α− β)x1−2α
0 y1−2β

0

×
2π∫
0

(x0 + ρ cos ϕ) (y0 + ρ sin ϕ)u (x0 + ρ cos ϕ, y0 + ρ sin ϕ)

× (ρ2 + 4x2
0 + 4x0ρ cos ϕ)

α−1
(ρ2 + 4y2

0 + 4y0ρ sin ϕ)
β−1

P11dϕ.

Passing to the limit as ρ→ 0+ and taking into account (1.8), we have

lim
ρ→0

J11 = u (x0, y0) . (4.20)

Similarly it can be proved that

lim
ρ→0

J12 = lim
ρ→0

J13 = lim
ρ→0

J14 = lim
ρ→0

J2 = 0,

lim
ρ→0

∫
Cρ

x2αy2βG4 (x, y;x0, y0)
∂u

∂n
ds = 0. (4.21)
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Thus, using equalities (4.13), (4.14), (4.20) and (4.21), by (4.4) we deduce that

u (x0, y0) = k4 (1− 2β)x1−2α
0 y1−2β

0

×
a∫
0

xτ1 (x)


H3(2−α−β,1−α;2−2α;ρ1,ρ∗1)

[(x−x0)2+y2
0]

2−α−β − H3(2−α−β,1−α;2−2α;ρ2,ρ∗2)(a−
xx0

a

)2

+
1

a2
x2y2

0

2−α−β

 dx

+k4 (1− 2α)x1−2α
0 y1−2β

0

×
a∫
0

yτ2 (y)


H3(2−α−β,1−β;2−2β;ρ3,ρ∗3)[

x2
0+(y−y2

0)
2
]2−α−β − H3(2−α−β,1−β;2−2β;ρ4,ρ∗4)(a−

yy0

a

)2

+
1

a2
x2
0y2

2−α−β

 dy

−
∫
Γ

x2αy2βϕ (s)
∂G4 (x, y;x0, y0)

∂n
ds.

(4.22)

If we use the formula

H3 (a, b; c;x, y) = (1− x)−b F 1:1;0
0:1;2

[
c− a :
− :

b;
c;

−;
1− a, c− a;

x

x− 1
,−y

]
,

which connects Kummer’s function with the hypergeometric function of Kampe de
Feriet ([4], p. 150, formula (29))

F
p : q; k;
l : m;n;

[
(ap) :
(αl) :

(bq) ;
(βm) ;

(ck) ;
(γn) ;

x, y

]
=

∞∑
r,s=0

p∏
j=1

(aj)r+s

q∏
j=1

(bj)r

k∏
j=1

(cj)s

l∏
j=1

(αj)r+s

m∏
j=1

(βj)r

n∏
j=1

(γj)s r!s!

xrys,

we find that solution (4.22) of the problem D may be represented as

u (x0, y0) = k4 (1− 2β)x1−2α
0 y1−2β

0

×
a∫
0

xτ1 (x)


F 1:1;0

0:1;2

 β − α :
− :

1− α;
2− 2α;

−;
α+ β − 1, β − α;

σ1,σ∗1


[(x−x0)2+y2

0]
1−β

[(x+x0)2+y2
0]

1−α

−
F 1:1;0

0:1;2

[
β − α :

− :
1− α;

2− 2α;
−;

α+ β − 1, β − α;
σ2, σ

∗
2

]
[(
a− xx0

a

)2

+
1

a2
x2y2

0

]1−β [(
a+

xx0

a

)2

+
1

a2
x2y2

0

]1−α

 dx
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+k4 (1− 2α)x1−2α
0 y1−2β

0

×
a∫

0

yτ2 (y)


F 1:1;0

0:1;2

[
α− β :

− :
1− β;

2− 2β;
−;

α+ β − 1, α− β;
σ3, σ

∗
3

]
[
x2

0 + (y − y2
0)

2
]1−α [

x2
0 + (y + y0)

2]1−β

−
F 1:1;0

0:1;2

[
α− β :

− :
1− β;

2− 2β;
−;

α+ β − 1, α− β;
σ4, σ

∗
4

]
[(
a− yy0

a

)2

+
1

a2
x2

0y
2

]1−α [(
a+

yy0

a

)2

+
1

a2
x2

0y
2

]1−β

 dy

−
∫
Γ

x2αy2βϕ (s)
∂G4 (x, y;x0, y0)

∂n
ds,

(4.23)

where

σ1 =
4xx0

(x+ x0)
2 + y2

0

, σ∗1 =
λ2

4

[
(x− x0)

2 + y2
0

]
,

σ2 =
4xx0(

a+
xx0

a

)2

+
1

a2
x2y2

0

, σ∗2 =
a2λ2

4R2
0

[(
a− xx0

a

)2

+
1

a2
x2y2

0

]
,

σ3 = 4yy0

x2
0+(y+y0)2

, σ∗3 = λ2

4

[
x2

0 + (y − y0)
2] ,

σ4 =
4yy0(

a+
yy0

a

)2

+
1

a2
x2

0y
2
, σ∗4 =

a2λ2

4R2
0

[(
a− yy0

a

)2

+
1

a2
x2

0y
2

]
.

Now we can formulate the main result.

Theorem 4.1. The problem D has the unique solution defined by formula (4.23).

We note that expansions for the hypergeometric functions of Lauricella
F

(n)
A , F

(n)
B , F

(n)
C , F

(n)
D are found in [19, 20] and applied in [17] for finding fundamental

solutions and later for investigating boundary value problems for 3-D singular elliptic
equations [24].
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