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Abstract. For the usual norm on spaces C'(K) and Cy(£2) of all continuous functions on
a compact Hausdorff space K (all bounded continuous functions on a locally compact
Hausdorff space 2), the following equalities are proved:

+t - <
lim S +tgllea) — lIf o) — max Re(efzargf(z)g(z))'
t—0+ t z{z [ |f(2)I=IfI}
and
+1 - <
th%}i_ ||f g||C’b(f? ||f||cb(9) _ (lsng sup Re(efzargf(m)g<x))
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These equalities are used to characterize the orthogonality in the sense of James
(Birkhoff) in spaces C'(K) and Cy(2) as well as to give necessary and sufficient condi-
tions for a point on the unit sphere to be a smooth point.

1 Introduction

In general normed spaces, it is impossible to define the inner product that generates the
initial norm, due to Jordan - von Neumann theorem, and therefore it is impossible to
define classical notion of orthogonality. However, there is a simple partial replacement
of the orthogonality condition, called orthogonality in the sense of James (or Birkhoff
in some papers), introduced in [4], [6]

Definition 1. Let X be a normed space, and let z, y € X. We say that y is orthogonal
to x, if for all A, u € C there holds

1Az + pyl| = [[Az]]. (1.1)

It is obvious that one of scalars A, iz can be omitted in (1.1). If X is an inner product
space, then (1.1) implies (x,y) = 0, i.e. orthogonality in the usual way. Note, also, that
this definition is not symmetric, in general, i.e. y orthogonal to x might not imply x
orthogonal to y. To see this consider the vectors (—1,0) and (1, 1) in the space C? with
the max-norm.
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This kind of orthogonality is characterized via the Gateaux derivative of the norm
in uniform convex spaces, and at smooth points of the corresponding sphere in all
spaces. We briefly quote necessary definitions and statements. For further details see
[1], or books 2], [3], [5]-

Definition 2. Let X be a normed space and let x € X. We say that x is a smooth
point of the sphere centered at 0 with radius ||x|| if there is a unique support functional,
i.e. if there is a unique ¢ € X* such that ||¢|| = 1 and ¢(z) = ||z

Proposition 1.1. Let X be a normed space. If the function y +— ||y|| is Gateaux
differentiable at x then x is a smooth point of the corresponding sphere. Moreover, its
Gateaur derivative is equal to Re F,(y), where F, is the unique support functional. In
addition, y is orthogonal to x if and only if F,(y) = 0.

Remark 1. The norm is a function from X to R. Henceforth, its Gateaux derivative
in the previous Proposition is taken considering X as a linear space over R. In other
words, x is a smooth point provided that

t —
L Ll tyl] = [l
R>t—0 t

exists.

Proposition 1.2. Let X be a normed space. If its dual space X* is strictly convex then
all its points are smooth.

In spaces which dual space is not uniformly convex there are more difficulties, since
they contain points that are not smooth, and consequently, Gauteaux derivative might
not exist. Nevertheless, we can handle with such spaces via the p-Gateaux derivative
introduced in [7].

Definition 3. Let X be a normed space and let x, y € X. p-Gateaux derivative of
norm at z in y and ¢ direction is

tePyl| —
Do (y) = 1 N2 17l = liel]

t—0+ t (1.2)

Remark 2. The limit in (1.2) always exists, due to convexity of the function ¢ +—
||z + te'y].

Proposition 1.3. The vector y is orthogonal to x if and only if

. >0
oglggzn Dya(y) 2 0

Remark 3. This is a refinement of [5, Theorem 50|, which allows to work with points

that are not smooth in real spaces.

The previous result is used in [7] and [8] to characterize the orthogonality in the
sense of James in classical Banach spaces L', ¢y as well as in Banach spaces of nuclear
operators &, compact operators &, and all operators B(H) (each on a Hilbert space).
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The aim of this note is to give characterization of the orthogonality in the sense
of James in classical Banach spaces C'(K) and C,(Q2) of all continuous functions on a
compact Hausdroff space K and all bounded continuous functions on a locally compact
Hausdorff space €.

It is worth saying that there is another way to prove Theorem 2.1, stated in Section
2, different from that presented in this note, and which follows from the general Theory
of Birkhoff-James orthogonality.

Namely, |5, Theorem 15| (slightly reformulated) asserts that

t —
lim [z + tyll = [l] = sup Rew(y), (1.3)

t—0+ t weJ(z)

where

J(z) = {w e X7 Rew(z) = [[wl[||z[], [lw]] = 1}

Combining this and (1.2) we have
Proposition 1.4. The vector y is orthogonal to x if and only if

inf  sup Rew(e?y) > 0.
0<p<2m wEJEc) ( y) -

Given f € C(K), we can easily identify the set J(f) with the set of all complex
measures on K supported on Ey = {z € K | |f(x)| = ||f||}, such that dp; = e'®8/ dy
is a probabilistic measure (positive and of total mass equals 1).

Thus, Theorem 2.1 can be proved considering atomic measures supported on a
singleton {z}, = € Ey, for one inequality, and by

Re/ gdp = Re/ e85 dyy < maxRe(e @8/ @ g(2)),
K Eo E

xero
for the other.
Regardless of the previous consideration, we shall give, in Section 2, an elementary
proof of Theorem 2.1 which gives an explicit expression of the limit in (1.3) in C(K).
This approach can be easily adapted to the space Cy(2), in Section 3, whereas Propo-

sition 1.4 is not easy to apply to this space, due to the well-known fact that its dual
space can hardly be described.

2 The space C'(K)

Theorem 2.1. Let K be a compact Hausdorff space, let C(K) be the Banach space of all
continuous complez valued functions on K, with the usual norm || f|| = max,cx |f(x)],
and let f, g € C(K). We have

S gl = 1A
1m -
t—0+ t we{z [ |f ()=}

Re(e~"28 /@) g(1)). (2.1)
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Proof. Consider the set Es = {z € K | |f(z)| > ||f|| — ¢}. This is, clearly, increasing
family, i.e. if §; < &9 then Ej5 C Ej,. We claim that ||f + tg|| for ¢ small enough,
depends only on values of g at points from Ej. Indeed, if t < §/4||g|| and x ¢ Ej then

[f(x) +tg(a)| < |f (@) + tlgll < [[fI] = o+ /4 =|[f]] - 35/4,

whereas for the same ¢, and for any = € Ej/; C Es we have

|[f(2) +tg(@)[ > [f ()] = tllgll > [IFI] = 6/2 = 6/4 = |[f]| = 30/4.

Hence, taking into account that Fs is a compact set and f +tg is a continuous function
1f +tgll = max|f(2) + tg(x)], (2.2)

for t < 6/4]|g]|.
We shall, first, find an upper bound of the limit in (2.1). For ¢ small enough, we
have

IS +tgll = [1f1] IS +tgll® = 1A
t t([1f + tgll +11£1])
_maxeer (|f(2)* + 2t Re f(2)g(x) + 2]g(x)*) — [IfI* _
t(I1f +tgll + 111D B
maxze; (2Re f(2)g(z) + tlg(x)*)
- (ILf + tgll + 11£1) B

maxgep, (2Re f(z)g(z)) + t]|g]]
- (ILf +tgll + [1£1]) ’

which, taking the limit as ¢ — 0+ becomes

o I 9l =11 masoe,(Re F)g(e))
S 171

Let us find a lower bound for the limit in (2.1). Denote Ey = (5., Es = {z €
K ||f(x)] =||fl|}. For any = € Ey we have |f(x) + tg(z)| < ||f + tg||, and hence

f gl = lIAI o [f (=) + tg(x)] = [f(2)] ‘Il +tg(2)/f(z)| -1
t = t t

(2.3)

= |f(z)

[14t2]—1
¢

Since lim; ¢ = Rez for each z € C, as it is easy to see, we obtain for any

x € F

t .
LIS+ tgll = 1A

Jim S > |f (@) Re(g(x)/f(x)) = Re(e 8/ @g(z)).  (2.4)

Since the left hand side in (2.3) does not depend on § > 0, and the left hand side
in (2.4) does not depend on = € Ej, we have
| tg|| - . f(x)
maXRe(efzargf(I)g(x)) < lim ||f+ g|| Hf” < inf max EEa(R’ef(x)g(I»
z€E t—0+ t >0 | f]]

(2.5)
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To finish the proof, it is enough to prove that the right hand side in (2.5) is equal
to its left hand side. Indeed, there is a sequence 6, — 0+ and z,, € FEj, such that

(Re f(zn)g(xn))/||f]| tends to the right hand side of (2.5). Since K is a compact set,
there is its subsequence that tends to some xy € K, which we shall also denote by
x, in order to simplify notations. Moreover, o € Ej, because Fjs is an increasing

sequence of sets. Using the continuity of f and g we obtain that (Re f(z,,)g(xn)) /|| f|| —
(Re f(x0)g(w0))/]|f|| = Re(e @8 f(®0)g(z4)). So we get that for some z¢ € Fy we have

max Re(e "8/ @ g(z)) < lim S+ tgll = 1If1] <

< Re(e*"argf(%)g(xo)) < %%)g Re(efiargf(x)g(x))_

The proof is complete. O

Corollary 2.1. The following three conditions are mutually equivalent:

(i) The function g is orthogonal to f in the space C(K);

(i7) The values of the function f(x)g(x) on the set Ey = {x € K | |f(x)| = ||f||}
are not contained in an open half plain (in C) with boundary that contains the origin.

(1ii) There exists a probability measure (i.e. positive and of full measure equals 1)
 with support contained in Ey such that

/K F@g(e) du(x) = 0. (2.6)

If | f| attains its norm at the single point, say o, then g is orthogonal to f if and
only if g(zo) = 0.

Proof. By Theorem 2.1 and Proposition 1.3, g is orthogonal to f if and only if

: ip ,—iarg f(z) >
0§1g£1<f27r max Re(e*?e g(x)) > 0.

This is equivalent to the condition that the set {e~"*¢/(®)g(z) |z € Ey} contains at
least one value with nonnegative real part under all rotations around the origin. This
is equivalent to the condition (i7) (note that for = € Ey |f(z)| = ||f]| is constant).

Further, condition (i7) is equivalent to the property that the closed convex hull
of the set F' = {f(x)g(z) | = € Ep} contains the origin. The convex hull of the set
F' consists of points of the form [, f(x)g(z)dA(x), where A is a probability measure
supported on a finite subset of Ey. Therefore, it have to be

0= lim /K F@g(z) dr(2),

n—-+o00
for some sequence \,,. Since, according to Alaoglu Theorem, the unit sphere in C'(K)* =
M(K) is weakly-* compact, there exists g = limg_, 1o A, , such that (2.6) is valid. The
support of p is contained in Ey obviously. Thus (i7) = (ii7).
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Conversely, let (2.6) holds, and let F(g) = on g(x)du(x) Then, for any A € C we
have

1+ Agll* = 1£1* + 2Re(fAg) + [APlgl*|| =
>|F(|f* +2Re(fAg) + [AP*lg*)] =

=[IfII* + WQ/E lg(@)* du(z) = [If1*,

which leads to (ii7) = (7).
If f attains its norm at the single point xg, then our set F' is a singleton, and its
unique element must be equal to zero. O

Corollary 2.2. The function f € C(K) is a smooth point of the corresponding sphere
if and only if it attains its norm at the single point.

Proof. Let f attain its norm at a single point zy € K. Then Ey = {x¢} and, by
Theorem 2.1

lim Hf +tgH — HfH _ Re(e—iaurgf(aco)g(xo))7

t—0+ t
implying
gl A =gl = A
t—0— t t—0+ t

= —Re(—e ™%y ) = Re(e™ "4/ )g ay)).
Therefore the norm is Gateaux differentiable at f, and the unique support functional
Ff 1s
Fi(g) = e7" /") g(xy).
Let f attain its norm at, at least, two different points x; and z5. Then the functionals

Fj, j =1,2 given by .
Fj(g) = e7"*e /) g (a;)

both satisty ||F}|| = 1 and F;(f) = ||f||. Hence, by Proposition 1.1, f is not a smooth
point. ]

3 The space Cy(2)
Let us, now, pass to the space Cy(£2).

Theorem 3.1. Let Q be a locally compact Hausdorff space, let Cy(Q)) be the Banach
space of all bounded continuous complex valued functions on €2, with the usual norm

IfI] = sup,cq [f(2)], and let f, g € Cy($2). We have

: ||f+tg||_||f|| _ —iarg f(x)
Jim ; = inf sup Re(e 9(x)), (3.1)

where Bs = {x € Q[ |f(x)| = [|f]| - 0}.
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Proof. The proof is essentially the same as that of Theorem 2.1. The inequality (2.3)
remains valid if we replace max by sup, since Es might not be compact.
So, it is sufficient to prove the opposite inequality. At first, note that }n(f) in (3.1)
>

can be replaced by 611%1 , since the function § +— sups.,Re(e™*®8/@)g(z)) is nonin-
—0+

creasing. Further, given 6 > 0, choose x5 € Ej such that sup,cp, Re(e7'#8/Wg(z)) <
Re(e "8 /@) g(x5)) + 0. Then | f(z;5)| — ||f|| as § — 0+ and

1 +tgll = [1AI _11f +tall* = [1F1F o

t (I gl +IAID T
el 2 Re Tafotsg) + Cltal* U1
- t((Lf +tgll + 1f11) B
1 (@s)[? + 201 f (25)|(supse s, Re(e™"# /W g(w)) — 8) — || fI*
- t([1f +tgll + 11f11)
Taking lim we obtain
6—0+
1S+ tgll = 11A11 o [P + 26l fll(infoo Sup,e g, Re(e™ 2 Mg (x))) — [ /]I
t B t([1f +tgll + I.f11) ’
and finally, letting ¢ — 0+
||f+tg|| — /1]
> —iarg f(z)
Jim inf Sup Re(e 9(x))),
which finishes the proof. 0

Corollary 3.1. The function g € Cy(QQ) is orthogonal to f € Cy(QQ) if and only if there
is a sequence of probability measures p, concentrated at Es = {z € Q| |f(2)| > || f]|—0}
such that

hm / f(x)g(x)dpn(x) = 0. (3.2)
Proof. By Theorem 3.1 and Proposition 1.1 g is orthogonal to f if and only if

f f —iarg f(z) > 0.
20y Sup Rele™ () 2.0

As in the proof of Corollary 2.1 we conclude that for all 6 > 0 the closed convex hull
of the set F5 = {Re(e *®2f(@)g(z)) | * € Es} contains the origin. Hence, there is a
probability measure s concentrated at the finite subset of Ejs such that

/ e8I g (x) dus(x)
Q
Choose a sequence 9,, — 0+, and denote p,, = ps,. Next, we estimate the difference

of integral in (3.2) multiplied by ||f|| and the integral in (3.3). Indeed, for = € Ejs it
holds || f][ =& < |f(2)| < [|/]] and hence

MWWWMW%?MD%

< 0. (3.3)

/Mgmm>dwn
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which implies (3.2).
Conversely, let (3. 2) holds. Then, as in the proof of Corollary 2.1 we have, denoting
= [q9(x) dpn(

1+ Agll* =|[ 1fI* + 2Re(fAg) + [APlgl*ll =
>|Fo (| f* +2Re(fAg) + [Ag1*)| =

SR PETRE +2Re/f 2) dpn(2).

Take the limit as n — +oo and we get ||f + Ag|| > || f||, which finishes the proof. [

Corollary 3.2. Let Q be a normal space. The function f is a smooth point of the
corresponding sphere in Cy(Q2) if and only if:

(1) f attains its norm at the unique point, and

(17) There is 6 > 0 such that Es is compact set.

Proof. Let (i) and (ii) holds. Then we can reduce the proof to the case f € C'(FEs) and
apply Corollary 2.2. Also, if (i) does not hold, then we can apply the argument from
Corollary 2.2.

If (4i) does not hold, then there is a sequence x,, € 2 with no accumulation points
in Q such that |f(x,)] — ||f||- Let glim denote the generalized Banach limit on the
space c of all convergent complex sequences. We define functionals F; and F5 by

Fi(g) = glim e @8 @mlg(ay) Fy(g) = glim e @&/ n)g(ay, ).

n—-4o00 n——+oo

Both of them satisfy ||F}|| =1 and F;(f) = ||f||- Since z,, has no accumulation point
in Q, the set {z,, | n € N} is closed, and the function h defined by h(xs,) = 0 and
h(zoni1) = e'®8 /@241 is continuous and bounded on it. By the Tietze Theorem it
can be extended to some bounded continuous function on the whole €2. We have, then,
F1<h) =0 and Fg(h):]., that is FI%FQ. ]

Remark 4. The normality condition is used only in proving that —(ii) implies that
f is not smooth point. All other implications hold provided only that €2 is Hausdorff
locally compact.
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