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Abstract. We discuss different strategies to introduce smoothness spaces related to
Morrey spaces.

1 Introduction

There is a rapidly increasing number of papers dealing with smoothness spaces related
to Morrey spaces. It will be the aim of this survey to give an introduction to one of these
approaches, namely the Nikol’skij-Besov type spaces B;:/ and the Lizorkin-Triebel type
spaces F»", and to compare it to some of the other existing possibilities to introduce
smoothness spaces of Nikol’skii-Besov-Lizorkin-Triebel type related to Morrey spaces.
In fact, we shall consider all together eight scales of function spaces: beside of B,/
and F,7 we also discuss the scales N, ., & /N3 o Er s Bylg e and F0 7 e (all
definitions will be given in Subsections 3.1-3.3). Whereas

& e{F,/: s€eR 0<p<oo, 0<qg<oo, 720}

P0,90,U0

and
o €{By: seR 0<p<oo, 720}

P0,00,Uo

for all admissible values of sq, pg, 1o and ¢y hold, we have
N3O oo €485 - s€R, 0<p<o0,0<qg<oo, 7>0}

for all admissible values of sg, pp,uo and 0 < gg < oo. The differences between the
Nikol’skij-Besov type scale B, and the Nikol’skij-Besov-Morrey scale J\/’psjq’u (g < o0)
will be discussed in certain detail.

One comment to the notation used in this paper. The situation in the literature is
a little bit chaotic. At least in some cases there is no common well-accepted notation.
Not only the letter for certain parameters is changing but also its position. The reader
should always have a look at the used definition when comparing the results within
this survey with others.
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This survey is organized as follows. First of all, it consists of two parts. Part I is
devoted to a discussion of the definition and some basic properties. In particular, in
Section 2 of Part I we recall certain parts of the theory of spaces of functions of bounded
mean oscillations. We try to explain why the space bmo (the local version of BMO)
can be understood as a model case for the scales of spaces we will discuss later on. To
be more precise, the specific Fourier analytic description of bmo, due to Frazier and
Jawerth [26] and recalled below, is the point of departure which leads to the definition
of the scales FJ;" and B qT The main properties of this four parameter scale of function
spaces will be dlscussed in the following Section 3. Here we mainly follow the recent
lecture note [102]. So we will give proofs only in exceptional cases. Many times some
comments to the idea or method of proof will be given. This will be the contents of part
[. In Part II we will discuss interpolation properties of these scales, in particular real
interpolation of F;;" and B, 7, Gagliardo-Nirenberg type inequalities, and embeddings.
Part IT will contam new material and is written with complete proofs. Furthermore,
we will recall there some different approaches to smoothness spaces related to Morrey
spaces, due to Hedberg, Netrusov and Triebel. In a final section we shall collect some
open problems. Here we also add a few comments on possible generalizations.

In my opinion the theory of the spaces F;7 and B,/ is far away from being com-
plete. In the presented survey we simply arrange what is essentially known.

Notation

As usual, N denotes the natural numbers, Ny the natural numbers including 0, Z the
integers and R the real numbers. C denotes the complex numbers and R¢ the Euclidean
d-space. All functions are assumed to be complex-valued, i.e., we consider functions
f: R4 — C. In general the classes of functions (distributions) are defined on R?. So we
will drop it in notation. Let S denote the Schwartz space of all rapidly decreasing and
infinitely differentiable functions on R?. By &’ we denote the collection of all complex-
valued tempered distributions on RY, i.e., the topological dual of S, equipped with
the strong topology. The symbol F refers to the Fourier transform, F~! to its inverse
transformation, both defined on &’. All function spaces, which we consider in this
paper, are subspaces of &', i.e. spaces of equivalence classes w.r.t. almost everywhere
equality. However, if such an equivalence class contains a continuous representative,
then usually we work with this representative and call also the equivalence class a
continuous function.

If E and F are two quasi-Banach spaces, then the symbol £ — F indicates that the
embedding is continuous. By C§° we denote the set of all test functions, i.e., the set of
all compactly supported and infinitely differentiable functions. If E is a quasi-Banach
function space on R? we denote by E‘° the collection of all functions f having the
property that the products ¢f € E for all ¢ € C§°. The symbol L(E, F') denotes the
set of all linear and bounded operators T': E — F. In case £ = I we simply write
L(E).

As usual, the symbol ¢ denotes a positive constant which depends only on the fixed
parameters d, s, T, p, ¢ and probably on auxiliary functions, unless otherwise stated; its
value may vary from line to line. Sometimes we will use the symbol “ <7 instead
of “<”. The meaning of A < B is given by: there exists a constant ¢ > 0 such that
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A < c¢B. The symbol A < B will be used as an abbreviation of A < B < A. Many
times we shall need the following abbreviations:

| 11
Op = d max (O,Z—)—1> and Op,q = d max <07}_) - 17__]‘> (11)

2 Functions of bounded mean oscillations and Lizorkin-Triebel
spaces with p = oo

This section has preparatory character. From our point of view, the function spaces
BMO, bmo and in particular F5, , are the point of departure for the generalizations
Fy.7and B[ which we will discuss in detail in Section 3.

2.1 Functions of bounded mean oscillations

In 1961 John and Nirenberg [38] introduced the class BMO. A locally integrable
function f on R? belongs to BMO (has bounded mean oscillation) if

1
Ifllo = sup /Q (@) — fol dz < oo,

where the supremum is taken over all cubes () with sides parallel to the coordinate
axes. Here fo denotes the mean-value of f on @), i.e.,

1
fa= 51 /Qf(w)d:v-

Of course, || - ||pmo is not a norm. To turn it into a norm we have to calculate modulo
constants, i.e., one has to consider classes of functions

[fli:={f+c: ceC}

instead of functions. Nowadays BMO has established as a good substitute of L.
in harmonic analysis. Of course, L,, — BMO and the embedding is strict, since
log|z| € BMO. Polynomials, except constants, do not belong to BMO. Of certain
importance for us is the Fourier-analytic description of BMO .

The Fourier-analytic description of BMO

Let ¢ € C3° be a function such that

and
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Then, with ;(z) := p(279 ), j € Z, we can construct a smooth dyadic homogeneous
decomposition of unity. Indeed, an elementary calculation yields

o

Z pi(z) =1 forall x#0. (2.1)

Jj=—00
Here dyadic refers to the fact that supp ¢; is contained in the dyadic annulus
V< x| <M, jel.

For f € & the product ¢; - Ff belongs to &’ as well and consequently, by the famous
Paley-Wiener-Schwartz theorem, F[p;(£) Ff(§)](x) is an analytic function (can be
extended to ...). Let P denote the collection of all polynomials. We put

fl={f+p: peP}, [fe§.

Because of (2.1) we obtain, that for every f € &’ there exists a polynomial p such that

f+p= Z}tl[goj(f) Ff()] (convergence in §'). (2.2)

=

Sometimes (2.2) is called a Littlewood-Paley decomposition of f (or at the same time
of [f]). Those Littlewood-Paley decompositions are the basis for many function spaces,
see in particular Section 3. However, for the moment we need a more general concept.

Proposition 2.1. Let (p;); be the smooth dyadic decomposition of unity defined above.
Then we have the following equivalence. A locally integrable function f € S’ belongs to
BMO if, and only if, there exists a sequence (f;); of Loo-functions such that

f= 'Z F (&) FF(9))(=) (2.3)

and

(3 1ne@e)”

j=—00

< 00. 24
, <o (24

Remark 1. (i) The formulation in Proposition 2.1 requires an interpretation. Since
the origin does not belong to the support of ¢; Ff; for all j € Z, the right-hand side
in (2.3) does not see polynomials. Hence, the better frame here is to calculate modulo
polynomials of arbitrary order. By &’/P we denote the associated quotient space. Then
the correct formulation is as follows: The class [g];, associated to a locally integrable
function g, belongs to BMO if, and only if, in the class [g] there exists a representative
f such that (2.3) (with convergence in §’) and (2.4) hold.

(ii) A proof of Proposition 2.1 has been given by Triebel in 1978 in his booklet [81,
Theorem 3.2.2].
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The next step has been done by Frazier and Jawerth in their famous paper [26] in
1990. They have found a bit easier Fourier-analytic description of BMO . To describe
this we need dyadic cubes. A cube () such that

Q=Qir={reR?: 277k, <ap<277(ky+1), (=1,....d},

for some j € Z and some k € Z¢ is called dyadic. The collection of all dyadic cubes
will be denoted by Q. For a given cube ) the number ¢(Q) is its side-length. To each
dyadic cube we associate one more number, namely

Jo = —log l(Q),  QeQ.

Proposition 2.2. Let (¢;); be a smooth dyadic decomposition of unity. A class [f] €
S'/P belongs to BMO if, and only if,

1/2

I flsmo = sup ﬁ /QJ% |F e (&) FF(E)](2)]? da < 0.

Remark 2. As in Proposition 2.1 BMO has to be interpreted as a subset of §’/P, or,
with other words, the class [g];, associated to a locally integrable function g, belongs
to BMO if, and only if, in the class [g] there exists a representative f such that

1 fllBmo < o0

2.2 Functions of local bounded mean oscillations

Less known than BMO is the following local variant bmo .

Definition 1. A locally integrable function f on R? belongs to bmo (has local bounded
mean oscillations) if f € BMO and

1
£ = llio +sup 2 [ [f(@)]de < oo,
e 1Ql Jg
where the supremum is taken over all cubes ) with sides parallel to the coordinate axes
and side-length ((Q) < 1.

Obviously || - |[bmo]|| is a norm, we do not calculate modulo constants this time.
Furthermore, L., — bmo — BMO and all embeddings are proper. Of course, the
second embedding requires an interpretation. But here it is enough to associate to each
f € bmo the class [f];. The function log |z| does not belong to bmo, but 1(z) log |x| €
bmo , where ¢ € C§°.

The Fourier-analytic description of bmo

Let ¢» € C§° be a function such that

W(x):=1 it |z| <1 and (x):=0 if |z >

DN o

. (2.5)
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Then, with g := 1,

() == @o(z/2) — po(x) and p;(r) == (277 2), jeN, (2.6)
we have

Zgoj(x)zl for all z € R%.

This time we have constructed an inhomogeneous smooth dyadic decomposition of
unity. The main difference to a homogeneous smooth dyadic decomposition of unity
consists in the fact that this time a certain neighborhood of the origin belongs to
exactly one support of the functions ¢;, 7 € Ny. Again Triebel [81] has found the
Fourier-analytic description of bmo.

Proposition 2.3. Let (¢;); be the smooth dyadic decomposition of unity defined in
(2.5), (2.6). Then we have the following equivalence. A locally integrable function
f € & belongs to bmo if, and only if, there exists a sequence (f;); of Leo-functions
such that

f= Z&f*m (&) F£i(E))(x) (2.7)

and
H(gmmwﬂmmm<w. 05

Remark 3. This time there is no need for an interpretation. Since 0 € supp g the
right-hand side in (2.7) is sensitive with respect to polynomials.

Also Frazier and Jawerth have considered the nonhomogeneous situation and proved
the following characterization of bmo, see [26].

Proposition 2.4. Let (p;); be a smooth dyadic decomposition of unity defined in (2.5),
(2.6). A locally integrable function f € 8" belongs to bmo if, and only if,
1/2

1 o0
170 = 500 @A%V%Mﬂmw% 3

(@)1

2.3 The inhomogeneous Lizorkin-Triebel spaces with p = oo

Originally the definition of the scale of Lizorkin-Triebel spaces F;, was restricted to
values of p < co. At an early stage of the theory Triebel [82, 2. 1 4] had shown that
the naive extension of the Fourier-analytic definition is not meaningful. In his book
[83] from 1983 he defined for the first time the spaces F, ,, 1 < ¢ < oo (with some
forerunners in [81], there denoted by L7, ). The point of view, he had chosen, has been
a completion of the duality relation

/
(Fi,q>=Fp7,Zu l<p<oo, 1<g<oo, (2.9)

see [83, 2.11.2|. His definition was oriented on two facts:
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!/
e the duality relation (hl) = bmo, where h; denotes the local Hardy space, proved

by Goldberg [28] in 1979;
o the identification of hy as FY,, for which we refer to Bui Huy Qui [9].

Probably one should mention here as well the famous and earlier known homogeneous
counterparts of these assertions:

!/

e the duality relation <H1> = BMO, where H; denotes the real Hardy space,
proved by Fefferman [22] in 1971;

e the identification of H; as F&, observed by Peetre [62, 64] around 1974.

With these facts at hand Triebel introduced F5, ,, 1 < ¢ < oo in the spirit of Proposition
2.3, extending the validity of (2.9) to p = 1. We skip this and concentrate on the
Frazier-Jawerth approach to these classes in [26]. In the spirit of Proposition 2.4 they
used the following definition.

Definition 2. Let (¢;); be a smooth dyadic decomposition of unity as defined in (2.5),
(2.6). Let0 < g < oo ands € R. Then Fy,  is the collection of all distributions f € &'
such that

1/q

Wles, = e § g [, 3 2 @ F@frar  <oe. (210

L(Q)<1

Remark 4. (i) The classes I3, , do not depend on the chosen decomposition of unity
in the sense of equivalent quasi-norms. F7,  is a quasi-Banach space (Banach space if
g >1). In case of 1 < ¢ < oo we have coincidence of the two approaches. For all these
statements we refer to [26].

(ii) Proposition 2.4 yields F , = bmo in the sense of equivalent norms.

(iii) Replacing

sup simply by sup (2.11)
QeQ QEQ
(Q=<1

we get an equivalent quasi-norm in F, . This is a consequence of an easy calculation.

2.4 Lizorkin-Triebel and Nikol’skij-Besov spaces on R?

For convenience of the reader we also recall the Fourier-analytic definition of Nikol’skij-
Besov and Lizorkin-Triebel spaces on R?,

Definition 3. Let (¢;); be a smooth dyadic decomposition of unity as defined in (2.5),
(2.6). Let 0 < g < 00 and s € R.

(i) Let 0 < p < oo. Then the Nikol’skij-Besov space B, is the collection of all
distributions f € 8’ such that

/]

) 1/q
Bpg = {Z 20| F (&) F£(8)] H%p} < 00. (2.12)

j=0
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ii) Let 0 < p < oo. Then the Lizorkin-Triebel space F?,  is the collection of all
P
distributions f € S8’ such that

1/q

/]

< 0. 2.13
L < (213)

Fia = | (fj 260 | F1i,(6) FHEN@)")

Remark 5. (i) For the nowadays well-developed theory of Nikol’skij-Besov and
Lizorkin-Triebel spaces on R? we refer to the monographs [3, 4, 5, 60, 65, 83, 84, 86].
(ii) We shall use the convention

Fi . = B sER. (2.14)

00,00

Definition 2 combined with the Fourier-analytic definition of the Lizorkin-Triebel
and Nikol’skij-Besov spaces are the sources for the following far-reaching generalization.

3 Inhomogeneous spaces of Nikol’skij-Besov-Lizorkin-Triebel
type

This is the main section of this survey. Here we discuss one approach to smoothness
spaces related to Morrey spaces.

3.1 The definition of FJ;" and B,/ and some elementary prop-
erties

In comparison with F?

! »q and By - we introduce a fourth parameter 7 by replacing |Q|
in (2.10) by |Q|".

Definition 4. Let (¢;); be a smooth dyadic decomposition of unity as defined in (2.5),
(2.6). Let 7, s € R and 0 < q < oc.
(i) Let 0 < p < oo. Then the inhomogeneous Lizorkin-Triebel type space F:7 is defined
to be the set of all f € 8" such that

/]

Bl =
p/q 1/p
1 i , B
0c0 [QI / S PNF g FAOI@))Y|  dep <o
gea |Q) Q | j—max(jo.0)

(i) Let 0 < p < oo. Then the inhomogeneous Nikol’skij-Besov type space By is
defined to be the set of all f € 8" such that

1/q
1 s ‘ a/p
e I F s (6) F Pd :
Il = 50 oo jmgx(;@m [ /Q (271 F () FF ()| (@)} d < o0

(3.1)
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Remark 6. (i) El Baraka [16, 17, 18] introduced and investigated the scale of Nikol’skij-
Besov type spaces B,/ in the Banach case.

(ii) Quite recently, namely 2008 and 2010, see [97] (Banach case), [98] (quasi-Banach
case), Dachun Yang and Wen Yuan have introduced and investigated the homogeneous
counterparts of these Lizorkin-Triebel type spaces (which means one has to use the
smooth dyadic decomposition of unity in (2.1) and to calculate in §’/P). The inho-
mogeneous spaces 7 are considered for the first time in [102].

(iii) Many times the scale F;7 behave as the scale B; .- In those situations, to avoid
unattractive repetitions, we shall use the notation A>" with A € {F, B}.

There is a number of immediate consequences of this definition:

e In case 7 < 0, by considering [|Q] — oo, we obviously obtain A57 = {0}, A €
{F, B}.
e For 7 =0 we have A%9 = A® =~ A e {F,B}.

ST S,T
e We always have [)7 = B /.

e In the definition of the scale F," the case p = oo is excluded. However, with
7 = 1/q we have the identity

s _ 18,1/
Fy,=Fo1, seR, 0<qg< oo, (3.2)
in the sense of equivalent quasi-norms, see Definition 2 and (2.11).

Some basic properties of A>" are collected in the following lemma, see [102,

Lemma 2.1, Proposition 2.3].

q

Lemma 3.1. (i) The classes AT are quasi-Banach spaces, i. e., complete quasi-normed
spaces. With ¢ :== min{1, p, q} zt holds

1f +9ll%s: < 157 + gl

Jorall f, g€ A}7
(11) We always have
S— Ay — 8.

(i1i) One can replace the set Q by the set of all cubes with sides parallel to the axes in
Definition 4 obtaining an equivalent quasi-norm on that way. With the same argument
on can replace the set of all such cubes by the set of all balls.

In the next lemma we collect elementary embeddings, see [102, Proposition 2.1].

Lemma 3.2. With qo < q1 we have

Apae = Apar - (3:3)
Furthermore, we have
Bp:min(p,q) - Fli’; - Bp:max(p7q) (34)

and

ASTes BT Ae{B,F}. (3.5)
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Proof. The embedding (3.3) is a consequence of {,, — {,,. Next, (3.4) follows from

(Susm) " < (S < (Sism)” (36)
Jj=0 j=0 =0

with u := min(p, ¢) and v := max(p, ¢) and valid for all sequences (f;); of measurable
functions. Finally, (3.5) is implied by (3.3) and (3.4). O

3.2 A first discussion of the definition

Comparing Definition 4 with the definitions of F5, ,, I} and B; , there arise a number
of other possibilities to define smoothness spaces in the above spirit. Here are some of

them.

(a) Replace  supgeg by sup oo in Definition 4, see (2.11).

> WY

Jj=max(jg,0) Jj=0

(b) Replace

in Definition 4, see Definition 3.

(c) We concentrate on the B-case. Replace

1 - - 1
sup aF Z by {Z sup o

Qe j=max(jo.0) j=0 9€Q

For later use we introduce the following notation.

Definition 5. Let (¢;); be a smooth dyadic decomposition of unity as defined in
(2.5), (2.6). LetT,s € R and 0 < q,p < oo. Then the space By is defined to be
the set of all f € §" such that

. a/p) M9
{Zsup o L@ @ ey as) } < o0.
(3.7)

From the Definitions 4, 5 it follows immediately
By — By, . (3.8)

(d) Start with one of the known characterizations of F;J and By , e.g., by differences,
atoms, wavelets, approximation, etc. and replace the L,-norm at appropriate

places by

oy ([
sup :U or sup —— ... Pdx .
Qco \Q| oco Q™ \ Jg

L(Q)<1
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A few comments are in order. Concerning (a) we have the following.

Lemma 3.3. Let s € R and 0 < ¢ < o0.
(i) Let 0 < p < oo and 7 > 1/p. A tempered distribution f belongs to F.7 if, and only

if,

p/q 1/p
1 > o
I/ fer = sup —/ o @F e O FRON@)T|  drp < oo.
o wearman WP e 5T

Furthermore, the quasi-norms | f||gs.- and ||f||jf” are equivalent.

’ p,q
(ii) Let 0 < p < oo and 7 > 1/p. A tempered distribution f belongs to BT if, and
only if,

1/q
1 > — a/p
LT I S SR | Koy CES DRI <o,
e reainsy WP 0T, U

#

s, T
BZ’,Q

Furthermore, the quasi-norms | f| gs.7 and | f| are equivalent.

Remark 7. An elementary proof of this lemma can be found in [102, Lemma 2.2|.
Lemma 3.3 does not extend to values 7 < 1/p, see Remark 2.2 in [102, p. 23].

Next we would like to comment on (b) and (c). We will restrict ourselves to values
of 0 < 7 < 1/p, since otherwise we know the following.

Lemma 3.4. Let 7 > 1/p. Assume

1 IS | F~ ., z)|)? xl/p 00
s o s | [P @ A @] <o (9

Then f =0 a.e. follows.

Proof. Let f € 8. Suppose |F~ [,y (&) Ff(E)](xo)| > 0 and zg € Q;, for all j € Ny.
The function [F~ e, (&) Ff(€)](x)] is continuous and hence

jeNo | |Qjik,|™

1/p
sup [;/Q (2J'08|.7:_1[90jo(5) ff(f)](xmpdx] .

If | F o (&) FF(E)](z)] = 0 for all j and all x, then f must be the regular distribution

which is vanishing a.e.. O]

Remark 8. In view of (3.5) the relation in (3.9) holds for all elements in A>7, A €
{B,F}.

Of some importance for all what follows are the following properties with respect

to (b).
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Proposition 3.1. Let s € R.
(i) Let 0 < p,q < 0o and 0 < 7 < 1/p. Then the inhomogeneous Nikol’skij-Besov type
space By« is the set of all f € 8" such that

. 1 oo - a/p) M9
11 =ng@{2[/Q 2O FHON de] } <oo. (3.10)

Furthermore, ||f|

(i7) Let 0 < p < o0 and 0 < 7 < 1/p. Then the inhomogeneous Nikol’skij-Besov type
space BST_is the set of all f € 8’ such that

p?oo

* y , ; S, T
BZ:J s an equwalent quasi-norm on Bp,q .

1/p

* ‘= 311 L u YE —1 ) T D X 50
e = s sw | [ @ F@lor 6] <o G

/1

Furthermore, ||f| *B;;;o is an equivalent quasi-norm on BT .

Proof. The proof is an exercise in working with maximal functions. As the first step
we need the Peetre maximal function defined as

r e R (3.12)

o PO FAE) - 2)
i) = s = aiee

Here f € S', j € Ny and a > 0 will be chosen later on. Obviously, if |z — y| < vV/d 27,
we find

fi) < () sup LEEIE )

sup e~ S ATV ) (3.13)

Let Q := Q; with j € Nand k € Z%. Then jg > 0. Let 0 < £ < jgo. There exists an
unique dyadic cube @)y, such that Q) C Q,,. We obtain

L1 e PRI e < mas 17 o) FHEN)P @)
< (dnf i) 1+ VdTQ|

yeQZ,m

1
B |Qf,m| Ql,m

fi)Pdy (1 +Va)™|Ql. (3.14)

This simple inequality is the basis for the proof.
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Step 1. Let 0 < ¢ < co. Then (3.14) yields

Jjo—1

1 _ q/p
> (o [ IF O FAOI@P i)
Qr Jo
Jjo—1
1 ]Ql a/p
< ésq( fi ()P dy (1+ \/3)‘””)
Z ‘Q’Tp ‘Qfm‘ Qem ‘
Ja ] : . 1 a/p
< (1+ \/E)aq Z 2€sq2d(f—J)q/p2—d(€—J)qT(lQ E fi(y)? dy)
—0 Lm| P Qe,m
Jo ! q/p
< (1 + \/E)aq (Z 2d(f*j)Q/p2d(j*f)qT> sup 2€sq< f;@)p dy)
o 0<t<jg |Qe.m|™ Qe
/
< o sup 2% ( iwydy)"
0<t<jo Qeml™ Jo,,,

since 7 < 1/p. By means of the maximal inequality

1/p
ap A [ /Q <2j5\f;<x>r>pdx} <

QeQ ’Q‘ max(jg,0)<j<oo
if a > d/p, see |99, Theorem 1.1, comment on p. 3809|, we conclude
1l < sl f Ly + 11

where ¢4 does not depend on f. The reverse inequality is obvious.
Step 2. Let ¢ = oco. Then by the same type of arguments the claim follows, this time
valid also for 7 = 1/p. O

s,T )
BIHOO -

Remark 9. Part (ii) of Proposition 3.1 implies
By, =B, O<p<oo, 0<7<1/p, (3.15)

p,007
in the sense of equivalent quasi-norms.

Proposition 3.2. Let s € R and 0 < p < 0.
(i) Let 0 < ¢ < o0 and 0 < 7 < 1/p. Then the inhomogeneous Lizorkin-Triebel type
space F7 is the set of all f € 8" such that

1/p

oo p/a
/Q[Z 2”‘1If‘l[wj(f)Ff(S)](x)lq] drp <oo. (3.16)

s, v i = sup

||f|qu ‘Q’T

Furthermore, | f|5s- is an equivalent quasi-norm on Fy.T.
p,q ’

(i1) Let 0 < 7 < 1/p Then the inhomogeneous Lizorkin-Triebel type space F7 is the
set of all f € 8" such that

1/p
£l = s o { [ s 27 @ @@} <oo. 317
e o Q) Q

§=0,1,2...

* , ; , S, T
Furthermore, ”fHF;; is an equivalent quasi-norm on FJ7 .



Smoothness spaces related to Morrey spaces - a survey. 1 123

Proof. We discuss the needed modifications in comparison with the B-case using the
same notations as there. Essentially we have to estimate
Jjq—1

p/q
Cq = W / [Z 20 | 7 i00(€) FF(€))(z >|q] da

for any dyadic cube ) = @)} such that jo > 1. Using (3.14) we find

jo—1 p/q
Co < (1+Vay» \Q]TP/ [Z olsq yégfmm( )|] dx

jo—1 p/q
1 sq Q * p q/p
1+ V) o [Z 2 (9L ey ay) ]

|Q£7m| Qf,m
a/p
< ¢ sup 263‘1 / ; pd) ,
10§£<jQ |Q€,m|7—p o fi () dy

since 0 < 7 < 1/p. As above we conclude

1y < c2(lfllmgy + 1 Imsn) < eslfllmgy
where c3 does not depend on f. The reverse inequality is obvious. Also the needed
modifications in case ¢ = oo are obvious. O

Remark 10. Using atomic decompositions, Propositions 3.1 and 3.2 have been proved
in [72].

Before we continue we need to recall the definition of the Morrey spaces (mainly to
fix the notation).

Definition 6. Let 0 < v < p < oco. The space M? is defined to be the set of all
u-locally Lebesque-integrable functions f on R? such that

1/u
s == sup | B ([ (@) de) " < oo,
B

where the supremum is taken over all balls B in R?.

Remark 11. (i) Some of the basics of Morrey spaces may be found in the monograph
of Kufner, John and Fu¢ik [45] and in the survey paper of Peetre [61]. However, in [45]
these authors consider a local version, i.e., they consider the supremum with respect
to balls with volume < 1 instead of all balls.

(ii) Obviously we have

M =1L, and M = L. (3.18)

As a consequence of Holder’s inequality we conclude monotonicity with respect to wu,
ie.,
MP— MP if O<u<w<p<oo, (3.19)
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see [44]. There is no monotonicity with respect to p.
(iii) Another elementary but useful property of Morrey spaces is the following formula:

FFO) e = X2 ) e (3.20)
valid for all A > 0 and all f € MP. Hence, the spaces scale with p, independent of wu.
According to (b) we shall introduce a new scale of spaces.

Definition 7. Let (¢;); be a smooth dyadic decomposition of unity as defined in (2.5),
(2.6). Let s € R, 0 <u<p<ooand0<q<oo. Thené&;,, is defined to be the set
of all f € 8’ such that

[e.0]

0 = || (2 IF s () FHON)Y)

J=0

1/q

I/

< 00. 3.21
S B2

Remark 12. (i) With other words, the Lizorkin-Triebel-Morrey spaces &, , represent

the Lizorkin-Triebel scale built on the Morrey space M?. This scale of spaces has been
introduced by Tang and Xu [78] in the year 2005.

(ii) The definition of & , does not make sense if p = oco. This follows from (3.18) in

combination with the comments at the beginning of Subsection 2.3.

Now we turn to (c) but restricted to the B-case. With 7 as above this yields the
following.

Definition 8. Let (y;); be a smooth dyadic decomposition of unity as defined in (2.5),
(2.6). Let se R, 0 <u<p<ooand0 < q< 0.
Then N, is defined to be the set of all f € 8" such that

=, /a
7l = (D22 17 s (€ FRON ) < o0 (322)
§=0

Remark 13. (i) The Nikol'skij-Besov-Morrey spaces N, represent the Nikol’skij-
Besov scale built on the Morrey space MP. Kozono, Yamazaki [44] in 1994 and later
on Mazzucato [55] have been the first who investigated spaces of this type. In fact,
they studied two, slightly different, types of spaces. The first modification consists in
restricting the supremum within the definition of the Morrey norm to balls with volume
< 1, see Definition 11 below. For the second modification they used, instead of the
nonhomogeneous smooth dyadic decomposition of unity, the homogeneous counterpart,
see (2.1), which results in the scale of homogeneous Nikol’skij-Besov-Morrey spaces
Ny

(ii) By means of (3.18) and Definition 3 we obtain the identity N3, ., = B3, ,-

(iii) Obviously we have the coincidence

s, 1 1
Bu’g P :NS

iy O<u<p< .
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Comparing on the one side F;7 and &£ , and on the other side B, and N,jqp,

we have an immediate Conclusmn See Proposition 3.1, 3.2.

Proposition 3.3. Let s e R and 0 < p < u < o0.
(i) For 0 < g < oo we have the continuous embeddings

s S %7% $ % m
N, ap Bp.q — Bpg (3.23)
(ii) We have
ittt
Nu oo,p poo = BI%OO

in the sense of equivalent quasi-norms.
(7i) Let 0 < u < 00 and 0 < g < co. Then we have

in the sense of equivalent quasi-norms.

Remark 14. (i) Proposition 3.3 has been proved in [72|. There the authors argued with
atomic decompositions. In addition they have been able to show that the embedding
n (i) is proper if p < w.

(ii) There is an interesting difference between the scales B5.7, F5:7 on the one side and

P
S
N g €5 g O1 the other side. In fact, we have
5 11 s 11 s, 1.1
s _ du o p uop o uop __ OS
'/\/;Juu_ u,u ;)Buu —Fu,u _gp,u,u’ (324)

For u < p < oo it follows N¥

o — €y and the embedding is strict.

Sawano has investigated the relations between N, and £°

D,q,u D,q,u? see [69] . He proved
the following, compare with Lemma 3.2.

Lemma 3.5. Let 0 <u <p<oo, 0<q,q,q <00 ands e R.

(i) Then
The embedding &, . ., — J\/'psq1 u Zmplzes q= 00
(ii) Let 1 <u < p < oo. It holds
Nz?,mm qu u — Mp — '/\/;;0700 u (326)

Proof. As mentioned above, part (i) is due to Sawano [69]. If u > 1, then part (ii)
follows from part (i) by taking s = 0 and ¢ = 2, see Lemma 3.6 below. In case u = 1 we
shall use (3.6) for getting the left part in (3.26) and the standard convolution inequality

17 i () FF O sz < I1F s Ml I f laa

for deriving the second. [
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3.3 Sobolev-Morrey spaces

Many times Sobolev spaces are more important than Nikol’skij-Besov spaces. For that
reason we will have at least a short look onto the Sobolev type spaces in our framework.

Definition 9. Let m € Ny and 1 < u < p < oo. Then the Sobolev-Morrey space
W MP s the collection of all functions f € MY such that all distributional derivatives
D f of order |a| < m belong to ME. We equip this space with the norm

1 lwrm g = Z 1D fll sz -

lal<m

The first result we wish to mention is the Littlewood-Paley characterization of
Morrey spaces, see Mazzucato [54] and Sawano [70].

1 1

0, , :
Lemma 3.6. Let 1 < u < p < oo. Then M}, = F, 5" ” in the sense of equivalent
norm.

Next we recall a characterization of F},", due to Tang and Xu [78], in terms of
lower order derivatives which is of interest for its own.

Lemma 3.7. Let m € N, s e R, 0 < p < 00,0 < qg<ooand0 <7 < 1/p.
Then f € F] if, and only if, the distribution f and its distributional derivatives 9"/

™7
83

j=1,...,d, belong to F; /™ 7. Furthermore, the quasi-norms ||f|

d
aom f
R v
j=1 i

Fgy and

/]

psTm T

are equivalent.

Remark 15. Tang and Yu [78] also proved such an assertion for the Besov-Morrey

S
spaces NS, -

Als an immediate conclusion of these two lemma we obtain the identification of

m,u
F,," 7 as Sobolev-Morrey space.

1

m,t—1
Theorem 3.1. Letm € N and 1 <u < p <oo. Then W"M¥ =F, ,* * in the sense
of equivalent quasi-norms.

8,7
3.4 The spaces A -

Many times localized versions of the spaces introduced above are of interest. We recall
a few notions with this respect.

Definition 10. Let ¢ be as in (2.5). Let E be a quasi-Banach space of distributions
in 8. Then E.t is the collection of all distributions f € 8" such that

||f||Eunif ‘= sup Hf’@b( - )‘)HE < 00.
ANEZ
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Remark 16. In case & = A>7, A € {B, I'} it is well-known that smooth functions are
pointwise multipliers, see Theorem 3.10.1 below. As an immediate consequence of the
inequality (3.10.1) we observe that A7 ; does not depend on the particular choice

of 1 (in the sense of equivalent quasi-norms).
There is an other way to proceed, compare with Definition 8.

Definition 11. Let (p;); be a smooth dyadic decomposition of unity as defined in (2.5),
(2.6). Let se R, 0 <u<p<ooand0 < q<oo. Then N, 18 defined to be the set
of all f € 8" such that

[e.o]

N guw = {Zgjsq [ sup |B|» @ (/B |}——1[¢j(£) ff(f)](a:)|“da:>l/u]q}1/q .

J=0

/]

(3.27)

Here the supremum is taken with respect to all balls in R? with volume < 1.

Remark 17. These spaces have been considered, e.g., by Kozono and Yamazaki [44]
and Mazzucato [55].

Here is the counterpart in case of Lizorkin-Triebel spaces, compare with Definition

7.

Definition 12. Let (¢;); be a smooth dyadic decomposition of unity as defined in (2.5),
(2.6). Let se R, 0 <u<p<ooand0<q<oo. Then E} .. 1s defined to be the set
of all f € 8" such that

I.f]

<oo. (3.28)
L.(B)

11
ps = sup |B|r
p,q,u

|B|<1

(X217 st Fr@NN)

Also here the supremum is taken with respect to all balls in R? with volume < 1.

Problem 1. (a) Under which conditions on the parameters s,u,p,q we have the coin-
cidence o

ES =F v u (see Proposition 3.3(iii)). (3.29)

u,g;p — © p,q,unif

(b) Under which conditions on the parameters s,u,p,q we have the coincidence

S

N, ., =B

1
u

(see Proposition 3.3(i)). (3.30)

1_
’p
u,g,p — “'p,q,unif

Some comments to this problem will be given below.

3.5 A first summary

Summarizing, one could ask the question: What is the best definition ? We do not
know the answer ! But to give an answer one needs, first of all, a more precise question.
This leads to the next question. What is a list of properties of our spaces we want to
have? Here are some which are desirable:
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1. Find more transparent descriptions of AJ 7, in particular, characterizations by
differences and derivatives;
2. Key theorems (pointwise multipliers, diffeomorphisms, traces);
3. Embeddings;
4. Investigations of the scale properties (lifting, interpolation);
5. Boundedness of pseudo-differential operators;
6. Fourier multipliers;
7. Boundedness of singular integrals;
8. Discretization (wavelets, atoms);
9. Characterization by approximation;
10. Boundedness of extension operators for reasonable domains;
11. Inner descriptions for reasonable domains.

The last two are connected with the associated scales of spaces on domains (say, defined
by restrictions). In what follows we shall collect some results with respect to a certain
part of this list, e.g., the points 6., 7. and 11. are not touched.

3.6 A simplification

Here we would like to mention two remarkable results. The first one concerns the case
T=1/p.

Proposition 3.4. Let 0 < p < 00, 0 < ¢ < 00 and s € R. Then Fi3/? = F3, . in the
sense of equivalent quasi-norms.

Remark 18. (i) The identity, stated in Proposition 3.4, has been observed and proved
by Frazier and Jawerth [26]. The most important special case is

bmo = F%,=F,",  0<p<oo,

see Proposition 2.4 and Lemma 3.3(i).
(ii) Let s,p and ¢ as in Proposition 3.4. As a consequence of Definition 2, Proposition
3.4 and Theorem 3.10.4 below we obtain
s,1/p __ 10s 18 5,1/p
Feilr=Fs  =F F

0o,q,unif — p,q,unif *

As it is classically known, the Nikol’skij-Besov spaces B ., coincide with Holder-

Zygmund spaces if s > 0. To be more precise we recall the definition.
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Definition 13. (i) Let s > 0 and let s be not a natural number. Let M € Ny such that
M < s < M+1. Then a continuous function f belongs to the Hdélder-Zygmund space
Z°af

I £llze = (

)+ D7 f(x) — D f(y)

max  sup

mas =PI < o,
=M g yeRd, zy Y

max sup |D%f(x
max xew' f(@)]

(ii) Let s be a natural number. Then a continuous function f belongs to the Holder-
Zygmund space Z° if

£z = (e, sup |D° (@)
H=S7L geRd
b (max  wp D2 E DY)

lal=s=1 g heRrd, 0 A

) <.

In case s+d(T—1/p) > 0 the Lizorkin-Triebel type spaces as well as the Besov-type
spaces coincide with Holder-Zygmund spaces.

Proposition 3.5. Let s € R.
(i) Let 0 < p < 0o. Let either 0 < g < oo and T > 1/p or g =00 and T > 1/p. Then

s, 7 __ pstd(t—1/p)
Fp,q o Boo,oo

in the sense of equivalent quasi-norms.
(i) Let 0 < p < oco. Let either 0 < g < oo and T > 1/p orq=00 and 7 > 1/p. Then
s, 7 __ pst+d(t—1/p)
Bp,q - Boo,oo P
in the sense of equivalent quasi-norms.

Remark 19. This remarkable result is due to Yang and Yuan [100]. The problem,
under which restrictions on the parameters By and Fj coincide with a Holder-
Zygmund space, has been posed in [102, Remark 6.11(i)]. Their, in Subsection 6.3.2,
also some results in this direction can be found.

As a consequence, from now on we will always consider the case 0 < 7 < 1/p. We
continue with a list of basic properties of the spaces. In almost all cases we shall treat
. S, T

the scales I7, By, &, and /\/;f’q’u parallel. Sometimes also comments to B s

For e By g and Ny will be given.

p,q,unif? ~p,q,u

3.7 Pseudo-differential operators

We begin with recalling the following class of inhomogeneous symbols, which is a special
case of the Hormander class of symbols; see, for example, [33], [34] and [84, Chapter
6].

Definition 14. Let 4 € R and 0 < § < 1. A smooth function a defined on R x R?
belongs to the class Sﬁ(s(]Rd), if a satisfies the following set of differential inequalities:
for all o, 8 € N& we have

sup (14 [¢])™~* 1% D2 D a(z, )| < oc.
x,EERd
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To each symbol a we associate the corresponding pseudo-differential operator

e D))= [ alw ) FHQE,  weR, feS.
Rd

Recall, o, and o0,, have been defined in (1.1). Boundedness of pseudo-differential

operators of class Sy’ 5(R%) in the framework of the spaces A%7 has been investigated

in [102, Chapter 5|. There the main result is the following.

Theorem 3.2. Let s € R, 0 < p,g< o0 and 0 <7 < 1/p. Let p € R, a € Sy and
a(x, D) be the corresponding pseudo-differential operator.

(i) If s > 0pq (s > 0, if AyT = B> ), then a(x, D) extends continuously to a linear
continuous mapping of AStPT into A7

(1) %s S opg (s <o, if Ay = Byy ), assume further that its formal adjoint a(x, D)*
satisfies

a(z,D)*(2”) € P
for all 3 € N¢,

8] < max (Up,q -5 0) (|6| < max (Up,q -5 0) if Apg = B;:qT>‘

Then a(x, D) extends continuously to a linear continuous mapping of AZZ“’T into Ay 7.

Remark 20. (i) For a proof of Theorem 3.2 we refer to [102, Theorem 5.1]. Let us
mention that the proof given in [102]| uses ideas of Grafakos and Torres [30], which
itself has been based on [27, 24, 79, 80].

(ii) One can prove the estimate

oo D)AG; = 4371 < max sup (1 J6) =4 D2 DY a(e€)] (330
for some M := M(s,p,q,T), we refer to [102, Theorem 5.1].
(iii) The boundedness of pseudo-differential operators of the “exotic” class S’ has its
own history. Here we only mention the contributions of Meyer [56] (boundedness on
H s >0,1<p < o00), Bourdaud [6] (boundedness on B; , s >0, 1 < p,q < o0),
Runst [66] and Torres [79]. The last two authors have dealt with the general case of
Besov-Triebel-Lizorkin spaces including values of p and ¢ less than 1.

Tang and Xu [78] have considered boundedness of pseudo-differential operators in

the framework of the spaces N, and £ .

Theorem 3.3. Let 0 <u<p<oo,0<qg<ooandseR.
(i) Let a € S5 with 0 < 6 < 1. Then a(x, D) extends continuously to a linear
continuous mapping Of Ny (E5.4) intO ./\f_;q,u (£ 0ui)- |
(i1) Let a € S{,. Then a(x, D) extends continuously to a linear continuous mapping of

N (€au) i10 Ny (€14) if 5> (0,5 = 1,1 ~1).

p7q’u

Remark 21. The boundedness of pseudo-differential operators with symbols in S%(;,

0 <0 <1, on the classes N, and J\'/;q’u has been investigated by Mazzucato [55].
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As an immediate consequence of Theorems 3.2, 3.3 we have the following conclusion.

Corollary 3.1. Let s € R.

(i) Let v € N¢, 0 < p,q < 00 and 0 < 7 < 1/p. Then the operator 7 : ASTbT AT
18 continuous.

(ii) Let y € N&, 0 < u < p < o0, and 0 < q < co. Then the operator 97 : ps:;,'q]' —

. .
N g 18 continuous.

In addition, by Theorems 3.2, 3.3, we also obtain the so-called lifting properties for
the spaces A7 and N Let 0 € R. Recall that the lifting operator I, is defined by

Lf=F A+ )?Ffl, feS, (3.32)

see, for example, [83, p.58]. It is well known that I, is a one-to-one mapping from S’
onto itself. Notice that
a(z,€) = (1+|£]})°% e ST

Applying Theorems 3.2, 3.3 we have the following result, see [78] and [102, Proposi-
tion 5.1].

Corollary 3.2. Let 0,s € R.
(i) Let 0 < p,q < 00 and 0 < 7 < 1/p. Then the operator I, maps A7 isomorphically
onto Aj" 7T

(i1) Let 0 < u < p < oo and 0 < ¢ < oo. Then the operator I, maps N?

p?q?u
cally onto N5-9

p?q?u :

1somorphi-

Remark 22. (i) Corollary 3.2 with 7 = 0, i.e., in the classic situation, has been proved
at several places, see, e.g., [83, Theorem 2.3.8].

(ii) Fourier multipliers of Hormander type for the spaces A7 have been investigated
in Yang, Yuan and Zhuo [101].

3.8 Discretization of the spaces

In recent times, more and more applications of Besov and Lizorkin-Triebel spaces are
based on the possibility to discretize the spaces. Here we concentrate on characteri-
zations by wavelets but making some remarks also to the decompositions into atoms
and/or molecules.

3.8.1 Wayvelet bases in Lo

Wavelet bases in Besov and Lizorkin-Triebel spaces are a well-developed concept.
We refer to the monographs of Meyer [57|, Wojtasczyk [90] and Triebel (86, 87| for
the general d-dimensional case (for the one-dimensional case we refer to the books
of Hernandez and Weiss [32|, Kahane and Lemarie-Rieuseut [40] and the article of
Bourdaud [7]). Let a be an orthonormal scaling function on R with compact support
and of sufficiently high regularity. Let 12; be one corresponding orthonormal wavelet.
Then the tensor product ansatz yields a scaling function ¢ and associated wavelets
1, -+, Pea_q, all defined now on R see, e. g., [90, Proposition 5.2|. We suppose

¢ € CN(RY) and supp ¢ C [Ny, N)? (3.33)
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for certain natural numbers N; and N,. This implies
Y € CM(RY) and supp ¥; C [—Ns, N3¢, i=1,...,29-1 (3.34)

for some N3 € N. For k€ Z%, j € Nyand i =1, ... ,29 — 1, we shall use the standard
abbreviations in this context:

dju(x) =202 (200 — k) and Vi) = 2%, (2 — k), z € R%

Furthermore, it is well known that

d
/ Yijp(x)x¥de =0 if |y <N
R

(see [90, Proposition 3.1]) and
U= {gor: k€Z U {thijn: k€Z jENy, i=1,...,2¢ -1} (3.35)

yields an orthonormal basis of L?*(R%); see [57, Section 3.9] or [86, Section 3.1].

3.8.2 Wavelet bases of Besov type spaces
We need some more notation. Many times we shall work with X¢, the Lo-normalized
characteristic function of the cube Q. i.e.,

Xe(r) = 1Q"* xq(x).
For Q) = Qi € Q and m € Ny we put

Jo ={reZ’: |supp ¢o,NQ| >0},
Igm = {r €Z": there existsi € {1,---,2% — 1} such that |supp ¢;m, N Q| >0},

where || denotes the Lebesgue measure in RY. Let |.Jg| and |/ | denote the cardinali-
ties of these sets. It is easy to check that there exists a positive constant C' = C'(Ny, N3)
such that

|Jg| < C max(1,|Q)) and Iogm| <C max(l,?md|Q|). (3.36)

For Q = Q1 and m € Ny, we put

U Ithm and jQ = U Jle‘

li—k|<M lI—k|<M
The natural number M will be fixed later on. Finally, let

P

Ifll5s; = sup |(f, dos) P
P (@<o: Ql21) |Q|T k;
oy 1
o) 2d 1 [
s S P ST )
S

j=max(jq,0) =1 | k€lqg,;
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The functions ¢g ; and 1); j, have compact support, but are not smooth. This means,
the scalar products (f, ¢ox) and (f, ¢ ;x) with f € S’ require some interpretation. For
the technicalities around this question we refer to [87, Theorem 1.20], where wavelet
characterizations for By , and F};  are discussed in full generality.

Theorem 3.4. Let the generators ¢ and v of the wavelet system satisfy the conditions
in (8.33), (3.34) with respect to N1, No, N3 € N. Let 0 < p, ¢ < 00,

1
op <5< N and 0<r<—.
p
Then f € By if, and only if, f is locally integrable and || f||3: - < 0o. Further || f||%s -
and || f| | |

Remark 23. (i) A proof of Theorem 3.4 has been given in [102, Theorem 4.1].
(ii) For the case ¢ = oo and s < o, we refer to the next subsection in view of the
identity

Byy are equivalent.

1

&=

woop = B By if O<p<u<oo.

(iii) A wavelet characterization of the classes By for all admissible combinations of
the parameters has been obtained recently in the paper Liang, Sawano, Ullrich, Yang,
Yuan [47]. The homogeneous situation, i.e., the spaces B57, has been treated in Liang,

p,q’
Sawano, Ullrich, Yang, Yuan [46].

3.8.3 Wayvelet bases of Lizorkin-Triebel-Morrey and Nikol’skij-
Besov-Morrey spaces

Wavelet characterizations of the classes N7, and &, for all admissible combina-
tions of the parameters were derived in Sawano [69].

Theorem 3.5. Let 0 < u < p < 00, 0 < ¢ < 00 and s € R. Let the genera-
tors ¢ and ¢ of the wavelet system satisfy the conditions in (3.33), (3.34) with re-
spect to N1, Na, N3 € N and suppose min(Ny, No, N3) sufficiently large (depending on
s,p,u,q). Then f €8 belongs to E2 ., if, and only if, the following expression

P,q;u
q)l/q

291 o
112 (2D 2 v R
P i=1 j=0 keZ

p,q,u

(T

M

and ||flles = are equivalent.

s
p,q,u p,q,w

Remark 24. (i) Recall the identity

1

11
Sj%p—F;:f“ if 0O<p<u<oo, 0<qg<oo, seR.

Hence, Theorem 3.5 yields wavelet characterizations of FJ:" in case 0 <7 < 1 /.

(ii) Also in [102, Chapter 4] wavelet characterizations of the spaces F};" were proved,
but under the restriction s > 0, , (see (1.1)). However, there 7 = 1/p is admissible.
(iii) Again Liang, Sawano, Ullrich, Yang, Yuan [47| have been able to prove wavelet
characterizations of the classes F;" for all admissible combinations of the parameters.

We also refer to [46] for the homogeneous spaces F]qu .
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The counterpart for Nikol’skij-Besov-Morrey spaces, also proved by Sawano [69],
reads as follows.

Theorem 3.6. Let 0 < u < p <00, 0 < g < o0 and s € R. Let the generators
¢ and ¢ of the wavelet system satisfy the conditions in (3.33), (3.34) with respect to
N1, Na, N3 € N and suppose min(Ny, N, N3) sufficiently large (depending on s,p,u).
Then f € 8" belongs to N3 .. if, and only if, the following expression

p?q?u
21 oo q \1/q
1145, = || oz, + D2 (322 3 (f i) Rawe [, )
Poy=1 =0 keZ “

is finite. Furthermore, ||f||ﬁ/;qu and || fllnz,., are equivalent.

Remark 25. Because of

s 1
N3 = Bp% if 0<p<u<c.

U,00,p

g |=

1
u

1
Theorem 3.6 yields wavelet characterizations of the classes B;:é’o
menting Theorem 3.4 in this way.

for all s, supple-

The wavelet characterization of F3

As a direct consequence of Theorem 3.4, Proposition 3.4 and the identity F;7 = Bp7
we obtain the following corollary.

Corollary 3.3. Let 0 < g < oo and
1
dmax(O,——l) <8< 0.
q

A tempered distribution f € S belongs to FS, , if, and only if,

1
B =sup |(f,¢ox)| + sup
Fooua kez ’ (Qea: o<1} Q]9

Il £l

1
oo 241 /a

x IS ST PGy 07| <ol (3.37)

J=jq =1 k€lq,;

Furthermore, ||| f||

s and |f]

Fs, are equivalent.

Remark 26. (i) Wavelet characterizations of the homogeneous counterparts F .2 have
been obtained in [1].

(ii) Interesting limiting cases are bmo and BMO. Let ¥ be a compactly sup-
ported, continuously differentiable wavelet on R and let vy, ... ,%5i_; be the associ-
ated generators for a wavelet basis of L?(R?). Only here we shall use the convention
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Vi jr(z) = 292 4h, (275 — k) also for j < 0. Then a locally integrable function f belongs
to BMO if, and only if

1/2
oo 24-1 /

w oz (DX 3 Kol <oo

peQ Jj=jp =1 k€lp;

see [57, 5.6] and |90, Ex. 8.8|. In the literature sometimes the convention

p 1/2
[(f,ve)| = <Z |(f, wwk>|2>

is used with @ = @;x. In this language we obtain that a locally integrable function f
belongs to BMO if, and only if

1/2
sup[ Z|f¢Q ] <00,

PeQ QCP

The formula (3.37) remains to be true for bmo, i.e., if s = 0 and ¢ = 2. For this result
we refer to [1]. In addition we refer to the recent contributions by Liang, Sawano,
Ullrich, Yang, Yuan [46, 47|.

3.8.4 Discretization by means of atoms and molecules

Discretizations of FJ:" and B,/ can be obtained also by means of atoms and
molecules. Wavelet characterizations are just a special case of those characterizations.
In fact, atoms and molecules allow much more flexible decompositions of distributions.
We do not go into details, in particular, no definitions will be given. The aim is just
to collect some references.

In the framework of Nikol’skij-Besov and Lizorkin-Triebel spaces Frazier and Jaw-
erth [25, 26] have been the first who proved those characterizations. We also refer to
Triebel [85, Section 13|. Hedberg and Netrusov [31] derived characterizations by atoms
in their general axiomatic framework, which covers the scales &5 , and A . In
case of Nikol’skij-Besov-type and Lizorkin-Triebel-type spaces we also refer to Sawano,
Tanaka |71], Sawano, Yang, Yuan [72], Wang [89], Liang, Sawano, Ullrich, Yang, Yuan
[47] and [102, Section 3.1].

Closely related to the characterization by atoms and molecules is the so-called (-
transform, see Frazier and Jawerth |25, 26| for Nikol’skij-Besov and Lizorkin-Triebel
spaces. In case of the classes B, and F," the p-transform has been investigated in
[102, 2.1], see [97, 98] for the homogeneous case. In [48] Lin and Wang have introduced
spaces CMOy, by means of the ¢-transform and called them generalized Carleson
measure spaces. The coincidence of these generalized Carleson measure spaces with
clements of the scale F* o7 has been investigated in [48] and Yang, Yuan [100]. Let
us mention that Theorem 1 in [48] is not correct without further restrictions, see the
comments in [100].

Drihem [13] proved characterizations by means of maximal functions and local
means for Nikol’skij-Besov-type spaces.
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3.9 Characterization by differences

Characterizations by differences are the classical way to understand the smoothness
and integrability requirements of those complicated spaces as Nikol’skij-Besov and
Lizorkin-Triebel spaces are.

In our investigations the Nikol’skij trick playes an essential role, see [60, Sec-
tion 5.2.1]. Starting point is our smooth cut-off function 1, see (2.5). Now we define

ali) 1= (0¥ S () 0wl - ).

=0

This function ¢g belongs to C§° and satisfies ¢o(z) = 1 if |2| < 1/N and @o(z) = 0 if
|z| > 3/2. Elementary calculations for the Fourier transform yield the identity

N

Y F O FFEN) = fla) = F o276 F(E)](x) (3.9.1)

J=0

= (2m) P [ (A, 0@) F o) dy.

Here
M

AV () =3 (-1 (]‘f ) Fe+ (M - )h)

=0

with M € N and x,h € R% The formula (3.9.1) represents the bridge between the
quasi-norm of the function f in A}" with respect to the smooth dyadic decomposition
of unity associated to ¢y, see (2.6), and the behaviour of quantities involving differences

of f.

3.9.1 The characterization of Nikol’skij-Besov type spaces by
differences
We shall work with quantities related to localized moduli of smoothness:

. 1 2max(l(P),1) u q/p dt 1/q
o r = SUp / t% sup (/ AV f(x pdx) — .
Bpla reo |P" | Jo t/2<|h|<t P| w @)l 4

Furthermore we shall need the space L. By L} we denote the collection of all functions

fe Lf;"c such that
1 1/17
Iz = sup o ( [ dx) ,
P

where the supremum is taken over all dyadic cubes P with side length {(P) > 1. For
technical reasons we have to distinguish the cases p > 1 and 0 < p < 1.

/]

Theorem 3.9.1. Let 1 <p<o00,0<q¢<o00,0<7<1/p, MeN, and 0 <s< M.
Then f € BT if, and only if, f € L7 and || f| 4., < oco. Furthermore, £l + 11 £]
) p.q

and || ]

[ )
s, T
BP#I

By are equivalent.
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Remark 27. (i) For a proof we refer to [102, Theorem 4.7].

(ii) There are many references for the case 7 = 0. We refer to |60, Section 4.3|, [5,
Section 18], |3, Theorem 6.2.5], and [83, Section 2.5.12]. Let us mention that in [60], [5]
the spaces are introduced by differences and the equivalence to other characterizations,
like these in terms of Nikol’skij representations, are established afterwards.

(iii) Also Drihem [14, 15] has given characterizations of BT in terms of differences.

In the case 0 < p < 1 and and 0 < 7 < 1/p we meet a technical difficulty. We have
to add an additional term involving || f{| gso_p for P € Q, [P| > 1.

Theorem 3.9.2. Let 0 <p<1,0<qg<ooM €N, 0,<s<Mand0 <7 <1/p.
Let 0, < so <s. Then f € B/ if, and only if

I./]

B0 (2P) PN
fevrL’ —h= and fl|Ber < o00.
P {PGQ,|P|21} |P|T Y ” | BIMI
Further 11
Bpioo (2P) .
e Fll + 1A
P AT 112y + (1115
and || f||gsr are equivalent.

Remark 28. (i) A proof has been given in [102, Theorem 4.§].
(ii) In case of the Nikol’skij type spaces B;7 the general approach of Hedberg
and Netrusov [31] yields a slightly different characterization in view of the identity

1 1

B)L = N o p» see Theorem 3.9.4 below.

(iii) For 7 = 0 we refer to Triebel [84, Section 3.5.3|.

3.9.2 The characterization of Lizorkin-Triebel-Morrey spaces
by ball means of differences

The Lizorkin-Triebel-Morrey spaces & , , are special realizations of the general class
of Lizorkin-Triebel spaces considered in Hedberg and Netrusov [31], see also part II of
this survey [76]. There Hedberg and Netrusov developed an axiomatic approach to
function spaces of Nikol’skij-Besov-Lizorkin-Triebel type including characterizations
by atoms and differences. They work with ball means of differences. We shall use the
abbreviations B(z,r) :={y € R?: |z —y| <r}, z € R r > 0, and

1

1/v
boif(2) := (t_”/| . ]Ath(x)]”dh> , t>0, zeR?.
x—h|<t

The outcome is the following, we refer to [102, Section 4.5] for all details.

Theorem 3.9.3. Let 0 < v <o0,0<qg<00,0<u<p<oo, and M € N such that

1 1 1
0 <r < min(uq) and dmax{——l,———}<s<M.
r roow

Then the following assertions are equivalent for functions in L°:
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1

. Svﬂ_l
(1> f S g;,q,u = Fu,q p;‘

(i) f € L and

1 u/v 1/u
If Z;qu =sup — v / [/ |fy)]° dy} dz
” QeQ ’Q|u P Q L/B(1)

1 1 a1t \
bsup ——— / [ / £ (b f)7(2) —} dr| < oo.
eee Q[+ 7# \Je LJo t

and || f

S
gpﬂvu

The quasi-norms || f £ are equivalent.
p,q,u

Remark 29. (i) In [102, 4.3.1] we derived a number of different characterizations of
F;.7 in terms of differences. Also the arguments in the proof slightly differ. In addition,
7 = 1/p is admissible there. In this context we also have to mention Drihem [15] who
proved some characterizations by differences without taking ball means.

(ii) For 7 = 0 we refer to Seeger [73| and Triebel [84, 3.5.3|

These characterization by differences allow also some conclusions for the classes
see Definition 10

&

,q,u,unif

Corollary 3.9.1. Let 0 <v <o00,0<q¢g< 00, 0<u<p<oo, and M € N such that

1 1 1
0 <7 < min(uq) and dmax{——l,———}<s<M.
r roow
Then &5 s 15 the collection of all f € L such that

1/u

. 1 i u/v
Iflle: o = sup ——— (/ V [F ()l dy} dx)
P,q,u,uni Qeo |Qu > Q B(.Z‘,l)

lQI<1
1/u
1 1 u/q
+sup ——~ / [/ t7% (bt f)(x) @] dx < 00.
QeQ |Q up o LJo t

lQI<1

and || f

Furthermore, || f ||es

P,q,u,unif

o are equivalent.
p,q,u

,unif

Also Nikol’skij-Besov-Morrey spaces can be characterized by differences in a similar
way. The Hedberg-Netrusov approach yields the following.

Theorem 3.9.4. [et0<v <00, 0<r<u<p<oo, M eN and

r r v

1 1 1
dmax{——l,———}<s<M.

Then the following assertions are equivalent for functions in L'

(1) feNS w
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(ii) f € L% and

1 ufv 1/u
1, =sw—r ([ [ 1)
Qe |Q|»"» \J@ L/B(=,1)
1/q
1 ! v gt
+sup ——— /tsq [/ |bv,tf(x)|“da:} ay
eee |7 \Jo Q t

The quasi-norms ||f||xs = and Hij‘\/;qu are equivalent.

p,q,u

Remark 30. In view of the the identity B, o Yumlle — pfs

oo Theorem 3.9.4 supple-
ments the results of Theorems 3.9.1, 3.9.2.

Similar as in the £-case we can derive a conclusion about 'sz

,q,w,unif *
Corollary 3.9.2. Let0<v <00, 0<r<u<p<oo, M €N and
1 1 1
dmax{——l,———}<s<]\/[.
r roow

Then N¥ ¢ is the collection of all f € L'°¢ such that

p,q,u,uni

1 e 1/u
1Tl = s = ([ wra] @
o 2 lel» \Ve LVB@y
1/q
1 1 q/u
T </ t—s1 {/ |bv,tf(x)|“dx} %) < 00.
FEd ’Q|u » \Jo @

+ sup

and || f ||_/\/’;quumf are equivalent.

Furthermore, || f ||

p,q,u,unif

3.9.3 The classes B, and their relations to () spaces
In recent years, independent of the existing literature on Nikol’skij-Besov and
Lizorkin-Triebel spaces, there were a lot of interest in (), spaces.

Definition 15. Let a € R. The space Q,, is defined to be the collection of all f € Lt

such that
1 |f()—f( )|2 v
T Y
f : o 2 drd < 00,
” HQa {|Q|1 / ; |I y|d+2a y}

where Q) ranges over all cubes in R?.

Remark 31. The history of @, spaces (or simply @) spaces) started in 1995 with
a paper by Aulaskari, Xiao and Zhao [2]. Originally they were defined as spaces of
holomorphic functions on the unit disk, which are geometric in the sense that they
transform naturally under conformal mappings (see [2], [93]). Following earlier con-
tributions of Essén and Xiao [20] and Janson [36] on the boundary values of these
functions on the unit circle, Essén, Janson, Peng and Xiao [19] extended these spaces

to the d-dimensional Euclidean space R?. There is a rapidly increasing literature de-
voted to this subject, we refer, e.g., to [2, 93, 19, 20, 36, 11, 12, 91, 92, 94, 95, 103].
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Mainly as a consequence of Theorem 3.9.1 one can prove the following characteri-
zation of BS ™ see [102, 4.3.3].

p.p?

Corollary 3.9.3. Let 1 <p< o0, 0<s<1and0<7<1/p. Then f € By if, and

only if, f € Ly, and
1/p
{/ /@) = Jy)” dx dy} < 0. (3.9.2)
QJQ

o — gl

£, = sup
rr o Qeo |QIT

Furthermore, || f||L; + |||f|||g,;; and || f| g5 are equivalent.

Remark 32. (i) With other words: the spaces By’ and Q4 N Lj coincide in the sense
of equivalent norms as faras 0 < s =a <1 and 7 = % —a/d > 0.

(i) Originally Dafni and Xiao [11] posed the question on the relation of @) spaces
and Nikol’skij-Besov-Lizorkin-Triebel spaces. In fact, it holds

caioa

B2,72§_ ¢ = Qa

if « € (0,1) (d > 2), see Yang and Yuan [97, 98]. Here BQQQ?*% denotes the homoge-

1_ «o
a,5—3
neous counterpart of B,,* ¢

3.10 Key theorems

Key theorems are those which are needed to establish a corresponding theory for
function spaces on smooth domains, see Triebel’s monograph [84]. We focus on
pointwise multipliers, diffeomorphisms and traces.

3.10.1 Pointwise multipliers

Pointwise multiplication in Besov and Triebel-Lizorkin spaces has been studied
extensively in the last 30 years; see, for example, [65], [83], [52], [84], [68] and [53].
The two monographs 52|, [53] by Maz’ya and Shaposnikova are completely devoted to
this subject. However, the authors restrict their interest essentially to the Sobolev and
Bessel-potential spaces FJ,, 1 < p < oo, and the Slobodeckij spaces B, ,, 1 < p < oo.

Let X and Y be two quasi-Banach spaces of functions (distributions). Then the
basic question consists in descriptions of the associated multiplier space M (X,Y") given
by

MX,)Y)={f:f -geYforallge X}.

This space is equipped with the induced quasi-norm

I fllmxyy == sup |[f - gy

llgllx <1

Here, in this survey, we will be concerned with the easier problem of proving embed-
dings into M (X) := M (X, X) with X = A>".

The first nontrivial result we want to present is the fact that some finite Holder-
Zygmund regularity of a function is sufficient to be a pointwise multiplier for a space
AT see [102, Theorem 6.1].

p,q?
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Theorem 3.10.1. Let s e R, 0<p<o00,0<g<ooand0<7<1/p. If meN is
sufficiently large, then there exists a positive constant ¢ such that for all g € Z™ and
all f € AST

p,q’

lg - [l

In case of the F-spaces a more precise estimate can be given.

agr < cllgllzm | fllagy - (3.10.1)

Theorem 3.10.2. Let se R, 0 <p <00, 0<qg<o0 and 0 <7< 1/p. Suppose

d
Q>max{]s], I—)—d—s} : (3.10.2)

Then the embedding 2° C M(F}:;T) holds.

Remark 33. (i) For 7 = 0 this is a well-known result, we refer to [83, Corollary 2.8.2],
[26] and [68, Section 4.7.1].

(ii) The proof can be found in [102, 6.1.2.3]. It uses paramultiplication, very much
in the spirit of [83, Corollary 2.8.2]. Further tools are Marschall’s pointwise inequality
for certain convolutions, see [50], [39] and [102, 6.1.2.1], and Nikol’skij type character-
izations, see [83, 2.5.2|, [96], (68, 2.3.2] and [102, 6.1.2.1]. Probably these arguments
carry over the case of Besov type spaces. But we did not check all details.

Multiplication Algebras

This time we study the question under which conditions we have the embedding X C
M(X). Just for having a simple reference at hand we concentrate on the F-case.
Essentially the same methods as used in the proof of Theorem 3.10.2 apply, see [102,
6.1.2.4].

Theorem 3.10.3. Let 0 < p < o0, 0<g<o00,0<7<1/pands > o,, Then there
exists a positive constant ¢ such that for all f,g € F;)7 N Lo,

1f - gllegy < e (If e llgllegy + lgllz.llf]

Remark 34. (i) The estimate (3.10.3) implies that the spaces F)J,7 N Lo, are algebras
with respect to pointwise multiplication.

(ii) For 7 = 0 we refer to Runst [67] and [68, Theorem 4.6.4/2].

(iii) Such Moser-type estimates have been proved also for the spaces Ny qus s€€
Mazzucato [55].

For) - (3.10.3)

Combining Theorem 3.10.3 with some embeddings, see Lemma 3.2, combined with
Corollary 2.2 and Proposition 2.6 in [102], we get the following conclusion concerning
the algebra properties of F .

Corollary 3.10.1. Let se R, 0 <p <00, 0<g<o0 and 0 <71 < 1/p such that

1 1
s>dmaxs ——71,——1,.
p q

Then Fj:[ is an algebra with respect to pointwise multiplication.
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Remark 35. (i) For 7 = 0 this question had some history. For the Bessel potential
spaces Hy = F;V’QO, p € (1,00), it was settled by Strichartz [77|. This was extended by
Triebel in [82, Section 2.6.2|, Kalyabin [41, 42| and Franke [23]; see also [68, Theorem
4.6.4/1].

(ii) Characterizations of M (W), H> and M (B; )) can be found in the monographs
of Maz’ya and Shaposnikova [52, 53|. For a characterization of M(F}; ), s > d/p, we
refer to Franke [23| and [68, Theorem 4.9.1/1].

(iii) Mazzucato [55] proved that the classes N, are algebras with respect to
pointwise multiplication if either 1 < v < p < o0, s > d/p and 1 < ¢ < o0 or

I<u<p<oo,s>d/pand g=1.
The case 7 = 1/p can be treated separately, see [102, Theorem 6.4].

Theorem 3.10.4. Let 0 < ¢ < 00 and 014 < s < oo. Then M(FZ, ) = F3 , in the
sense of equivalent quasi-norms.

Remark 36. (i) The assertion of Theorem 3.10.4 does not extend to s = 0. E.g, if
q = 2, the correct description of M (bmo ) was found by Janson [35|. For a description
of M(BY, ) we refer to [43].

(ii) Theorem 3.10.4 implies that the spaces F;, , are algebras with respect to point-
wise multiplication, at least, if s > 0y 4. For ¢ > 1 a different proof of this fact can be
found in Marschall [49].

A characterization of M(F} ), s <d/p

As said above, in case 7 = 0 much more is known; see, for example, [74]. Of certain
relevance for this survey is the description of M(F; ), 0<p <1, 0,, < s < d/p, given
by Netrusov [58].

Theorem 3.10.5. Let 0 <p <1,0< g <00 and 0,4 < s <d/p. Then f € M(F} )
if, and only if, f € Lo, [ can be represented in S’ in the form

F=Y_fi, swpFfic{e: 27N <PM), jeEN,
j=0

supp Ffo C{&:  |&] <2}, such that

o p/q
M(f) := sup sup 995 =9) / [Z 2k8q|fk(x)|q] dx < 00.
B(xz,2779)

Jj€Ng zeRd

Remark 37. (i) Clearly, if either f € F;jfﬁﬁ or f € E,, ,, u=d/s (see Proposition
3.3(iii) and Definition 11), then M(f) < oo, i.e.,

g l_s
Lo N " < Lo NEj, ., — M(FST) (3.10.4)

if o,, < s <d/p.
(ii) Netrusov [58] did not publish a proof of this remarkable result. A proof under
more restrictive conditions can be found in [75].



Smoothness spaces related to Morrey spaces - a survey. 1 143

For the special case p = ¢ = 1 some more simple characterizations of M (F} ;) have
been found by Maz’ya and Shaposnikova; see [52, 3.4.2].

Theorem 3.10.6. Let s = m + o, where m is a nonnegative integer and o is a real
number with o € (0,1). Then f € M(F},) if, and only if, f € Ly and

sup sup  r°7¢ Z (/( D f(y)| dy

1 d
0<r<l zeR la<m

/ / IDf(y Daf(l’)|dy da:) <oo. (3.10.5)
(z,r) J B(z,r)

|y — x|+

We would like to reformulate Theorem 3.10.6. Therefore we recall that A)7 . has
been defined in Definition 10. Let m = 0 in Theorem 3.10.6. Then, as an immediate

conclusion of Corollary 3.9.3, we obtain the following.

Corollary 3.10.2. Let 0 < s < 1. Then f € M(Fy,) if, and only if f € Loo N FV irs
where T =1 — s/d.

3.10.2 Diffeomorphisms

By C we denote the collection of all complex-valued bounded and continuous func-
tions on R?. We begin with recalling the notion of diffeomorphisms; see, for example,
[84, p.206].

Definition 16. (i) Let m € N. A one-to-one mapping y = ¥(z) of R? onto R? is
called a m-diffeomorphism if the components ; of ¢ := (1, ,¢q) have classical
derivatives up to order m with D*; € C if 0 < |a] < m, and |det.(x)] > ¢ > 0 for
some positive constant ¢ and all x € RY, where 1, stands for the Jacobian matriz of 1.
(i) The mapping 1 is called a diffeomorphism if it is a m-diffeomorphism for any
m € N.

1

We remark that if ¢ is a m-diffeomorphism, then its inverse ¢~" is also a m-

diffeomorphism. Further, if v is a diffeomorphism then the mapping

Dy: f— fou, feds,

makes sense. If ¢ is only a m-diffeomorphism and f € A3 7, the composition f o can
be defined via smooth atoms for A>". We do not go into details at this technical point.
Based on the smooth atomic decomp081t10n of A7 in [102, 3.1] we have the following

conclusion.

Theorem 3.10.7. Let m € N, ¢ be an m-diffeomorphism. Let 0 < p,q < 00, s € R
and 0 <71 <1/p. If m € N is sufficiently large, then D, is an isomorphic mapping of

AsT onto itself (p < oo if AyT = F5T).

Remark 38. For the case 7 = 0 we refer to [84, Proposition 4.3.1, Remark 4.3.1,
Theorem 4.3.2]. However, in special situations much more is known. In case of Sobolev
spaces the group around Reshetnyak, Gol’dstein and Vodop’yanov worked on this topic,
see, e.g., [29]. Also Maz’ya [51] has dealt with this topic. In case of Besov spaces we
refer to Vodop’yanov [88] and to Bourdaud and Sickel [8].
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3.10.3 Traces

We are interested in properties of the trace operator
Tr:  f(a',zq) — f(2',0), a' = (z1, ..., xq_1) € R, (3.10.6)

For 7 = 0 such problems have been treated extensively; see the remarks below. Clearly,
(3.10.6) makes sense for all continuous functions f and therefore, for smooth atoms.
Frazier and Jawerth |25, 26] were the first which have shown that the use of atomic
decompositions in the context of trace problems is a very good and successful idea. By
employing the method of Frazier and Jawerth Sawano, Yang and Yuan in [72] have been
able to characterize the images of the homogeneous spaces A;:; under the mapping Tr.
Essentially by the same arguments the nonhomogeneous case has been treated in [102,

Theorem 6.8|.

Theorem 3.10.8. Let d>2,0<p,qg<00,0<7<1/p and

s>%+(d—1)<m—l>

1 dr
. . . . . 3,,7117 _
Then Tr is a linear, continuous and surjective operator from By onto Bpq" "(RIY)

o1 dr
and from F57 onto F,p," N (RT) (p < 00).

Remark 39. (i) For 7 = 0 we are back in the classical case. It is interesting to notice
that the mapping Tr does not lead to a change of the smoothness s only, but also to a
change of the Morrey parameter 7.

(ii) For the classical trace theorems for Nikol’xsij-Besov spaces and Triebel-Lizorkin
spaces, i.e., the case 7 = 0, we refer to Nikol’skij [59], [60], Besov, Iljin and Nikol’skij
[4], Jawerth [37], Frazier and Jawerth |25, 26|, and Triebel [83, Section 2.7.2|, |84,
Section 4.4].

(iii) Limiting situations for 7 = 0, i.e. s = % + (d — 1) max{0,1/p — 1}, are
investigated in Peetre [63], Burenkov and Gol’dman [10], Frazier and Jawerth [26],
Triebel [84, Section 4.4.3] and Farkas, Johnsen and S. [21].

(iv) Frazier and Jawerth proved in |26, Theorem 11.2] that in case s > 0, 0 < ¢ < o0,
the operator Tr extends to a linear, continuous and surjective mapping of F5,  (R?) onto
F3 (R*1). In this context we also refer to Marschall [49].
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