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Abstract. The paper deals with projection methods of approximate solving the prob-
lem

Fx′ = Gx+ bu(t), y = 〈x, d〉

which consist in passage to the reduced-order problem

F̂ x̂′ = Ĝx̂+ b̂u(t), ŷ = 〈x̂, d̂〉,

where
F̂ = ΛFV, Ĝ = ΛGV, b̂ = Λb, d̂ = V ∗d.

It is shown that, if V and Λ are constructed on the basis of Krylov’s subspaces, a pro-
jection method is equivalent to the replacement in the formula expressing the impulse
response via the exponential function of the pencil λ 7→ λF − G, of the exponential
function by its rational interpolation satisfying some interpolation conditions. Special
attention is paid to the case when F is not invertible.

1 Introduction

Differential equations of the form

Fx′ = Gx+ f(t), (1.1)

where F and G are linear operators, arise in the theory of discrete linear electrical
circuits [4, 6, 35, 42, 46] and in some other applications [25, 36, 43]. Equation (1.1)
is not resolved for the derivative. Moreover, if the number of capacitors and inductors
in a circuit is not too large, the operator F is certainly not invertible. Usually the
free term f takes its values in a finite-dimensional subspace; this follows since the
circuit has only a small number of voltage and current sources. Because of linearity of
the circuit, the influence of different sources can be treated independently. Therefore
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the problem is reduced to finding a solution that corresponds to the free term of
the form f(t) = bu(t), where u is a given scalar function and b is a fixed vector.
Furthermore, not all coordinates of x, but only a limited number of them, are usually
of interest. These coordinates can be found separately. Hence it is enough to seek a
function y(t) = 〈x(t), d〉, where d is a fixed vector, instead of the whole solution x.
Thus we arrive at our main problem

Fx′ = Gx+ bu(t),

y = 〈x, d〉.
(1.2)

We assume that the input function u is defined on the whole real axis and is equal to
zero to the left of zero, and the solution x of the equation Fx′+Gx = bu is also defined
on the whole axis and is equal to zero to the left of zero. For electrical circuits such
a problem statement often has more physical sense than the traditional initial value
problem.

If the dimension of the vector x is large, then it may be convenient to turn (see, for
example, [1, 2, 7, 14, 16, 18, 33, 39]) from problem (1.2) to the problem

F̂ x̂′ = Ĝx̂+ b̂u(t),

ŷ(t) = 〈x̂, d̂〉,
(1.3)

where the dimension of the vector x̂ is essentially smaller. Problem (1.3) is called a
reduced-order problem. Reduced-order problem (1.3) is usually constructed by projec-
tion methods (Section 6). These methods consist in determining the coefficients in (1.3)
with

F̂ = ΛFV, Ĝ = ΛGV, b̂ = Λb, d̂ = V ∗d,

where Λ and V are some operators. In this paper we discuss the case (see, for exam-
ple, [1, 2, 8, 13, 14, 15, 18, 33, 44]) when the images of V and Λ∗ contain the vectors
(λjF −G)−1b and

[
(λjF −G)−1

]∗
d and their iterations, j = 1, . . . , p, respectively (for

more accurate formulation see Theorem 7.1). The linear spans of the iterations of the
vectors (λjF − G)−1b and

[
(λjF − G)−1

]∗
d are called [23, 34, 48] Krylov’s subspaces.

The name of the discussed class of methods derives from this term.
The main result of the paper (Theorem 7.1) reads as follows. The impulse response

H of equation (1.1) can be represented (Theorem 5.1) as a special analytic function
EXP of the pencil λ 7→ λF − G. It turns out that the construction of the function
EXP of the reduced-order pencil λ 7→ λF̂ − Ĝ is equivalent to the construction of some
rational function r of the initial pencil λ 7→ λF −G. The function r can be defined as a
result of interpolation of the function EXP on the spectrum of the pencil λ 7→ λF̂ − Ĝ.
Thus the role of the reduced-order pencil λ 7→ λF̂−Ĝ may be interpreted as an implicit
specification of interpolation points.

Special cases of Theorem 7.1 (up to small differences in the problem statement)
were obtained earlier in [27, 38]. In [38] the case was considered when F is the identity
matrix and the images of V and Λ∗ coincide with linear spans of the vectors Gjb and
(Gj)∗d, j = 1, . . . , p, respectively. In [27] the case was considered when the matrix
F is invertible, and the conditions were imposed only on V and only in terms of
(λjF −G)−1b, j = 1, . . . , p.
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The main problem arises already at the stage of the formulation of Theorem 7.1.
Namely, the impulse response H of equation (1.1) may contain (Theorem 4.3) the Dirac
δ-function and its derivatives, and thus the classical representation

H(t) =
1

2πi

∫
Γ

eλt(λF −G)−1 dλ

is surely unacceptable, because it is impossible to obtain the δ-function as a result of
calculation of such an integral. In order to overcome this problem we propose to employ
the representation (Section 5)

H =
1

2πi

∫
Γ

EXP(λ)(λF −G)−1 dλ, (1.4)

where EXP(λ), for a fixed λ, is a function of the variable t; in particular, EXP(λ) may
be a distribution.

In Section 2 we recall some preliminaries concerning pseudoresolvents [21], which we
employ in proofs of Section 3; the main result is Theorem 2.2, it describes the partial
fraction expansion of a pseudoresolvent. In Section 3 we recall the main definitions
concerning the pencil resolvent Rλ = (λF − G)−1, and we present (Theorem 3.2) its
partial fraction expansion. In Section 4 we discuss (Theorem 4.3) the representation
of the impulse response H of equation (1.2) in the form of a linear combination of the
functions t 7→ tj−1eµitη(t) and δ(j), where η is the Heaviside function, and δ is the Dirac
function. In Section 5 we present a version of functional calculus for analytic functions
taking their values in the algebra D ′

+(α), which consists of distributions [40, 41, 47], and
we establish (Theorem 5.1) representation (1.4). In Section 6 we give a description of
projection methods based on the usage of Krylov subspaces. These methods are widely
used in simulation of large electrical circuits and some other applications. Finally in
Section 7 we prove Theorem 7.1, which is the main result of this paper.

In the main application that we keep in mind (related to linear electrical circuits),
where the discussed methods of approximate solving of problem (1.2) are used, the
operators F and G act in finite dimensional spaces (of a large dimension). In spite of
this, keeping in mind a possibility of other applications, we consider a slightly more
general case when F and G act in Banach spaces.

The second author was supported by the Russian Foundation for Basic Research,
research project No. 13-01-00378.

2 Pseudoresolvents

Below (Proposition 3.2) we shall see that the pencil resolvent λ 7→ (λF − G)−1 is an
example of a pseudoresolvent. This fact enables us to obtain some pencil properties
by referring to pseudoresolvent properties. Several facts and definition from [21, 30]
related to pseudoresolvents are recalled in this Section. The main result of this Section
is Theorem 2.2.

Let B be a complex algebra [10, 21, 37]. An algebra B is called commutative if
AB = BA for all A and B.
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If there exists an element 1 = 1B ∈ B such that A1 = 1A = A for all A ∈ B, then
the element 1 is called a unit and the algebra is called an algebra with a unit or unital.
The unit is unique (provided the algebra has any).

Let B be an algebra with a unit. An element A−1 ∈ B is called the inverse of A ∈ B

if AA−1 = A−1A = 1.
If an algebra B is a Banach space and the property ‖AB‖ ≤ ‖A‖ · ‖B‖ takes place,

then B is called a Banach algebra. If the algebra B has a unit and ‖1‖ = 1, then B is
called a Banach algebra with a unit. The simplest example of a Banach algebra with a
unit is the algebra B(X) of all bounded linear operators acting in a Banach space X.

A subspace R of an algebra B is called a subalgebra if it is closed under the algebraic
operations (addition, scalar multiplication and multiplication). Any subalgebra is an
algebra. The closure of a subalgebra is a subalgebra as well. A closed subalgebra of a
Banach algebra is also a Banach algebra.

Let B be an algebra with a unit and A ∈ B. The set of all λ ∈ C such that the
element λ1−A does not have an inverse is called the spectrum of A and is denoted by
σ(A) or σB(A). The complement ρ(A) = C \ σ(A) is called the resolvent set of A. The
function (family)

Rλ = (λ1− A)−1, λ ∈ ρ(A),

is called the resolvent of A. The spectrum of an element of a non-zero algebra with a
unit is a nonempty compact subset of C.

Proposition 2.1 ([21, Theorem 4.1.8]). Let B be an algebra with a unit. The resolvent
R(·) of any element A ∈ B, for all λ, µ ∈ ρ(A), satisfies the Hilbert identity

Rλ −Rµ = −(λ− µ)RλRµ. (2.1)

Let B be an algebra without a unit. The set B̃ = C ⊕ B with the componentwise
linear operations and the multiplication (α,A)(β,B) = (αβ, αB+βA+AB) is, clearly,
an algebra with the unit 1 = (1, 0). The element (α,A) is denoted by the symbol
α1 + A. The algebra B̃ is called the algebra B with an adjoint unit. If B is a Banach
algebra, then we set ‖α1 + A‖ = |α|+ ‖A‖; obviously, in this case B̃ is also a Banach
algebra. The spectrum (the resolvent set, the resolvent) of an element of an algebra
without a unit is the spectrum (the resolvent set, the resolvent) of this element in the
algebra with an adjoint unit. If B has a unit, then we mean by B̃ the algebra B itself.

Let B be a Banach algebra and S ⊆ C be a nonempty subset. A pseudoresolvent
(on S with values in B) is [21, ch. 5, § 2, p. 184] a function (family) λ 7→ Rλ defined
on S with values in B and satisfying the Hilbert identity (2.1). The pseudoresolvent is
called [5] maximal if it is not extendable to a wider set with preserving identity (2.1).

Theorem 2.1 ([21, Theorem 5.8.6]). Any pseudoresolvent has exactly one extension
to a maximal pseudoresolvent. More precisely, if a pseudoresolvent is defined at a point
λ0 ∈ S, then the domain of its maximal extension is the set of all λ ∈ C such that the
element 1 + (λ− µ)Rλ0 is invertible in B̃. This extension has the form

Rλ = Rλ0

(
1 + (λ− λ0)Rλ0

)−1
.
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We call the regular set of a pseudoresolvent the domain ρ(R(·)) of its maximal
extension, and we call the singular set of the pseudoresolvent the compliment σ(R(·))
of ρ(R(·)). Below we denote the maximal extension of the initial pseudoresolvent R(·)
by the same symbol R(·).

Corollary 2.1 ([21, Theorem 5.8.2]). The domain of a maximal pseudoresolvent is
an open set and a maximal pseudoresolvent is an analytic function with values in B.
Namely, the maximal pseudoresolvent has the power series expansion

Rλ =
∞∑
i=0

(λ0 − λ)iRi+1
λ0

about any point λ0 ∈ ρ(R(·)).

Let a pseudoresolvent R(·) be fixed. We denote by BR the smallest closed subalgebra
of the algebra B that contains all elements Rλ, λ ∈ ρ(R(·)), of the maximal extension
of the pseudoresolvent.

Proposition 2.2. The algebra BR coincides with the closure of the linear span of all
elements Rλ, λ ∈ ρ(R(·)), and is commutative.

Proof. It is obvious that the closure of the linear span of the family Rλ, λ ∈ ρ(R(·)),
is contained in BR. From Hilbert’s identity (2.1) one can see that RλRµ is in the
linear span of the family Rλ, λ ∈ ρ(R(·)), provided λ 6= µ. Hence, by continuity, the
element RλRµ, where λ = µ, is also in the closure of the linear span of the elements
Rλ, λ ∈ ρ(R(·)). This implies that the closure of the linear span of the family Rλ,
λ ∈ ρ(R(·)), forms a closed subalgebra.

The commutative law follows from Hilbert’s identity (2.1).

Proposition 2.3 ([21, Theorem 5.9.3]). Let a pseudoresolvent R(·) admit an analytic
continuation in the annulus 0 ≤ γ1 < |λ| < γ2 ≤ ∞. Then there exist elements
P,A,B ∈ BR such that

P 2 = P, AP = PA = A, BP = PB = 0,

Rλ = R1
λ +R0

λ, γ1 < |λ| < γ2,

where

R1
λ =

P

λ
+
A

λ2
+
A2

λ3
+
A3

λ4
+ . . . , γ1 < |λ|,

R0
λ = −B − λB2 − λ2B3 − λ3B4 − . . . , |λ| < γ2.

Corollary 2.2. Let a pseudoresolvent R(·) admit an analytic continuation in a deleted
ε-neighbourhood of a point µ ∈ C and have a pole of order w at µ. Then there exist
elements P,N,B ∈ BR such that

Nw = 0, P 2 = P, NP = PN = N, BP = PB = 0,

Rλ = R1
λ +R0

λ, 0 < |λ− µ| < ε,
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where

R1
λ =

P

λ− µ
+

N

(λ− µ)2
+

N2

(λ− µ)3
+ . . .+

Nw−1

(λ− µ)w
, λ 6= µ,

R0
λ = −B − (λ− µ)B2 − (λ− µ)2B3 − . . . , |λ− µ| < ε.

Proof. Let us consider the shifted family R̃λ = Rλ+µ; obviously, Rλ = R̃λ−µ. One can
easily see that R̃(·) is also a pseudoresolvent. If one applies Proposition 2.3 to R̃(·) and
after that performs the inverse change of variables λ 7→ λ−µ, he obtains the statement
of the Corollary.

Corollary 2.3. Let a pseudoresolvent R(·) admit an analytic continuation in a deleted
neighbourhood of the point ∞ and have a pole of order w − 15 at ∞. Then there exist
elements P,A,N ∈ BR such that

Nw+1 = 0, P 2 = P, AP = PA = A, NP = PN = 0,

and the Laurent expansion about infinity has the form

Rλ = −N − λN2 − λ2N3 − λ3N4 − . . .− λw−1Nw +
P

λ
+
A

λ2
+
A2

λ3
+
A3

λ4
+ . . . .

Proof. The assertion follows from Proposition 2.3.

Theorem 2.2 ([30, Theorem 37]). Let the singular set of a pseudoresolvent R(·) con-
sist of a finite number of points µ1, µ2, . . . , µq ∈ C. Let these points µ1, µ2, . . . , µq,
and the point µ0 = ∞ be poles of the pseudoresolvent, and let their orders be equal
to w1, w2, . . . , wq and w0 − 1, respectively. Then6 there exist elements P1, P2, . . . , Pq;
N0, N1, . . . , Nq ∈ BR such that

P 2
i = Pi, NiPi = PiNi = Ni, i = 0, 1, . . . , q,

PiPj = 0, NiPj = PjNi = 0, i 6= j,

Nwi
i = 0, Nw0+1

0 = 0,

where P0 = 1 −
∑q

i=1 Pi and 1 is the (adjoint) unit, and the pseudoresolvent can be
represented in the form

Rλ =

q∑
i=1

wi∑
j=1

N j−1
i

(λ− µi)j
−

w0−1∑
j=0

N j+1
0 λj, (2.2)

where N0
i means Pi.

The numbers w1, w2, . . . , wq and w0 will be called multiplicities of the corresponding
spectrum points.

5It is convenient to denote the order of a pole at infinity by w−1, but not by w, because it induces
exactly w terms in expansion (2.2).

6Theorem 2.2 remains valid for the case when the order w0 − 1 of the pole µ0 = ∞ equals to −1,
i. e., µ0 = ∞ is not a pole. The simplification of the statement for this case is obvious.
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Proof. For every i = 1, 2, . . . , q, we define the idempotent Pi = P and the nilpotent
Ni = N according to Corollary 2.2 (with the notation P and N from Corollary 2.2).
Next we form the sums

∑wi

j=1
Nj−1

i

(λ−µi)j according to Corollary 2.2 again. We determine
the idempotent P0 = 1−P and the nilpotent N0 = N according to Corollary 2.3 (with
the notation P and N from Corollary 2.3) and we form the sum

∑w0−1
j=0 N j+1

0 λj as well.
We combine these sums into the function (we do not know in advance whether R̃λ

coincides with the pseudoresolvent Rλ)

R̃λ =

q∑
i=1

wi∑
j=1

N j−1
i

(λ− µi)j
−

w0−1∑
j=0

N j+1
0 λj.

We note that the difference λ 7→ Rλ − R̃λ, where Rλ is the pseudoresolvent, has no
singular points (the poles µ0, µ1, . . . , µq are removable singular points). Therefore by the
Liouville theorem this difference is a constant function. This constant may be calculated
as the coefficient of λ0 in the Laurent expansion about infinity. The coefficients of λ0

in the Laurent expansions of λ 7→ Rλ and λ 7→ R̃λ about infinity coincide with N0 by
Corollary 2.3 and the definition of N0. Thus the constant is equal to zero and Rλ = R̃λ.

The identities P 2
i = Pi and NiPi = PiNi = Ni, where i = 0, 1, 2, . . . , q, follow from

Corollaries 2.3 and 2.2.
Next we show, for example, that PiP1 = 0 for i = 2, . . . , q, and NiP1 = 0 for

i = 2, . . . , q and i = 0. We recall that in a deleted neighborhood of the point µ1, the
pseudoresolvent R(·) has the form

Rλ =
P1

λ− µ1

+
N1

(λ− µ1)2
+ . . .+

Nw1−1
1

(λ− µ1)w1
−B − (λ− µ1)B

2 − . . . ,

where BP1 = P1B = 0 (and P 2
1 = P1 and N1P1 = P1N1 = N1, as it was noted above),

by Corollary 2.2. This implies that,

RλP1 = P1Rλ =
P1

λ− µ1

+
N1

(λ− µ1)2
+ . . .+

Nw1−1
1

(λ− µ1)w1
. (2.3)

Identity (2.3) takes place at all points λ 6= µ1 by the uniqueness of analytic continua-
tion. But on the other hand, by (2.2) it follows that,

RλP1 =

q∑
i=1

wi∑
j=1

N j−1
i P1

(λ− µi)j
−

w0−1∑
j=0

N j+1
0 P1λ

j. (2.4)

If one compares the coefficients in the Laurent expansions (2.3) and (2.4) about the
points µ2, . . . , µq and µ0 = ∞, (taking into account the equality N0

i = Pi) he obtains
that PiP1 = 0 for i = 2, . . . , q, and NiP1 = 0 for i = 2, . . . , q and i = 0.

Finally we show that PiP0 = 0 and NiP0 = 0 for i = 1, . . . , q. We note that in a
deleted neighbourhood of the point µ0 = ∞ the pseudoresolvent Rλ has the form

Rλ = −N0 − λN2
0 − λ2N3

0 − . . .− λw0−1Nw0 +
1− P0

λ
+
A

λ2
+
A2

λ3
+
A3

λ4
+ . . . , (2.5)
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and A(1 − P0) = (1 − P0)A = A, and consequently, AP0 = P0A = 0 (and as it was
noted above, P 2

0 = P0 and N0P0 = P0N0 = N0) by Corollary 2.3. Hence

RλP0 = P0Rλ = −N0 − λN2
0 − λ2N3

0 − . . .− λw0−1Nw0 . (2.6)

This equality holds at all points λ 6= µi by the uniqueness of analytic continuation. On
the other hand, we have

RλP0 =

q∑
i=1

wi∑
j=1

N j−1
i P0

(λ− µi)j
−

w0−1∑
j=0

N j+1
0 P0λ

j, (2.7)

by equation (2.2). If one compares the coefficients in the Laurent expansions (2.6)
and (2.7) about the points µ1, . . . , µq (keeping in mind that N0

i = Pi) he arrives at
PiP0 = 0 and NiP0 = 0, where i = 1, . . . , q.

Finally, if one compares the residues at infinity of expressions (2.5) and (2.2), he
obtains the identity 1− P0 =

∑q
i=1 Pi.

3 Resolvent of a pencil

The resolvent of a pencil is a natural spectral tool for investigating of equation (1.1).
The main result of this Section is Theorem 3.2, which describes a partial fractions
expansion for the resolvent of a finite-dimensional pencil.

Let X and Y be complex Banach spaces. We denote by B(X, Y ) the set of all
bounded linear operators acting from X to Y . We use the shorthand B(X) for B(X,X).
We denote the identity operator by 1 ∈ B(X).

Let F,G ∈ B(X, Y ). An (operator) pencil [17, 22, 32] is the function (family)

λ 7→ λF −G : X → Y, λ ∈ C.

The resolvent set of the pencil is the set ρ(F,G) that consists of all points λ ∈ C
such that the operator λF −G : X → Y is invertible, and the resolvent of the pencil is
the function (family)

Rλ = (λF −G)−1 : Y → X, λ ∈ ρ(F,G).

The compliment σ(F,G) of ρ(F,G) is called the spectrum of the pencil. We assume
that all pencils under consideration are regular [17, 22], i. e., their resolvent sets are
nonempty.

Proposition 3.1 (see., for example, [29]). The resolvent of the pencil satisfies the
F -Hilbert identity

Rλ −Rµ = −(λ− µ)RλFRµ, λ, µ ∈ ρ(F,G).

We denote by B(F,G)(Y,X) the closure of the linear span of all operators Rλ, λ ∈
ρ(F,G), with respect to the norm of B(Y,X). We define the operation of F -multipli-
cation [29] on B(F,G)(Y,X) by the formula

A�B = AFB.

We denote powers and inverses with respect to the F -multiplication by the symbols of
the kind An� and A−1�.
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Theorem 3.1 ([29]). The Banach space B(F,G)(Y,X) is a commutative Banach algebra
with F -multiplication as the operation of multiplication (to within a replacement of
the norm to an equivalent one). This algebra has a unit if and only if the operator
F : X → Y is invertible; in this case the unit 1� is F−1.

Proposition 3.2 ([29]). The resolvent of a pencil is a maximal F -pseudoresolvent,
i. e., it can not be extended with the preservation of the F -Hilbert identity to a wider
set than ρ(F,G).

Corollary 3.1. The domain of the resolvent of a pencil is an open set and the resolvent
itself is an analytic function with values in B(F,G)(Y,X). Namely, the Taylor expansion
of the pencil resolvent Rλ = (λF −G)−1 about any point λ0 ∈ ρ(F,G) has the form

Rλ =
∞∑
i=0

(λ0 − λ)iR
(i+1)�
λ0

.

Proof. The assertion follows from Theorem 3.1, Proposition 3.2 and Corollary 2.1.

Proposition 3.3. Let the operator F be invertible. Then the power series expansion
of the pencil resolvent Rλ = (λF −G)−1 about infinity has the form

Rλ =
∞∑
i=1

1

λi
(F−1GF−1)(i−1)�,

where (F−1GF−1)0� means 1� = F−1.

Proof. We note that

(λF −G)−1 = F−1(λF−1 − F−1GF−1)−1F−1 = (λ1� − F−1GF−1)−1�.

A justification of the last transformation is reduced to the direct verification of the
equalities [

F−1(λF−1 − F−1GF−1)−1F−1
]
� (λ1� − F−1GF−1) = 1�,

(λ1� − F−1GF−1)�
[
F−1(λF−1 − F−1GF−1)−1F−1

]
= 1�.

It remains to employ the Neumann series in the algebra B(F,G)(Y,X).

Corollary 3.2. Let infinity be a pole of order w0− 1 of the pencil resolvent R(·). Then
there exist elements N,Π, A ∈ B(F,G)(Y,X) such that

Nw0+1� = 0, Π2� = Π, N � Π = Π�N = 0, A� Π = Π� A = A

and the Laurent expansion of the pencil resolvent about infinity has the form

Rλ = Rr,λ +Rs,λ,

where

Rr,λ =
Π

λ
+
A

λ2
+
A2�

λ3
+
A3�

λ4
+ . . . , (3.1)

Rs,λ = −N − λN2� − λ2N3� − . . .− λw0−1Nw0�.
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Proof. The assertion follows from Theorem 3.1 and Corollary 2.3.

The augmented resolvent set of a pencil λ 7→ λF −G is [5, p. 31] the subset ρ̄(F,G)
of the extended complex plane C that consists of ρ(F,G) and may by of the point ∞.
The point ∞ belongs to ρ̄(F,G) if the operator F is invertible. Otherwise, the point ∞
belongs to the augmented spectrum σ̄(F,G). If ∞ ∈ ρ̄(F,G), then by Proposition 3.3
the resolvent λ 7→ (λF − G)−1 is defined on a deleted neighbourhood of infinity and
limλ→∞ λRλ = F−1 in the norm of B(Y,X).

In the most interesting case, when F is not invertible, the algebra B(F,G)(Y,X) has
no unit by Theorem 3.1. In this case we denote by B̃(F,G)(Y,X) the algebra B(F,G)(Y,X)

with the adjoint unit 1�. If F is invertible, we mean by B̃(F,G)(Y,X) the algebra
B(F,G)(Y,X) itself and we mean by 1� the operator F−1.

Theorem 3.2. Let the spectrum of a pencil consist of finitely many points
µ1, µ2, . . . , µq ∈ C. Let the points µ1, µ2, . . . , µq as well as the point µ0 = ∞ be
poles of orders w1, w2, . . . , wq and w0 − 1 respectively. Then there exist the operators
Π1,Π2, . . . ,Πq;N0, N1, . . . , Nq ∈ B(F,G)(Y,X) such that

Π2�
i = Πi, Ni � Πi = Πi �Ni = Ni, i = 0, 1, . . . , q,

Πi � Πj = 0, Ni � Πj = Πj �Ni = 0, i 6= j,

Nwi�
i = 0, N

(w0+1)�
0 = 0,

where Π0 = 1�−
∑q

i=1 Πi, and the resolvent of a pencil can be represented in the form

Rλ =

q∑
i=1

wi∑
j=1

N
(j−1)�
i

(λ− µi)j
−

w0−1∑
j=0

N
(j+1)�
0 λj, (3.2)

where N0�
i = Πi. If dimX = dimY = N , then

∑q
i=0wi ≤ N .

Proof. Everything except the inequality
∑q

i=0wi ≤ N follows from Theorem 2.2,
Proposition 3.2, and Theorem 3.1.

Let the spaces X and Y have a finite dimension N . Then the inverse (λF − G)−1

can be found (using a passage to matrix representation) by Cramer’s rule, i. e., dividing
the cofactors by the determinant. It is obvious that the determinant is a polynomial
of degree m ≤ N ; and if F is not invertible, the degree is strictly less than N . The
determinant does not vanish identically, because the resolvent set is not empty. The
degrees of the cofactors do not exceed N − 1. Thus the resolvent is a rational function
with the denominator degree less than or equal to N and the numerator degree less
than or equal to N − 1. Thus [26, ch. 1, § 3.5] the resolvent can be represented in the
form

Rλ = p0(λ) +

q∑
i=1

p̃i(λ)

(λ− µi)ki
,

where µ1, . . . , µq are the roots of the denominator and k1, . . . , kq are their multiplicities,
k1 + · · ·+kq = m, the degrees of the polynomials p̃1, . . . , p̃q (their coefficients belong to
B(Y,X)) are strictly less than k1, . . . , kq, and the degree k0 of the polynomial p0 is less
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than or equal to N − 1−m. Thus,
∑q

i=0 ki ≤ N − 1. If µi is a root of the polynomial

p̃i, then the numerator and the denominator of the fraction
p̃i(λ)

(λ− µi)ki
can be cancelled

by some power of the difference λ− µi. As a result we arrive at the representation

Rλ = p0(λ) +

q∑
i=1

pi(λ)

(λ− µi)wi
,

where the fractions
pi(λ)

(λ− µi)wi
are irreducible. Obviously, the degree of pi is strictly

less than wi, i = 1, . . . , q. We denote the degree k0 of the polynomial p0 by w0 − 1.
We note that the last formula must coincide with (3.2). This implies the inequality∑q

i=0wi ≤ N .

4 Impulse response

The main results of this Section are Theorems 4.2 and 4.3, where representations for
the impulse response of equation (1.1) are described.

Let X and Y be complex Banach spaces. We denote by X∗ the conjugate space
of X, and by 〈x, x∗〉 the action of the functional x∗ ∈ X∗ on the vector x ∈ X. Let
F,G ∈ B(X,Y ), b ∈ Y , d ∈ X∗. We recall that our main object is problem (1.2). We
also recall that the resolvent set of the pencil λ 7→ λF −G is assumed to be nonempty.

We denote by D = D(R,C) the linear space of all infinitely many times differen-
tiable functions ψ : R → C with compact support equipped with the pointwise opera-
tions of addition and scalar multiplication. A sequence ψk ∈ D is called convergent to
a function ψ ∈ D if

(a) the supports of the functions ψk are uniformly bounded, i. e., there exists a seg-
ment [a, b] that contains all the supports;

(b) the sequence ψ(n)
k uniformly converges to ψ(n) for all n = 0, 1, 2, . . . ; here ψ(n) is

the n-th derivative of ψ, particularly, ψ(0) = ψ.

Let E be an arbitrary complex Banach space with the norm | · |. Let f : D → E
be a linear operator; we interpret such an operator as a vector-valued functional. We
denote the value of the functional f at ψ ∈ D by the symbol 〈ψ, f〉. The functional
f is called continuous if 〈ψk, f〉 converges to 〈ψ, f〉 whenever ψk converges to ψ in D .
Every continuous linear functional f : D → E is called (see [41] and [47] for details)
a distribution on R with values in E. We denote the linear space of all distributions
with the natural operations of addition and scalar multiplication by the symbol D ′ =
D ′(R,E). By misuse of language, the elements of the space D ′ are usually called simply
functions.

A derivative of the functional f ∈ D ′ is the functional f ′ defined by the rule

〈ψ, f ′〉 = −〈ψ′, f〉.
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It is easy to see that f ′ is actually a linear continuous functional and hence it belongs
to D ′.

Let f, g ∈ D ′. We say that f and g coincide on an open set M ⊆ R if 〈ψ, f〉 = 〈ψ, g〉
for all ψ ∈ D supported in M .

We denote by S = S (R,C) the linear space of all infinitely many times differen-
tiable functions ψ : R → C that satisfy the condition

∀m,n = 0, 1, 2, . . . ∃C ∀x |xmψ(n)(x)| < C

(see, e. g., [47, p. 153] for details). We say that a sequence ψk ∈ S converges to a
function ψ ∈ S if

for all m,n = 0, 1, 2, . . . the sequence of the functions x 7→ xmψ
(n)
k (x) uniformly

converges to the function x 7→ xmψ(n)(x).

A linear (vector-valued) functional f : S → E is called continuous if 〈ψk, f〉 con-
verges to 〈ψ, f〉 whenever ψk converges to ψ in S . Every continuous linear functional
f : S → E is called [47, p. 155] a tempered distribution with values in E. We denote
the set of all tempered distributions by the symbol S ′ = S ′(R,E). Since D ⊆ S and
the convergence in D implies the convergence in S , the space S ′ can be considered
as a subspace of D ′. It is easy to show that the operation of differentiation takes S
and S ′ into themselves.

We recall [47, p. 165] that the Fourier transform F is well defined on S and S ′.
A distribution of the class D ′

+(α) = D ′
+(E, α), α ∈ R, is [47, p. 181] a distribution

f ∈ D ′ that is equal to zero on (−∞, 0) and after the multiplication by the function
t 7→ e−σt, for any σ > α, falls into the space S ′. Obviously D ′

+(α) ⊆ D ′
+(β) for α ≤ β.

The Laplace transform of a function f ∈ D ′
+(α) is [40, ch. 3], [47, p. 183] the

function
L(σ + iω) = F

(
fσ

)
(ω), σ > α,

where F : S ′ → S ′ is the Fourier transform and fσ(t) = e−σtf(t).

The (operator) impulse response of differential equation (1.1) is a distribution H ∈
D ′(B(Y,X), α

)
that is equal to zero on (−∞, 0) and satisfies the equation

FH ′(t)−GH(t) = 1δ(t),

where δ is the Dirac function. The (scalar) impulse response of problem (1.2) is the
distribution h that coincides with the solution y of the problem

Fx′ = Gx+ bδ(t),

y = 〈x, d〉,

and is equal to zero on (−∞, 0). We recall that the impulse response is important,
because the solution of problem (1.2) can be expressed in terms of convolution with
the impulse response:

y(t) =

∫ +∞

−∞
h(t− s)bu(s) ds.
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Proposition 4.1. Let H be the operator impulse response of differential equation (1.1).
Then the function h(t) = 〈H(t)b, d〉 is a scalar impulse response of problem (1.2).

Proof. We set x(t) = H(t)b. We prove that x satisfies the equation Fx′ = Gx + bδ(t).
We have

Fx′(t)−Gx(t) = FH ′(t)b−GH(t)b =
(
FH ′(t)−GH(t)

)
b = 1δ(t)b = bδ(t).

Obviously y(t) = 〈x(t), d〉 = 〈H(t)b, d〉.

Theorem 4.1 ([28]). A sufficient condition for the existence of the impulse response
H ∈ D ′

+(α) of equation (1.1) is that the half plane Reλ > α is contained in the
resolvent set ρ(F,G) and the resolvent of the pencil satisfies the condition

∀σ > α ∃w ∈ Z ∃C ‖Rλ‖ ≤ C(1 + |λ|w) for Reλ > σ. (4.1)

In this case R(·) is the Laplace transform of H.

Lemma 4.1 ([31, p. 509], [11]). The inverse Laplace transform of the function λ 7→
1

(λ−µ)j+1 , j = 0, 1, . . . , is the function

t 7→ tj

j!
eµtη(t),

where η is the Heaviside function

η(t) =

{
1, for t > 0,

0, for t ≤ 0.

The inverse Laplace transform of the function λ 7→ λj, j = 0, 1, . . . , is the function

t 7→ δ(j)(t).

Lemma 4.2 ([31, p. 515]). Let a function Z of a complex variable (taking its values
in a Banach space) have the series expansion

Z(λ) =
∞∑

k=1

Ck

λk

about infinity. Then the inverse Laplace transform of Z can be represented in the form

z(t) =
( ∞∑

k=1

Ck
tk−1

(k − 1)!

)
η(t).

Theorem 4.2. Let infinity be a pole of the pencil resolvent of order w0 − 1. Then the
impulse response of the class D ′

+(α), where α ∈ R, lies to the right of the spectrum
σ(F,G), exists and can be represented in the form

H(t) = Hr(t) +Hs(t),
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where Hr and Hs are the inverse Laplace transforms of the summands Rr,(·) and Rs,(·)
from Corollary 3.2. They can be represented in the form of the sums

Hr(t) =
(
Π + At+

t2

2!
A2� +

t3

3!
A3� + . . .

)
η(t),

Hs(t) = −Nδ(t)−N2�δ′(t)−N3�δ′′(t)−N4�δ′′′(t)− . . .−Nw0�δ(w0−1)(t), (4.2)

where Π, A, and N are the same as in Corollary 3.2. Moreover,

Hr(t) =
1

2πi

∫
Γ

eλt(λF −G)−1 dλ, (4.3)

where Γ is an oriented envelope [21, p. 166] of the (ordinary) spectrum σ(F,G) of the
pencil with respect to ∞, in other words Γ is bounded and surrounds the (ordinary)
spectrum σ(F,G) anticlockwise.

Under assumptions of Theorem 4.2 we call the functions Hr and Hs regular and
singular parts of the impulse response, respectively (in analogy with terms customary
for the theory of distributions).

Proof. Sequence (3.1) from Corollary 3.2 uniformly converges in some neighbourhood
of infinity and, thus, determines in it a bounded function. This implies that Rλ =
Rr,λ +Rs,λ satisfies the estimate

‖Rλ‖ ≤ C|λ|w0−1

in a neighbourhood of infinity. This yields condition (4.1). Consequently, by Theo-
rem 4.1 the impulse response exists.

We apply the properties of the Laplace transform to the power series from Corol-
lary 3.2. We apply (Lemma 4.1) directly the inverse Laplace transform to the finite
sum

Rs,λ = −N − λN2� − λ2N3� − . . .− λw0−1Nw0�.

By Lemma 4.2 the inverse Laplace transform of the series

Rr,λ =
Π

λ
+
A1�

λ2
+
A2�

λ3
+
A3�

λ4
+ . . .

coincides with the function

Hr(t) =
(
Π + At+

t2

2!
A2� +

t3

3!
A3� + . . .

)
η(t).

The same result is obtained if one computes integral (4.3) with the help of expan-
sion (3.1).

Theorem 4.3. In the notation of Theorem 3.2 the operator impulse response of equa-
tion (1.1) can be represented in the form

H(t) =

q∑
i=1

wi∑
j=1

N
(j−1)�
i

tj−1

(j − 1)!
eµitη(t)−

w0−1∑
j=0

N
(j+1)�
0 δ(j)(t), (4.4)

where η is the Heaviside function.
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Proof. By formula (3.2) it is seen that the pencil resolvent satisfies the estimate from
Theorem 4.1. It remains to apply Theorem 3.2 and the properties (Lemmas 4.1 and 4.2)
of the Laplace transform.

Corollary 4.1. In the notation of Theorem 3.2 the scalar impulse response of prob-
lem (1.2) can be represented in the form

h(t) =

q∑
i=1

wi∑
j=1

〈N (j−1)�
i b, d〉 tj−1

(j − 1)!
eµitη(t)−

w0−1∑
j=0

〈N (j+1)�
0 b, d〉 δ(j)(t). (4.5)

Proof. The assertion follows from Proposition 4.1 and Theorem 4.3.

5 Interpolation methods

In this Section we define a class of interpolation methods of approximate solution of
problem (1.2). It is assumed that infinity is a pole of order w0−1 of the pencil resolvent.

If the operator F is invertible, then, by Proposition 3.3 and Theorem 4.1, the
impulse responses H and h are determined by the explicit formulas (the inverse Laplace
transform)

H(t) =
1

2πi

∫ α+i∞

α−i∞
eλtRλ dλ, h(t) =

1

2πi

∫ α+i∞

α−i∞
eλt〈Rλb, d〉 dλ. (5.1)

With the aid of Jordan’s lemma [31, p. 436] these integrals can be transformed into
the contour integrals

H(t) =
1

2πi

∫
Γ

eλtRλ dλ, h(t) =
1

2πi

∫
Γ

eλt〈Rλb, d〉 dλ, t > 0, (5.2)

where Γ surrounds the pencil spectrum σ(F,G). Integrals (5.2) can be naturally in-
terpreted [10, 21, 37] as a result of application of the functional calculus, induced by
the pencil, to the function λ 7→ eλt. Two representations (5.1) and (5.2) give rise to
two different ideas of approximate methods. Since we interprets (5.1) as the Laplace
transform, it is natural to replace the factor λ 7→ 〈Rλb, d〉 by a more simple function.
This way results in Krylov subspace projection methods discussed in Section 6. Since
we interprets (5.2) as the functional calculus, it is natural to approximate the factor
λ 7→ eλt by a more simple function. If the latter approximation is constructed on the
basis of interpolation considerations, then we call this approach interpolational. (The
main result of this paper, Theorem 7.1, asserts that projection methods are special
cases of interpolation ones.)

Unfortunately, if the operator F is not invertible, then both formula (5.1) and (5.2)
stop working. The literal interpretation of formula (5.1) is impossible, since, by Corol-
lary 3.2, the improper integrals in (5.1) become divergent for sure. On the other hand,
formula (5.2) can not result in the singular part (4.2) of the impulse response, because
after the contour integration (separately for each t) δ-function can not arise.

To remedy this trouble, we propose to change slightly the meaning of formula (5.2).
Namely, we propose to calculate integrals (5.2) simultaneously for all t. More precisely,
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we propose to calculate the integral not of the scalar function λ 7→ eλt depending on
the parameter t, but of the vector-function that assigns to each λ the function t 7→ eλt

considered as an element of an appropriate functional space. With the context of such
an interpretation we may replace the function t 7→ eλt by a distribution. Moreover, it is
possible to fulfil this replacement so that the contour integral gives the same result as
Theorems 4.2 and 4.3. This Section in devoted to the description of such a construction:
the impulse response is represented in the form of a special exponential function EXP
of the pencil (Theorem 5.1).

We fix α ∈ R that lies to the right of the real parts of all points from σ(F,G).
We denote by the symbol O

(
σ̄(F,G)

)
= O

(
σ̄(F,G),D ′

+(α)
)

the set of all analytic7

functions f , where every f is defined on an open neighbourhood U of the set σ̄(F,G)
and takes its values in the algebra D ′

+(α) = D ′
+

(
C, α

)
, and f(∞) = 0 if ∞ ∈ σ̄(F,G).

We say that two functions f1 : U1 → D ′
+(α) and f2 : U2 → D ′

+(α) are equivalent if there
exists an open neighbourhood U ⊆ U1 ∩ U2 of the set σ̄(F,G) such that f1 and f2

coincide on U . One can easily show that this is really an equivalence relation. Thus the
elements of O

(
σ̄(F,G)

)
are, strictly speaking, classes of equivalent functions.

For our aims, the most important example of a function in O
(
σ̄(F,G),D ′

+(α)
)

is
the function

EXP(λ)(t) =

e
λtη(t) about σ(F,G),∑w0

i=1

δ(i−1)(t)

λi
about ∞,

where η is the Heaviside function, δ is the Dirac function, and w0 − 1 is the order of
infinity as a pole of the pencil resolvent.

We define the mapping Φ: O
(
σ̄(F,G),D ′

+(α)
)
→ D ′

+

(
B(F,G)(Y,X), α

)
by the for-

mula

Φ(f) =
1

2πi

∫
Γ

f(λ)Rλ dλ, (5.3)

where Γ is an oriented envelope [21, p. 166] of the augmented spectrum σ̄(F,G) of
the pencil with respect to the function f domain complement. Thus, Γ surrounds the
ordinary spectrum σ(F,G) anticlockwise and surrounds infinity clockwise.

Theorem 5.1. Let infinity be a pole of order w0 − 1 of the pencil resolvent. Then the
operator impulse response can be represented in the form

H = Φ(EXP).

Proof. In fact, the direct integration

Φ(EXP) =
1

2πi

∫
Γ

EXP(λ)Rλ dλ (5.4)

gives, according to Corollary 3.2, the same result as Theorem 4.2.

7A function with values in a locally convex space [9] is called analytic if the limit of its difference
quotient exists with respect to the convergence in the space. The function f is analytic at infinity if
the function f1(λ) = f

(
1
λ

)
is analytic at zero.
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We emphasize that, if∞ /∈ σ̄(F,G), then integral (5.4) can be understood pointwise
(i. e., for every t ∈ R separately), and therefore it turns into the usual formula H(t) =
1

2πi

∫
Γ
eλtRλ dλ.

Corollary 5.1. Let infinity be a pole of order w0 − 1 of the pencil resolvent. Then the
scalar impulse response can be represented in the form

h =
〈
Φ(EXP) b, d

〉
.

Proof. The assertion follows from Theorem 5.1 and Proposition 4.1.

The derivative of order k of the function f at infinity is the k-th derivative of the
function f1(λ) = f

(
1
λ

)
at zero.

Proposition 5.1. Let f, g ∈ O
(
σ̄(F,G),D ′

+(α)
)
. Let the augmented spectrum of the

pencil λ 7→ λF − G consist of the points µ1, . . . , µq ∈ C having the multiplicities8

w1, . . . , wq, and the point µ0 = ∞ having the multiplicity w0. In this case Φ(f) = Φ(g) if
and only if f (k)(µi) = g(k)(µi), i = 1, . . . , q, k = 0, 1, . . . , wi−1, and f (k)(∞) = g(k)(∞),
k = 1, . . . , w0

9.

Proof. The proof is reduced to the direct calculations with the use of formula (3.2) and
the rules for calculating the residues.

Let the interpolation points µ0 = ∞ and µi ∈ C, i = 1, 2, . . . , q, and their multiplici-
ties wi = 0, 1, 2, . . . , q10 be given. We denote by r ∈ O

(
σ̄(F,G),D ′

+(α)
)

a function that
coincides with EXP at the points µi together with its derivatives up to order wi inclu-
sive, i = 0, 1, . . . , q. The interpolation method of approximate solution of problem (1.2)
is a calculation of the impulse response by the formula

h ≈
〈
Φ(r) b, d

〉
,

cf. Corollary 5.1.
The simplest example of the function r is a function that coincides with t 7→ eλtη(t)

about several points of the spectrum and equals zero about the other points; such a
choice of r leads to a version of the Fourier method. If one takes a polynomial as r,
then [19, 20] the interpolation method becomes an explicit Runge-Kutta method, and
if one takes a rational function as r, then [19, 20] the interpolation method becomes
an implicit Runge-Kutta method. The discussion of using polynomials and rational
functions of the best approximation as r can be found in [27]; see also [12], where the
coefficients of the best approximation are calculated.

8See the definition of multiplicity between Theorem 2.2 and its proof.
9The equality f(∞) = g(∞) = 0 takes place according to the definition of O

(
σ̄(F,G),D ′

+(α)
)
.

10It is convenient to allow the possibility that wi = 0. For example, the condition w0 = 0 means
that infinity is not really a point of interpolation.
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6 Krylov subspace projection methods

In this Section we give a description of considered projection methods of approximate
solution of problem (1.2) and prove some related identities.

Let us return to problems (1.2) and (1.3). Let F,G ∈ B(X, Y ) and F̂ , Ĝ ∈ B(X̂, Ŷ ).
If the dimensions of the spaces X̂ and Ŷ are smaller than the dimensions of the spaces
X and Y , and in the same time the solution ŷ of problem (1.3) is in some sense close
to the solution y of problem (1.2), then problem (1.3) is called a reduced-order problem
relative to problem (1.2). In standard notation for problem (1.3), we shall use the
symbol ̂; for example, R̂λ = (λF̂ − Ĝ)−1, Ĥ, Φ̂, 1̂, �̂.

We discuss the methods (see, for example [1, 2, 7, 8, 14, 16, 18, 33, 39, 45]) for
construction of a reduced-order problem (1.3), which are called projection ones. Let X̂
and Ŷ be Banach spaces of a finite dimension n, and V : X̂ → X and Λ: Y → Ŷ be
some bounded linear operators. We assume that the parameters in formula (1.3) are
defined according to the rule11

F̂ = ΛFV, Ĝ = ΛGV, b̂ = Λb, d̂ = V ∗d. (6.1)

The traditional motivation for the choice of the operators V and Λ is based on Corol-
lary 6.1, see below. It is discussed at the end of the Section.

The following Proposition 6.1, in view of Proposition 6.2, shows that the solution
of problem (1.3) is determined not by the operators V and Λ themselves, but only by
the images of the operators V and Λ∗.

Proposition 6.1. Let S : X̂ → X̂ and Q : Ŷ → Ŷ be arbitrary invertible operators.
Let us set V1 = V S, Λ1 = QΛ,

F̂1 = Λ1FV1, Ĝ1 = Λ1GV1, b̂1 = Λ1b, d̂1 = V ∗
1 d.

Then the solution of the problem

F̂1x̂
′
1 = Ĝ1x̂1 + b̂1u(t),

ŷ1(t) = 〈x̂1, d̂1〉

coincides with the solution of problem (1.3).

Proof. The proof is reduced to the change x̂ = Sx̂1 and the multiplication of the
equation in problem (1.3) by Q.

Lemma 6.1. Let operators U : X̂ → X and V : X → X̂ satisfy the normalization
condition

UV = 1̂, (6.2)

where 1̂ : Cn → Cn is the identity mapping. Then V U is a projector on the image of
the operator V parallel to the kernel of the operator U .

11We stress that, even if X = Y and F = 1, then F̂ = ΛV , which is not obligatorily an identity
operator.
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Proof. The fact that the operator V U is a projector follows from the identity

(V U)2 = V (UV )U = V 1̂U = V U.

Obviously, ImV U ⊆ ImV . The fact that the whole image of the operator V is
contained in the image of this projector follows from the identity

UV = 1̂ = 1̂2 = U(V U)V

and dimensional considerations.
The embedding KerV U ⊇ KerU is obvious. The fact that the kernel of V U is

not wider than the kernel of U follows from the proved identity U(V U)V = 1̂ and
dimensional considerations.

Proposition 6.2. Every bounded linear operator W : Ŷ ∗ → Y ∗ has a unique pre-
conjugate operator, i. e., an operator Λ: Y → Ŷ such that W = Λ∗.

Proof. We consider W ∗ : Y ∗∗ → Ŷ ∗∗. The space Ŷ is finite dimensional. Hence it is
reflexive. Therefore one may think that Ŷ ∗∗ = Ŷ and, thus, W ∗ : Y ∗∗ → Ŷ . We denote
by Λ: Y → Ŷ the restriction of W ∗ : Y ∗∗ → Ŷ to Y ⊆ Y ∗∗. By the definition of a
conjugate operator, for any ŷ∗ ∈ Ŷ ∗ and y∗∗ ∈ Y ∗∗ we have

〈y∗∗, W ŷ∗〉 = 〈W ∗y∗∗, ŷ∗〉.

Especially, this equality is valid for all ŷ∗ ∈ Ŷ ∗ and y ∈ Y ⊆ Y ∗∗, i. e.,

〈y, W ŷ∗〉 = 〈Λy, ŷ∗〉.

The last identity means that W = Λ∗.
The uniqueness of the pre-conjugate operator follows from the equality of the norms

of an operator and its conjugate.

Proposition 6.2 shows that one may specify Λ by imposing restrictions on Λ∗, as it
is suggested in Proposition 6.3.

Proposition 6.3.

(a) [18, Lemma 3.2] Let λj ∈ C be not both in the spectrum of the pencil λ 7→ λF −G
and in the spectrum of the pencil λ 7→ λF̂ − Ĝ. Let the image of the operator V
contain the vectors Rk�

λj
b, k = 1, . . . ,κ. Then,

Rk�
λj
b = V R̂k�̂

λj
b̂, k = 1, . . . ,κ. (6.3)

(b) Let the operators F and F̂ be invertible. Let the image of the operator V contain
the vectors12 (F−1GF−1)k�b, k = 0, 1, . . . ,κ − 113. Then,

(F−1GF−1)k�b = V (F̂−1ĜF̂−1)k�̂b̂, k = 0, 1, . . . ,κ − 1. (6.4)
12By (F−1GF−1)0� we mean 1� = F−1.
13In order to make the number of the conditions be equal to κ, we assume here and below that the

numbering finishes at κ − 1.
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(c) [18, Lemma 3.3] Let λj ∈ C be not both in the spectrum of the pencil λ 7→ λF −G
and in the spectrum of the pencil λ 7→ λF̂ − Ĝ. Let the image of the operator Λ∗

contain the vectors (Rm�
λj

)∗d, m = 1, . . . , χ. Then,

(Rm�
λj

)∗d = Λ∗(R̂m�̂
λj

)∗d̂, m = 1, . . . , χ.

(d) Let the operators F and F̂ be invertible. Let the image of the operator Λ∗ contain
the vectors

(
(F−1GF−1)m�)∗d, m = 0, 1, . . . , χ− 1. Then,

[
(F−1GF−1)m�]∗d = Λ∗[(F̂−1ĜF̂−1)m�̂]∗d̂, m = 0, 1, . . . , χ− 1.

Proof. (a) We consider the auxiliary operator

U = R̂λj
Λ(λjF −G) =

[
Λ(λjF −G)V

]−1
Λ(λjF −G).

Obviously, UV = 1̂. Therefore by Lemma 6.1 the operator V U is a projector on the
image of the operator V .

We prove the equality (6.3) for k = 1, 2, . . . ,κ, by induction on k. For k = 1 we
have

V R̂λj
b̂ = V R̂λj

Λb = V R̂λj
Λ(λjF −G)Rλj

b = V URλj
b = Rλj

b.

Further we suppose that equality (6.3) is true for some k. Let us prove the analogous
equality for k + 1. We have

V R̂
(k+1)�̂
λj

b̂ = V R̂λj
�̂R̂k�̂

λj
b̂ = V R̂λj

F̂ R̂k�̂
λj
b̂ = V R̂λj

ΛFV R̂k�̂
λj
b̂

= V R̂λj
Λ(λjF −G)Rλj

FRk�
λj
b = V [R̂λj

Λ(λjF −G)]Rλj
FRk�

λj
b

= V URλj
FRk�

λj
b = V URλj

�Rk�
λj
b = V UR

(k+1)�
λj

b = R
(k+1)�
λj

b.

(b) The proof is analogous to that of (a). We consider the auxiliary operator

U = F̂−1ΛF =
(
ΛFV

)−1
ΛF.

It is straightforward to verify that UV = 1̂. Therefore by Lemma 6.1 the operator V U
is a projector on the image of the operator V .

We prove the equality (6.4) for k = 0, 1, 2, . . . ,κ − 1, by induction on k. For k = 0
we have

V F̂−1b̂ = V F̂−1Λb = V F̂−1ΛFF−1b = V [F̂−1ΛF ]F−1b = V UF−1b = F−1b.

Next we suppose that equality (6.4) is true for some k. We prove the analogous
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equality for k + 1. We have

V (F̂−1ĜF̂−1)(k+1)�̂b̂ = V (F̂−1ĜF̂−1)�̂(F̂−1ĜF̂−1)k�̂b̂

= V (F̂−1ĜF̂−1)F̂ (F̂−1ĜF̂−1)k�̂b̂

= V (F̂−1ĜF̂−1)ΛFV (F̂−1ĜF̂−1)k�̂b̂

= V F̂−1ĜF̂−1ΛF (F−1GF−1)k�b

= V F̂−1[ΛGV ]F̂−1ΛF (F−1GF−1)k�b

= V [F̂−1ΛF ]F−1GV (F̂−1ΛF )(F−1GF−1)k�b

= V UF−1GV U(F−1GF−1)k�b

= V UF−1G(F−1GF−1)k�b

= V UF−1GF−1F (F−1GF−1)k�b

= V U(F−1GF−1)� (F−1GF−1)k�b

= V U(F−1GF−1)(k+1)�b = (F−1GF−1)(k+1)�b.

(c) and (d) are deduced form (a) and (b) via a change of notation.

Proposition 6.4.

(a) [18, Theorem 3.1] Let λj ∈ C be not both in the spectrum of the pencil λ 7→ λF−G
and in the spectrum of the pencil λ 7→ λF̂ − Ĝ. Let the image of the operator V
contain the vectors Rk�

λj
b, k = 1, . . . ,κ, and the image of the operator Λ∗ contain

the vectors
(
Rm�

λj

)∗
d, m = 1, . . . , χ. Then,

〈Rl�
λj
b, d〉 = 〈R̂l�̂

λj
b̂, d̂〉, l = 1, . . . ,κ + χ.

(b) Let both the operator F and the operator F̂ be invertible. Let the image of the
operator V contain the vectors (F−1GF−1)k�b, k = 0, 1, . . . ,κ−1, and the image
of the operator Λ∗ contain the vectors

(
(F−1GF−1)m�)∗d, m = 0, 1, . . . , χ − 1.

Then,〈
(F−1GF−1)l�b, d

〉
=
〈
(F̂−1ĜF̂−1)l�̂b̂, d̂

〉
, l = 0, 1, . . . ,κ + χ− 1.

Proof. (a) By virtue of Proposition 6.3(a), for l = 1, . . . ,κ we have

〈Rl�
λj
b, d〉 = 〈V R̂l�̂

λj
b̂, d〉 = 〈R̂l�̂

λj
b̂, V ∗d〉 = 〈R̂l�̂

λj
b̂, d̂〉.

In a similar manner by Proposition 6.3(c), for l = 1, . . . , χ we have

〈Rl�
λj
b, d〉 = 〈b,

(
Rl�

λj

)∗
d〉 = 〈b,Λ∗(R̂l�̂

λj
)∗d̂〉 = 〈R̂l�̂

λj
Λb, d̂〉 = 〈R̂l�̂

λj
b̂, d̂〉.

Let l be represented in the form l = k +m, where k = 1, . . . ,κ and m = 1, . . . , χ.
Then by Proposition 6.3(a,c) we have

〈R(m+k)�
λj

b, d〉 = 〈Rm�
λj

�Rk�
λj
b, d〉 = 〈Rm�

λj
FRk�

λj
b, d〉 = 〈FRk�

λj
b,
(
Rm�

λj

)∗
d〉

= 〈FV R̂k�̂
λj
b̂,Λ∗(R̂m�̂

λj
)∗d̂〉 = 〈R̂m�̂

λj
ΛFV R̂k�̂

λj
b̂, d̂〉

= 〈R̂m�̂
λj
F̂ R̂k�̂

λj
b̂, d̂〉 = 〈R̂m�̂

λj
�̂R̂k�̂

λj
b̂, d̂〉 = 〈R̂(m+k)�̂

λj
b̂, d̂〉.
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(b) By Proposition 6.3(b) for l = 0, 1, . . . ,κ − 1 we have〈
(F−1GF−1)l�b, d

〉
=
〈
V (F̂−1ĜF̂−1)l�̂b̂, d

〉
=
〈
(F̂−1ĜF̂−1)l�̂b̂, V ∗d

〉
=
〈
(F̂−1ĜF̂−1)l�̂b̂, d̂

〉
.

In a similar fashion by Proposition 6.3(d) for l = 0, 1, . . . , χ− 1 we have〈
(F−1GF−1)l�b, d

〉
=
〈
b,
[
(F−1GF−1)l�]∗d〉 =

〈
b,Λ∗[(F̂−1ĜF̂−1)l�̂]∗d̂〉

=
〈
Λb,
[
(F̂−1ĜF̂−1)l�̂]∗d̂〉 =

〈
(F̂−1ĜF̂−1)l�̂b̂, d̂

〉
.

Let l be represented in the form l = k + m, where k = 0, 1, . . . ,κ − 1 and m =
0, 1, . . . , χ− 1. Then by Proposition 6.3(b,d) we have〈

(F−1GF−1)(m+k+1)�b, d
〉

=
〈
(F−1GF−1)m� � (F−1GF−1)� (F−1GF−1)k�b, d

〉
=
〈
(F−1GF−1)m�F (F−1GF−1)F (F−1GF−1)k�b, d

〉
=
〈
(F−1GF−1)m�G(F−1GF−1)k�b, d

〉
=
〈
G(F−1GF−1)k�b,

[
(F−1GF−1)m�]∗d〉

=
〈
GV (F̂−1ĜF̂−1)k�̂b̂,Λ∗[(F̂−1ĜF̂−1)m�̂]∗d̂〉

=
〈
(F̂−1ĜF̂−1)m�̂ΛGV (F̂−1ĜF̂−1)k�̂b̂, d̂

〉
=
〈
(F̂−1ĜF̂−1)m�̂Ĝ(F̂−1ĜF̂−1)k�̂b̂, d̂

〉
=
〈
(F̂−1ĜF̂−1)m�̂F̂ F̂−1ĜF̂−1F̂ (F̂−1ĜF̂−1)k�̂b̂, d̂

〉
=
〈
(F̂−1ĜF̂−1)m�̂�̂(F̂−1ĜF̂−1)�̂(F̂−1ĜF̂−1)k�̂b̂, d̂

〉
=
〈
(F̂−1ĜF̂−1)(m+k+1)�̂b̂, d̂

〉
.

We call the function

h̃(λ) = 〈Rλb, d〉 =
〈
(λF −G)−1b, d

〉
(6.5)

the (scalar) frequency response of problem (1.2). By Theorem 4.1 the frequency re-
sponse is the Laplace transform of the impulse response. We denote the (scalar) fre-
quency response of reduced-order problem (1.3) by the symbol ˜̂

h.

Corollary 6.1.

(a) Let λj ∈ C be not both in the spectrum of the pencil λ 7→ λF − G and in the
spectrum of the pencil λ 7→ λF̂ − Ĝ. Let the image of the operator V contain the
vectors Rk�

λj
b, k = 1, . . . ,κ, and the image of the operator Λ∗ contain the vectors(

Rm�
λj

)∗
d, m = 1, . . . , χ. Then the first terms of the Taylor expansion about the

point λj of the frequency response ˜̂
h of reduced-order problem (1.3) coincides up

to the term (λ−λj)
κ+χ−1 inclusive with the corresponding terms of the expansion

of the frequency response h̃ of initial problem (1.2).
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(b) Let both the operator F and the operator F̂ be invertible. Let the image of the
operator V contain the vectors (F−1GF−1)k�b, k = 0, 1, . . . ,κ−1, and the image
of the operator Λ∗ contain the vectors

[
(F−1GF−1)m�]∗d, m = 0, 1, . . . , χ − 1.

Then the first terms of the Laurent expansion about infinity of the frequency
response ˜̂

h of reduced-order problem (1.3) coincides up to the term λ−(κ+χ)+1

inclusive with the corresponding terms of the expansion of the frequency response
h̃ of initial problem (1.2).

Proof. (a) From Corollary 3.1 and formula (6.5) it is seen that the series expansions
about the point λj of the frequency response h̃ of initial problem (1.2) and the frequency
response ˜̂

h of reduced-order problem (1.3) have the following forms

h̃(λ) =
∞∑
l=0

(λj − λ)l〈R(l+1)�
λj

b, d〉, (6.6)

˜̂
h(λ) =

∞∑
l=0

(λj − λ)l〈R̂(l+1)�̂
λj

b̂, d̂〉.

The end of the proof follows from Proposition 6.4.
(b) From Propositions 3.3 and formula (6.5) it follows that the Laurent expansion

about infinity of the frequency response h̃(λ) of initial problem (1.2) and the frequency
response ˜̂

h(λ) of reduced-order problem (1.3) have the following forms

h̃(λ) =
∞∑
l=1

1

λl

〈
(F−1GF−1)(l−1)�b, d

〉
, (6.7)

˜̂
h(λ) =

∞∑
l=1

1

λl

〈
(F̂−1ĜF̂−1)(l−1)�̂b̂, d̂

〉
.

The end of the proof follows from Proposition 6.4.

We return to the discussion of construction methods for the operators Λ and V .
The calculation of the coefficients in expansions (6.6) and (6.7) can often be easily

fulfilled. That is why one can desire, starting with the knowledge of these coefficients,
to construct an interpolation approximation to the frequency response h̃ by a rational
function.

Corollary 6.1 shows that an effect of a frequency response interpolation arises if one
uses projection methods, where the operators Λ∗ and V are constructed according to
Proposition 6.3. A practical realization (see, for example, [1, 2, 8, 13, 14, 15, 18, 24,
33, 44]) of this idea is usually based on the employment of the Krylov subspaces and
the usage of different modifications of the Lanczos and Arnoldi methods [23, 34, 48].

7 Reduction of projection methods to interpolation ones

In this Section we show (Theorem 7.1) that the discussed projection methods of the
impulse response approximation are equivalent to the approximation of the function
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Φ(EXP) (see Theorem 5.1) by the function Φ(r), where r is a rational function that
approximates EXP in interpolational sense on the extended complex plane. Moreover,
from this point of view it turns out that reduced-order problem (1.3) only implicitly
specifies interpolation points and their multiplicities.

In this Section we assume that infinity is a pole of the pencil resolvent λ 7→ (λF −
G)−1.

Theorem 7.1. Let the points λ1, . . . , λp ∈ C be not both in the spectrum of the pencil
λ 7→ λF − G and in the spectrum of the pencil λ 7→ λF̂ − Ĝ. Let the image of the
operator V contain the vectors Rk�

λj
b, k = 1, . . . ,κj, j = 1, . . . , p, and the image of the

operator Λ∗ contain the vectors (Rm�
λj

)∗d, m = 1, . . . , χj, j = 1, . . . , p.
If the operators F and F̂ are invertible, then we additionally assume that the image

of the operator V contains the vectors14 (F−1GF−1)k�b, k = 0, 1, . . . ,κ0 − 1, and the
image of the operator Λ∗ contains the vectors

[
(F−1GF−1)m�]∗d, m = 0, 1, . . . , χ0− 1.

If at least one of the operators F or F̂ is not invertible, then we set κ0 = χ0 = 0.
Then,

ĥ =
〈
Φ(r)b, d

〉
,

where r ∈ O
(
σ̄(F,G),D ′

+(α)
)

is a rational function of the form

r(λ) =

p∑
j=1

κj+χj∑
l=1

clj
(λj − λ)l

+

κ0+χ0−1∑
l=0

cl0λ
l (7.1)

with the coeffitients15 clj ∈ D ′
+

(
C, α

)
. The function r coincides with the function EXP

at the points µ̂1, . . . , µ̂q̂ ∈ C of the reduced-order pencil spectrum σ(F̂ , Ĝ) with the
derivatives up to the orders ŵ1 − 1, . . . , ŵq̂ − 1 inclusive, and coincides with the func-
tion EXP at the point µ̂0 = ∞ with the derivatives up to the order ŵ0 inclusive16.
Here ŵ0, ŵ1, . . . , ŵq̂ are the multiplicities of the corresponding points of the augmented
spectrum of the pencil λ 7→ λF̂ − Ĝ, see Theorem 3.2.

For the existence of a function r satisfying the interpolation conditions from The-
orem 7.1, see [3] and [49, § 8.3, Theorem 1].

Proof. By definition (5.3), Corollary 3.1, Proposition 3.3 as well as by the residues
calculation rules we have

Φ(r) =

p∑
j=1

κj+χj∑
l=1

cljR
l�
λj

+

κ0+χ0−1∑
l=0

cl0(F
−1GF−1)l�,

Φ̂(r) =

p∑
j=1

κj+χj∑
l=1

cljR̂
l�̂
λj

+

κ0+χ0−1∑
l=0

cl0(F̂
−1ĜF̂−1)l�̂,

14As usual (F−1GF−1)0� means 1� = F−1.
15It can be easily shown that clj are the linear combinations of the functions t 7→ tq−1eµ̂itη(t) and

δ(q).
16It follows that EXP(λ)(t) = eλtη(t) in a neighbourhood of σ(F,G) containing all points

µ̂1, . . . , µ̂q̂ ∈ C, and EXP(λ)(t) =
∑w0

i=1

δ(i−1)(t)
λi

in a neighbourhood of µ̂0 = ∞.
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which implies

〈Φ(r)b, d〉 =

p∑
j=1

κj+χj∑
l=1

clj
〈
Rl�

λj
b, d
〉

+

κ0+χ0−1∑
l=0

cl0
〈
(F−1GF−1)l�b, d

〉
,

〈Φ̂(r)b̂, d̂〉 =

p∑
j=1

κj+χj∑
l=1

clj
〈
R̂l�̂

λj
b̂, d̂
〉

+

κ0+χ0−1∑
l=0

cl0
〈
(F̂−1ĜF̂−1)l�̂b̂, d̂

〉
.

(7.2)

From Proposition 6.4 it follows that the coefficients in formulas (7.2) coincide with
each other. Thus we obtain the equality 〈Φ̂(r)b̂, d̂〉 = 〈Φ(r)b, d〉. From Proposition 5.1
it follows the equality Φ̂(EXP) = Φ̂(r), and from Corollary 5.1 it follows the equality
ĥ =

〈
Φ̂(EXP)b̂, d̂

〉
. Combining all together we obtain ĥ =

〈
Φ(r)b, d

〉
.

Remark 1. In literature on simulation of linear circuits, they usually discuss the
interpolation in the frequency domain based on the coincidence of the scalar frequency
responses of problems (1.2) and (1.3) at given points λ0, λ1, . . . , λp together with the
corresponding derivatives, see Corollary 6.1. We emphasize that in contrast to such
interpolation, in Theorem 7.1 we deal with the interpolation of the (other) function Φ
at the (other) points µ̂0, µ̂1, . . . , µ̂q.

Remark 2. Theorem 7.1 remains valid for the problem

Fx′ = Gx+ b1u1 + · · ·+ bαuα,

y =
(
〈x, d1〉, . . . , 〈x, dβ〉

)
with α inputs and β outputs provided that the interpolation points λj and their orders
κj and χj are the same for all b1, . . . , bα and d1, . . . , dβ. Let us formulate this state-
ment more accuratly. We denote by b = (b1, . . . , bα) the row consisting of the vectors
b1, . . . , bα ∈ Y , and we denote by d = (d1, . . . , dβ) the row consisting of the vectors
d1, . . . , dβ ∈ X∗. We shall mean by 〈b, d〉 the β × α-matrix that consists of the entries
〈bj, di〉. We define a “scalar” impulse response by the former formula h(t) = 〈H(t)b, d〉
(Proposition 4.1). The function r is, as well as Φ(r), a matrix-valued function taking
its values in Cβ×α. By the assumptions of Theorem 7.1 of the kind “the image of the
operator V contains the vectors Rk�

λj
b, k = 1, . . . ,κj, j = 1, . . . , p,” one should mean

“the image of the operator V contains the vectors Rk�
λj
bi, k = 1, . . . ,κj, j = 1, . . . , p,

for all i = 1, . . . , α”. The proof still goes for this case without essential changes.
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