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Abstract. In this paper, we state, prove and discuss new general Steffensen type
inequality. As a special case of that general result we obtain fractional inequalities
involving fractional integrals and derivatives of Riemann-Liouville, Canavati, Caputo,
Hadamard and Erdelyi-Kóber types as well as fractional integrals of a function with
respect to another function. Furthermore, we show that our main result covers much
more general situations applying it to multidimensional settings. Finally we give mean
value theorems for linear functionals related to obtained Steffensen type ineqalities.

1 Introduction

The well-known Steffensen inequality reads [9, p. 181]:

Theorem 1.1. Suppose that f is decreasing and g is integrable on [a, b] with 0 ≤ g ≤ 1

and λ =
∫ b

a
g(t)dt. Then we have

b∫
b−λ

f(t)dt ≤
b∫

a

f(t)g(t)dt ≤
a+λ∫
a

f(t)dt.

The inequalities are reversed for increasing f .

We introduce the notation x+ = max(x, 0). Also xn
+ denotes (x+)n except that 00

will be interpreted as 0. Thus the characteristic function of [t,∞) is (x− t)0
+.

Let Mk denote the class of functions f with the representation

f(x) =

∫ 1

0

(x− t)k
+dν(t), x ∈ [0, 1],

for some non-negative regular Borel measure ν.

The following generalizations of the Steffensen type inequality are given in [5]:

Theorem 1.2. Let µ be a (signed) regular Borel measure such that
∫ 1

0
|dµ| <∞. Then∫ 1

0

fdµ ≥
∫ a

0

fdx (1.1)
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for all f ∈Mk if and only if∫ 1

0

(x− t)k
+dµ(x) ≥ 0, t ∈ [0, 1] (1.2)

and

a ≤ min
0≤t≤1

{
t+

(
(k + 1)

∫ 1

0

(x− t)k
+dµ(x)

) 1
k+1

}
. (1.3)

Therefore the best possible choice for a is when there is equality in (1.3).

Theorem 1.3. If
∫ 1

0
|dµ| <∞, then the inequality∫ 1

0

fdµ(x) ≤
∫ 1

a

fdx (1.4)

holds for all f ∈Mk if and only if∫ 1

0

(x− t)k
+dµ(x) ≤ (1− t)k+1

k + 1
, t ∈ [0, 1] (1.5)

and

a ≤ min
0≤t≤1

{
t+

[
(1− t)k+1 − (k + 1)

∫ 1

0

(x− t)k
+dµ(x)

] 1
k+1

}
. (1.6)

In particular, the best possible choice for a is when there is equality in (1.6).

The paper is organised in the following way. After this Introduction, in Section 2 we
give new general inequalities which will be used for obtaining Steffensen type inequal-
ities. In Section 3 we use our main results to obtain some Steffensen type inequalities
given in [8] and some new Steffensen type ineqalities involving fractional integral of
a function f with respect to a given function g, Hadamard fractional integral and
Erdelyi-Kóber fractional integral. Furthermore, we apply our general result in multidi-
mensional settings to obtain new results involving mixed Riemann-Liouville fractional
integrals. In Section 4 we prove mean value theorems of the Lagrange and the Cauchy
type.

First, let us recall some notions; log denotes the natural logarithm function, Γ(α)
denotes the gamma function, 2F1(a, b; c; z) denotes the hypergeometric function, an
interval in R is any convex subset of R and by dx we denote the Lebesgue measure on
R.

2 Main results

Let (Ω1,Σ1, µ1) be a measure space with σ−finite (signed) regular Borel measure and
Ω2 be a set. Let K : Ω1 × Ω2 → R be a non-negative function and let U denote the
class of all functions f : Ω1 → R such that there exists a measure space (Ω2,Σ2, µ2)
such that µ2 is non-negative σ−finite regular Borel measure and

f(x) =

∫
Ω2

K(x, y)dµ2(y), x ∈ Ω1. (2.1)
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Theorem 2.1. Let (Ω1,Σ1, µ1) be a measure space with σ−finite (signed) regular Borel
measure. Then for every f ∈ U ∫

Ω1

f(x)dµ1(x) ≥ 0 (2.2)

if and only if ∫
Ω1

K(x, y)dµ1(x) ≥ 0 for y ∈ Ω2. (2.3)

Proof. Using the representation (2.1) in (2.2), and then using Fubini’s theorem, (2.2)
is equivalent to ∫

Ω2

∫
Ω1

K(x, y)dµ1(x)dµ2(y) ≥ 0. (2.4)

Since µ2 is arbitrary non-negative regular Borel measure, (2.4) holds if and only if (2.3)
holds.

Theorem 2.2. Let (Ω1,Σ1, µ1) and (Ω1,Σ3, µ3) be measure spaces with σ−finite
(signed) regular Borel measures. Then for every f ∈ U∫

Ω1

f(x)dµ1(x) ≥
∫

Ω1

f(x)dµ3(x) (2.5)

if and only if ∫
Ω1

K(x, y)dµ1(x) ≥
∫

Ω1

K(x, y)dµ3(x) for y ∈ Ω2. (2.6)

Proof. Apply Theorem 2.1 with measure µ1 replaced by µ1 − µ3.

Remark 1. Let Ω1 = Ω2 = [0, 1], K(x, t) = (x − t)k
+, dµ3(x) = χ[0,a]dx for 0 ≤ a ≤ 1

and dµ1(x) = dµ(x) for some finite (signed) regular Borel measure µ. Then the class U
reduces to Mk and (2.1) reduces to (1.1). Furthermore, the condition (2.6) reduces to∫ 1

0

(x− t)k
+dµ(x) ≥

∫ a

0

(x− t)k
+dx. (2.7)

Since the right hand side in (2.7) is non-negative, (1.2) is necessary. Moreover, from
(2.7) we have (1.3) for 0 ≤ t ≤ a. Since (1.2) holds, (1.3) is also true for t ≥ a. Hence,
considering the class of functions f ∈Mk and finite (signed) regular Borel measure µ,
Theorem 2.2 reduces to the Steffensen type inequality given in Theorem 1.2.

Remark 2. Let Ω1 = Ω2 = [0, 1], K(x, t) = (x − t)k
+, dµ1(x) = χ[a,1]dx for 0 ≤ a ≤ 1

and dµ3(x) = dµ(x) for some finite (signed) regular Borel measure µ. Then the class U
reduces to Mk and (2.1) reduces to (1.4). Furthermore, the condition (2.6) reduces to∫ 1

0

(x− t)k
+dµ(x) ≤

∫ 1

a

(x− t)k
+dx. (2.8)
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For t > a, from (2.8) we have∫ 1

0

(x− t)k
+dµ(x) ≤ (1− t)k+1

k + 1
. (2.9)

Obviously, (2.9) also holds for t ≤ a, so (1.5) is necessary. Moreover, from (2.8) we
have (1.6) for 0 ≤ t ≤ a. But since (1.5) holds, (1.6) is also true for t ≥ a. Hence,
considering the class of functions f ∈Mk and finite (signed) regular Borel measure µ,
Theorem 2.2 reduces to the Steffensen type inequality given in Theorem 1.3.

3 New Steffensen type inequalities involving fractional inte-
grals and derivatives

First, let us recall some facts about fractional derivatives needed in the sequel, for more
details see [10] (or [1], [6], [7]). Let 0 < a < b ≤ ∞. By Cm([a, b]) we denote the space of
all functions on [a, b] which have continuous derivatives up to order m, and AC([a, b])
is the space of all absolutely continuous functions on [a, b]. By ACm([a, b]) we denote
the space of all functions g ∈ Cm−1([a, b]) with g(m−1) ∈ AC([a, b]). For any α ∈ R
we denote by [α] the integral part of α (the integer k satisfying k ≤ α < k + 1). By
L1(a, b) we denote the space of all functions integrabile on the interval (a, b), and by
L∞(a, b) the set of all functions measurable and essentially bounded on (a, b). Clearly,
L∞(a, b) ⊂ L1(a, b).

Let us recall the definition of the Riemann-Liouville fractional integral, see [7]. Let
[a, b], (−∞ < a < b <∞) be a finite interval on the real axis R. The Riemann-Liouville
fractional integral Iα

a+
f of order α > 0 is defined by

(Iα
a+f)(x) =

1

Γ(α)

x∫
a

f(y)(x− y)α−1dy, (x > a).

This integral is called the left-sided fractional integral.

Remark 3. Applying Theorem 2.2 with Ω1 = Ω2 = [a, b], dµ2(y) = f(y)dy, dµ3(x) =
χ[a,a+λ]dx (or dµ1(x) = χ[b−λ,b]dx) for λ non-negative such that a+λ ≤ b (or a ≤ b−λ),
and

K(x, y) =

{
(x−y)α−1

Γ(α)
, a ≤ y ≤ x;

0, x < y ≤ b

we obtain Steffensen type inequalities for the left-sided fractional integral Iα
a+f given

in [8, Theorems 2.1 and 2.2].

We define the generalized Riemann–Liouville fractional derivative of f of order
α > 0 by

(Dα
a f)(x) =

1

Γ(n− α)

(
d

dx

)n ∫ x

a

(x− y)n−α−1f(y)dy,

where n = [α] + 1, x ∈ [a, b].
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In addition, we stipulate

D0
af := f =: I0

af, I−α
a f := Dα

a f if α > 0.

If α ∈ N then Dα
a f = dαf

dxα , the ordinary α-order derivative.
The space Iα

a (L(a, b)) is defined as the set of all functions f on [a, b] of the form
f = Iα

a ϕ for some ϕ ∈ L(a, b), (see [10, Chapter 1, Definition 2.3]). According to
Theorem 2.3 in [10, p. 43], the latter characterization is equivalent to the condition

In−α
a f ∈ ACn[a, b] ,

dj

dxj
In−α
a f(a) = 0 , j = 0, 1, . . . , n− 1 .

The following lemma summarizes conditions in composition identity for generalized
Riemann-Liouville fractional derivatives. For details see [2].

Lemma 3.1. Let β > α ≥ 0, n = [β] + 1, m = [α] + 1. Identity

Dα
a f(x) =

1

Γ(β − α)

∫ x

a

(x− y)β−α−1Dβ
af(y) dy , x ∈ [a, b]

is valid if one of the following conditions holds:

(i) f ∈ Iβ
a (L(a, b)).

(ii) In−β
a f ∈ ACn[a, b] and Dβ−k

a f(a) = 0 for k = 1, . . . n.

(iii) Dβ−k
a f ∈ C[a, b] for k = 1, . . . , n, Dβ−1

a f ∈ AC[a, b] and Dβ−k
a f(a) = 0 for

k = 1, . . . n.

(iv) f ∈ ACn[a, b], Dβ
af ∈ L(a, b), Dα

a f ∈ L(a, b), β − α /∈ N, Dβ−k
a f(a) = 0 for

k = 1, . . . , n and Dα−k
a f(a) = 0 for k = 1, . . . ,m.

(v) f ∈ ACn[a, b], Dβ
af ∈ L(a, b), Dα

a f ∈ L(a, b), β − α = l ∈ N, Dβ−k
a f(a) = 0 for

k = 1, . . . , l.

(vi) f ∈ ACn[a, b], Dβ
af ∈ L(a, b), Dα

a f ∈ L(a, b) and f(a) = f ′(a) = · · · =
f (n−2)(a) = 0.

(vii) f ∈ ACn[a, b], Dβ
af ∈ L(a, b), Dα

a f ∈ L(a, b), β /∈ N and Dβ−1
a f is bounded in a

neighbourhood of t = a.

Remark 4. Let assumptions in Lemma 3.1 be satisfied. Then, applying Theorem 2.2
with Ω1 = Ω2 = [a, b], dµ2(y) = (Dβ

af)(y)dy, dµ3(x) = χ[a,a+λ]dx (or dµ1(x) =
χ[b−λ,b]dx) for λ non-negative such that a+ λ ≤ b (or a ≤ b− λ) and

K(x, y) =

{
(x−y)β−α−1

Γ(β−α)
, a ≤ y ≤ x;

0, x < y ≤ b,
(3.1)

we obtain Steffensen type inequalities for the generalized Riemann-Liouville fractional
derivative Dα

a f given in [8, Theorems 2.3 and 2.4].
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Let us recall the definition of the Caputo fractional derivative, for details see [1, p.
449].

Caputo fractional derivative Dα
∗ag of order α > 0 if defined by

(Dα
∗ag)(t) =

1

Γ(n− α)

∫ t

a

g(n)(s)

(t− s)α−n+1
ds,

where g ∈ ACn([a, b]), n = [α] + 1, and t ∈ [a, b].

Remark 5. Applying Theorem 2.2 with Ω1 = Ω2 = [a, b], dµ2(y) = g(n)(y)dy, dµ3(x) =
χ[a,a+λ]dx (or dµ1(x) = χ[b−λ,b]dx) for λ non-negative such that a+λ ≤ b (or a ≤ b−λ)
and

K(x, y) =

{
(x−y)n−α−1

Γ(n−α)
, a ≤ y ≤ x;

0, x < y ≤ b

we obtain Steffensen type inequalities for the Caputo fractional derivative Dα
∗ag given

in [8, Theorems 2.5 and 2.6].

Next, we define generalized Canavati fractional derivative (α−fractional derivative
of f over [a, b]). The definition of generalized Canavati fractional derivative is given in
[1] but we will use it with some new conditions given in [3]. We consider

Cα
a ([a, b]) = {f ∈ Cn([a, b]) : I1−ᾱ

a f (n) ∈ C1([a, b])},

α > 0, n = [α] and ᾱ = α− n, a ≤ ᾱ < b.
For f ∈ Cα

a ([a, b]) the generalized Canavati fractional derivative of f is defined by

Dα
a f = DI1−ᾱ

a f (n),

where D = d/dx.
The following lemma gives conditions in composition rule for generalized Canavati

fractional derivative (see [3]).

Lemma 3.2. Let β > α > 0, n = [β], m = [α]. Let f ∈ Cβ
a ([a, b]), be such that

f (i)(a) = 0, i = m,m+ 1, ..., n− 1. Then

(i) f ∈ Cα
a ([a, b])

(ii) (Dα
a f)(x) = 1

Γ(β−α)

x∫
a

(x− t)β−α−1(Dβ
af)(t)dt,

for every x ∈ [a, b].

Remark 6. Let assumptions in Lemma 3.2 be satisfied. Then, applying Theorem 2.2
with Ω1 = Ω2 = [a, b], dµ2(y) = (Dβ

af)(y)dy, dµ3(x) = χ[a,a+λ]dx (or dµ1(x) =
χ[b−λ,b]dx) for λ non-negative such that a+λ ≤ b (or a ≤ b−λ) and K defined by (3.1)
we obtain Steffensen type inequalities for generalized Canavati fractional derivative
Dα

a f given in [8, Theorems 2.3 and 2.4].
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We continue with definition and some properties of the fractional integral of a
function f with respect to given function g. For details see e.g. [7, p. 99].

Let (a, b) (−∞ ≤ a < b ≤ ∞) be a finite or infinite interval on the real line R and
α > 0. Let g be an increasing function on (a, b) such that g′ is continuous on (a, b).
The left-sided fractional integral of a function f with respect to another function g on
[a, b] is defined by

(Iα
a+;gf)(x) =

1

Γ(α)

∫ x

a

g′(y)f(y)dy

[g(x)− g(y)]1−α
, x > a.

Theorem 3.1. Let g be an increasing function on (a, b) such that g′ is continuous
on (a, b), let µ1 be σ−finite (signed) regular Borel measure on [a, b]. Then for every
non-negative Borel measurable function f1∫ b

a

(Iα
a+;gf1)(x)dµ1(x) ≥

1

Γ(α)

∫ a+λ

a

g′(y)f1(y)

∫ a+λ

y

(g(x)− g(y))α−1dx dy (3.2)

if and only if ∫ b

y

(g(x)− g(y))α−1dµ1(x) ≥ 0, y ∈ [a, b] (3.3)

and ∫ a+λ

y

(g(x)− g(y))α−1dx ≤
∫ b

y

(g(x)− g(y))α−1dµ1(x). (3.4)

Proof. Let (3.2) hold. Let Ω1 = Ω2 = [a, b], λ be non-negative real number such that
a+ λ ≤ b,

K(x, y) =

{
1

Γ(α)
g′(y)

(g(x)−g(y))1−α , a ≤ y ≤ x;

0, x < y ≤ b,
(3.5)

dµ2(y) = f1(y)dy and dµ3(x) = χ[a,a+λ]dx. Notice that class U now reduces to class
of functions Iα

a+;gf1 and that (2.1) reduces to (3.2). Now, from Theorem 2.2 it follows
that (2.6) holds. Furthermore, (2.6) reduces to∫ b

a

K(x, y)dµ1(x) ≥
∫ a+λ

a

K(x, y)dx. (3.6)

Since the right-hand side in (3.6) is non-negative, (3.3) is necessary. Now taking a ≤
y ≤ b, (3.6) is∫ b

y

(g(x)− g(y))α−1dµ1(x) ≥
∫ a+λ

y

(g(x)− g(y))α−1dx, a ≤ y ≤ a+ λ. (3.7)

But since (3.3) holds, the inequality (3.7) is true for y > a+ λ. Hence, (3.4) follows.
Conversely, let (3.3) hold and λ be such that (3.4) holds. As above, we see that

(3.3) and (3.4) are obtained from (2.6). Now applying Theorem 2.2 it follows that (2.1)
holds. Furthermore, from (2.1) we have∫ b

a

1

Γ(α)

∫ x

a

g′(y)f1(y)

(g(x)− g(y))1−α
dy dµ1(x) ≥

∫ a+λ

a

1

Γ(α)

∫ x

a

g′(y)f1(y)

(g(x)− g(y))1−α
dy dx.

(3.8)
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Using Fubini’s theorem, the right-hand side in (3.8) can be written as

1

Γ(α)

∫ a+λ

a

g′(y)f1(y)

∫ a+λ

y

(g(x)− g(y))α−1dx dy.

So we obtain (3.2). Hence, the proof is completed.

Theorem 3.2. Let g be an increasing function on (a, b) such that g′ is continuous
on (a, b), let µ3 be σ−finite (signed) regular Borel measure on [a, b]. Then for every
non-negative Borel measurable function f1∫ b

a

(Iα
a+;gf1)(x)dµ3(x) ≤

1

Γ(α)

[∫ b−λ

a

g′(y)f1(y)

∫ b

b−λ

(g(x)− g(y))α−1dx dy

+

∫ b

b−λ

g′(y)f1(y)

∫ b

y

(g(x)− g(y))α−1dx dy

]
if and only if∫ b

y

(g(x)− g(y))α−1dµ3(x) ≤
∫ b

b−λ

χ[y,b](g(x)− g(y))α−1dx, y ∈ [a, b]. (3.9)

Proof. Similar to the proof of Theorem 3.1, apply Theorem 2.2 with Ω1 = Ω2 = [a, b],
dµ2(y) = f1(y)dy, dµ1(x) = χ[b−λ,b]dx and K defined by (3.5).

Remark 7. If g(x) = x, then Iα
a+;xf reduces to Iα

a+
f .

Now we continue with the definition of Hadamard type fractional integrals.
Let (a, b) be finite or infinite interval on R+ and α > 0. The left-sided Hadamard type
fractional integral of order α > 0 is defined by

(Jα
a+
f)(x) =

1

Γ(α)

x∫
a

(
log

x

y

)α−1
f(y)dy

y
, x > a.

Notice that Hadamard fractional integral of order α is a special case of the fractional
integral of a function f with respect to another function g(x) = log x on [a, b] where
0 ≤ a < b ≤ ∞.

Corollary 3.1. Let µ1 be σ−finite (signed) regular Borel measure on [a, b]. Then for
every non-negative Borel measurable function f1∫ b

a

(Jα
a+f1)(x)dµ1(x) ≥

1

Γ(α)

∫ a+λ

a

f1(y)

∫ log a+λ
y

0

xα−1exdx dy

if and only if ∫ b

y

(
log

x

y

)α−1

dµ1(x) ≥ 0, y ∈ [a, b] (3.10)

and ∫ b

y

(
log

x

y

)α−1

dµ1(x) ≥ y

∫ log a+λ
y

0

xα−1exdx. (3.11)
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Proof. Apply Theorem 3.1 for g(x) = log x.

Corollary 3.2. Let µ3 be σ−finite (signed) regular Borel measure on [a, b]. Then for
every non-negative Borel measurable function f1∫ b

a

(Jα
a+f1)(x)dµ3(x) ≤

1

Γ(α)

[∫ b−λ

a

f1(y)

∫ log b
y

log b−λ
y

xα−1exdx dy

+

∫ b

b−λ

f1(y)

∫ log b
y

0

xα−1exdx dy

] (3.12)

if and only if∫ b

y

(
log

x

y

)α−1

dµ3(x) ≤ y

∫ log b
y

log b−λ
y

χ[0,log b
y
]x

α−1exdx, y ∈ [a, b]. (3.13)

Proof. Apply Theorem 3.2 for g(x) = log x.

Now will give the definition of Erdelyi-Kóber type fractional integrals. For details
see [10] (see also [4, p, 154]).

Let (a, b) (0 ≤ a < b ≤ ∞) be finite or infinite interval on R+. Let α > 0, σ > 0, and
η ∈ R. The left-sided Erdelyi-Kóber type fractional integral of order α > 0 is defined
by

(Iα
a+;σ;ηf)(x) =

σx−σ(α+η)

Γ(α)

x∫
a

yση+σ−1f(y)dy

(xσ − yσ)1−α
, x > a.

Theorem 3.3. Let µ1 be σ−finite (signed) regular Borel measure on [a, b]. Then for
every non-negative Borel measurable function f1∫ b

a

(Iα
a+;σ;ηf1)(x)dµ1(x) ≥

1

Γ(α)

∫ a+λ

a

yση+σ−1f1(y)

∫ (a+λ)σ

yσ

x−α−η−1+ 1
σ

(x− yσ)1−α
dx dy (3.14)

if and only if ∫ b

y

x−σ(α+η)

(xσ − yσ)1−α
dµ1(x) ≥ 0, y ∈ [a, b] (3.15)

and ∫ b

y

x−σ(α+η)

(xσ − yσ)1−α
dµ1(x) ≥

1

σ

∫ (a+λ)σ

yσ

x−α−η−1+ 1
σ

(x− yσ)1−α
dx. (3.16)

Proof. Let (3.14) hold. Let Ω1 = Ω2 = [a, b], λ be non-negative real number such that
a+ λ ≤ b,

K(x, y) =

{
1

Γ(α)
σx−σ(α+η)yση+σ−1

(xσ−yσ)1−α , a ≤ y ≤ x;

0, x < y ≤ b,
(3.17)
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dµ2(y) = f1(y)dy and dµ3(x) = χ[a,a+λ]dx. Notice that class U now reduces to class of
functions Iα

a+;gf1 and that (2.1) reduces to (3.14). Now, from Theorem 2.2 it follows
that (2.6) holds. Furthermore, (2.6) reduces to∫ b

a

K(x, y)dµ1(x) ≥
∫ a+λ

a

K(x, y)dx. (3.18)

Since the right-hand side in (3.18) is non-negative, (3.15) is necessary. Now taking
a ≤ y ≤ b, (3.18) is∫ b

y

x−σ(α+η)

(xσ − yσ)1−α
dµ1(x) ≥

∫ a+λ

y

x−σ(α+η)

(xσ − yσ)1−α
dx, a ≤ y ≤ a+ λ. (3.19)

But since (3.15) holds, the inequality (3.19) is true for y > a+ λ. Calculating integral
on the right-hand side in (3.19), we obtain (3.16).

Conversely, let (3.15) hold and λ be such that (3.16) holds. As above, we see that
(3.15) and (3.16) are obtained from (2.6). Now applying Theorem 2.2 it follows that
(2.1) holds. Furthermore, from (2.1) we have∫ b

a

1

Γ(α)

∫ x

a

σx−σ(α+η)yση+σ−1

(xσ − yσ)1−α
f1(y)dy dµ1(x) ≥∫ a+λ

a

1

Γ(α)

∫ x

a

σx−σ(α+η)yση+σ−1

(xσ − yσ)1−α
f1(y)dy dx.

(3.20)

Using Fubini’s theorem, the right-hand side in (3.20) can be written as

1

Γ(α)

∫ a+λ

a

σyση+σ−1f1(y)

∫ a+λ

y

x−σ(α+η)

(xσ − yσ)1−α
dx dy. (3.21)

Now using the definition of Erdelyi-Köber fractional integral and calculating the inner
integral in (3.21) we obtain (3.14). Hence, the proof is completed.

Theorem 3.4. Let µ3 be σ−finite (signed) regular Borel measure on [a, b]. Then for
every non-negative Borel measurable function f1∫ b

a

(Iα
a+;σ;ηf1)(x)dµ3(x) ≤

1

Γ(α)

[∫ b−λ

a

yση+σ−1f1(y)

∫ bσ

(b−λ)σ

x−α−η−1+ 1
σ

(x− yσ)1−α
dx dy

+

∫ b

b−λ

yση+σ−1f1(y)

∫ bσ

yσ

x−α−η−1+ 1
σ

(x− yσ)1−α
dx dy

]

if and only if∫ b

y

x−σ(α+η)

(xσ − yσ)1−α
dµ3(x) ≤

∫ bσ

(b−λ)σ

χ[yσ ,bσ ]
x−α−η−1+ 1

σ

(x− yσ)1−α
dx, y ∈ [a, b]. (3.22)

Proof. Similar to the proof of Theorem 3.3, apply Theorem 2.2 with Ω1 = Ω2 = [a, b],
dµ2(y) = f1(y)dy, dµ1(x) = χ[b−λ,b]dx and K defined by (3.17).
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In the previous theorems we derived only Steffensen type inequalities over some
subsets of R. Motivated by [5] we will show that Theorem 2.2 covers much more general
situations. Let us observe multidimensional fractional integrals. Such type of fractional
integrals are usually generalization of the corresponding one-dimensional fractional
integral and fractional derivative. For details see [7].
For x = (x1, ..., xn) ∈ Rn and α = (α1, ..., αn), we use the following notations:

Γ(α) = (Γ(α1) · · ·Γ(αn)), [a,b] = [a1, b1]× · · · × [an, bn], xα = xα1
1 . . . xαn

n

and by x > a we mean x1 > a1, ..., xn > an.
We define the mixed Riemann-Liouville fractional integral of order α > 0 as

(Iα
a+
f)(x) =

1

Γ(α)

x1∫
a1

· · ·
xn∫

an

f(t)(x− t)α−1dt, (x > a).

Let a = (a1, . . . , an), b = (b1, . . . , bn), x = (x1, . . . , xn), t = (t1, . . . , tn) and let
λ = (λ1, . . . , λn) be non-negative such that a + λ ≤ b and b − λ ≥ a. Now we will
give Steffensen type inequalities for mixed Riemann-Liouville fractional integrals.

Theorem 3.5. Let µ1 be σ−finite (signed) regular Borel measure on [a,b]. Then for
every non-negative Borel measurable function f1∫ b1

a1

. . .

∫ bn

an

(Iα
a+f1)(x)dµ1(x) ≥ (Iα+1

a+ f1)(a + λ) (3.23)

if and only if ∫ b1

y1

. . .

∫ bn

yn

(x− y)α−1dµ1(x) ≥ 0, t ∈ [a,b] (3.24)

and
n∏

i=1

(ai + λi − yi)
αi
+

αi

≤
∫ b1

y1

. . .

∫ bn

yn

(x− y)α−1dµ1(x). (3.25)

Proof. Let Ω1 = Ω2 = [a,b],

K(x,y) =

{
(x−y)α−1

Γ(α)
, a ≤ y ≤ x;

0, otherwise ,
(3.26)

dµ2(y) = f(y)dy and dµ3(x) = χ[a,a+λ]dx. Notice that class U now reduces to class of
functions Iα

a+f1. Applying Theorem 2.2, from (2.1) we obtain∫ b

a

1

Γ(α)

∫ x1

a1

. . .

∫ xn

an

f(y)

(x− y)1−α
dy dµ1(x) ≥

∫ a+λ

a

1

Γ(α)

∫ x

a

(x− y)α−1f(y)dy dx.

(3.27)
Using Fubini’s theorem and then calculating the inner integral, the right-hand side in
(3.27) can be written as

1

Γ(α + 1)

∫ a1+λ1

a1

. . .

∫ an+λn

an

f(y)(a + λ− y)αdy.
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So we obtain (3.23). From (2.6) we obtain∫ b

a

K(x,y)dµ1(x) ≥
∫ a+λ

a

K(x,y)dx. (3.28)

Since the right-hand side in (3.28) is non-negative, (3.24) is necessary. Now taking
a ≤ y ≤ b, (3.28) is∫ b1

y1

. . .

∫ bn

yn

(x− y)α−1dµ1(x) ≥
∫ a1+λ1

y1

. . .

∫ an+λn

yn

(x− y)α−1dx, a ≤ y ≤ a + λ.

(3.29)
Calculating integral on the right-hand side in (3.29), we obtain∫ b1

y1

. . .

∫ bn

yn

(x− y)α−1dµ1(x) ≥
n∏

i=1

(ai + λi − yi)
αi

αi

, ai ≤ yi ≤ ai + λi, i = 1, . . . , n.

(3.30)
Hence, (3.25) follows and the proof is completed.

Theorem 3.6. Let µ3 be σ−finite (signed) regular Borel measure on [a,b]. Then for
every non-negative Borel measurable function f1∫ b1

a1

. . .

∫ bn

an

(Iα
a+f1)(x)dµ3(x) ≤ (Iα+1

a+ f1)(b)− (Iα+1
a+ f1)(b− λ) (3.31)

if and only if∫ b1

y1

. . .

∫ bn

yn

(x− y)α−1dµ3(x) ≤
∫ b1

b1−λ1

. . .

∫ bn

bn−λn

χ[y,b](x− y)α−1dx. (3.32)

Proof. Let Ω1 = Ω2 = [a,b], K be defined by (3.26), dµ2(y) = f1(y)dy and
dµ1(x) = χ[b−λ,b]dx. Notice that class U now reduces to class of functions Iα

a+f1.
Applying Theorem 2.2, from (2.1) we obtain∫ b

a

1

Γ(α)

∫ x1

a1

. . .

∫ xn

an

f1(y)

(x− y)1−α
dy dµ1(x) ≤

∫ b

b−λ

1

Γ(α)

∫ x

a

(x− y)α−1f1(y)dy dx.

(3.33)
Using Fubini’s theorem and then calculating the inner integral, the right-hand side in
(3.33) can be written as

1

Γ(α + 1)

∫ b1

a1

. . .

∫ bn

an

f1(y)(b− y)αdy− 1

Γ(α + 1)

∫ b1−λ1

a1

. . .

∫ bn−λn

an

f1(y)(b−λ− y)αdy.

So we obtain (3.31). From (2.6) we obtain∫ b

a

K(x,y)dµ3(x) ≤
∫ b

b−λ

K(x,y)dx.

i.e. ∫ b

y

(x− y)α−1dµ3(x) ≤
∫ b

b−λ

χ[y,b](x− y)α−1dx.

Hence, (3.32) follows and the proof is completed.



Generalized fractional Steffensen type inequalities 93

4 Mean value theorems

First, let us recall that U denotes the class of all functions f : Ω1 → R such that there
exists a measure space (Ω2,Σ2, µ2) such that µ2 is non-negative σ−finite regular Borel
measure and (2.1) holds. Now, we will define linear functionals which will be used in
following theorems. For f ∈ U let

A(f) =

∫
Ω1

f(x)dµ1(x)−
∫

Ω1

f(x)dµ3(x). (4.1)

Now, we will give linear functionals related to fractional integrals and derivatives
mentioned in Section 3. First, we define linear functionals related to fractional integral
of a function f with respect to another function g.
Let

L1(f1) =

∫ b

a

(Iα
a+;gf1)(x)dµ1(x)−

1

Γ(α)

∫ a+λ

a

g′(y)f1(y)

∫ a+λ

y

(g(x)− g(y))α−1dx dy,

(4.2)
and let

L2(f1) =
1

Γ(α)

[∫ b−λ

a

g′(y)f1(y)

∫ b

b−λ

(g(x)− g(y))α−1dx dy

+

∫ b

b−λ

g′(y)f1(y)

∫ b

y

(g(x)− g(y))α−1dx dy

]
−
∫ b

a

(Iα
a+;gf1)(x)dµ3(x),

(4.3)

where f1 is non-negative Borel measurable function. Next, we define linear functionals
related to Hadamard type fractional integral. Let

L3(f1) =

∫ b

a

(Jα
a+f)(x)dµ1(x)−

1

Γ(α)

∫ a+λ

a

f1(y)

∫ log a+λ
y

0

xα−1exdx dy, (4.4)

and let

L4(f1) =
1

Γ(α)

[∫ b−λ

a

f1(y)

∫ log b
y

log b−λ
y

xα−1exdx dy

+

∫ b

b−λ

f1(y)

∫ log b
y

0

xα−1exdx dy

]
−
∫ b

a

(Jα
a+f1)(x)dµ3(x),

(4.5)

where f1 is non-negative Borel measurable function.
Finally, we define linear functionals related to Erdelyi-Kóber type fractional integral.
Let

L5(f1) =

∫ b

a

(Iα
a+;σ;ηf1)(x)dµ1(x)−

1

Γ(α)

∫ a+λ

a

yση+σ−1f1(y)

∫ (a+λ)σ

yσ

x−α−η−1+ 1
σ

(x− yσ)1−α
dx dy,

(4.6)
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and let

L6(f1) =
1

Γ(α)

[∫ b−λ

a

yση+σ−1f1(y)

∫ bσ

(b−λ)σ

x−α−η−1+ 1
σ

(x− yσ)1−α
dx dy

+

∫ b

b−λ

yση+σ−1f1(y)

∫ bσ

yσ

x−α−η−1+ 1
σ

(x− yσ)1−α
dx dy

]
−
∫ b

a

(Iα
a+;σ;ηf)(x)dµ3(x).

(4.7)

where f1 is non-negative Borel measurable function.
Now we state and prove Lagrange-type mean value theorems.

Theorem 4.1. Let Ω1 be a compact set. Let (Ω1,Σ1, µ1) and (Ω1,Σ3, µ3) be measure
spaces with σ−finite regular Borel measures, let (2.6) hold and let f ∈ C(Ω1). Then
there exists ξ ∈ Ω1 such that

A(f) = f(ξ)

(∫
Ω1

dµ1(x)−
∫

Ω1

dµ3(x)

)
, (4.8)

where A is defined by (4.1).

Proof. Notice that from Theorem 2.2 we have that if f ≥ 0, then A(f) ≥ 0, so A is
positive linear functional.
Since f is continuous on Ω1, there exists m = min

x∈Ω1

f(x) and M = max
x∈Ω1

f(x). Then

A(M − f) ≥ 0 and A(f −m) ≥ 0. Therefore

m

(∫
Ω1

dµ1(x)−
∫

Ω1

dµ3(x)

)
≤
∫

Ω1

f(x)dµ1(x)−
∫

Ω1

f(x)dµ3(x)

≤M

(∫
Ω1

dµ1(x)−
∫

Ω1

dµ3(x)

)
that is,

mA(1) ≤ A(f) ≤MA(1).

If the function A(1) = 0, then A(f) = 0, so (4.8) holds for all ξ ∈ Ω1. Otherwise,

min
x∈Ω1

f(x) = m ≤ A(f)

A(1)
≤M = max

x∈Ω1

f(x), so
A(f)

A(1)
∈ f(Ω1).

Since f is continuous, we have that A(f)
A(1)

= f(ξ) for some ξ ∈ Ω1.

Theorem 4.2. Let g be an increasing function on (a, b) such that g′ is continuous on
(a, b) and let f1 be non-negative Borel measurable function such that f1 ∈ C([a, b]).
Let µ1 be σ−finite (signed) regular Borel measure, let (3.3) and (3.4) hold. Then there
exists ξ ∈ [a, b] such that

L1(f1) =
f1(ξ)

Γ(α)

 b∫
a

(g(x)− g(a))α

α
dµ1(x)−

a+λ∫
a

g′(y)

a+λ∫
y

(g(x)− g(y))α−1dx dy

 , (4.9)

where L1 is defined by (4.2).
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Proof. Notice that from Theorem 3.1 we have that if f1 ≥ 0, then L1(f1) ≥ 0, so L1 is
positive linear functional.
Set m = min

x∈[a,b]
f1(x), M = max

x∈[a,b]
f1(x). Then L1(M−f1) ≥ 0 and L1(f1−m) ≥ 0. Using

definition of the left-sided fractional integral of a function f1 with respect to another
function g, linear functional L1 can be written as

L1(f1) =
1

Γ(α)

∫ b

a

∫ x

a

g′(y)f1(y)

(g(x)− g(y))1−α
dy dµ1(x)

− 1

Γ(α)

∫ a+λ

a

g′(y)f1(y)

∫ a+λ

y

(g(x)− g(y))α−1dx dy.

Therefore

m

Γ(α)

 b∫
a

(g(x)− g(a))α

α
dµ1(x)−

a+λ∫
a

g′(y)

a+λ∫
y

(g(x)− g(y))α−1dx dy


≤
∫ b

a

(Iα
a+;gf1)(x)dµ1(x)−

1

Γ(α)

∫ a+λ

a

g′(y)f1(y)

∫ a+λ

y

(g(x)− g(y))α−1dx dy

≤ M

Γ(α)

 b∫
a

(g(x)− g(a))α

α
dµ1(x)−

a+λ∫
a

g′(y)

a+λ∫
y

(g(x)− g(y))α−1dx dy

 ,

that is,
mL1(1) ≤ L1(f1) ≤ML1(1).

Similar reasoning as in proof of Theorem 4.1 completes the proof.

Theorem 4.3. Let g be an increasing function on (a, b) such that g′ is continuous on
(a, b) and let f1 be non-negative Borel measurable function such that f1 ∈ C([a, b]).
Let µ3 be σ−finite (signed) regular Borel measure and let (3.9) hold. Then there exists
ξ ∈ [a, b] such that

L2(f1) =
f1(ξ)

Γ(α)

b−λ∫
a

g′(y)

b∫
b−λ

(g(x)− g(y))α−1dx dy+

b∫
b−λ

g′(y)

b∫
y

(g(x)− g(y))α−1dx dy

−
b∫

a

(g(x)− g(a))α

α
dµ3(x)

 ,

(4.10)

where L2 is defined by (4.3).

Proof. Similar to the proof of Theorem 4.2.

Theorem 4.4. Let µ1 be σ−finite (signed) regular Borel measure, let (3.10) and (3.11)
hold and let f1 be non-negative Borel measurable function such that f1 ∈ C([a, b]),
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a > 0. Then there exists ξ ∈ [a, b] such that

L3(f1) = f1(ξ)

 1

Γ(α+ 1)

b∫
a

(
log

x

a

)α

dµ1(x)−
1

Γ(α)

∫ a+λ

a

∫ log a+λ
y

0

xα−1exdx dy

 ,

(4.11)
where L3 is defined by (4.4).

Proof. Similar to the proof of Theorem 4.2.

Theorem 4.5. Let µ3 be σ−finite (signed) regular Borel measure, let (3.13) hold and
let f1 be non-negative Borel measurable function such that f1 ∈ C([a, b]), a > 0. Then
there exists ξ ∈ [a, b] such that

L4(f1) =f1(ξ)

(
1

Γ(α)

∫ b−λ

a

∫ log b
y

log b−λ
y

xα−1exdx dy

+
1

Γ(α)

∫ b

b−λ

∫ log a+λ
y

0

xα−1exdx dy − 1

Γ(α+ 1)

∫ b

a

(
log

x

a

)α

dµ3(x)

)
,

(4.12)

where L4 is defined by (4.5).

Proof. Similar to the proof of Theorem 4.2.

Before we give Lagrange type mean value theorems for Erdelyi-Kóber type fractional
integrals let us denote

HG(x) = 2F1(1− α, η + 1; η + 2, xσ).

Theorem 4.6. Let µ1 be σ−finite (signed) regular Borel measure, let (3.15) and (3.16)
hold and let f1 be non-negative Borel measurable function such that f1 ∈ C([a, b]). Then
there exists ξ ∈ [a, b] such that

L5(f1) = f1(ξ)

 Γ(η + 1)

Γ(α+ η + 1)

b∫
a

dµ1(x)−
1

(η + 1)Γ(α)

∫ b

a

(a
x

)ση+σ

HG
(a
x

)
dµ1(x)

− 1

Γ(α)

∫ a+λ

a

yση+σ−1

∫ (a+λ)σ

yσ

x−α−η−1+ 1
σ

(x− yσ)1−α
dx dy

)
,

(4.13)

where L5 is defined by (4.6).

Proof. Similar to the proof of Theorem 4.2.

Theorem 4.7. Let µ3 be σ−finite (signed) regular Borel measure, let (3.22) hold and
let f1 be non-negative Borel measurable function such that f1 ∈ C([a, b]). Then there
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exists ξ ∈ [a, b] such that

L6(f1) = f1(ξ)

(
1

Γ(α)

∫ b

a

yση+σ−1f1(y)

∫ bσ

(b−λ)σ

x−α−η−1+ 1
σ

(x− yσ)1−α
dx dy

1

Γ(α)

∫ b

b−λ

yση+σ−1f1(y)

∫ bσ

yσ

x−α−η−1+ 1
σ

(x− yσ)1−α
dx dy

− Γ(η + 1)

Γ(α+ η + 1)

b∫
a

dµ3(x) +
1

(η + 1)Γ(α)

∫ b

a

(a
x

)ση+σ

HG
(a
x

)
dµ3(x)

 ,

(4.14)

where L6 is defined by (4.7).

Proof. Similar to the proof of Theorem 4.2.

Following theorems are new analogues of the classical Cauchy mean value theorem.

Theorem 4.8. Let conditions of Theorem 4.1 be satisfied and let f1, f2 ∈ C(Ω1) be
such that f2(x) 6= 0 for every x ∈ Ω1. Then there exists ξ ∈ Ω1 such that

f1(ξ)

f2(ξ)
=
A(f1)

A(f2)
. (4.15)

Proof. Set Φ(t) = f1(t)A(f2) − f2(t)A(f1). Obviously, A(Φ) = 0. On the other hand,
Theorem 4.1 yields that there exists ξ ∈ [a, b] such that A(Φ) = Φ(ξ) · A(1). Since
A(1) 6= 0, we have that

Φ(ξ) = f1(ξ)A(f2)− f2(ξ)A(f1) = 0.

By the assumption f2(ξ) 6= 0, so Theorem 2.2 assures that A(f2) 6= 0. Thus, (4.15)
follows.

Theorem 4.9. Let conditions of Theorems 4.2 – 4.7 be satisfied and let f1, f2 ∈
C([a, b]) be such that f2(x) 6= 0 for every x ∈ [a, b]. Then there exists ξi ∈ [a, b]
such that

f1(ξi)

f2(ξi)
=
Li(f1)

Li(f2)
, i = 1, 2, 3, 4, 5, 6, (4.16)

where Li, i = 1, 2, 3, 4, 5, 6 are linear functionals defined by (4.2)-(4.7).

Proof. Similar to the proof of Theorem 4.8.

Remark 8. Theorem 4.9 enables us to define new types of means, because if f1/f2 has
an inverse, from (4.16) we conclude that

ξi =

(
f1

f2

)−1(
Li(f1)

Li(f2)

)
, i = 1, 2, 3, 4, 5, 6. (4.17)
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