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Abstract. For the usual norm on spaces C(K) and Cb(Ω) of all continuous functions on
a compact Hausdorff space K (all bounded continuous functions on a locally compact
Hausdorff space Ω), the following equalities are proved:

lim
t→0+

||f + tg||C(K) − ||f ||C(K)

t
= max

x∈{z | |f(z)|=||f ||}
Re(e−i arg f(x)g(x)).

and

lim
t→0+

||f + tg||Cb(Ω) − ||f ||Cb(Ω)

t
= inf

δ>0
sup

x∈{z | |f(z)|≥||f ||−δ}
Re(e−i arg f(x)g(x)).

These equalities are used to characterize the orthogonality in the sense of James
(Birkhoff) in spaces C(K) and Cb(Ω) as well as to give necessary and sufficient condi-
tions for a point on the unit sphere to be a smooth point.

1 Introduction

In general normed spaces, it is impossible to define the inner product that generates the
initial norm, due to Jordan - von Neumann theorem, and therefore it is impossible to
define classical notion of orthogonality. However, there is a simple partial replacement
of the orthogonality condition, called orthogonality in the sense of James (or Birkhoff
in some papers), introduced in [4], [6]

Definition 1. Let X be a normed space, and let x, y ∈ X. We say that y is orthogonal
to x, if for all λ, µ ∈ C there holds

||λx+ µy|| ≥ ||λx||. (1.1)

It is obvious that one of scalars λ, µ can be omitted in (1.1). If X is an inner product
space, then (1.1) implies 〈x, y〉 = 0, i.e. orthogonality in the usual way. Note, also, that
this definition is not symmetric, in general, i.e. y orthogonal to x might not imply x
orthogonal to y. To see this consider the vectors (−1, 0) and (1, 1) in the space C2 with
the max-norm.
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This kind of orthogonality is characterized via the Gateaux derivative of the norm
in uniform convex spaces, and at smooth points of the corresponding sphere in all
spaces. We briefly quote necessary definitions and statements. For further details see
[1], or books [2], [3], [5].

Definition 2. Let X be a normed space and let x ∈ X. We say that x is a smooth
point of the sphere centered at 0 with radius ||x|| if there is a unique support functional,
i.e. if there is a unique ϕ ∈ X∗ such that ||ϕ|| = 1 and ϕ(x) = ||x||.

Proposition 1.1. Let X be a normed space. If the function y 7→ ||y|| is Gateaux
differentiable at x then x is a smooth point of the corresponding sphere. Moreover, its
Gateaux derivative is equal to ReFx(y), where Fx is the unique support functional. In
addition, y is orthogonal to x if and only if Fx(y) = 0.

Remark 1. The norm is a function from X to R. Henceforth, its Gateaux derivative
in the previous Proposition is taken considering X as a linear space over R. In other
words, x is a smooth point provided that

lim
R3t→0

||x+ ty|| − ||x||
t

exists.

Proposition 1.2. Let X be a normed space. If its dual space X∗ is strictly convex then
all its points are smooth.

In spaces which dual space is not uniformly convex there are more difficulties, since
they contain points that are not smooth, and consequently, Gauteaux derivative might
not exist. Nevertheless, we can handle with such spaces via the ϕ-Gateaux derivative
introduced in [7].

Definition 3. Let X be a normed space and let x, y ∈ X. ϕ-Gateaux derivative of
norm at x in y and ϕ direction is

Dϕ,x(y) = lim
t→0+

||x+ teiϕy|| − ||x||
t

. (1.2)

Remark 2. The limit in (1.2) always exists, due to convexity of the function t 7→
||x+ teiϕy||.

Proposition 1.3. The vector y is orthogonal to x if and only if

inf
0≤ϕ<2π

Dϕ,x(y) ≥ 0.

Remark 3. This is a refinement of [5, Theorem 50], which allows to work with points
that are not smooth in real spaces.

The previous result is used in [7] and [8] to characterize the orthogonality in the
sense of James in classical Banach spaces L1, c0 as well as in Banach spaces of nuclear
operators S1, compact operators S∞ and all operators B(H) (each on a Hilbert space).
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The aim of this note is to give characterization of the orthogonality in the sense
of James in classical Banach spaces C(K) and Cb(Ω) of all continuous functions on a
compact Hausdroff space K and all bounded continuous functions on a locally compact
Hausdorff space Ω.

It is worth saying that there is another way to prove Theorem 2.1, stated in Section
2, different from that presented in this note, and which follows from the general Theory
of Birkhoff-James orthogonality.

Namely, [5, Theorem 15] (slightly reformulated) asserts that

lim
t→0+

||x+ ty|| − ||x||
t

= sup
ω∈J(x)

Reω(y), (1.3)

where
J(x) = {ω ∈ X∗ | Reω(x) = ||ω|| ||x||, ||ω|| = 1}

Combining this and (1.2) we have

Proposition 1.4. The vector y is orthogonal to x if and only if

inf
0≤ϕ<2π

sup
ω∈J(x)

Reω(eiϕy) ≥ 0.

Given f ∈ C(K), we can easily identify the set J(f) with the set of all complex
measures on K supported on E0 = {x ∈ K | |f(x)| = ||f ||}, such that dµ1 = ei arg f dµ
is a probabilistic measure (positive and of total mass equals 1).

Thus, Theorem 2.1 can be proved considering atomic measures supported on a
singleton {x}, x ∈ E0, for one inequality, and by

Re

∫
K

g dµ = Re

∫
E0

e−i arg fg dµ1 ≤ max
x∈E0

Re(e−i arg f(x)g(x)),

for the other.
Regardless of the previous consideration, we shall give, in Section 2, an elementary

proof of Theorem 2.1 which gives an explicit expression of the limit in (1.3) in C(K).
This approach can be easily adapted to the space Cb(Ω), in Section 3, whereas Propo-
sition 1.4 is not easy to apply to this space, due to the well-known fact that its dual
space can hardly be described.

2 The space C(K)

Theorem 2.1. Let K be a compact Hausdorff space, let C(K) be the Banach space of all
continuous complex valued functions on K, with the usual norm ||f || = maxx∈K |f(x)|,
and let f , g ∈ C(K). We have

lim
t→0+

||f + tg|| − ||f ||
t

= max
x∈{z | |f(z)|=||f ||}

Re(e−i arg f(x)g(x)). (2.1)
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Proof. Consider the set Eδ = {x ∈ K | |f(x)| ≥ ||f || − δ}. This is, clearly, increasing
family, i.e. if δ1 < δ2 then Eδ1 ⊆ Eδ2 . We claim that ||f + tg|| for t small enough,
depends only on values of g at points from Eδ. Indeed, if t < δ/4||g|| and x /∈ Eδ then

|f(x) + tg(x)| ≤ |f(x)|+ t||g|| ≤ ||f || − δ + δ/4 = ||f || − 3δ/4,

whereas for the same t, and for any x ∈ Eδ/2 ⊆ Eδ we have

|f(x) + tg(x)| > |f(x)| − t||g|| > ||f || − δ/2− δ/4 = ||f || − 3δ/4.

Hence, taking into account that Eδ is a compact set and f+ tg is a continuous function

||f + tg|| = max
x∈Eδ

|f(x) + tg(x)|, (2.2)

for t < δ/4||g||.
We shall, first, find an upper bound of the limit in (2.1). For t small enough, we

have

||f + tg|| − ||f ||
t

=
||f + tg||2 − ||f ||2

t(||f + tg||+ ||f ||)
=

=
maxx∈Eδ

(|f(x)|2 + 2tRe f(x)g(x) + t2|g(x)|2)− ||f ||2

t(||f + tg||+ ||f ||)
≤

≤maxx∈Eδ
(2 Re f(x)g(x) + t|g(x)|2)
(||f + tg||+ ||f ||)

≤

≤maxx∈Eδ
(2 Re f(x)g(x)) + t||g||2

(||f + tg||+ ||f ||)
,

which, taking the limit as t→ 0+ becomes

lim
t→0+

||f + tg|| − ||f ||
t

≤ maxx∈Eδ
(Re f(x)g(x))

||f ||
. (2.3)

Let us find a lower bound for the limit in (2.1). Denote E0 =
⋂

δ>0Eδ = {x ∈
K | |f(x)| = ||f ||}. For any x ∈ E0 we have |f(x) + tg(x)| ≤ ||f + tg||, and hence

||f + tg|| − ||f ||
t

≥ |f(x) + tg(x)| − |f(x)|
t

= |f(x)| |1 + tg(x)/f(x)| − 1

t
.

Since limt→0+
|1+tz|−1

t
= Re z for each z ∈ C, as it is easy to see, we obtain for any

x ∈ E0

lim
t→0+

||f + tg|| − ||f ||
t

≥ |f(x)|Re(g(x)/f(x)) = Re(e−i arg f(x)g(x)). (2.4)

Since the left hand side in (2.3) does not depend on δ > 0, and the left hand side
in (2.4) does not depend on x ∈ E0, we have

max
x∈E0

Re(e−i arg f(x)g(x)) ≤ lim
t→0+

||f + tg|| − ||f ||
t

≤ inf
δ>0

maxx∈Eδ
(Re f(x)g(x))

||f ||
. (2.5)
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To finish the proof, it is enough to prove that the right hand side in (2.5) is equal
to its left hand side. Indeed, there is a sequence δn → 0+ and xn ∈ Eδn such that
(Re f(xn)g(xn))/||f || tends to the right hand side of (2.5). Since K is a compact set,
there is its subsequence that tends to some x0 ∈ K, which we shall also denote by
xn in order to simplify notations. Moreover, x0 ∈ E0 because Eδ is an increasing
sequence of sets. Using the continuity of f and g we obtain that (Re f(xn)g(xn))/||f || →
(Re f(x0)g(x0))/||f || = Re(e−i arg f(x0)g(x0)). So we get that for some x0 ∈ E0 we have

max
x∈E0

Re(e−i arg f(x)g(x)) ≤ lim
t→0+

||f + tg|| − ||f ||
t

≤

≤ Re(e−i arg f(x0)g(x0)) ≤ max
x∈E0

Re(e−i arg f(x)g(x)).

The proof is complete.

Corollary 2.1. The following three conditions are mutually equivalent:
(i) The function g is orthogonal to f in the space C(K);
(ii) The values of the function f(x)g(x) on the set E0 = {x ∈ K | |f(x)| = ||f ||}

are not contained in an open half plain (in C) with boundary that contains the origin.
(iii) There exists a probability measure (i.e. positive and of full measure equals 1)

µ with support contained in E0 such that∫
K

f(x)g(x) dµ(x) = 0. (2.6)

If |f | attains its norm at the single point, say x0, then g is orthogonal to f if and
only if g(x0) = 0.

Proof. By Theorem 2.1 and Proposition 1.3, g is orthogonal to f if and only if

inf
0≤ϕ<2π

max
x∈E0

Re(eiϕe−i arg f(x)g(x)) ≥ 0.

This is equivalent to the condition that the set {e−i arg f(x)g(x) | x ∈ E0} contains at
least one value with nonnegative real part under all rotations around the origin. This
is equivalent to the condition (ii) (note that for x ∈ E0 |f(x)| = ||f || is constant).

Further, condition (ii) is equivalent to the property that the closed convex hull
of the set F = {f(x)g(x) | x ∈ E0} contains the origin. The convex hull of the set
F consists of points of the form

∫
K
f(x)g(x) dλ(x), where λ is a probability measure

supported on a finite subset of E0. Therefore, it have to be

0 = lim
n→+∞

∫
K

f(x)g(x) dλn(x),

for some sequence λn. Since, according to Alaoglu Theorem, the unit sphere in C(K)∗ ∼=
M(K) is weakly-∗ compact, there exists µ = limk→+∞ λnk

, such that (2.6) is valid. The
support of µ is contained in E0 obviously. Thus (ii) =⇒ (iii).
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Conversely, let (2.6) holds, and let F (g) =
∫

E0
g(x) dµ(x) Then, for any λ ∈ C we

have
||f + λg||2 =|| |f |2 + 2 Re(fλg) + |λ|2|g|2|| ≥

≥|F (|f |2 + 2 Re(fλg) + |λ|2|g|2)| =

=||f ||2 + |λ|2
∫

E0

|g(x)|2 dµ(x) ≥ ||f ||2,

which leads to (iii) =⇒ (i).
If f attains its norm at the single point x0, then our set F is a singleton, and its

unique element must be equal to zero.

Corollary 2.2. The function f ∈ C(K) is a smooth point of the corresponding sphere
if and only if it attains its norm at the single point.

Proof. Let f attain its norm at a single point x0 ∈ K. Then E0 = {x0} and, by
Theorem 2.1

lim
t→0+

||f + tg|| − ||f ||
t

= Re(e−i arg f(x0)g(x0)),

implying

lim
t→0−

||f + tg|| − ||f ||
t

= − lim
t→0+

||f − tg|| − ||f ||
t

=

= −Re(−e−i arg f(x0)g(x0)) = Re(e−i arg f(x0)g(x0)).

Therefore the norm is Gateaux differentiable at f , and the unique support functional
Ff is

Ff (g) = e−i arg f(x0)g(x0).

Let f attain its norm at, at least, two different points x1 and x2. Then the functionals
Fj, j = 1, 2 given by

Fj(g) = e−i arg f(xj)g(xj)

both satisfy ||Fj|| = 1 and Fj(f) = ||f ||. Hence, by Proposition 1.1, f is not a smooth
point.

3 The space Cb(Ω)

Let us, now, pass to the space Cb(Ω).

Theorem 3.1. Let Ω be a locally compact Hausdorff space, let Cb(Ω) be the Banach
space of all bounded continuous complex valued functions on Ω, with the usual norm
||f || = supx∈Ω |f(x)|, and let f , g ∈ Cb(Ω). We have

lim
t→0+

||f + tg|| − ||f ||
t

= inf
δ>0

sup
x∈Eδ

Re(e−i arg f(x)g(x)), (3.1)

where Eδ = {x ∈ Ω | |f(x)| ≥ ||f || − δ}.
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Proof. The proof is essentially the same as that of Theorem 2.1. The inequality (2.3)
remains valid if we replace max by sup, since Eδ might not be compact.

So, it is sufficient to prove the opposite inequality. At first, note that inf
δ>0

in (3.1)

can be replaced by lim
δ→0+

, since the function δ 7→ supδ>0 Re(e−i arg f(x)g(x)) is nonin-

creasing. Further, given δ > 0, choose xδ ∈ Eδ such that supx∈Eδ
Re(e−i arg f(x)g(x)) <

Re(e−i arg f(xδ)g(xδ)) + δ. Then |f(xδ)| → ||f || as δ → 0+ and

||f + tg|| − ||f ||
t

=
||f + tg||2 − ||f ||2

t(||f + tg||+ ||f ||)
≥

≥|f(xδ)|2 + 2tRe f(xδ)g(xδ) + t2|g(xδ)|2 − ||f ||2

t(||f + tg||+ ||f ||)
≥

≥
|f(xδ)|2 + 2t|f(xδ)|(supx∈Eδ

Re(e−i arg f(x)g(x))− δ)− ||f ||2

t(||f + tg||+ ||f ||)
.

Taking lim
δ→0+

we obtain

||f + tg|| − ||f ||
t

≥
||f ||2 + 2t||f ||(infδ>0 supx∈Eδ

Re(e−i arg f(x)g(x)))− ||f ||2

t(||f + tg||+ ||f ||)
,

and finally, letting t→ 0+

lim
t→0+

||f + tg|| − ||f ||
t

≥ inf
δ>0

sup
x∈Eδ

Re(e−i arg f(x)g(x))),

which finishes the proof.

Corollary 3.1. The function g ∈ Cb(Ω) is orthogonal to f ∈ Cb(Ω) if and only if there
is a sequence of probability measures µn concentrated at Eδ = {z ∈ Ω | |f(z)| ≥ ||f ||−δ}
such that

lim
n→∞

∫
Ω

f(x)g(x) dµn(x) = 0. (3.2)

Proof. By Theorem 3.1 and Proposition 1.1 g is orthogonal to f if and only if

inf
δ>0

inf
0≤ϕ<2π

sup
x∈Eδ

Re(e−i arg f(x)g(x)) ≥ 0.

As in the proof of Corollary 2.1 we conclude that for all δ > 0 the closed convex hull
of the set Fδ = {Re(e−i arg f(x)g(x)) | x ∈ Eδ} contains the origin. Hence, there is a
probability measure µδ concentrated at the finite subset of Eδ such that∣∣∣∣∫

Ω

e−i arg f(x)g(x) dµδ(x)

∣∣∣∣ < δ. (3.3)

Choose a sequence δn → 0+, and denote µn = µδn . Next, we estimate the difference
of integral in (3.2) multiplied by ||f || and the integral in (3.3). Indeed, for x ∈ Eδ it
holds ||f || − δ ≤ |f(x)| ≤ ||f || and hence∣∣∣∣∫

Ω

(||f ||e−i arg f(x)g(x)− f(x)g(x)) dµn(x)

∣∣∣∣ ≤ ∫
Ω

δn|g(x)| dµn(x) < δn||g||,
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which implies (3.2).
Conversely, let (3.2) holds. Then, as in the proof of Corollary 2.1 we have, denoting

Fn(g) =
∫

Ω
g(x) dµn(x),

||f + λg||2 =|| |f |2 + 2 Re(fλg) + |λ|2|g|2|| ≥
≥|Fn(|f |2 + 2 Re(fλg) + |λ|2|g|2)| =

=||f ||2 + |λ|2
∫

E0

|g(x)|2 dµ(x) + 2 Re

∫
Ω

f(x)g(x) dµn(x).

Take the limit as n→ +∞ and we get ||f + λg|| ≥ ||f ||, which finishes the proof.

Corollary 3.2. Let Ω be a normal space. The function f is a smooth point of the
corresponding sphere in Cb(Ω) if and only if:

(i) f attains its norm at the unique point, and
(ii) There is δ > 0 such that Eδ is compact set.

Proof. Let (i) and (ii) holds. Then we can reduce the proof to the case f ∈ C(Eδ) and
apply Corollary 2.2. Also, if (i) does not hold, then we can apply the argument from
Corollary 2.2.

If (ii) does not hold, then there is a sequence xn ∈ Ω with no accumulation points
in Ω such that |f(xn)| → ||f ||. Let glim denote the generalized Banach limit on the
space c of all convergent complex sequences. We define functionals F1 and F2 by

F1(g) = glim
n→+∞

e−i arg f(x2n)g(x2n), F2(g) = glim
n→+∞

e−i arg f(x2n+1)g(x2n+1).

Both of them satisfy ||Fj|| = 1 and Fj(f) = ||f ||. Since xn has no accumulation point
in Ω, the set {xn | n ∈ N} is closed, and the function h defined by h(x2n) = 0 and
h(x2n+1) = ei arg f(x2n+1) is continuous and bounded on it. By the Tietze Theorem it
can be extended to some bounded continuous function on the whole Ω. We have, then,
F1(h) = 0 and F2(h) = 1, that is F1 6= F2.

Remark 4. The normality condition is used only in proving that ¬(ii) implies that
f is not smooth point. All other implications hold provided only that Ω is Hausdorff
locally compact.
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