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Abstract. Inverse Sturm–Liouville problems and generalizations of Borg’s unique-
ness theorem to the case of general boundary conditions are considered. Chudov,
Marchenko, Krein, Karaseva and authors’ generalizations are adduced. New general-
izations of Borg, Marchenko and Karaseva’s uniqueness theorem to the case of nonsep-
arated boundary conditions are obtained. Appropriate examples and counterexample
are given.

1 Introduction. The generalizations of Borg’s uniqueness theo-
rem (Chudov, Marchenko, Krein and Karaseva’s uniqueness
theorems)

Inverse Sturm–Liouville problems were first studied in Ambarzumijan’s 1929 paper [2],
where he considered the boundary value problem

−y′′ + q(x) y = λ y, y′(0) = y′(π) = 0

and showed that, if
∫ π

0
q(x) dx = 0 and the eigenvalues are 12, 22, . . . , then q(x) van-

ishes identically. This work showed that the boundary value problem can be recovered
from the set of its eigenvalues.

However, in 1946, Borg [6] established
Borg’s Theorem 1 (1946). The problem

−y′′ + q(x) y = µ y, y′(0)− h y(0) = y′(π) +H y(π) = 0,

(where the coefficients h and H are not necessarily zero) cannot generally be recovered
from the set of its eigenvalues. For case of h 6= 0 the recovery of q(x) is possible if we
additionally know the set of eigenvalues of the auxiliary problem

−y′′ + q(x) y = λ y, y(0) = y′(π) +H y(π) = 0.
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More detailed formulation of Borg’s theorem is as follows:
Borg’s Theorem 2 (1946) [6]. Let the equations

−y′′ + q(x) y = λ y (1.1)

−y′′ + q̃(x) y = λ y (1.2)

have the same spectrum for the boundary conditions

a y(0) + b y′(0) = 0, c y(π) + d y′(π) = 0, (1.3)

and for the boundary conditions

a y(0) + b y′(0) = 0, c1 y(π) + d1 y
′(π) = 0. (1.4)

If
d d1 = 0, |d|+ |d1| > 0, (1.5)

then q(x) = q̃(x) almost everywhere on [0, π].
In the paper of L.A. Chudov [7] it is shown, that it is possible to get rid of restrictive

conditions (1.5). He proved the following uniqueness theorem.
Chudov’s Theorem (1949) [7]. Let equations (1.1) and (1.2) have the same spectrum
for boundary conditions (1.3) and (1.4),∣∣∣∣ c c1

d d1

∣∣∣∣ 6= 0. (1.6)

Then q(x) = q̃(x) almost everywhere on the [0, π].
Consider the special case of the problem:

−y′′ + q(x) y = λ y, y′(0)− h y(0) = 0, y′(π) +H y(π) = 0, (1.7)

By S(q, h,H) denote the spectrum of boundary problem (1.7).
It is follows by Chudov’s theorem that if

S(q, h,H) = S(q̃, h,H), S(q, h1, H) = S(q̃, h1, H),

for some functions q(x) and q̃(x), and numbers h, h1 (h 6= h1) and H, then q(x) = q̃(x)
(0 ≤ x ≤ π) almost everywhere.

V.A. Marchenko (1950) [22] showed, that not only q(x), but also the numbers
h, h1, H are uniquely recovered using spectra S(q, h,H) and S(q, h1, H).

T.M. Karaseva (1953) [14] generalized the result of Marchenko for the case,
when q(x) is a complex-valued function, and the numbers h, h1, H are complex. This
T.M. Karaseva’s result we will call Borg, Marchenko and Karaseva’s uniqueness
theorem.

M.G. Krein (1951) [16, 17] gave another generalization of Chudov’s theorem. He
showed, that a nonnegative summable function ρ(x) (0 ≤ x ≤ π) is uniquely recovered
by two spectra S(ρ, h,H) and S(ρ, h1, H) of the eigenvalue problems for the equation

y′′ + λ ρ(x)y = 0, (1.8)
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with the boundary conditions y′(0)−h y(0) = 0, y′(π)+H y(π) = 0 and y′(0)−h1 y(0) =
0, y′(π) +H y(π) = 0.

Note, that equation (1.7) by change of variables can be reduced to equation (1.8).
The function ρ(x) obtained by this procedure is not only positive, but is also absolutely
continuous with its first derivative.

Inverse Sturm-Liouville problems with separated boundary conditions were consid-
ered in the works of A. Andrew [3], P.A. Binding and B.A. Watson [5], N. Guliyev
[9], A. Kammanee and C. Böckmann [12], A. Kostenko, A. Sakhnovich and G. Tesch
[15], N. Levinson [18], B.M. Levitan and M.G. Gasymov [19, 20, 21], V.A. Marchenko
[23, 24], L. Nizhnik [27], A.M. Savchuk and A.A. Shkalikov [40], L.A. Sakhnovich [39],
I.V. Stankevich [41], A.N. Tihonov [42], V.A. Yurko [45], and other works. The main
methods of inverse spectral problems were developed: Borg’s method, the transforma-
tions operator method, the spectral maps method, and others.

It has taken a long time to obtain the uniqueness theorems for nonselfadjoint
spectral problems with nonseparated boundary conditions on a finite interval. The
first result in this direction was obtained by V.A. Sadovnichy only in 1972 [30]
(20 years after the statement of the problem). After that several uniqueness the-
orems for inverse selfadjoint problems with nonseparated boundary conditions were
proved (P.A. Binding and H. Volkmer [4], M.G. Gasymov, I.M. Guseinov, I.M. Na-
biev [8, 10, 11], V.A. Marchenko [25], O.A. Plaksina [28, 29], V.A. Yurko [43, 44],
and others) and for inverse nonselfadjoint problems with nonseparated boundary
conditions (V.A. Sadovnichy, Ya.T. Sultanaev, A.M. Akhtyamov, B.E. Kanguzhin
[13, 31, 32, 33, 34, 35]). However, the results obtained for nonselfadjoint problems
were not direct generalizations of Borg’s classical uniqueness theorem.

Many authors attempted to generalize Borg’s classical result for nonselfadjoint prob-
lems with nonseparated boundary conditions since 1949. But only in 2009 in [36, 37]
a generalization of Borg’s Theorem 1 for the case of inverse nonselfadjoint problems
with general boundary conditions, including nonseparated ones, was obtained. This
generalization is formulated below in Section 2.

In Section 3 we prove the new generalizations. They are generalizations of Borg,
Marchenko and Karaseva’s uniqueness theorem.

2 Generalizations of Borg’s Theorem 1 for an operator pencil
with nonseparated boundary conditions

Consider the following three boundary value problems.
L:

ly = y′′ + (s2 + i s q1(x) + q(x)) y = 0, (2.1)

U1(y) = y′(0) + (a11 + i s a12) y(0) + (a13 + i s a14) y(π) = 0, (2.2)

U1(y) = y′(π) + (a21 + i s a22) y(0) + (a23 + i s a24) y(π) = 0, (2.3)
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L1 :

y′′ + (µ2 + i µ q1(x) + q(x)) y = 0,

V1(y) = y′(0) + (a11 + i µ a12) y(0) = 0,

V2(y) = y′(π) + (a23 + i µ a24) y(π) = 0,

и L2 :

y′′ + (ν2 + i ν q1(x) + q(x)) y = 0,

y(0) = 0,

V2(y) = y′(π) + (a23 + i ν a24) y(π) = 0,

where q ∈ L1[0, π] and q1 ∈ W1[0, π] are complex-valued functions and aij (i =
1, 2; j = 1, 2, 3, 4) are complex numbers with a12 6= ±1, a24 6= ±1.

The inverse problem is formulated as follows.
Problem. Given the respective eigenvalues {sk}, {µk}, and {νk} of problems L, L1,
and respectively L2 , find the coefficients of pencil L, i.e., the coefficients q(x), q1(x),
aij (i = 1, 2; j = 1, 2, 3, 4).

In what follows, a problem of the type L but with different coefficients in the
equation and with different parameters in the boundary forms is denoted by L̃.

Throughout this section, we assume that a symbol with a tilde in problem L denotes
an object similar to that in problem L̃.

Theorem 2.1. [1, 36, 37] (the duality of the solution). If {sk} = {s̃k}, {pk} =
{p̃k}, {νk} = {ν̃k}, then either q(x) = q̃(x), q1(x) = q̃1(x), and aij = ãij, (i = 1, 2;
j = 1, 2, 3, 4), or q(x) = q̃(x), q1(x) = q̃1(x), a11 = ã11, a12 = ã12, a13 = −ã21,
a14 = −ã22, a21 = −ã13, a22 = −ã14, a23 = ã23, and a24 = ã24.

As a special case of Theorem 2.1, we obtain Theorem 2.2.

Theorem 2.2. (uniqueness of a solution). If {sk} = {s̃k}, {µk} = {µ̃k}, {νk} = {ν̃k},
a13 = ã13, and a14 = ã14, then L = L̃.

Thus, given three spectra, the coefficients of pencil (2.1)–(2.3), are uniquely deter-
mined if a13 and a14 are known.

As a special case of Theorem 2.2, we obtain uniqueness Borg’s Theorem 1. Indeed,
problems L, L1, and L2 for q1(x) ≡ 0, a13 = a14 = a12 = a22 = a24 = 0, a11 = −h,
a23 = H are formulated as follows.
L=L1 : −y′′ + q(x) y = λ y, y′(0)− h y(0) = y′(π) +H y(π) = 0 (λ = s2),
L2: −y′′ + q(x) y = µ y, y(0) = y′(π) +H y(π) = 0 (µ = ν2).

So, Borg’s Theorem 1 is a particular case of Theorem 2.2. Indeed, problem L
coincides with problem L1 for separated conditions (a12 = a21 = 0). Therefore, to
recover problems L=L1 and L2 uniquely, we can use only two spectra (the spectra of
problems L=L1 and L2).

In [37, 36] it is shown the existence of inverse problem solution, the solution method
of this inverse problems is found, examples and counterexamples are given.

These results generalize the results of many authors. Note also that the obtained
theorems are true not only for operators, but also for operator pencils. These results are
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not only generalizations of Borg’s Theorem 1 to the case of general boundary conditions,
but to the operator pencil case too. This is very important, because the problems of
voltage and current force oscillations in a wire lead to operator L. Identification of
the function q1(x) by the eigenvalues means in this case identification of the place
and volume of current leakage in a wire by the natural frequencies of current force
oscillation, measured in one of accessible places, lying far from an inaccessible place.

3 Generalizations of Borg, Marchenko and Karaseva’s theorem

In this section new generalizations of Borg’s theorem are obtained. These results are
generalizations of Borg, Marchenko and Karaseva’s Theorem and were announced by
the authors in [38].

Let L0 denote the following Sturm-Liouville eigenvalue problem:
Problem L0:

ly = −y′′ + q(x) y = λ y = s2 y, (3.1)

U1(y) = y′(0) + a11 y(0) + a12 y(π) = 0, (3.2)

U2(y) = y′(π) + a21 y(0) + a22 y(π) = 0 (3.3)

(x ∈ [0, π], y = y(x) ∈ C2[0, π], q(x) is a summable function, and aij, i, j = 1, 2 are
complex constants).

Along with problem L0, we consider two problems with separated boundary condi-
tions:
Problem L1 :

ly = −y′′ + q(x) y = λ y,

U1,1(y) = y′(0) + a11 y(0) = 0,

U2,1(y) = y′(π) + (a21 + a22) y(π) = 0.

Problem L2 :

ly = −y′′ + q(x) y = λ y,

U1,2(y) = y′(0) + a y(0) = 0,

U2,2(y) = y′(π) + (a21 + a22) y(π) = 0,

where a is a constant deferent from a11.
Let λk, µk, and νk be the eigenvalues of problems L, L1, L2 respectively, indexed in

increasing order of their absolute values.
An inverse problem for L0 is formulated as follows.

Inverse problem. Let the potential function q(x) and the coefficients of the boundary
conditions in problems Lj (j = 0, 1, 2) be unknown, while the eigenvalues of problems
Lj (j = 0, 1, 2) be given. The goal is to find q(x) and the boundary conditions in
problems Lj (j = 0, 1, 2) from their eigenvalues.

In what follows, a problem of type Lj with different coefficients in the equation
and with different parameters in the boundary forms is denoted by L̃j. Moreover, if a
certain symbol denotes an object in problem Lj, the same symbol with a tilde denotes
its counterpart in problem L̃j.
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Theorem 3.1. Let a11 6= a, ã11 6= ã. If the eigenvalues of problems Lj are equal to
those of problems L̃j counting their algebraic multiplicities, then the coefficients of the
equations and the constants in the boundary conditions of Lj and L̃j (j = 0, 1, 2) are
also equal to each other; i.e., q(x) = q̃(x), a = ã, and aij = ãij for i, j = 1, 2.

Proof of Theorem 3.1 Applying Borg, Marchenko and Karaseva’s uniqueness the-
orem ([6, 14, 19, p. 9]) to problems L1 and L2, we obtain

q(x) = q̃(x), a11 = ã11, a = ã, a21 + a22 = ã21 + ã22. (3.4)

To complete the proof, we have to show that a12 = ã12, a21 = ã21, and a22 = ã22.
Let y1(x, λ) and y2(x, λ) be linearly independent solutions of equation (3.1) that

satisfy the conditions

y1(0, λ) = 1, y′1(0, λ) = 0, y2(0, λ) = 0, y′2(0, λ) = 1. (3.5)

Then we have the asymptotic formulas

y1(x, λ) = cos sx+ 1
s
u(x) sin sx+O

(
1
s2

)
,

y2(x, λ) = 1
s

sin sx− 1
s2 u(x) cos sx+O

(
1
s3

)
,

y′1(x, λ) = −s sin sx+ u(x) cos sx+O
(

1
s

)
,

y′2(x, λ) = cos sx+ 1
s
u(x) sin sx+O

(
1
s2

) (3.6)

where u(x) = 1
2

∫ x

0
q(t) dt, for sufficiently large λ = s2 ∈ R ([26, pp. 62–65]).

The eigenvalues of problem L are the roots of the entire function

∆(λ) =

∣∣∣∣ U1(y1(x, λ)) U1(y2(x, λ))
U2(y1(x, λ)) U2(y2(x, λ))

∣∣∣∣ , (3.7)

and the algebraic multiplicity of an eigenvalue is equal to the multiplicity of the same
root of ∆(λ) ([26, p. 29]). It follows that

∆(λ) = (a11 + a12 y1(π, λ)) · (y′2(π, λ) + a22 y2(π, λ))−
−(1 + a12 y2(π, λ)) · (y′1(π, λ) + a21 + a22 y1(π, λ)).

(3.8)

Substituting the asymptotic formulas for y1(x, λ) and y2(x, λ)) in (3.8) yields

∆(λ) = a11 cos
√
λπ + a12 +

√
λ sin

√
λπ − u(π) cos

√
λπ −

−a21 − a22 cos
√
λπ +O

(
1√
λ

)
.

It can be seen that ∆(λ) is an entire function of order 1
2
. Moreover, according

to the assumptions of the theorem, the eigenvalues of L0 and L̃0 counted taking into
account their algebraic multiplicities are equal to each other. Therefore, the Hadamard
factorization theorem implies that ∆(λ) ≡ C ∆̃(λ), where C is a nonzero constant. It
follows that

∆(λ)− C∆̃(λ) ≡
≡ (a11 − ã11C) cos

√
λπ + (a12 − ã12C) +

+(1− C)
√
λ sin

√
λπ − (1− C)u(π) cos

√
λπ +

−(a21 − ã21C)− (a22 − ã22C) cos
√
λπ +

+(1− C)O
(

1√
λ

)
≡ 0. (3.9)
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Here, 1, sin
√
λπ, cos

√
λπ,

√
λ · sin

√
λπ, and O

(
1√
λ

)
are linearly independent

functions of λ. (This can easily be verified using the definition of linearly independent
functions.) Therefore, C = 1 and

(a12 − ã12)− (a21 − ã21)+

+(a11 − ã11 − a22 + ã22) cos
√
λπ +O

(
1
λ

)
≡ 0.

(3.10)

Combining this with (3.4) gives a12 = ã12, a21 = ã21, a22 = ã22. �
Note that Borg, Marchenko and Karaseva’s Theorem [14] is a special case of The-

orem 3.1. Indeed, in the case of separated conditions (a12 = a21 = 0), problem L0

coincides with L1. Therefore, problems L0=L1 and L2 can be uniquely recovered using
only two spectra (namely, those of L0=L1 and L2). Moreover, a stronger result than
Theorem 3.1 holds true. Given two sufficiently large numbers N1 and N2 of different
parity, let the corresponding eigenvalues of problem L0 be denoted by λN1 and λN2 .

Theorem 3.2. Let a11 6= a and ã11 6= ã. If the eigenvalues of problems L1 and L̃1

counted taking into account their algebraic multiplicities coincide, so do the eigenvalues
of problems L2 and L̃2 and, additionally, λN1 = λ̃N1 and λN2 = λ̃N2, then the coefficients
of the equations and the constants in the boundary conditions in problems Lj and L̃j

(j = 0, 1, 2) coincide as well; i.e., q(x) = q̃(x), a = ã, and aij = ãij for i, j = 1, 2.

Proof of Theorem 3.2. Applying Borg, Marchenko and Karaseva’s uniqueness
theorem ([6, 14, 19, p. 9]) to problems L1 and L2, yields (3.4).

Since λN1 and λN2 are eigenvalues of L, we have

∆(λNi
) = 0, i = 1, 2, (3.11)

where ∆(λ) is the characteristic determinant (3.8) of problem L.
It is well known that

√
λNi

= Ni + O
(

1
Ni

)
, i = 1, 2. Substituting this expression

in (3.11) and taking into account (3.6) and (3.8), we obtain

a22 · ei + a21 − a12 = a11 · ei − y′1(π, λNi
) +O

(
1

Ni

)
, i = 1, 2, (3.12)

where
ei =

{
+1 if Ni is even,
−1 if Ni is odd.

Similarly, for problem L̃,

ã22 · ei + ã21 − ã12 = a11 · ei − y′1(π, λNi
) +O

(
1

Ni

)
, i = 1, 2. (3.13)

(Here, ỹ′1(π, λ̃Ni
) = y′1(π, λNi

) since λ̃Ni
= λNi

and q̃(x) = q(x)). Subtracting equation
(3.13) term-by-term from equation (3.12) with ei = +1 and using (3.4), we see that
ã12 − a12 = O

(
1

Ni

)
. Passing to the limit as Ni →∞, in the last equality yields

ã12 = a12. (3.14)
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Subtracting equation (3.12) term-by-term from (3.13) with ei = −1 and passing to
the limit as Ni → ∞ yields −ã22 + ã21 = −a22 + a21. Combining this with (3.4), we
finally have

a21 = ã21, a22 = ã22. �

Since the proof of Theorem 3.2 is based on an asymptotic relation between the
eigenvalues, the basic questions are whether or not the following assumptions of The-
orem 3.2 can be omitted:

(i) the indices N1 and N2 (of the eigenvalues λN2 and λN2) are sufficiently large,
(ii) the eigenvalue indices have different parities.
Below are two counterexamples. The first implies that Theorem 3.2 does not hold

if N1 or N2 fails to be sufficiently large. The second counterexample shows that, if N1

and N2 in Theorem 3.2 are assumed to be sufficiently large numbers of the same parity,
then problem L0 is not uniquely recovered.
Counterexample 1. (NumbersN1 andN2 of different parity, butN1 is not sufficiently
large). Problems L0 and L̃0 with the coefficients q(x) = q̃(x) = 0, a = ã 6= 0, a11 =
ã11 = a12 = 0, ã12 = −1/2, a21 = a22 = 1/2, ã21 = 1/4, and ã22 = 3/4 do not coincide.
However, L1 = L̃1, L2 = L̃2, λN1 = λ̃N1 , and λN2 = λ̃N2 , where numbers N1 and N2 of
different parity. Theorem 3.2 does not hold, because N1 or N2 fails to be sufficiently
large.

Indeed, we have
problem L0 :

−y′′ = λ y, y′(0)− 1

2
y(π) = 0, y′(π) +

1

2
y(0) +

1

2
y(π) = 0,

problem L̃0 :

−y′′ = λ y, y′(0)− 1

2
y(π) = 0, y′(π) +

1

4
y(0) +

3

4
y(π) = 0,

problem L1 = L̃1 :

−y′′ = λ y, y′(0) = 0, y′(π) + y(π) = 0,

problem L2 = L̃2 :

−y′′ = λ y, y′(0) + a y(0) = 0, y′(π) + y(π) = 0,

∆(λ) =
√
λ sin

√
λπ − 1 + cos

√
λπ

2
= cos

√
λπ

2

(
2
√
λ sin

√
λπ

2
− cos

√
λπ

2

)
,

∆̃(λ) = cos

√
λπ

2

(
−3

2
cos

√
λπ

2
+ 2

(√
λ+

1

8
√
λ

)
sin

√
λπ

2

)
.
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Therefore, the eigenvalues of problem L with even indices are the roots of the
function cos

√
λ π
2

, the eigenvalues of problem L with odd indices are the roots of the
function tan

√
λ π
2
− 1

2
√

λ
, the eigenvalues of problem L̃ with even indices are the roots

of the function cos
√

λ π
2

, the eigenvalues of problem L̃ with odd indices are the roots of
the function tan

√
λ π
2
− 6

√
λ

1+8 λ
.

The first eigenvalues of problems L and L̃ coincide: λ1 = λ̃1 = 1/4 < 1. All
eigenvalues with even indices of problem L and L̃ coincide too. The index of the first
eigenvalue is odd. So, Theorem 3.2 does not hold for N1 = 1 and sufficiently large even
N2 (N1 fails to be sufficiently large).
Counterexample 2. (N1 and N2 are of the same parity, and can be arbitrary large).
Problems L0 and L̃0 with the coefficients q(x) = q̃(x) = 0, a = ã 6= 0, a11 = ã11 = a12 =

ã12 = 0, a21 = ã22 = −1, and a22 = ã21 = +1 do not coincide, but
√
λN1 =

√
λ̃N1 ,√

λN2 =

√
λ̃N2 , where N1 and N2 are assumed to be sufficiently large even numbers;

L1 = L̃1, and L2 = L̃2. Theorem 3.2 does not hold, because N1 and N2 are of the same
parity.

Indeed, we have
problem L0 :

−y′′ = λ y, y′(0) = 0, y′(π)− y(0) + y(π) = 0,

problem L̃0 :

−y′′ = λ y, y′(0) = 0, y′(π) + y(0)− y(π) = 0,

problem L1 = L̃1 :

−y′′ = λ y, y′(0) = 0, y′(π) = 0,

problem L2 = L̃2 :

−y′′ = λ y, y′(0) + a y(0) = 0, y′(π) = 0,

∆(λ) =
√
λ sin

√
λπ + 1− cos

√
λπ = 2 sin

√
λπ

2

(
√
λ cos

√
λπ

2
+ sin

√
λπ

2

)
,

∆̃(λ) = 2 sin

√
λπ

2

(
√
λ cos

√
λπ

2
− sin

√
λπ

2

)
.

Therefore, the positive eigenvalues of problem L with even indices are the roots of
the function sin

√
λ π
2

, the positive eigenvalues of problem L with odd indices are the
roots of the function tan

√
λ π
2

+ 1√
λ
, the positive eigenvalues of problem L̃ with even

indices are the roots of the function sin
√

λ π
2

, the positive eigenvalues of problem L̃ with
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odd indices are the roots of the function tan
√

λ π
2
− 1√

λ
. All positive eigenvalues with

even indices of problem L and L̃ coincide. Thus, if N1 and N2 are of the same parity
and even are arbitrarily large numbers, then problem L0 is not uniquely recovered.
Remark 1. The proof of Theorem 3.2 implies that the theorem assumptions λN1 =

λ̃N1 and λN2 = λ̃N2 are only needed to derive a12 = ã12 and a21 = ã21. It follows from
(3.4), (3.12), and (3.13) that, if the coefficients a21 and ã21 in L0 and L̃0 vanish, then
the theorem assumptions λN1 = λ̃N1 and λN2 = λ̃N2 can be replaced by one of them. If
the coefficients a12 and ã12 in L0 and L̃0 vanish, then two assumptions λN1 = λ̃N1 and
λN2 = λ̃N2 in Theorem 3.2 can be replaced by the single one λN1 = λ̃N1 , where N1 is a
sufficiently large even number.
Remark 2. Borg, Marchenko and Karaseva’s Theorem is a special case of Theo-
rem 3.2. Indeed, in the case of separated conditions (a12 = a21 = 0, ã12 = ã21 = 0),
problem L0 coincides with L1, while problem L̃0 coincides with L̃1. Therefore, prob-
lems L0=L1 and L2 can be uniquely recovered using only two spectra (namely, those
of L0=L1 and L2). In this case, the assumptions λN1 = λ̃N1 and λN2 = λ̃N2 are not
required in Theorem 3.2, since they follow from the fact that the eigenvalues of L1 and
L̃1 are equal to each other.
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