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Abstract. In this paper, we state, prove and discuss new general Steffensen type
inequality. As a special case of that general result we obtain fractional inequalities
involving fractional integrals and derivatives of Riemann-Liouville, Canavati, Caputo,
Hadamard and Erdelyi-Kéber types as well as fractional integrals of a function with
respect to another function. Furthermore, we show that our main result covers much
more general situations applying it to multidimensional settings. Finally we give mean
value theorems for linear functionals related to obtained Steffensen type ineqalities.

1 Introduction

The well-known Steffensen inequality reads [9, p. 181]:

Theorem 1.1. Suppose that f is decreasing and g is integrable on [a,b] with0 < g <1
and \ = f: g(t)dt. Then we have

a+A

/bf(t)dtg/bf(t)g(t)dtg /f(t)dt.

b a

The inequalities are reversed for increasing f.

We introduce the notation z; = max(z,0). Also 2} denotes (z1)" except that 0°
will be interpreted as 0. Thus the characteristic function of [t, c0) is (z —t)5.
Let M denote the class of functions f with the representation

fa) = [ @ =k, ae .l

for some non-negative regular Borel measure v.

The following generalizations of the Steffensen type inequality are given in [5]:

Theorem 1.2. Let y1 be a (signed) regular Borel measure such that fol |du| < oco. Then

/Olfdﬂ > /Oafdx (1.1)
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for all f € My if and only if

/Ol(x —t)%du(z) >0, te(0,1] (1.2)

o < min {t + ((k; +1) /01@; - t)idu(x)) +} | (1.3)

Therefore the best possible choice for a is when there is equality in (1.3).

and

Theorem 1.3. If fol |du| < oo, then the inequality

[ sinty < [ s (14)

holds for all f € My, if and only if

[ - otanto) <

(1 _ t)kJrl

a1 te[0,1] (1.5)

and

o < min {H— [(1 — ) (k4 1) /Ol(x—t)’idu(x)]kil}. (1.6)

— 0<t<1
In particular, the best possible choice for a is when there is equality in (1.6).

The paper is organised in the following way. After this Introduction, in Section 2 we
give new general inequalities which will be used for obtaining Steffensen type inequal-
ities. In Section 3 we use our main results to obtain some Steffensen type inequalities
given in [8] and some new Steffensen type ineqalities involving fractional integral of
a function f with respect to a given function g, Hadamard fractional integral and
Erdelyi-Koéber fractional integral. Furthermore, we apply our general result in multidi-
mensional settings to obtain new results involving mixed Riemann-Liouville fractional
integrals. In Section 4 we prove mean value theorems of the Lagrange and the Cauchy
type.

First, let us recall some notions; log denotes the natural logarithm function, I'(«)
denotes the gamma function, 5Fi(a,b;c; z) denotes the hypergeometric function, an

interval in R is any convex subset of R and by dx we denote the Lebesgue measure on
R.

2 Main results

Let (€1,%1, ;1) be a measure space with o—finite (signed) regular Borel measure and
Q9 be a set. Let K : Q1 x 23 — R be a non-negative function and let U denote the
class of all functions f : ; — R such that there exists a measure space (22, X9, o)
such that uo is non-negative o—finite regular Borel measure and

flx)= [ K(z,y)dua(y), =z €. (2.1)

Qo
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Theorem 2.1. Let (21, %1, 111) be a measure space with o— finite (signed) reqular Borel
measure. Then for every f € U

i f(@)dp () = 0 (2.2)

of and only of

K(z,y)dp(z) >0  fory e Q. (2.3)
Q1

Proof. Using the representation (2.1) in (2.2), and then using Fubini’s theorem, (2.2)
is equivalent to

|| K@i = o (2.4)
Qs J O

Since 9 is arbitrary non-negative regular Borel measure, (2.4) holds if and only if (2.3)
holds. [l

Theorem 2.2. Let (94,31, 11) and (94,23, 1u3) be measure spaces with o— finite
(signed) reqular Borel measures. Then for every f € U

o f(@)dpa (z) = . f(@)dps(x) (2.5)

if and only if
i K(z,y)dp (z) > ) K(z,y)dps(x)  fory € Q. (2.6)
Proof. Apply Theorem 2.1 with measure p; replaced by u; — us. O]

Remark 1. Let Q; = Q, = [0,1], K(2,t) = (z — )%, dus(z) = xjpqdz for 0 <a <1
and dy; (z) = du(z) for some finite (signed) regular Borel measure p. Then the class U
reduces to My and (2.1) reduces to (1.1). Furthermore, the condition (2.6) reduces to

/0 (@ O dp(e) > /0 (=) da. (2.7)

Since the right hand side in (2.7) is non-negative, (1.2) is necessary. Moreover, from
(2.7) we have (1.3) for 0 < ¢ < a. Since (1.2) holds, (1.3) is also true for ¢ > a. Hence,
considering the class of functions f € M), and finite (signed) regular Borel measure f,
Theorem 2.2 reduces to the Steffensen type inequality given in Theorem 1.2.

Remark 2. Let Q) = Q, = [0,1], K(z,t) = (z — )%, din(2) = X[gdz for 0 < a <1
and dus(z) = du(z) for some finite (signed) regular Borel measure p. Then the class U
reduces to M, and (2.1) reduces to (1.4). Furthermore, the condition (2.6) reduces to

[ @0kt < [ @ =0tan (2.8



84 J. Petari¢, 1. Peri¢, K. Smoljak

For ¢t > a, from (2.8) we have

(1 _ t)k+1

1

—Hkda < 2.9
JACE O — (2.9
Obviously, (2.9) also holds for ¢t < a, so (1.5) is necessary. Moreover, from (2.8) we
have (1.6) for 0 < t < a. But since (1.5) holds, (1.6) is also true for ¢ > a. Hence,
considering the class of functions f € M} and finite (signed) regular Borel measure p,

Theorem 2.2 reduces to the Steffensen type inequality given in Theorem 1.3.

3 New Steffensen type inequalities involving fractional inte-
grals and derivatives

First, let us recall some facts about fractional derivatives needed in the sequel, for more
details see [10] (or [1], [6], [7]). Let 0 < a < b < co. By C™([a, b]) we denote the space of

all functions on [a, b] which have continuous derivatives up to order m, and AC([a, b))
is the space of all absolutely continuous functions on [a, b]. By AC™([a,b]) we denote
the space of all functions g € C™'([a,b]) with g™~V € AC([a,b]). For any o € R
we denote by [a] the integral part of o (the integer k satisfying k¥ < o« < k + 1). By
Li(a,b) we denote the space of all functions integrabile on the interval (a,b), and by
Loo(a,b) the set of all functions measurable and essentially bounded on (a, b). Clearly,
Loo(a,b) C Li(a,b).

Let us recall the definition of the Riemann-Liouville fractional integral, see |7]. Let
[a,b], (—o0 < a < b < 00) be a finite interval on the real axis R. The Riemann-Liouville
fractional integral I, f of order o > 0 is defined by

(12, f)(x) = ﬁ / F@) @ —y) 'y, (@ > a).

This integral is called the left-sided fractional integral.

Remark 3. Applying Theorem 2.2 with Q; = Qs = [a,b], dus(y) = f(y)dy, dus(x) =
Xja,a+dx (or dpq(x) = Xp-»pdax) for X non-negative such that a+X < b (or a < b— ),

and
(z—y)> 1

lﬂawz{ Fle)

0, r<y<b

a<y<ux;

we obtain Steffensen type inequalities for the left-sided fractional integral I3, f given
in [8, Theorems 2.1 and 2.2].

We define the generalized Riemann-Liouville fractional derivative of f of order

a>0Db
o 000 = rrey (1)@=

where n = [a] + 1, = € [a, b].
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In addition, we stipulate

DYf = f=1% I °f:=D%f if a>0.

If « € Nthen DS f = g—f, the ordinary a-order derivative.
The space I®(L(a,b)) is defined as the set of all functions f on [a,b] of the form
f = I%p for some ¢ € L(a,b), (see [10, Chapter 1, Definition 2.3|). According to

Theorem 2.3 in [10, p. 43|, the latter characterization is equivalent to the condition
I"feAC"a,b|,

P nea
dal
The following lemma summarizes conditions in composition identity for generalized
Riemann-Liouville fractional derivatives. For details see [2].

(a)=0, j=0,1,....n—1.

Lemma 3.1. Let > a >0, n=[3]+ 1, m = [a] + 1. Identity

D2 f(x) = m / o) DIy dy, x e [ah)

1s valid if one of the following conditions holds:
(i) f €17 (L(a,b)).
(i) I"Pf € AC™a,b] and D?*f(a) =0 fork=1,...n.

(iii) DP~*f € Cla,b] for k = 1,....n, D?~'f € ACla,b] and D?~*f(a) = 0 for
k=1,...n.

(iv) f € AC"[a,b], D]f € L(a,b), Dgf € L(a,b), B —a ¢ N, DJ*f(a) = 0 for
k=1,...,n and D**f(a) =0 fork=1,...,m.

(v) f € AC"a,b], D?f € L(a,b), D*f € L(a,b), 3—a =1€N, D**f(a) =0 for
k=1 .1

(vi) f € AC"[a,b], D’f € L(a,b), Df € L(a,b) and f(a) = f'(a) = -+ =
f=2(a) = 0.

(vii) f € AC"a,b), D?f € L(a,b), DOf € L(a,b), 3 ¢ N and D?~'f is bounded in a
neighbourhood of t = a.

Remark 4. Let assumptions in Lemma 3.1 be satisfied. Then, applying Theorem 2.2
with Q1 = Qy = [a,0], dua(y) = (DIf)W)dy, dps(z) = Xjaarxdz (or du(z) =
Xp-apdx) for A non-negative such that a + A < b (or a < b — \) and

a<y<u;

K(w,y)z{ Ry (3.1)

0, r<y<hb,

we obtain Steffensen type inequalities for the generalized Riemann-Liouville fractional
derivative D2 f given in [8, Theorems 2.3 and 2.4].
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Let us recall the definition of the Caputo fractional derivative, for details see [1, p.

449|.
Caputo fractional derivative D¢ g of order o > 0 if defined by

E (s
D)0 = s | s
where g € AC™([a,b]), n = [a] + 1, and ¢ € [a, ]].

Remark 5. Applying Theorem 2.2 with Q; = Q, = [a, b], dus(y) = g™ (y)dy, dus(z) =
Xja,a+dx (or dpiy(x) = Xp-rpdx) for A non-negative such that a+ A < b (or a <b—A)

and
(z—y)r—ot

K(ﬂ?,y)={ e}

0, r<y<b

a<y<u;

o
*a

we obtain Steffensen type inequalities for the Caputo fractional derivative DS g given

in [8, Theorems 2.5 and 2.6|.

Next, we define generalized Canavati fractional derivative (a—fractional derivative
of f over [a,b]). The definition of generalized Canavati fractional derivative is given in
[1] but we will use it with some new conditions given in [3]. We consider

Ca(la.b]) = {f € C"([a,0]) : ;7 f™ € C'([a, b))},

a>0,n=[alanda=a—n,a < a<b.
For f € C¢([a,b]) the generalized Canavati fractional derivative of f is defined by

D2 f = DI f,

where D = d/dx.
The following lemma gives conditions in composition rule for generalized Canavati
fractional derivative (see [3]).

Lemma 3.2. Let 3 > o > 0, n = [#], m = [a]. Let f € C%([a,b]), be such that
fD(a)=0,i=m,m+1,...,n—1. Then

(1) f € Cq([a,b])

(i) (D31)(a) = ey [ = 0 (DLD i,

for every x € [a, b].

Remark 6. Let assumptions in Lemma 3.2 be satisfied. Then, applying Theorem 2.2
with Q1 = Q= [a,8], dua(y) = (D7 f)(W)dy, dus(r) = Xaarnde (or dui(z) =
X[p-xpdr) for A non-negative such that a+X < b (or a < b— ) and K defined by (3.1)
we obtain Steffensen type inequalities for generalized Canavati fractional derivative
D2 f given in [8, Theorems 2.3 and 2.4].
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We continue with definition and some properties of the fractional integral of a
function f with respect to given function g. For details see e.g. |7, p. 99].

Let (a,b) (—oo < a < b < 00) be a finite or infinite interval on the real line R and
a > 0. Let g be an increasing function on (a,b) such that ¢’ is continuous on (a,b).
The left-sided fractional integral of a function f with respect to another function g on
[a, b] is defined by

o L[ gW/flydy
0200 = 507 || Gl atl © 7

Theorem 3.1. Let g be an increasing function on (a,b) such that ¢ is continuous
on (a,b), let py be o—finite (signed) reqular Borel measure on [a,b]. Then for every
non-negative Borel measurable function fi

[ af) @) > e / WA / ") — o) drdy (32)
of and only of .
[ ) = gt (@) 2 0.y € [0 33)

and

a+\ b
/ (9(x) — gly))*da < / (9(z) — 9(4))*dpus (2). (3.4)

Proof. Let (3.2) hold. Let €y = Q9 = [a,b], A be non-negative real number such that
a+A<b,

1 g () a < Y <

K(z,y) = {F(a) (9(x)—g(y))t ="

(3.5)
0, r<y<hb,

dua(y) = fi(y)dy and dus(x) = Xa,a+yde. Notice that class U now reduces to class
of functions Ig,  fi and that (2.1) reduces to (3.2). Now, from Theorem 2.2 it follows
that (2.6) holds. Furthermore, (2.6) reduces to

| Kt > [ " k(e y)da. (3.6)

Since the right-hand side in (3.6) is non-negative, (3.3) is necessary. Now taking a <
y < b, (3.6) is

[ 6@ - )@ = [ 6@ - gl s, a<y<ata 60

But since (3.3) holds, the inequality (3.7) is true for y > a + A. Hence, (3.4) follows.

Conversely, let (3.3) hold and A be such that (3.4) holds. As above, we see that
(3.3) and (3.4) are obtained from (2.6). Now applying Theorem 2.2 it follows that (2.1)
holds. Furthermore, from (2.1) we have

L[ dWh) 1t dWA)
[t [ wotapmtine= [ <g<x>—g<y>>1“”dydg<jé )
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Using Fubini’s theorem, the right-hand side in (3.8) can be written as

ﬁ/a g’(y)fl(y)/a (g(x) — g(y))*~dz dy.

So we obtain (3.2). Hence, the proof is completed. ]

Theorem 3.2. Let g be an increasing function on (a,b) such that ¢’ is continuous
on (a,b), let usg be o—finite (signed) regular Borel measure on [a,b]. Then for every
non-negative Borel measurable function f;

[t @i < o5 [ vwn6 [ o - s

—-A

+/b g’(y)fl(y)/ (g9(x) — g(y)* 'dx dy

-
iof and only if

b

b
/ (9(x) — 9(y))*dps(z) < / X (9(x) = g(y))* " Hdw, y€ab].  (3.9)

y b=\
Proof. Similar to the proof of Theorem 3.1, apply Theorem 2.2 with €y = Qs = [a, b],
dua(y) = fi(y)dy, dp(x) = Xp-rpdr and K defined by (3.5). O

Remark 7. If g(z) = z, then I3, f reduces to [, f.

Now we continue with the definition of Hadamard type fractional integrals.
Let (a, b) be finite or infinite interval on R and a > 0. The left-sided Hadamard type
fractional integral of order av > 0 is defined by

(e (@) = ﬁ / (1%) / @y)dy, z>a.

a

Notice that Hadamard fractional integral of order « is a special case of the fractional
integral of a function f with respect to another function g(z) = logz on [a,b] where
0<a<b<oo.

Corollary 3.1. Let py be o—finite (signed) reqular Borel measure on |a,b|. Then for
every non-negative Borel measurable function f,

a+

b a+A log «5=
[ n@dn) > g [ nw [ e ey
if and only if
b a—1
/ (10g §> dui(x) >0, y € [a,b] (3.10)

and
a+

b T a—1 log “
/ <log —) dpu(x) > y/ e dx. (3.11)
y Y 0
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Proof. Apply Theorem 3.1 for g(x) = logx. O

Corollary 3.2. Let uz be o—finite (signed) regular Borel measure on |a,b]. Then for
every non-negative Borel measurable function f,

b—A\ log g
fw) [ e tededy
a 1 b—A

og 7y

b 1
/£<J;+fo<x>du3Cr>s;fYE5

b o (3.12)
+ / fl(y)/ e letdy dy]
b—A 0
if and only if
b I~ a—1 log%
[ (0e2) )< [ vyt vl (1)
Y Yy Iog% Y

Proof. Apply Theorem 3.2 for g(z) = log . O

Now will give the definition of Erdelyi-Kéber type fractional integrals. For details
see [10] (see also [4, p, 154]).

Let (a,b) (0 < a < b < o0) be finite or infinite interval on R*. Let o > 0,0 > 0, and
1 € R. The left-sided Erdelyi-Kéber type fractional integral of order o« > 0 is defined
by

xT

O_x—o(or‘r??) / ycrn—i-a—lf(y)dy
I'(a) (27 —yo)t-e

(La o f) () =

, T > a.

a

Theorem 3.3. Let py be o—finite (signed) regular Borel measure on |a,b|. Then for
every non-negative Borel measurable function fi

b 1 o (a+))7 —a-n-1+1
1340, z)dpa(x) = —/ oo / ————dz d 3.14
[ @) = s [ [T ey G

of and only iof

/b T d(e) a,) (3.15)
——duy(x) >0, y € la, 3.15
y (iEU _ yo')lfoz 1
and .

b —o(a+n) 1 (a+A)? —a—n—-14+2

e A
——du :L') > —/ —dzx. 3.16)
/y T IR W F T (

Proof. Let (3.14) hold. Let §; = Q5 = [a, b], A be non-negative real number such that
a+A<b,
1 ogz—olatnyonto—1 < y <z

K(;L'7y) = {(@ (zo—yo)l-a > oy < ba (317>
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dpa(y) = fi(y)dy and dps(z) = Xja,a+rde. Notice that class U now reduces to class of
functions I3, fi and that (2.1) reduces to (3.14). Now, from Theorem 2.2 it follows
that (2.6) holds. Furthermore, (2.6) reduces to

[ K > [ " Ky (3.18)

Since the right-hand side in (3.18) is non-negative, (3.15) is necessary. Now taking
a<y<b, (3.18) is

/b p—olatn) 4 ( ) a+A p—olatn) p \ ( )
—u:cz/ ————dz, a<y<a-+A\ 3.19
y (JZ'U _ ya>1 e 1 y (xo _ yo)l e
But since (3.15) holds, the inequality (3.19) is true for y > a + \. Calculating integral
on the right-hand side in (3.19), we obtain (3.16).

Conversely, let (3.15) hold and A be such that (3.16) holds. As above, we see that
(3.15) and (3.16) are obtained from (2.6). Now applying Theorem 2.2 it follows that
(2.1) holds. Furthermore, from (2.1) we have

b T — _
1 oT o(a+n) yonJro 1
|/ Fily)dy dps(x) >

(Oé) (1‘0' - yO’)l—Ol (3 20)
a+A 1 x O-x*U(aJrTi)yUnJFU*l ’
/ / fi(y)dy da.
a F(Oé) a (xa - ya)l—a
Using Fubini’s theorem, the right-hand side in (3.20) can be written as
1 at+) o at+X xfa(a+77)
— onre ———dx dy. 3.21
F(Oé) /a' gy fl(y)/y (ZL’U _ ya>1_a ray ( )

Now using the definition of Erdelyi-Kober fractional integral and calculating the inner
integral in (3.21) we obtain (3.14). Hence, the proof is completed. O

Theorem 3.4. Let us be o—finite (signed) regular Borel measure on |a,b]. Then for
every non-negative Borel measurable function fi

b 1 " e o pramnltg
/a (154 o f1)(T)dps(z) < o) [/a Yot 1f1<y)/( dedy

b—A) (z —

if and only if
/b l,—o(a—l—n) ) b xfafr]fl+§ [ ] ( )
————dug(z) < / Xpyebor] —————dz, y € [a,b]. 3.22
y (27 —yo)te (b—\)7 v }(‘T —y7)t-e

Proof. Similar to the proof of Theorem 3.3, apply Theorem 2.2 with € = Qs = [a, b],
dua(y) = fi(y)dy, dp(x) = Xp-rpdr and K defined by (3.17). O
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In the previous theorems we derived only Steffensen type inequalities over some
subsets of R. Motivated by [5] we will show that Theorem 2.2 covers much more general
situations. Let us observe multidimensional fractional integrals. Such type of fractional
integrals are usually generalization of the corresponding one-dimensional fractional
integral and fractional derivative. For details see |7].

For x = (z1,...,x,) € R" and a = (vy, ..., ), we use the following notations:

[(a) = (F(en)---Tlaw)),  [a,b] = [ag, bi] X -+ X [an, by],  x¥ =aft .. agr

and by x > a we mean x; > aq, ..., T, > Q.
We define the mixed Riemann-Liouville fractional integral of order ao > 0 as

(12 1) //f x— )1, (x> a).

Let a = (a1,...,a,), b = (b1,...,bn), x = (21,...,2,), t = (t1,...,t,) and let
A = (A, ..., \,) be non-negative such that a+ X < b and b — XA > a. Now we will
give Steffensen type inequalities for mixed Riemann-Liouville fractional integrals.

Theorem 3.5. Let iy be o— finite (signed) reqular Borel measure on [a,b]. Then for
every non-negative Borel measurable function fi

b1 bn
/ / 12 F) () (x) = (I f)(a + A) (3.23)

if and only iof
by b
/‘ t/ y)* tdui(x) >0, t€[a,b] (3.24)

and b b
- a/i + )\Z — yz i 1 n o
H : . i < / e (x —y)* tdp (x). (3.25)
=1 v Y1 Yn
Proof. Let Q = Qy = [a, b,
(x—y) <y<x
K(x,y)={ T = 8=Y=% (3.26)
0, otherwise ,

dpa(y) = f(y)dy and dus(x) = X[aatrndx. Notice that class U now reduces to class of
functions I, fi. Applying Theorem 2.2, from (2.1) we obtain

/ / / ———dy dyy (x) > /:H ﬁ /:(X —y)* f(y)dy dx.

(3.27)
Using Fubini’s theorem and then calculating the inner integral, the right-hand side in
(3.27) can be written as

a1+ an+An
! )/ / Fy)(a+ A — y)*dy.

Na+1) /,

n
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So we obtain (3.23). From (2.6) we obtain

/ K(x,y)dp;(x / K(x,y)d (3.28)

Since the right-hand side in (3.28) is non-negative, (3.24) is necessary. Now taking
a<y<hb, (3.28) is

b1 bn a1+ an+An
/ / X —y)* tdpy (x) > / / (x—y)*tdx, a<y<a+A
yn
(3.29)

Calculating integral on the right-hand side in (3.29), we obtain

b1 bn n . . 7.\
/ / (x—y)o‘_ldul(x)Zl_[(ale)\Z vi) o <y<a+N,i=1,...,n.
Y1 Yn ai

i=1
(3.30)
Hence, (3.25) follows and the proof is completed. O

Theorem 3.6. Let 3 be o—finite (signed) reqular Borel measure on [a,b]. Then for
every non-neqgative Borel measurable function f;

/ L / (12 ) (X)dus(x) < (127 f1)(b) — (157 f1) (b — A) (3.31)

iof and only if

b1 bl
/ / x —y)* tdus(x / / Xyb (X — y)* tdx. (3.32)
b1— )\1 by —

Proof. Let Q1 = Qy = [a,b], K be defined by (3.26), dus(y) = fi(y)dy and
dp(x) = Xp-abdx. Notice that class U now reduces to class of functions Ig fi.
Applying Theorem 2.2, from (2.1) we obtain

/ / /a (x — y 1 e din(x) < /:)\ﬁ/:(x_walfl(wdydx.

(3.33)
Using Fubini’s theorem and then calculating the inner integral, the right-hand side in
(3.33) can be written as

1 bl bn bl >\1 bn_ n
m/ nfl(Y)(b_Y) dy — +1/ / )(b—X—y)%dy.

al a

So we obtain (3.31). From (2.6) we obtain

b

b
| Ky < [ Kxyyix

1.e.
b b
/ (x — y)afldug(x) < / Xly,b] (x — y)o‘*ldx.
y b—X

Hence, (3.32) follows and the proof is completed. ]
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4 Mean value theorems

First, let us recall that U denotes the class of all functions f : £2; — R such that there
exists a measure space (§2a, X9, t2) such that us is non-negative o —finite regular Borel
measure and (2.1) holds. Now, we will define linear functionals which will be used in
following theorems. For f € U let

A= [ T = [ f@)d(). (4.1)

Now, we will give linear functionals related to fractional integrals and derivatives
mentioned in Section 3. First, we define linear functionals related to fractional integral
of a function f with respect to another function g.

Let
b 1 a+A at+A
Li(f)) = / (T2 1) )i ) = s / J W) h() / (9(x) — g(y))*da dy,
’ ’ ’ (4.2)
and let
1 b—\ b
Ly(fi) == dWh) [ (9(x) —g(y)* " dedy
F(a)b[/a ) /b—/\ , (4.3)
+ [ d0n0 [ 0w - s - [ @)

where f; is non-negative Borel measurable function. Next, we define linear functionals
related to Hadamard type fractional integral. Let

L) = | e D)) — / " / S ey, (1)

I'(a)
and let
b—A log%
Ly(f1) = ﬁ / f1(y)/l - v et dx dy
' e (4.5)
b log 2 b
+ / R / x“—lexdmdy] - / (2, f2) () dpis (),

where f; is non-negative Borel measurable function.
Finally, we define linear functionals related to Erdelyi-Kéber type fractional integral.

Let
(a+X)7 xfaf?]71+%
L T drdy,
o (.1' _ ya)lfa

(4.6)

1

Ls(h) = [ U1 @)dpa(z) o / e ) /
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and let

1 b—\ - b7 l.fafnfl+%
Lo(f)— oo / T drd
G(fl) F(Oé) /0; Yy fl(y) (b-\)” (9:. _ ya)lfoz Yy

(4.7)
b ¥ —a-n—1+1 b

onto-1 r 7 x — o T x).
[ i) [ e dy] JRLETE

- yo

where f; is non-negative Borel measurable function.
Now we state and prove Lagrange-type mean value theorems.

Theorem 4.1. Let Q1 be a compact set. Let (1,31, p1) and (21,33, u3) be measure
spaces with o—finite reqular Borel measures, let (2.6) hold and let f € C(4). Then
there exists £ € 1 such that

an=re (] (o)~ [ ) ) (43)
where A is defined by (4.1).

Proof. Notice that from Theorem 2.2 we have that if f > 0, then A(f) > 0, so A is
positive linear functional.
Since f is continuous on €, there exists m = min f(z) and M = max f(z). Then

€ €
AM — f) > 0 and A(f —m) > 0. Therefore

m ( [ am- [ du3<x>) < [ t@am) = [ i)

< (/ i) [ )

mA(1) < A(f) < MA(1).
If the function A(1) =0, then A(f) =0, so (4.8) holds for all £ € Q. Otherwise,

that is,

: A A(f)
— < _ < i § .
min f(z) =m= A1) = max f(z), so A © f(h)
Since f is continuous, we have that —2%’8 = f(&) for some & € . H

Theorem 4.2. Let g be an increasing function on (a,b) such that ¢' is continuous on
(a,b) and let fi be non-negative Borel measurable function such that f; € C([a,b]).
Let py be o—finite (signed) reqular Borel measure, let (3.3) and (3.4) hold. Then there
exists & € [a,b] such that

b a+A a+A

n(h) = F | [ o) - [0) flato) - sty dedy) . @)

a a Y

where Ly is defined by (4.2).
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Proof. Notice that from Theorem 3.1 we have that if f; > 0, then Ly(f1) > 0, so L, is
positive linear functional.

Set m = m[iri] filz), M = m{a;;] fi(z). Then Ly(M — f1) > 0 and Ly(f; —m) > 0. Using
xE|a, rec|a,
definition of the left-sided fractional integral of a function f; with respect to another

function g, linear functional L; can be written as

/ | whly ; dy ds (2)

‘mﬂ UM%(MwWWw-

Therefore
b o a+A a+A
FZ&) / tz) ;g@) dpu (z) — / g9y / (9(x) = g(y)*~'dz dy
< [Uzam@dne - 5 [ 90w [ 6 - gw)dsdy
b a+X a+A

<o | [ i) - [ ) [ 0 - st deay ).
that is,
Similar reasoning as in proof of Theorem 4.1 completes the proof. O

Theorem 4.3. Let g be an increasing function on (a,b) such that g’ is continuous on
(a,b) and let f1 be non-negative Borel measurable function such that fi € C([a,b)]).
Let ps be o—finite (signed) reqular Borel measure and let (3.9) hold. Then there exists
€ € [a,b] such that

b

Ly(f1) = 5 / y)/b “d:cdy+/bg /(g y))*dx dy
b—A A

a b— Y

_/(g( )_g< )) dﬂg(ﬂ?) ’

(67

a

(4.10)
where Ly is defined by (4.3).
Proof. Similar to the proof of Theorem 4.2. ]

Theorem 4.4. Let py be o— finite (signed) regular Borel measure, let (3.10) and (3.11)
hold and let fi be mon-negative Borel measurable function such that f; € C([a,?]),
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a > 0. Then there exists £ € [a,b] such that

b

a+A
Ls(f1) = f1(¢ / log d,u1 / / z* tetdrdy |,

(4.11)

where Lg is defined by (4.4).
Proof. Similar to the proof of Theorem 4.2. ]
Theorem 4.5. Let us be o—finite (signed) regular Borel measure, let (3.13) hold and

let fi be non-negative Borel measurable function such that f; € C([a,b]), a > 0. Then
there exists & € [a,b] such that

Li(f) = ( -/ o /1 T e dy

g 1 S (4.12)
—l——/b /\/ tetdr dy — m/ﬂ <10g E> d,u;;(x)) ,
where Ly is defined by (4.5).
Proof. Similar to the proof of Theorem 4.2. m

Before we give Lagrange type mean value theorems for Erdelyi-Kéber type fractional
integrals let us denote

HG(z) = 2F1 (1 —a,n+ 1;n+2,2%).
Theorem 4.6. Let 1y be o— finite (signed) regqular Borel measure, let (3.15) and (3.16)

hold and let fi be non-negative Borel measurable function such that f; € C([a,b]). Then
there exists € € |a,b] such that

b

Ls(f1) = f1(€) Tlatn+1) 04+77+1 /d,ul 77+11)F( )/a (%)JMUHG (E) dpa ()

1 a+A o (a+)\) e 1+,
I yan 7= / —dl’ dy
(o) /zz o (@—yr)ime

where Ly is defined by (4.6).

(4.13)

Proof. Similar to the proof of Theorem 4.2. m

Theorem 4.7. Let 3 be o—finite (signed) regular Borel measure, let (3.22) hold and
let f1 be non-negative Borel measurable function such that fi € C([a,b]). Then there
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exists § € [a,b] such that

1 b b —a—n—-1+1
Le(f1) = f1(§) (m/a Y7 fi(y) /(b—A)" é_ymdf dy

1 b 1 b x—a—n-l-&-%
— onto= ——dxd
o) /Hy fily) /y oW (41
b

b rayonto a
Tarren ] 0 G [, ()6 () s )

a

where Lg is defined by (4.7).
Proof. Similar to the proof of Theorem 4.2. O

Following theorems are new analogues of the classical Cauchy mean value theorem.

Theorem 4.8. Let conditions of Theorem 4.1 be satisfied and let fi, fo € C(Qy) be
such that fo(x) # 0 for every x € ;. Then there exists & € Qy such that

[(&) _ Af)

RA€) A 1
Proof. Set ®(t) = f1(t)A(f2) — fa(t)A(f1). Obviously, A(®) = 0. On the other hand,
Theorem 4.1 yields that there exists £ € [a,b] such that A(®) = (&) - A(1). Since
A(1) # 0, we have that

(&) = fi(E)A(f2) — f2(§)A(f1) = 0.

By the assumption f2(§) # 0, so Theorem 2.2 assures that A(fy) # 0. Thus, (4.15)
follows. O

Theorem 4.9. Let conditions of Theorems 4.2 — 4.7 be satisfied and let fi, fs €
C([a,b]) be such that fo(x) # 0 for every x € [a,b]. Then there exists & € [a,D]

such that A Lif)
1\Gi)  Lg\J1 .
h&) " Lip)y TR0 (4.16)

where L;, 1 =1,2,3,4,5,6 are linear functionals defined by (4.2)-(4.7).
Proof. Similar to the proof of Theorem 4.8. O

Remark 8. Theorem 4.9 enables us to define new types of means, because if f;/f; has
an inverse, from (4.16) we conclude that

AN Lz-<f1>) -
gz_(ﬁ) <Li(f2) , 1=1,2,3,4,5,6. (4.17)
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