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Abstract. We discuss different strategies to introduce smoothness spaces related to
Morrey spaces.

1 Introduction

There is a rapidly increasing number of papers dealing with smoothness spaces related
to Morrey spaces. It will be the aim of this survey to give an introduction to one of these
approaches, namely the Nikol’skij-Besov type spaces Bs, τ

p,q and the Lizorkin-Triebel type
spaces F s, τ

p,q , and to compare it to some of the other existing possibilities to introduce
smoothness spaces of Nikol’skii-Besov-Lizorkin-Triebel type related to Morrey spaces.
In fact, we shall consider all together eight scales of function spaces: beside of Bs, τ

p,q

and F s, τ
p,q we also discuss the scales N s

p,q,u, Esp,q,u,N s
p,q,u,Es

p,q,u, B
s, τ
p,q,unif and F s, τ

p,q,unif (all
definitions will be given in Subsections 3.1-3.3). Whereas

Es0p0,q0,u0
∈ {F s, τ

p,q : s ∈ R, 0 < p <∞, 0 < q ≤ ∞, τ ≥ 0}

and
N s0
p0,∞,u0

∈ {Bs,τ
p,∞ : s ∈ R, 0 < p ≤ ∞, τ ≥ 0}

for all admissible values of s0, p0, u0 and q0 hold, we have

N s0
p0,q0,u0

6∈ {Bs,τ
p,q : s ∈ R, 0 < p ≤ ∞, 0 < q ≤ ∞, τ ≥ 0}

for all admissible values of s0, p0, u0 and 0 < q0 < ∞. The differences between the
Nikol’skij-Besov type scale Bs, τ

p,q and the Nikol’skij-Besov-Morrey scale N s
p,q,u (q <∞)

will be discussed in certain detail.
One comment to the notation used in this paper. The situation in the literature is

a little bit chaotic. At least in some cases there is no common well-accepted notation.
Not only the letter for certain parameters is changing but also its position. The reader
should always have a look at the used definition when comparing the results within
this survey with others.
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This survey is organized as follows. First of all, it consists of two parts. Part I is
devoted to a discussion of the definition and some basic properties. In particular, in
Section 2 of Part I we recall certain parts of the theory of spaces of functions of bounded
mean oscillations. We try to explain why the space bmo (the local version of BMO )
can be understood as a model case for the scales of spaces we will discuss later on. To
be more precise, the specific Fourier analytic description of bmo , due to Frazier and
Jawerth [26] and recalled below, is the point of departure which leads to the definition
of the scales F s, τ

p,q and Bs, τ
p,q . The main properties of this four parameter scale of function

spaces will be discussed in the following Section 3. Here we mainly follow the recent
lecture note [102]. So we will give proofs only in exceptional cases. Many times some
comments to the idea or method of proof will be given. This will be the contents of part
I. In Part II we will discuss interpolation properties of these scales, in particular real
interpolation of F s, τ

p,q and Bs, τ
p,q , Gagliardo-Nirenberg type inequalities, and embeddings.

Part II will contain new material and is written with complete proofs. Furthermore,
we will recall there some different approaches to smoothness spaces related to Morrey
spaces, due to Hedberg, Netrusov and Triebel. In a final section we shall collect some
open problems. Here we also add a few comments on possible generalizations.

In my opinion the theory of the spaces F s, τ
p,q and Bs, τ

p,q is far away from being com-
plete. In the presented survey we simply arrange what is essentially known.

Notation

As usual, N denotes the natural numbers, N0 the natural numbers including 0, Z the
integers and R the real numbers. C denotes the complex numbers and Rd the Euclidean
d-space. All functions are assumed to be complex-valued, i.e., we consider functions
f : Rd → C. In general the classes of functions (distributions) are defined on Rd. So we
will drop it in notation. Let S denote the Schwartz space of all rapidly decreasing and
infinitely differentiable functions on Rd. By S ′ we denote the collection of all complex-
valued tempered distributions on Rd, i.e., the topological dual of S, equipped with
the strong topology. The symbol F refers to the Fourier transform, F−1 to its inverse
transformation, both defined on S ′. All function spaces, which we consider in this
paper, are subspaces of S ′, i.e. spaces of equivalence classes w.r.t. almost everywhere
equality. However, if such an equivalence class contains a continuous representative,
then usually we work with this representative and call also the equivalence class a
continuous function.

If E and F are two quasi-Banach spaces, then the symbol E ↪→ F indicates that the
embedding is continuous. By C∞

0 we denote the set of all test functions, i.e., the set of
all compactly supported and infinitely differentiable functions. If E is a quasi-Banach
function space on Rd we denote by E`oc the collection of all functions f having the
property that the products ϕf ∈ E for all ϕ ∈ C∞

0 . The symbol L(E,F ) denotes the
set of all linear and bounded operators T : E → F . In case E = F we simply write
L(E).

As usual, the symbol c denotes a positive constant which depends only on the fixed
parameters d, s, τ, p, q and probably on auxiliary functions, unless otherwise stated; its
value may vary from line to line. Sometimes we will use the symbol “ <∼ ” instead
of “≤”. The meaning of A <∼ B is given by: there exists a constant c > 0 such that
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A ≤ cB. The symbol A � B will be used as an abbreviation of A <∼ B <∼ A. Many
times we shall need the following abbreviations:

σp := d max
(
0,

1

p
− 1
)

and σp,q := d max
(
0,

1

p
− 1,

1

q
− 1
)
. (1.1)

2 Functions of bounded mean oscillations and Lizorkin-Triebel
spaces with p = ∞

This section has preparatory character. From our point of view, the function spaces
BMO , bmo and in particular F s

∞,q are the point of departure for the generalizations
F s, τ
p,q and Bs, τ

p,q which we will discuss in detail in Section 3.

2.1 Functions of bounded mean oscillations

In 1961 John and Nirenberg [38] introduced the class BMO . A locally integrable
function f on Rd belongs to BMO (has bounded mean oscillation) if

‖f‖BMO := sup
Q

1

|Q|

∫
Q

|f(x)− fQ| dx <∞ ,

where the supremum is taken over all cubes Q with sides parallel to the coordinate
axes. Here fQ denotes the mean-value of f on Q, i.e.,

fQ :=
1

|Q|

∫
Q

f(x) dx .

Of course, ‖ · ‖BMO is not a norm. To turn it into a norm we have to calculate modulo
constants, i.e., one has to consider classes of functions

[f ]1 := {f + c : c ∈ C}

instead of functions. Nowadays BMO has established as a good substitute of L∞
in harmonic analysis. Of course, L∞ ↪→ BMO and the embedding is strict, since
log |x| ∈ BMO . Polynomials, except constants, do not belong to BMO . Of certain
importance for us is the Fourier-analytic description of BMO .

The Fourier-analytic description of BMO

Let ϕ ∈ C∞
0 be a function such that

ϕ(x) := 1 if
1

2
≤ |x| ≤ 2

and
ϕ(x) := 0 if either |x| ≤ 1

4
or |x| ≥ 4 .
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Then, with ϕj(x) := ϕ(2−j+1x), j ∈ Z, we can construct a smooth dyadic homogeneous
decomposition of unity. Indeed, an elementary calculation yields

∞∑
j=−∞

ϕj(x) = 1 for all x 6= 0 . (2.1)

Here dyadic refers to the fact that supp ϕj is contained in the dyadic annulus

2j−3 ≤ |x| ≤ 2j+1 , j ∈ Z .

For f ∈ S ′ the product ϕj · Ff belongs to S ′ as well and consequently, by the famous
Paley-Wiener-Schwartz theorem, F−1[ϕj(ξ)Ff(ξ)](x) is an analytic function (can be
extended to ...). Let P denote the collection of all polynomials. We put

[f ] := {f + p : p ∈ P} , f ∈ S ′ .

Because of (2.1) we obtain, that for every f ∈ S ′ there exists a polynomial p such that

f + p =
∑
j∈Z

F−1[ϕj(ξ)Ff(ξ)] (convergence in S ′) . (2.2)

Sometimes (2.2) is called a Littlewood-Paley decomposition of f (or at the same time
of [f ]). Those Littlewood-Paley decompositions are the basis for many function spaces,
see in particular Section 3. However, for the moment we need a more general concept.

Proposition 2.1. Let (ϕj)j be the smooth dyadic decomposition of unity defined above.
Then we have the following equivalence. A locally integrable function f ∈ S ′ belongs to
BMO if, and only if, there exists a sequence (fj)j of L∞-functions such that

f =
∞∑

j=−∞

F−1[ϕj(ξ)Ffj(ξ)](x) (2.3)

and ∥∥∥( ∞∑
j=−∞

|fj(x)|2
)1/2 ∥∥∥

L∞
<∞ . (2.4)

Remark 1. (i) The formulation in Proposition 2.1 requires an interpretation. Since
the origin does not belong to the support of ϕj Ffj for all j ∈ Z, the right-hand side
in (2.3) does not see polynomials. Hence, the better frame here is to calculate modulo
polynomials of arbitrary order. By S ′/P we denote the associated quotient space. Then
the correct formulation is as follows: The class [g]1, associated to a locally integrable
function g, belongs to BMO if, and only if, in the class [g] there exists a representative
f such that (2.3) (with convergence in S ′) and (2.4) hold.
(ii) A proof of Proposition 2.1 has been given by Triebel in 1978 in his booklet [81,
Theorem 3.2.2].



114 W. Sickel

The next step has been done by Frazier and Jawerth in their famous paper [26] in
1990. They have found a bit easier Fourier-analytic description of BMO . To describe
this we need dyadic cubes. A cube Q such that

Q = Qj,k := {x ∈ Rd : 2−jk` ≤ x` < 2−j(k` + 1) , ` = 1, . . . , d} ,

for some j ∈ Z and some k ∈ Zd is called dyadic. The collection of all dyadic cubes
will be denoted by Q. For a given cube Q the number `(Q) is its side-length. To each
dyadic cube we associate one more number, namely

jQ := − log2 `(Q) , Q ∈ Q .

Proposition 2.2. Let (ϕj)j be a smooth dyadic decomposition of unity. A class [f ] ∈
S ′/P belongs to BMO if, and only if,

‖f‖∗BMO := sup
Q∈Q

 1

|Q|

∫
Q

∞∑
j=jQ

|F−1[ϕj(ξ)Ff(ξ)](x)|2 dx


1/2

<∞.

Remark 2. As in Proposition 2.1 BMO has to be interpreted as a subset of S ′/P , or,
with other words, the class [g]1, associated to a locally integrable function g, belongs
to BMO if, and only if, in the class [g] there exists a representative f such that
‖f‖∗BMO <∞.

2.2 Functions of local bounded mean oscillations

Less known than BMO is the following local variant bmo .

Definition 1. A locally integrable function f on Rd belongs to bmo (has local bounded
mean oscillations) if f ∈ BMO and

‖f‖bmo := ‖f‖BMO + sup
Q

1

|Q|

∫
Q

|f(x)| dx <∞ ,

where the supremum is taken over all cubes Q with sides parallel to the coordinate axes
and side-length `(Q) ≤ 1.

Obviously ‖ · |bmo ‖ is a norm, we do not calculate modulo constants this time.
Furthermore, L∞ ↪→ bmo ↪→ BMO and all embeddings are proper. Of course, the
second embedding requires an interpretation. But here it is enough to associate to each
f ∈ bmo the class [f ]1. The function log |x| does not belong to bmo , but ψ(x) log |x| ∈
bmo , where ψ ∈ C∞

0 .

The Fourier-analytic description of bmo

Let ψ ∈ C∞
0 be a function such that

ψ(x) := 1 if |x| ≤ 1 and ψ(x) := 0 if |x| ≥ 3

2
. (2.5)
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Then, with ϕ0 := ψ,

ϕ(x) := ϕ0(x/2)− ϕ0(x) and ϕj(x) := ϕ(2−j+1x) , j ∈ N , (2.6)

we have
∞∑
j=0

ϕj(x) = 1 for all x ∈ Rd .

This time we have constructed an inhomogeneous smooth dyadic decomposition of
unity. The main difference to a homogeneous smooth dyadic decomposition of unity
consists in the fact that this time a certain neighborhood of the origin belongs to
exactly one support of the functions ϕj, j ∈ N0. Again Triebel [81] has found the
Fourier-analytic description of bmo.

Proposition 2.3. Let (ϕj)j be the smooth dyadic decomposition of unity defined in
(2.5), (2.6). Then we have the following equivalence. A locally integrable function
f ∈ S ′ belongs to bmo if, and only if, there exists a sequence (fj)j of L∞-functions
such that

f =
∞∑
j=0

F−1[ϕj(ξ)Ffj(ξ)](x) (2.7)

and ∥∥∥( ∞∑
j=0

|fj(x)|2
)1/2 ∥∥∥

L∞
<∞ . (2.8)

Remark 3. This time there is no need for an interpretation. Since 0 ∈ supp ϕ0 the
right-hand side in (2.7) is sensitive with respect to polynomials.

Also Frazier and Jawerth have considered the nonhomogeneous situation and proved
the following characterization of bmo , see [26].

Proposition 2.4. Let (ϕj)j be a smooth dyadic decomposition of unity defined in (2.5),
(2.6). A locally integrable function f ∈ S ′ belongs to bmo if, and only if,

‖f‖∗bmo := sup
Q∈Q

`(Q)≤1

 1

|Q|

∫
Q

∞∑
j=jQ

|F−1[ϕj(ξ)Ff(ξ)](x)|2 dx


1/2

<∞.

2.3 The inhomogeneous Lizorkin-Triebel spaces with p = ∞
Originally the definition of the scale of Lizorkin-Triebel spaces F s

p,q was restricted to
values of p < ∞. At an early stage of the theory Triebel [82, 2.1.4] had shown that
the naive extension of the Fourier-analytic definition is not meaningful. In his book
[83] from 1983 he defined for the first time the spaces F s

∞,q, 1 < q < ∞ (with some
forerunners in [81], there denoted by Ls∞,q). The point of view, he had chosen, has been
a completion of the duality relation(

F s
p,q

)′
= F−s

p′,q′ , 1 < p <∞ , 1 < q <∞ , (2.9)

see [83, 2.11.2]. His definition was oriented on two facts:
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• the duality relation
(
h1

)′
= bmo , where h1 denotes the local Hardy space, proved

by Goldberg [28] in 1979;

• the identification of h1 as F 0
1,2, for which we refer to Bui Huy Qui [9].

Probably one should mention here as well the famous and earlier known homogeneous
counterparts of these assertions:

• the duality relation
(
H1

)′
= BMO , where H1 denotes the real Hardy space,

proved by Fefferman [22] in 1971;

• the identification of H1 as Ḟ 0
1,2, observed by Peetre [62, 64] around 1974.

With these facts at hand Triebel introduced F s
∞,q, 1 < q <∞ in the spirit of Proposition

2.3, extending the validity of (2.9) to p = 1. We skip this and concentrate on the
Frazier-Jawerth approach to these classes in [26]. In the spirit of Proposition 2.4 they
used the following definition.

Definition 2. Let (ϕj)j be a smooth dyadic decomposition of unity as defined in (2.5),
(2.6). Let 0 < q <∞ and s ∈ R. Then F s

∞,q is the collection of all distributions f ∈ S ′
such that

‖f‖F s
∞,q

:= sup
Q∈Q

`(Q)≤1

 1

|Q|

∫
Q

∞∑
j=jQ

2jsq |F−1[ϕj(ξ)Ff(ξ)](x)|q dx


1/q

<∞. (2.10)

Remark 4. (i) The classes F s
∞,q do not depend on the chosen decomposition of unity

in the sense of equivalent quasi-norms. F s
∞,q is a quasi-Banach space (Banach space if

q ≥ 1). In case of 1 < q <∞ we have coincidence of the two approaches. For all these
statements we refer to [26].
(ii) Proposition 2.4 yields F 0

∞,2 = bmo in the sense of equivalent norms.
(iii) Replacing

sup
Q∈Q

`(Q)≤1

simply by sup
Q∈Q

(2.11)

we get an equivalent quasi-norm in F s
∞,q. This is a consequence of an easy calculation.

2.4 Lizorkin-Triebel and Nikol’skij-Besov spaces on Rd

For convenience of the reader we also recall the Fourier-analytic definition of Nikol’skij-
Besov and Lizorkin-Triebel spaces on Rd.

Definition 3. Let (ϕj)j be a smooth dyadic decomposition of unity as defined in (2.5),
(2.6). Let 0 < q ≤ ∞ and s ∈ R.
(i) Let 0 < p ≤ ∞. Then the Nikol’skij-Besov space Bs

p,q is the collection of all
distributions f ∈ S ′ such that

‖f‖Bs
p,q

:=

{
∞∑
j=0

2jsq ‖F−1[ϕj(ξ)Ff(ξ)] ‖qLp

}1/q

<∞. (2.12)
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(ii) Let 0 < p < ∞. Then the Lizorkin-Triebel space F s
p,q is the collection of all

distributions f ∈ S ′ such that

‖f‖F s
p,q

:=
∥∥∥( ∞∑

j=0

2jsq |F−1[ϕj(ξ)Ff(ξ)](x)|q
)1/q∥∥∥

Lp

<∞. (2.13)

Remark 5. (i) For the nowadays well-developed theory of Nikol’skij-Besov and
Lizorkin-Triebel spaces on Rd we refer to the monographs [3, 4, 5, 60, 65, 83, 84, 86].
(ii) We shall use the convention

F s
∞,∞ := Bs

∞,∞ , s ∈ R . (2.14)

Definition 2 combined with the Fourier-analytic definition of the Lizorkin-Triebel
and Nikol’skij-Besov spaces are the sources for the following far-reaching generalization.

3 Inhomogeneous spaces of Nikol’skij-Besov-Lizorkin-Triebel
type

This is the main section of this survey. Here we discuss one approach to smoothness
spaces related to Morrey spaces.

3.1 The definition of F s, τ
p,q and Bs, τ

p,q and some elementary prop-
erties

In comparison with F s
p,q and Bs

p,q we introduce a fourth parameter τ by replacing |Q|
in (2.10) by |Q|τ .

Definition 4. Let (ϕj)j be a smooth dyadic decomposition of unity as defined in (2.5),
(2.6). Let τ, s ∈ R and 0 < q ≤ ∞.
(i) Let 0 < p <∞. Then the inhomogeneous Lizorkin-Triebel type space F s, τ

p,q is defined
to be the set of all f ∈ S ′ such that

‖f‖F s, τ
p,q

:=

sup
Q∈Q

1

|Q|τ


∫
Q

 ∞∑
j=max(jQ,0)

2jsq|F−1[ϕj(ξ)Ff(ξ)](x)|q
p/q dx


1/p

<∞ .

(ii) Let 0 < p ≤ ∞. Then the inhomogeneous Nikol’skij-Besov type space Bs, τ
p,q is

defined to be the set of all f ∈ S ′ such that

‖f‖Bs, τ
p,q

:= sup
Q∈Q

1

|Q|τ


∞∑

j=max(jQ,0)

[∫
Q

(2js|F−1[ϕj(ξ)Ff(ξ)](x)|)p dx
]q/p

1/q

<∞ .

(3.1)
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Remark 6. (i) El Baraka [16, 17, 18] introduced and investigated the scale of Nikol’skij-
Besov type spaces Bs, τ

p,q in the Banach case.
(ii) Quite recently, namely 2008 and 2010, see [97] (Banach case), [98] (quasi-Banach
case), Dachun Yang and Wen Yuan have introduced and investigated the homogeneous
counterparts of these Lizorkin-Triebel type spaces (which means one has to use the
smooth dyadic decomposition of unity in (2.1) and to calculate in S ′/P). The inho-
mogeneous spaces F s, τ

p,q are considered for the first time in [102].
(iii) Many times the scale F s, τ

p,q behave as the scale Bs, τ
p,q . In those situations, to avoid

unattractive repetitions, we shall use the notation As, τp,q with A ∈ {F,B}.

There is a number of immediate consequences of this definition:

• In case τ < 0, by considering |Q| → ∞, we obviously obtain As,τp,q = {0}, A ∈
{F,B}.

• For τ = 0 we have As,0p,q = Asp,q, A ∈ {F,B}.

• We always have F s,τ
p,p = Bs,τ

p,p .

• In the definition of the scale F s, τ
p,q the case p = ∞ is excluded. However, with

τ = 1/q we have the identity

F s
∞,q = F s,1/q

q,q , s ∈ R, 0 < q <∞ , (3.2)

in the sense of equivalent quasi-norms, see Definition 2 and (2.11).

Some basic properties of As, τp,q are collected in the following lemma, see [102,
Lemma 2.1, Proposition 2.3].

Lemma 3.1. (i) The classes As, τp,q are quasi-Banach spaces, i. e., complete quasi-normed
spaces. With ε := min{1, p, q} it holds

‖f + g‖εAs, τ
p, q
≤ ‖f‖εAs, τ

p, q
+ ‖g‖εAs, τ

p, q

for all f, g ∈ As, τp,q .
(ii) We always have

S ↪→ As, τp,q ↪→ S ′ .
(iii) One can replace the set Q by the set of all cubes with sides parallel to the axes in
Definition 4 obtaining an equivalent quasi-norm on that way. With the same argument
on can replace the set of all such cubes by the set of all balls.

In the next lemma we collect elementary embeddings, see [102, Proposition 2.1].

Lemma 3.2. With q0 ≤ q1 we have

As,τp,q0 ↪→ As,τp,q1 . (3.3)

Furthermore, we have
Bs,τ
p,min(p,q) ↪→ F s,τ

p,q ↪→ Bs,τ
p,max(p,q) (3.4)

and
As,τp,q ↪→ Bs,τ

p,∞ A ∈ {B,F} . (3.5)
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Proof. The embedding (3.3) is a consequence of `q0 ↪→ `q1 . Next, (3.4) follows from( ∞∑
j=0

‖ fj ‖vLp

)1/v

≤
∥∥∥( ∞∑

j=0

|fj|q
)1/q∥∥∥

Lp

≤
( ∞∑
j=0

‖ fj ‖uLp

)1/u

(3.6)

with u := min(p, q) and v := max(p, q) and valid for all sequences (fj)j of measurable
functions. Finally, (3.5) is implied by (3.3) and (3.4).

3.2 A first discussion of the definition

Comparing Definition 4 with the definitions of F s
∞,q, F s

p,q and Bs
p,q there arise a number

of other possibilities to define smoothness spaces in the above spirit. Here are some of
them.

(a) Replace supQ∈Q by sup Q∈Q
`(Q)≤1

in Definition 4, see (2.11).

(b) Replace ∑
j=max(jQ,0)

by
∑
j=0

.

in Definition 4, see Definition 3.

(c) We concentrate on the B-case. Replace

sup
Q∈Q

1

|Q|τ


∞∑

j=max(jQ,0)

. . . by

{
∞∑
j=0

sup
Q∈Q

1

|Q|τq
. . .

For later use we introduce the following notation.

Definition 5. Let (ϕj)j be a smooth dyadic decomposition of unity as defined in
(2.5), (2.6). Let τ, s ∈ R and 0 < q, p ≤ ∞. Then the space Bs, τp,q is defined to be
the set of all f ∈ S ′ such that

‖f‖Bs, τ
p,q

:=

{
∞∑
j=0

sup
Q∈Q

1

|Q|τ

[∫
Q

(2js|F−1[ϕj(ξ)Ff(ξ)](x)|)p dx
]q/p}1/q

<∞ .

(3.7)

From the Definitions 4, 5 it follows immediately

Bs, τp,q ↪→ Bs, τ
p,q . (3.8)

(d) Start with one of the known characterizations of F s
p,q and Bs

p,q, e.g., by differences,
atoms, wavelets, approximation, etc. and replace the Lp-norm at appropriate
places by

sup
Q∈Q

1

|Q|τ
(∫

Q

| . . . |pdx
)1/p

or sup
Q∈Q

`(Q)≤1

1

|Q|τ
(∫

Q

| . . . |pdx
)1/p

.
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A few comments are in order. Concerning (a) we have the following.

Lemma 3.3. Let s ∈ R and 0 < q ≤ ∞.
(i) Let 0 < p <∞ and τ ≥ 1/p. A tempered distribution f belongs to F s, τ

p,q if, and only
if,

‖f‖#
F s, τ

p,q
:= sup

{P∈Q, |P |≤1}

1

|P |τ


∫
P

 ∞∑
j=max(jP ,0)

(2js|F−1[ϕj(ξ)Ff(ξ)](x)|)q
p/q dx


1/p

<∞ .

Furthermore, the quasi-norms ‖f‖F s, τ
p,q

and ‖f‖#
F s, τ

p,q
are equivalent.

(ii) Let 0 < p ≤ ∞ and τ ≥ 1/p. A tempered distribution f belongs to Bs, τ
p,q if, and

only if,

‖f‖#
Bs, τ

p,q
:= sup

{P∈Q, |P |≤1}

1

|P |τ


∞∑

j=max(jP ,0)

[∫
P

(2js|F−1[ϕj(ξ)Ff(ξ)](x)|)p dx
]q/p

1/q

<∞ .

Furthermore, the quasi-norms ‖f‖Bs, τ
p,q

and ‖f‖#
Bs, τ

p,q
are equivalent.

Remark 7. An elementary proof of this lemma can be found in [102, Lemma 2.2].
Lemma 3.3 does not extend to values τ < 1/p, see Remark 2.2 in [102, p. 23].

Next we would like to comment on (b) and (c). We will restrict ourselves to values
of 0 ≤ τ ≤ 1/p, since otherwise we know the following.

Lemma 3.4. Let τ > 1/p. Assume

sup
Q∈Q

1

|Q|τ
sup

j=0,1,...

[∫
Q

(2js|F−1[ϕj(ξ)Ff(ξ)](x)|)p dx
]1/p

<∞ . (3.9)

Then f = 0 a.e. follows.

Proof. Let f ∈ S ′. Suppose |F−1[ϕj0(ξ)Ff(ξ)](x0)| > 0 and x0 ∈ Qj,kj
for all j ∈ N0.

The function |F−1[ϕj0(ξ)Ff(ξ)](x)| is continuous and hence

sup
j∈N0

[
1

|Qj,kj
|τp

∫
Qj,kj

(2j0s|F−1[ϕj0(ξ)Ff(ξ)](x)|)p dx

]1/p

= ∞ .

If |F−1[ϕj0(ξ)Ff(ξ)](x)| = 0 for all j and all x, then f must be the regular distribution
which is vanishing a.e..

Remark 8. In view of (3.5) the relation in (3.9) holds for all elements in As, τp,q , A ∈
{B,F}.

Of some importance for all what follows are the following properties with respect
to (b).
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Proposition 3.1. Let s ∈ R.
(i) Let 0 < p, q <∞ and 0 ≤ τ < 1/p. Then the inhomogeneous Nikol’skij-Besov type
space Bs, τ

p,q is the set of all f ∈ S ′ such that

‖f‖∗Bs, τ
p,q

:= sup
Q∈Q

1

|Q|τ

{
∞∑
j=0

[∫
Q

(2js|F−1[ϕj(ξ)Ff(ξ)](x)|)p dx
]q/p}1/q

<∞ . (3.10)

Furthermore, ‖f‖∗
Bs, τ

p,q
is an equivalent quasi-norm on Bs, τ

p,q .
(ii) Let 0 < p ≤ ∞ and 0 ≤ τ ≤ 1/p. Then the inhomogeneous Nikol’skij-Besov type
space Bs,τ

p,∞ is the set of all f ∈ S ′ such that

‖f‖∗Bs,τ
p,∞

:= sup
Q∈Q

1

|Q|τ
sup

j=0,1,...

[∫
Q

(2js|F−1[ϕj(ξ)Ff(ξ)](x)|)p dx
]1/p

<∞ . (3.11)

Furthermore, ‖f‖∗
Bs,τ

p,∞
is an equivalent quasi-norm on Bs,τ

p,∞.

Proof. The proof is an exercise in working with maximal functions. As the first step
we need the Peetre maximal function defined as

f ∗j (x) := sup
z∈Rd

F−1[ϕj(ξ)Ff(ξ)](x− z)

(1 + 2j|z|)a
, x ∈ Rd . (3.12)

Here f ∈ S ′, j ∈ N0 and a > 0 will be chosen later on. Obviously, if |x− y| <
√
d 2−j,

we find

f ∗j (x) ≤ f ∗j (y) sup
z∈Rd

(1 + 2j|z − y − x|)a

(1 + 2j|z|)a
≤ (1 +

√
d)a f ∗j (y) . (3.13)

Let Q := Qj,k with j ∈ N and k ∈ Zd. Then jQ > 0. Let 0 ≤ ` < jQ. There exists an
unique dyadic cube Q`,m such that Q ⊂ Q`,m. We obtain

∫
Q

|F−1[ϕ`(ξ)Ff(ξ)](x)|p dx ≤ max
x∈Q

|F−1[ϕ`(ξ)Ff(ξ)](x)|p |Q|

≤ ( inf
y∈Q`,m

f ∗` (y))
p (1 +

√
d)ap |Q|

≤ 1

|Q`,m|

∫
Q`,m

f ∗` (y)
p dy (1 +

√
d)ap |Q| . (3.14)

This simple inequality is the basis for the proof.
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Step 1. Let 0 < q <∞. Then (3.14) yields
jQ−1∑
`=0

2`sq
( 1

|Q|τp

∫
Q

|F−1[ϕ`(ξ)Ff(ξ)](x)|p dx
)q/p

≤
jQ−1∑
`=0

2`sq
( 1

|Q|τp
|Q|
|Q`,m|

∫
Q`,m

f ∗` (y)
p dy (1 +

√
d)ap

)q/p
≤ (1 +

√
d)aq

jQ−1∑
`=0

2`sq2d(`−j)q/p2−d(`−j)qτ
( 1

|Q`,m|τp

∫
Q`,m

f ∗` (y)
p dy

)q/p
≤ (1 +

√
d)aq

( jQ−1∑
`=0

2d(`−j)q/p2d(j−`)qτ
)

sup
0≤`<jQ

2`sq
( 1

|Q`,m|τp

∫
Q`,m

f ∗` (y)
p dy

)q/p
≤ c1 sup

0≤`<jQ
2`sq

( 1

|Q`,m|τp

∫
Q`,m

f ∗` (y)
p dy

)q/p
,

since τ < 1/p. By means of the maximal inequality

sup
Q∈Q

1

|Q|τ
sup

max(jQ,0)≤j<∞

[∫
Q

(2js|f ∗j (x)|)p dx
]1/p

≤ c2 ‖f‖Bs,τ
p,∞ ,

if a > d/p, see [99, Theorem 1.1, comment on p. 3809], we conclude

‖f‖∗Bs, τ
p,q
≤ c3(‖f‖Bs, τ

p,q
+ ‖f‖Bs,τ

p,∞) ≤ c4 ‖f‖Bs, τ
p,q
,

where c4 does not depend on f . The reverse inequality is obvious.
Step 2. Let q = ∞. Then by the same type of arguments the claim follows, this time
valid also for τ = 1/p.

Remark 9. Part (ii) of Proposition 3.1 implies

Bs,τp,∞ = Bs,τ
p,∞, 0 < p ≤ ∞, 0 ≤ τ ≤ 1/p , (3.15)

in the sense of equivalent quasi-norms.

Proposition 3.2. Let s ∈ R and 0 < p <∞.
(i) Let 0 < q < ∞ and 0 ≤ τ < 1/p. Then the inhomogeneous Lizorkin-Triebel type
space F s, τ

p,q is the set of all f ∈ S ′ such that

‖f‖∗F s, τ
p,q

:= sup
Q∈Q

1

|Q|τ


∫
Q

[
∞∑
j=0

2jsq |F−1[ϕj(ξ)Ff(ξ)](x)|q
]p/q

dx


1/p

<∞ . (3.16)

Furthermore, ‖f‖∗
F s, τ

p,q
is an equivalent quasi-norm on F s, τ

p,q .
(ii) Let 0 ≤ τ ≤ 1/p. Then the inhomogeneous Lizorkin-Triebel type space F s,τ

p,∞ is the
set of all f ∈ S ′ such that

‖f‖∗F s,τ
p,∞

:= sup
Q∈Q

1

|Q|τ

{∫
Q

sup
j=0,1,2...

2js |F−1[ϕj(ξ)Ff(ξ)](x)|p dx
}1/p

<∞ . (3.17)

Furthermore, ‖f‖∗
F s,τ

p,∞
is an equivalent quasi-norm on F s,τ

p,∞.



Smoothness spaces related to Morrey spaces - a survey. I 123

Proof. We discuss the needed modifications in comparison with the B-case using the
same notations as there. Essentially we have to estimate

CQ :=
1

|Q|τp

∫
Q

[
jQ−1∑
`=0

2`sq |F−1[ϕ`(ξ)Ff(ξ)](x)|q
]p/q

dx

for any dyadic cube Q = Qj,k such that jQ ≥ 1. Using (3.14) we find

CQ ≤ (1 +
√
d)ap

1

|Q|τp

∫
Q

[
jQ−1∑
`=0

2`sq inf
y∈Q`,m

|f ∗` (y)|q
]p/q

dx

≤ (1 +
√
d)ap

1

|Q|τp

[
jQ−1∑
`=0

2`sq
( |Q|
|Q`,m|

∫
Q`,m

|f ∗` (y)|p dy
)q/p]p/q

≤ c1 sup
0≤`<jQ

2`sq
( 1

|Q`,m|τp

∫
Q`,m

f ∗` (y)
p dy

)q/p
,

since 0 ≤ τ < 1/p. As above we conclude

‖f‖∗F s, τ
p,q
≤ c2(‖f‖F s, τ

p,q
+ ‖f‖Bs,τ

p,∞) ≤ c3 ‖f‖F s, τ
p,q

,

where c3 does not depend on f . The reverse inequality is obvious. Also the needed
modifications in case q = ∞ are obvious.

Remark 10. Using atomic decompositions, Propositions 3.1 and 3.2 have been proved
in [72].

Before we continue we need to recall the definition of the Morrey spaces (mainly to
fix the notation).

Definition 6. Let 0 < u ≤ p ≤ ∞. The space Mp
u is defined to be the set of all

u-locally Lebesgue-integrable functions f on Rd such that

‖f‖Mp
u

:= sup
B
|B|1/p−1/u

(∫
B

|f(x)|u dx
)1/u

<∞ ,

where the supremum is taken over all balls B in Rd.

Remark 11. (i) Some of the basics of Morrey spaces may be found in the monograph
of Kufner, John and Fučik [45] and in the survey paper of Peetre [61]. However, in [45]
these authors consider a local version, i.e., they consider the supremum with respect
to balls with volume ≤ 1 instead of all balls.
(ii) Obviously we have

Mp
p = Lp and M∞

u = L∞ . (3.18)

As a consequence of Hölder’s inequality we conclude monotonicity with respect to u,
i.e.,

Mp
w ↪→Mp

u if 0 < u ≤ w ≤ p ≤ ∞ , (3.19)
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see [44]. There is no monotonicity with respect to p.
(iii) Another elementary but useful property of Morrey spaces is the following formula:

‖ f(λ · ) ‖Mp
u

= λ−d/p ‖ f( · ) ‖Mp
u
, (3.20)

valid for all λ > 0 and all f ∈Mp
u. Hence, the spaces scale with p, independent of u.

According to (b) we shall introduce a new scale of spaces.

Definition 7. Let (ϕj)j be a smooth dyadic decomposition of unity as defined in (2.5),
(2.6). Let s ∈ R, 0 < u ≤ p < ∞ and 0 < q ≤ ∞. Then Esp,q,u is defined to be the set
of all f ∈ S ′ such that

‖f‖Es
p,q,u

:=
∥∥∥( ∞∑

j=0

2jsq|F−1[ϕj(ξ)Ff(ξ)](x)|q
)1/q ∥∥∥

Mp
u

<∞ . (3.21)

Remark 12. (i) With other words, the Lizorkin-Triebel-Morrey spaces Esp,q,u represent
the Lizorkin-Triebel scale built on the Morrey space Mp

u. This scale of spaces has been
introduced by Tang and Xu [78] in the year 2005.
(ii) The definition of Esp,q,u does not make sense if p = ∞. This follows from (3.18) in
combination with the comments at the beginning of Subsection 2.3.

Now we turn to (c) but restricted to the B-case. With τ as above this yields the
following.

Definition 8. Let (ϕj)j be a smooth dyadic decomposition of unity as defined in (2.5),
(2.6). Let s ∈ R, 0 < u ≤ p ≤ ∞ and 0 < q ≤ ∞.
Then N s

p,q,u is defined to be the set of all f ∈ S ′ such that

‖f‖N s
p,q,u

:=
( ∞∑
j=0

2jsq ‖F−1[ϕj(ξ)Ff(ξ)] ‖qMp
u

)1/q

<∞ . (3.22)

Remark 13. (i) The Nikol’skij-Besov-Morrey spaces N s
p,q,u represent the Nikol’skij-

Besov scale built on the Morrey space Mp
u. Kozono, Yamazaki [44] in 1994 and later

on Mazzucato [55] have been the first who investigated spaces of this type. In fact,
they studied two, slightly different, types of spaces. The first modification consists in
restricting the supremum within the definition of the Morrey norm to balls with volume
≤ 1, see Definition 11 below. For the second modification they used, instead of the
nonhomogeneous smooth dyadic decomposition of unity, the homogeneous counterpart,
see (2.1), which results in the scale of homogeneous Nikol’skij-Besov-Morrey spaces
Ṅ s
p,q,u.

(ii) By means of (3.18) and Definition 3 we obtain the identity N s
∞,q,u = Bs

∞,q.
(iii) Obviously we have the coincidence

B
s, 1

u
− 1

p
u,q = N s

p,q,u , 0 < u ≤ p ≤ ∞ .
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Comparing on the one side F s, τ
p,q and Esu,q,p and on the other side Bs, τ

p,q and N s
u,q,p,

we have an immediate conclusion, see Proposition 3.1, 3.2.

Proposition 3.3. Let s ∈ R and 0 < p ≤ u ≤ ∞.
(i) For 0 < q <∞ we have the continuous embeddings

N s
u,q,p = B

s, 1
p
− 1

u
p,q ↪→ B

s, 1
p
− 1

u
p,q . (3.23)

(ii) We have

N s
u,∞,p = B

s, 1
p
− 1

u
p,∞ = B

s, 1
p
− 1

u
p,∞

in the sense of equivalent quasi-norms.
(iii) Let 0 < u <∞ and 0 < q ≤ ∞. Then we have

Esu,q,p = F
s, 1

p
− 1

u
p,q

in the sense of equivalent quasi-norms.

Remark 14. (i) Proposition 3.3 has been proved in [72]. There the authors argued with
atomic decompositions. In addition they have been able to show that the embedding
in (i) is proper if p < u.
(ii) There is an interesting difference between the scales Bs, τ

p,q , F
s, τ
p,q on the one side and

N s
p,q,u, Esp,q,u on the other side. In fact, we have

N s
p,u,u = B

s, 1
u
− 1

p
u,u ↪→ B

s, 1
u
− 1

p
u,u = F

s, 1
u
− 1

p
u,u = Esp,u,u . (3.24)

For u < p <∞ it follows N s
p,u,u ↪→ Esp,u,u and the embedding is strict.

Sawano has investigated the relations between N s
p,q,u and Esp,q,u, see [69]. He proved

the following, compare with Lemma 3.2.

Lemma 3.5. Let 0 < u ≤ p <∞, 0 < q, q0, q1 ≤ ∞ and s ∈ R.
(i) Then

N s
p,min(q,u),u ↪→ Esp,q,u ↪→ N s

p,∞,u . (3.25)

The embedding Esp,q0,u ↪→ N s
p,q1,u

implies q = ∞.
(ii) Let 1 ≤ u ≤ p <∞. It holds

N 0
p,min(q,u),u ↪→Mp

u ↪→ N 0
p,∞,u . (3.26)

Proof. As mentioned above, part (i) is due to Sawano [69]. If u > 1, then part (ii)
follows from part (i) by taking s = 0 and q = 2, see Lemma 3.6 below. In case u = 1 we
shall use (3.6) for getting the left part in (3.26) and the standard convolution inequality

‖F−1[ϕj(ξ)Ff(ξ)] ‖Mp
u
<∼ ‖F−1ϕj ‖L1 ‖ f ‖Mp

u

for deriving the second.
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3.3 Sobolev-Morrey spaces

Many times Sobolev spaces are more important than Nikol’skij-Besov spaces. For that
reason we will have at least a short look onto the Sobolev type spaces in our framework.

Definition 9. Let m ∈ N0 and 1 ≤ u ≤ p ≤ ∞. Then the Sobolev-Morrey space
WmMp

u is the collection of all functions f ∈Mp
u such that all distributional derivatives

Dαf of order |α| ≤ m belong to Mp
u. We equip this space with the norm

‖f‖WmMp
u

:=
∑
|α|≤m

‖Dαf‖Mp
u
.

The first result we wish to mention is the Littlewood-Paley characterization of
Morrey spaces, see Mazzucato [54] and Sawano [70].

Lemma 3.6. Let 1 < u ≤ p < ∞. Then Mp
u = F

0, 1
u
− 1

p

u,2 in the sense of equivalent
norm.

Next we recall a characterization of F s, τ
p,q , due to Tang and Xu [78], in terms of

lower order derivatives which is of interest for its own.

Lemma 3.7. Let m ∈ N, s ∈ R, 0 < p < ∞, 0 < q ≤ ∞ and 0 ≤ τ < 1/p.
Then f ∈ F s, τ

p,q if, and only if, the distribution f and its distributional derivatives ∂mf
∂xm

j
,

j = 1, . . . , d, belong to F s−m, τ
p,q . Furthermore, the quasi-norms ‖f‖F s, τ

p,q
and

‖f‖F s−m, τ
p,q

+
d∑
j=1

∥∥∥∂mf
∂xmj

∥∥∥
F s−m, τ

p,q

are equivalent.

Remark 15. Tang and Yu [78] also proved such an assertion for the Besov-Morrey
spaces N s

p,q,u.

As an immediate conclusion of these two lemma we obtain the identification of
F
m, 1

u
− 1

p

u,2 as Sobolev-Morrey space.

Theorem 3.1. Let m ∈ N and 1 < u ≤ p <∞. Then WmMp
u = F

m, 1
u
− 1

p

u,2 in the sense
of equivalent quasi-norms.

3.4 The spaces As,τ
p,q,unif

Many times localized versions of the spaces introduced above are of interest. We recall
a few notions with this respect.

Definition 10. Let ψ be as in (2.5). Let E be a quasi-Banach space of distributions
in S ′. Then Eunif is the collection of all distributions f ∈ S ′ such that

‖f‖Eunif
:= sup

λ∈Z
‖f ψ( · − λ)‖E <∞ .
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Remark 16. In case E = As, τp,q , A ∈ {B,F} it is well-known that smooth functions are
pointwise multipliers, see Theorem 3.10.1 below. As an immediate consequence of the
inequality (3.10.1) we observe that As,τp,q,unif does not depend on the particular choice
of ψ (in the sense of equivalent quasi-norms).

There is an other way to proceed, compare with Definition 8.

Definition 11. Let (ϕj)j be a smooth dyadic decomposition of unity as defined in (2.5),
(2.6). Let s ∈ R, 0 < u ≤ p ≤ ∞ and 0 < q ≤ ∞. Then N s

p,q,u is defined to be the set
of all f ∈ S ′ such that

‖f‖Ns
p,q,u

:=
{ ∞∑

j=0

2jsq
[

sup
|B|≤1

|B|
1
p
− 1

u (

∫
B

|F−1[ϕj(ξ)Ff(ξ)](x)|udx
)1/u]q}1/q

<∞ .

(3.27)
Here the supremum is taken with respect to all balls in Rd with volume ≤ 1.

Remark 17. These spaces have been considered, e.g., by Kozono and Yamazaki [44]
and Mazzucato [55].

Here is the counterpart in case of Lizorkin-Triebel spaces, compare with Definition
7.

Definition 12. Let (ϕj)j be a smooth dyadic decomposition of unity as defined in (2.5),
(2.6). Let s ∈ R, 0 < u ≤ p <∞ and 0 < q ≤ ∞. Then Es

p,q,u is defined to be the set
of all f ∈ S ′ such that

‖f‖Es
p,q,u

:= sup
|B|≤1

|B|
1
p
− 1

u

∥∥∥( ∞∑
j=0

2jsq|F−1[ϕj(ξ)Ff(ξ)](x)|q
)1/q ∥∥∥

Lu(B)
<∞ . (3.28)

Also here the supremum is taken with respect to all balls in Rd with volume ≤ 1.

Problem 1. (a) Under which conditions on the parameters s, u, p, q we have the coin-
cidence

Es
u,q,p = F

s, 1
p
− 1

u

p,q,unif (see Proposition 3.3(iii)) . (3.29)

(b) Under which conditions on the parameters s, u, p, q we have the coincidence

N s
u,q,p = B

s, 1
p
− 1

u

p,q,unif (see Proposition 3.3(i)) . (3.30)

Some comments to this problem will be given below.

3.5 A first summary

Summarizing, one could ask the question: What is the best definition ? We do not
know the answer ! But to give an answer one needs, first of all, a more precise question.
This leads to the next question. What is a list of properties of our spaces we want to
have? Here are some which are desirable:
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1. Find more transparent descriptions of As, τp,q , in particular, characterizations by
differences and derivatives;

2. Key theorems (pointwise multipliers, diffeomorphisms, traces);

3. Embeddings;

4. Investigations of the scale properties (lifting, interpolation);

5. Boundedness of pseudo-differential operators;

6. Fourier multipliers;

7. Boundedness of singular integrals;

8. Discretization (wavelets, atoms);

9. Characterization by approximation;

10. Boundedness of extension operators for reasonable domains;

11. Inner descriptions for reasonable domains.

The last two are connected with the associated scales of spaces on domains (say, defined
by restrictions). In what follows we shall collect some results with respect to a certain
part of this list, e.g., the points 6., 7. and 11. are not touched.

3.6 A simplification

Here we would like to mention two remarkable results. The first one concerns the case
τ = 1/p.

Proposition 3.4. Let 0 < p < ∞, 0 < q ≤ ∞ and s ∈ R. Then F
s,1/p
p,q = F s

∞,q in the
sense of equivalent quasi-norms.

Remark 18. (i) The identity, stated in Proposition 3.4, has been observed and proved
by Frazier and Jawerth [26]. The most important special case is

bmo = F 0
∞,2 = F

0,1/p
p,2 , 0 < p <∞ ,

see Proposition 2.4 and Lemma 3.3(i).
(ii) Let s, p and q as in Proposition 3.4. As a consequence of Definition 2, Proposition
3.4 and Theorem 3.10.4 below we obtain

F s,1/p
p,q = F s

∞,q = F s
∞,q,unif = F

s,1/p
p,q,unif .

As it is classically known, the Nikol’skij-Besov spaces Bs
∞,∞ coincide with Hölder-

Zygmund spaces if s > 0. To be more precise we recall the definition.



Smoothness spaces related to Morrey spaces - a survey. I 129

Definition 13. (i) Let s > 0 and let s be not a natural number. Let M ∈ N0 such that
M < s < M + 1. Then a continuous function f belongs to the Hölder-Zygmund space
Zs if

‖ f ‖Zs :=
(

max
|α|≤M

sup
x∈Rd

|Dαf(x)|
)

+
(

max
|α|=M

sup
x,y∈Rd, x 6=y

|Dαf(x)−Dαf(y)|
|x− y|s−M

)
<∞ .

(ii) Let s be a natural number. Then a continuous function f belongs to the Hölder-
Zygmund space Zs if

‖ f ‖Zs :=
(

max
|α|≤s−1

sup
x∈Rd

|Dαf(x)|
)

+
(

max
|α|=s−1

sup
x,h∈Rd, h 6=0

|Dαf(x+ 2h)− 2Dαf(x+ h) +Dαf(x)|
|h|

)
<∞ .

In case s+d(τ−1/p) > 0 the Lizorkin-Triebel type spaces as well as the Besov-type
spaces coincide with Hölder-Zygmund spaces.

Proposition 3.5. Let s ∈ R.
(i) Let 0 < p <∞. Let either 0 < q <∞ and τ > 1/p or q = ∞ and τ ≥ 1/p. Then

F s, τ
p,q = Bs+d(τ−1/p)

∞,∞

in the sense of equivalent quasi-norms.
(ii) Let 0 < p ≤ ∞. Let either 0 < q <∞ and τ > 1/p or q = ∞ and τ ≥ 1/p. Then

Bs, τ
p,q = Bs+d(τ−1/p)

∞,∞

in the sense of equivalent quasi-norms.

Remark 19. This remarkable result is due to Yang and Yuan [100]. The problem,
under which restrictions on the parameters Bs, τ

p,q and F s, τ
p,q coincide with a Hölder-

Zygmund space, has been posed in [102, Remark 6.11(i)]. Their, in Subsection 6.3.2,
also some results in this direction can be found.

As a consequence, from now on we will always consider the case 0 ≤ τ ≤ 1/p. We
continue with a list of basic properties of the spaces. In almost all cases we shall treat
the scales F s, τ

p,q , Bs, τ
p,q , Esp,q,u and N s

p,q,u parallel. Sometimes also comments to Bs, τ
p,q,unif ,

F s, τ
p,q,unif , E

s
p,q,u and N s

p,q,u will be given.

3.7 Pseudo-differential operators

We begin with recalling the following class of inhomogeneous symbols, which is a special
case of the Hörmander class of symbols; see, for example, [33], [34] and [84, Chapter
6].

Definition 14. Let µ ∈ R and 0 ≤ δ ≤ 1. A smooth function a defined on Rd × Rd

belongs to the class Sµ1,δ(Rd), if a satisfies the following set of differential inequalities:
for all α, β ∈ Nd

0 we have

sup
x, ξ∈Rd

(1 + |ξ|)−µ−δ |α|+|β||Dα
x D

β
ξ a(x, ξ)| <∞.
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To each symbol a we associate the corresponding pseudo-differential operator

a(x,D)(f)(x) :=

∫
Rd

eixξ a(x, ξ)Ff(ξ) dξ , x ∈ Rd , f ∈ S .

Recall, σp and σp,q have been defined in (1.1). Boundedness of pseudo-differential
operators of class Sµ1,δ(Rd) in the framework of the spaces As, τp,q has been investigated
in [102, Chapter 5]. There the main result is the following.

Theorem 3.2. Let s ∈ R, 0 < p, q ≤ ∞ and 0 ≤ τ ≤ 1/p. Let µ ∈ R, a ∈ Sµ1,1 and
a(x,D) be the corresponding pseudo-differential operator.
(i) If s > σp,q (s > σp if As, τp,q = Bs, τ

p,q ), then a(x,D) extends continuously to a linear
continuous mapping of As+µ,τp,q into As, τp,q .
(ii) If s ≤ σp,q (s ≤ σp if As, τp,q = Bs, τ

p,q ), assume further that its formal adjoint a(x,D)∗

satisfies
a(x,D)∗(xβ) ∈ P

for all β ∈ Nd
0,

|β| ≤ max
(
σp,q − s, 0

) (
|β| ≤ max

(
σp,q − s, 0

)
if As, τp,q = Bs, τ

p,q

)
.

Then a(x,D) extends continuously to a linear continuous mapping of As+µ,τp,q into As, τp,q .

Remark 20. (i) For a proof of Theorem 3.2 we refer to [102, Theorem 5.1]. Let us
mention that the proof given in [102] uses ideas of Grafakos and Torres [30], which
itself has been based on [27, 24, 79, 80].
(ii) One can prove the estimate

‖a(x,D)|As, τp,q → As, τp,q ‖ <∼ max
|α|,|β|≤M

sup
x,ξ

(1 + |ξ|)−µ−δ |α|+|β| |Dα
x D

β
ξ a(x, ξ)| (3.31)

for some M := M(s, p, q, τ), we refer to [102, Theorem 5.1].
(iii) The boundedness of pseudo-differential operators of the “exotic” class Sµ1,1 has its
own history. Here we only mention the contributions of Meyer [56] (boundedness on
Hs
p , s > 0, 1 < p < ∞), Bourdaud [6] (boundedness on Bs

p,q, s > 0, 1 ≤ p, q ≤ ∞),
Runst [66] and Torres [79]. The last two authors have dealt with the general case of
Besov-Triebel-Lizorkin spaces including values of p and q less than 1.

Tang and Xu [78] have considered boundedness of pseudo-differential operators in
the framework of the spaces N s

p,q,u and Esp,q,u.

Theorem 3.3. Let 0 < u ≤ p <∞, 0 < q <∞ and s ∈ R.
(i) Let a ∈ S0

1,δ with 0 ≤ δ < 1. Then a(x,D) extends continuously to a linear
continuous mapping of N s

p,q,u (Esp,q,u) into N s
p,q,u (Esp,q,u).

(ii) Let a ∈ S0
1,1. Then a(x,D) extends continuously to a linear continuous mapping of

N s
p,q,u (Esp,q,u) into N s

p,q,u (Esp,q,u) if s > d
(
0, 1

u
− 1, 1

q
− 1
)
.

Remark 21. The boundedness of pseudo-differential operators with symbols in S0
1,δ,

0 ≤ δ ≤ 1, on the classes N s
p,q,u and Ṅ s

p,q,u has been investigated by Mazzucato [55].
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As an immediate consequence of Theorems 3.2, 3.3 we have the following conclusion.

Corollary 3.1. Let s ∈ R.
(i) Let γ ∈ Nd

0, 0 < p, q ≤ ∞ and 0 ≤ τ ≤ 1/p. Then the operator ∂γ : A
s+|γ|, τ
p, q → As, τp,q

is continuous.
(ii) Let γ ∈ Nd

0, 0 < u ≤ p < ∞, and 0 < q < ∞. Then the operator ∂γ : N s+|γ|
p,q,u →

N s
p,q,u is continuous.

In addition, by Theorems 3.2, 3.3, we also obtain the so-called lifting properties for
the spaces As, τp,q and N s

p,q,u. Let σ ∈ R. Recall that the lifting operator Iσ is defined by

Iσf := F−1[(1 + | · |2)σ/2Ff ] , f ∈ S ′; (3.32)

see, for example, [83, p. 58]. It is well known that Iσ is a one-to-one mapping from S ′
onto itself. Notice that

a(x, ξ) := (1 + |ξ|2)σ/2 ∈ Sσ1,0.
Applying Theorems 3.2, 3.3 we have the following result, see [78] and [102, Proposi-
tion 5.1].

Corollary 3.2. Let σ, s ∈ R.
(i) Let 0 < p, q ≤ ∞ and 0 ≤ τ ≤ 1/p. Then the operator Iσ maps As, τp,q isomorphically
onto As−σ, τp, q .
(ii) Let 0 < u ≤ p <∞ and 0 < q <∞. Then the operator Iσ maps N s

p,q,u isomorphi-
cally onto N s−σ

p,q,u.

Remark 22. (i) Corollary 3.2 with τ = 0, i.e., in the classic situation, has been proved
at several places, see, e.g., [83, Theorem 2.3.8].
(ii) Fourier multipliers of Hörmander type for the spaces As, τp,q have been investigated
in Yang, Yuan and Zhuo [101].

3.8 Discretization of the spaces

In recent times, more and more applications of Besov and Lizorkin-Triebel spaces are
based on the possibility to discretize the spaces. Here we concentrate on characteri-
zations by wavelets but making some remarks also to the decompositions into atoms
and/or molecules.

3.8.1 Wavelet bases in L2
Wavelet bases in Besov and Lizorkin-Triebel spaces are a well-developed concept.

We refer to the monographs of Meyer [57], Wojtasczyk [90] and Triebel [86, 87] for
the general d-dimensional case (for the one-dimensional case we refer to the books
of Hernandez and Weiss [32], Kahane and Lemarie-Rieuseut [40] and the article of
Bourdaud [7]). Let φ̃ be an orthonormal scaling function on R with compact support
and of sufficiently high regularity. Let ψ̃ be one corresponding orthonormal wavelet.
Then the tensor product ansatz yields a scaling function φ and associated wavelets
ψ1, · · · , ψ2d−1, all defined now on Rd; see, e. g., [90, Proposition 5.2]. We suppose

φ ∈ CN1(Rd) and supp φ ⊂ [−N2, N2]
d (3.33)
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for certain natural numbers N1 and N2. This implies

ψi ∈ CN1(Rd) and supp ψi ⊂ [−N3, N3]
d , i = 1, . . . , 2d − 1 (3.34)

for some N3 ∈ N. For k ∈ Zd, j ∈ N0 and i = 1, . . . , 2d − 1, we shall use the standard
abbreviations in this context:

φj,k(x) := 2jd/2φ(2jx− k) and ψi,j,k(x) := 2jd/2ψi(2
jx− k), x ∈ Rd.

Furthermore, it is well known that∫ d

R
ψi,j,k(x)x

γ dx = 0 if |γ| ≤ N1

(see [90, Proposition 3.1]) and

Ψ := {φ0,k : k ∈ Zd} ∪ {ψi,j,k : k ∈ Zd, j ∈ N0, i = 1, . . . , 2d − 1} (3.35)

yields an orthonormal basis of L2(Rd); see [57, Section 3.9] or [86, Section 3.1].

3.8.2 Wavelet bases of Besov type spaces
We need some more notation. Many times we shall work with χ̃Q, the L2-normalized

characteristic function of the cube Q. i.e.,

χ̃Q(x) := |Q|−1/2 χQ(x) .

For Q = Qjk ∈ Q and m ∈ N0 we put

JQ :=
{
r ∈ Zd : | supp φ0,r ∩Q| > 0

}
,

IQ,m :=
{
r ∈ Zd : there exists i ∈ {1, · · · , 2d − 1} such that | supp ψi,m,r ∩Q| > 0

}
,

where |·| denotes the Lebesgue measure in Rd. Let |JQ| and |IQ,m| denote the cardinali-
ties of these sets. It is easy to check that there exists a positive constant C = C(N2, N3)
such that

|JQ| ≤ C max(1, |Q|) and |IQ,m| ≤ C max(1, 2md|Q|) . (3.36)

For Q = Qjk and m ∈ N0, we put

IQ,m :=
⋃

|l−k|≤M

IQjl,m and JQ ≡
⋃

|l−k|≤M

JQjl
.

The natural number M will be fixed later on. Finally, let

‖f‖N
Bs, τ

p,q
:= sup

{Q∈Q: |Q|≥1}

1

|Q|τ

∑
k∈JQ

|〈f, φ0,k〉|p
 1

p

+ sup
Q∈Q

1

|Q|τ


∞∑

j=max(jQ,0)

2j(s+d/2)q
2d−1∑
i=1

 ∑
k∈IQ,j

2−jd|〈f, ψi,j,k〉|p


q
p


1
q

.
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The functions φ0,k and ψi,j,k have compact support, but are not smooth. This means,
the scalar products 〈f, φ0,k〉 and 〈f, ψi,j,k〉 with f ∈ S ′ require some interpretation. For
the technicalities around this question we refer to [87, Theorem 1.20], where wavelet
characterizations for Bs

p,q and F s
p,q are discussed in full generality.

Theorem 3.4. Let the generators φ and ψ of the wavelet system satisfy the conditions
in (3.33), (3.34) with respect to N1, N2, N3 ∈ N. Let 0 < p, q ≤ ∞,

σp < s < N1 and 0 ≤ τ ≤ 1

p
.

Then f ∈ Bs, τ
p,q if, and only if, f is locally integrable and ‖f‖N

Bs, τ
p,q

<∞. Further ‖f‖N
Bs, τ

p,q

and ‖f‖Bs, τ
p,q

are equivalent.

Remark 23. (i) A proof of Theorem 3.4 has been given in [102, Theorem 4.1].
(ii) For the case q = ∞ and s ≤ σp we refer to the next subsection in view of the
identity

N s
u,∞,p = B

s, 1
p
− 1

u
p,∞ if 0 < p ≤ u ≤ ∞ .

(iii) A wavelet characterization of the classes Bs, τ
p,q for all admissible combinations of

the parameters has been obtained recently in the paper Liang, Sawano, Ullrich, Yang,
Yuan [47]. The homogeneous situation, i.e., the spaces Ḃs,τ

p,q , has been treated in Liang,
Sawano, Ullrich, Yang, Yuan [46].

3.8.3 Wavelet bases of Lizorkin-Triebel-Morrey and Nikol’skij-
Besov-Morrey spaces

Wavelet characterizations of the classes N s
p,q,u and Esp,q,u for all admissible combina-

tions of the parameters were derived in Sawano [69].

Theorem 3.5. Let 0 < u ≤ p < ∞, 0 < q ≤ ∞ and s ∈ R. Let the genera-
tors φ and ψ of the wavelet system satisfy the conditions in (3.33), (3.34) with re-
spect to N1, N2, N3 ∈ N and suppose min(N1, N2, N3) sufficiently large (depending on
s, p, u, q). Then f ∈ S ′ belongs to Esp,q,u if, and only if, the following expression

‖f‖N
Es

p,q,u
:=
∥∥∥(〈f, φ0,k〉)k∈Z

∥∥∥
`p

+
∥∥∥( 2d−1∑

i=1

∞∑
j=0

∣∣∣∑
k∈Z

2js 〈f, ψi,j,k〉 χ̃Qjk

∣∣∣q)1/q ∥∥∥
Mp

u

is finite. Furthermore, ‖f‖N
Es

p,q,u
and ‖f‖Es

p,q,u
are equivalent.

Remark 24. (i) Recall the identity

Esu,q,p = F
s, 1

p
− 1

u
p,q if 0 < p ≤ u <∞ , 0 < q ≤ ∞ , s ∈ R .

Hence, Theorem 3.5 yields wavelet characterizations of F s, τ
p,q in case 0 ≤ τ < 1/p.

(ii) Also in [102, Chapter 4] wavelet characterizations of the spaces F s, τ
p,q were proved,

but under the restriction s > σp,q (see (1.1)). However, there τ = 1/p is admissible.
(iii) Again Liang, Sawano, Ullrich, Yang, Yuan [47] have been able to prove wavelet
characterizations of the classes F s, τ

p,q for all admissible combinations of the parameters.
We also refer to [46] for the homogeneous spaces Ḟ s,τ

p,q .
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The counterpart for Nikol’skij-Besov-Morrey spaces, also proved by Sawano [69],
reads as follows.

Theorem 3.6. Let 0 < u ≤ p ≤ ∞, 0 < q ≤ ∞ and s ∈ R. Let the generators
φ and ψ of the wavelet system satisfy the conditions in (3.33), (3.34) with respect to
N1, N2, N3 ∈ N and suppose min(N1, N2, N3) sufficiently large (depending on s, p, u).
Then f ∈ S ′ belongs to N s

p,q,u if, and only if, the following expression

‖f‖N
N s

p,q,u
:=
∥∥∥(〈f, φ0,k〉)k∈Z

∥∥∥
`p

+
2d−1∑
i=1

( ∞∑
j=0

2jsq
∥∥∥∑
k∈Z

〈f, ψi,j,k〉 χ̃Qjk

∥∥∥q
Mp

u

)1/q

is finite. Furthermore, ‖f‖N
N s

p,q,u
and ‖f‖N s

p,q,u
are equivalent.

Remark 25. Because of

N s
u,∞,p = B

s, 1
p
− 1

u
p,∞ if 0 < p ≤ u ≤ ∞ .

Theorem 3.6 yields wavelet characterizations of the classes B
s, 1

p
− 1

u
p,∞ for all s, supple-

menting Theorem 3.4 in this way.

The wavelet characterization of F s
∞,q

As a direct consequence of Theorem 3.4, Proposition 3.4 and the identity F s,τ
p,p = Bs,τ

p,p

we obtain the following corollary.

Corollary 3.3. Let 0 < q <∞ and

d max
(
0,

1

q
− 1
)
< s <∞ .

A tempered distribution f ∈ S ′ belongs to F s
∞,q if, and only if,

|||f |||NF s
∞,q

:= sup
k∈Z

|〈f, φ0,k〉|+ sup
{Q∈Q: |Q|≤1}

1

|Q|1/q

×

 ∞∑
j=jQ

2d−1∑
i=1

∑
k∈IQ,j

2j(s+d(
1
2
− 1

q
))q |〈f, ψi,j,k〉|q

1/q

<∞ . (3.37)

Furthermore, |||f |||NF s
∞,q

and ‖f‖F s
∞,q

are equivalent.

Remark 26. (i) Wavelet characterizations of the homogeneous counterparts Ḟ s
∞,2 have

been obtained in [1].
(ii) Interesting limiting cases are bmo and BMO . Let ψ̃ be a compactly sup-

ported, continuously differentiable wavelet on R and let ψ1, . . . , ψ2d−1 be the associ-
ated generators for a wavelet basis of L2(Rd). Only here we shall use the convention
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ψi,j,k(x) := 2jd/2 ψi(2
jx−k) also for j < 0. Then a locally integrable function f belongs

to BMO if, and only if

sup
P∈Q

1

|P |1/2

 ∞∑
j=jP

2d−1∑
i=1

∑
k∈IP,j

|〈f, ψi,j,k〉|2
1/2

<∞ ;

see [57, 5.6] and [90, Ex. 8.8]. In the literature sometimes the convention

|〈f, ψQ〉| ≡

(
d∑
i=1

|〈f, ψi,j,k〉|2
)1/2

is used with Q = Qj,k. In this language we obtain that a locally integrable function f
belongs to BMO if, and only if

sup
P∈Q

[
1

|P |
∑
Q⊂P

|〈f, ψQ〉|2
]1/2

<∞ ,

The formula (3.37) remains to be true for bmo , i. e., if s = 0 and q = 2. For this result
we refer to [1]. In addition we refer to the recent contributions by Liang, Sawano,
Ullrich, Yang, Yuan [46, 47].

3.8.4 Discretization by means of atoms and molecules
Discretizations of F s, τ

p,q and Bs, τ
p,q can be obtained also by means of atoms and

molecules. Wavelet characterizations are just a special case of those characterizations.
In fact, atoms and molecules allow much more flexible decompositions of distributions.
We do not go into details, in particular, no definitions will be given. The aim is just
to collect some references.

In the framework of Nikol’skij-Besov and Lizorkin-Triebel spaces Frazier and Jaw-
erth [25, 26] have been the first who proved those characterizations. We also refer to
Triebel [85, Section 13]. Hedberg and Netrusov [31] derived characterizations by atoms
in their general axiomatic framework, which covers the scales Esp,q,u and N s

p,q,u. In
case of Nikol’skij-Besov-type and Lizorkin-Triebel-type spaces we also refer to Sawano,
Tanaka [71], Sawano, Yang, Yuan [72], Wang [89], Liang, Sawano, Ullrich, Yang, Yuan
[47] and [102, Section 3.1].

Closely related to the characterization by atoms and molecules is the so-called ϕ-
transform, see Frazier and Jawerth [25, 26] for Nikol’skij-Besov and Lizorkin-Triebel
spaces. In case of the classes Bs, τ

p,q and F s, τ
p,q the ϕ-transform has been investigated in

[102, 2.1], see [97, 98] for the homogeneous case. In [48] Lin and Wang have introduced
spaces CMOα

q,r by means of the ϕ-transform and called them generalized Carleson
measure spaces. The coincidence of these generalized Carleson measure spaces with
elements of the scale Ḟ s,τ

p,q has been investigated in [48] and Yang, Yuan [100]. Let
us mention that Theorem 1 in [48] is not correct without further restrictions, see the
comments in [100].

Drihem [13] proved characterizations by means of maximal functions and local
means for Nikol’skij-Besov-type spaces.
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3.9 Characterization by differences

Characterizations by differences are the classical way to understand the smoothness
and integrability requirements of those complicated spaces as Nikol’skij-Besov and
Lizorkin-Triebel spaces are.

In our investigations the Nikol’skij trick playes an essential role, see [60, Sec-
tion 5.2.1]. Starting point is our smooth cut-off function ψ, see (2.5). Now we define

ϕ0(x) := (−1)N+1

N−1∑
`=0

(
N

`

)
(−1)` ψ((N − `)x) .

This function ϕ0 belongs to C∞
0 and satisfies ϕ0(x) = 1 if |x| ≤ 1/N and ϕ0(x) = 0 if

|x| ≥ 3/2. Elementary calculations for the Fourier transform yield the identity

N∑
j=0

F−1[ϕj(ξ)Ff(ξ)](x) = f(x)−F−1[ϕ0(2
−jξ)Ff(ξ)](x) (3.9.1)

= (2π)−n/2(−1)N+1

∫ (
∆N

2−jyf(x)
)
F−1ψ(y) dy .

Here

∆M
h f(x) :=

M∑
j=0

(−1)j
(
M

j

)
f(x+ (M − j)h)

with M ∈ N and x, h ∈ Rd. The formula (3.9.1) represents the bridge between the
quasi-norm of the function f in As, τp,q with respect to the smooth dyadic decomposition
of unity associated to ϕ0, see (2.6), and the behaviour of quantities involving differences
of f .

3.9.1 The characterization of Nikol’skij-Besov type spaces by
differences

We shall work with quantities related to localized moduli of smoothness:

‖f‖♠
Bs, τ

p,q
:= sup

P∈Q

1

|P |τ

{∫ 2max(l(P ),1)

0

t−sq sup
t/2≤|h|<t

(∫
P

|∆M
h f(x)|p dx

)q/p
dt

t

}1/q

.

Furthermore we shall need the space Lτp. By Lτp we denote the collection of all functions
f ∈ L`ocp such that

‖f‖Lτ
p

:= sup
1

|P |τ

(∫
P

|f(x)|p dx
)1/p

,

where the supremum is taken over all dyadic cubes P with side length l(P ) ≥ 1. For
technical reasons we have to distinguish the cases p ≥ 1 and 0 < p < 1.

Theorem 3.9.1. Let 1 ≤ p ≤ ∞, 0 < q ≤ ∞, 0 ≤ τ ≤ 1/p, M ∈ N, and 0 < s < M .
Then f ∈ Bs, τ

p,q if, and only if, f ∈ Lτp and ‖f‖♠
Bs, τ

p,q
<∞. Furthermore, ‖f‖Lτ

p
+‖f‖♠

Bs, τ
p,q

and ‖f‖Bs, τ
p,q

are equivalent.
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Remark 27. (i) For a proof we refer to [102, Theorem 4.7].
(ii) There are many references for the case τ = 0. We refer to [60, Section 4.3], [5,

Section 18], [3, Theorem 6.2.5], and [83, Section 2.5.12]. Let us mention that in [60], [5]
the spaces are introduced by differences and the equivalence to other characterizations,
like these in terms of Nikol’skij representations, are established afterwards.

(iii) Also Drihem [14, 15] has given characterizations of Bs, τ
p,q in terms of differences.

In the case 0 < p < 1 and and 0 ≤ τ < 1/p we meet a technical difficulty. We have
to add an additional term involving ‖f‖Bs0

p,∞(2P ) for P ∈ Q, |P | ≥ 1.

Theorem 3.9.2. Let 0 < p < 1, 0 < q ≤ ∞,M ∈ N, σp < s < M and 0 ≤ τ < 1/p.
Let σp < s0 < s. Then f ∈ Bs, τ

p,q if, and only if

f ∈ Lτp , sup
{P∈Q, |P |≥1}

‖f‖Bs0
p,∞(2P )

|P |τ
<∞ , and ‖f‖♠

Bs, τ
p,q

<∞ .

Further

sup
{P∈Q, |P |≥1}

‖f‖Bs0
p,∞(2P )

|P |τ
+ ‖f‖Lτ

p
+ ‖f‖♠

Bs, τ
p,q

and ‖f‖Bs, τ
p,q

are equivalent.

Remark 28. (i) A proof has been given in [102, Theorem 4.8].
(ii) In case of the Nikol’skij type spaces Bs, τ

p,∞ the general approach of Hedberg
and Netrusov [31] yields a slightly different characterization in view of the identity

B
s, 1

p
− 1

u
p,∞ = N s

u,∞,p, see Theorem 3.9.4 below.
(iii) For τ = 0 we refer to Triebel [84, Section 3.5.3].

3.9.2 The characterization of Lizorkin-Triebel-Morrey spaces
by ball means of differences

The Lizorkin-Triebel-Morrey spaces Esp,q,u are special realizations of the general class
of Lizorkin-Triebel spaces considered in Hedberg and Netrusov [31], see also part II of
this survey [76]. There Hedberg and Netrusov developed an axiomatic approach to
function spaces of Nikol’skij-Besov-Lizorkin-Triebel type including characterizations
by atoms and differences. They work with ball means of differences. We shall use the
abbreviations B(x, r) := {y ∈ Rd : |x− y| < r}, x ∈ Rd, r > 0, and

bv,tf(x) :=

(
1

tn

∫
|x−h|<t

|∆M
h f(x)|v dh

)1/v

, t > 0 , x ∈ Rd .

The outcome is the following, we refer to [102, Section 4.5] for all details.

Theorem 3.9.3. Let 0 < v <∞, 0 < q ≤ ∞, 0 < u ≤ p <∞, and M ∈ N such that

0 < r < min(u q) and d max
{1

r
− 1,

1

r
− 1

v

}
< s < M .

Then the following assertions are equivalent for functions in L`ocr :
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(i) f ∈ Esp,q,u = F
s, 1

u
− 1

p
u,q ;

(ii) f ∈ L`ocv and

‖f‖∗Es
p,q,u

:= sup
Q∈Q

1

|Q|
1
u
− 1

p

(∫
Q

[∫
B(x,1)

|f(y)|v dy
]u/v

dx

)1/u

+ sup
Q∈Q

1

|Q|
1
u
− 1

p

(∫
Q

[∫ 1

0

t−sq (bv,tf)q(x)
dt

t

]u/q
dx

)1/u

<∞ .

The quasi-norms ‖f‖Es
p,q,u

and ‖f‖∗Es
p,q,u

are equivalent.

Remark 29. (i) In [102, 4.3.1] we derived a number of different characterizations of
F s, τ
p,q in terms of differences. Also the arguments in the proof slightly differ. In addition,
τ = 1/p is admissible there. In this context we also have to mention Drihem [15] who
proved some characterizations by differences without taking ball means.

(ii) For τ = 0 we refer to Seeger [73] and Triebel [84, 3.5.3]

These characterization by differences allow also some conclusions for the classes
Esp,q,u,unif , see Definition 10

Corollary 3.9.1. Let 0 < v <∞, 0 < q ≤ ∞, 0 < u ≤ p <∞, and M ∈ N such that

0 < r < min(u q) and d max
{1

r
− 1,

1

r
− 1

v

}
< s < M .

Then Esp,q,u,unif is the collection of all f ∈ L`ocu such that

‖ f ‖∗Es
p,q,u,unif

:= sup
Q∈Q
|Q|≤1

1

|Q|
1
u
− 1

p

(∫
Q

[∫
B(x,1)

|f(y)|v dy
]u/v

dx

)1/u

+ sup
Q∈Q
|Q|≤1

1

|Q|
1
u
− 1

p

(∫
Q

[∫ 1

0

t−sq (bv,tf)q(x)
dt

t

]u/q
dx

)1/u

<∞ .

Furthermore, ‖ f ‖Es
p,q,u,unif

and ‖ f ‖∗Es
p,q,u,unif

are equivalent.

Also Nikol’skij-Besov-Morrey spaces can be characterized by differences in a similar
way. The Hedberg-Netrusov approach yields the following.

Theorem 3.9.4. Let 0 < v ≤ ∞, 0 < r < u ≤ p ≤ ∞, M ∈ N and

d max

{
1

r
− 1,

1

r
− 1

v

}
< s < M .

Then the following assertions are equivalent for functions in L`ocr :
(i) f ∈ N s

p,q,u;
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(ii) f ∈ L`ocv and

‖f‖∗N s
p,q,u

:= sup
Q∈Q

1

|Q|
1
u
− 1

p

(∫
Q

[∫
B(x,1)

|f(y)|v dy
]u/v

dx

)1/u

+ sup
Q∈Q

1

|Q|
1
u
− 1

p

(∫ 1

0

t−sq
[∫

Q

|bv,tf(x)|udx
]q/u

dt

t

)1/q

<∞ .

The quasi-norms ‖f‖N s
p,q,u

and ‖f‖∗N s
p,q,u

are equivalent.

Remark 30. In view of the the identity B
s, 1/u−1/p
u,∞ = N s

p,∞,u Theorem 3.9.4 supple-
ments the results of Theorems 3.9.1, 3.9.2.

Similar as in the E-case we can derive a conclusion about N s
p,q,u,unif .

Corollary 3.9.2. Let 0 < v ≤ ∞, 0 < r < u ≤ p ≤ ∞, M ∈ N and

d max

{
1

r
− 1,

1

r
− 1

v

}
< s < M .

Then N s
p,q,u,unif is the collection of all f ∈ L`ocu such that

‖ f ‖∗N s
p,q,u,unif

:= sup
Q∈Q
|Q|≤1

1

|Q|
1
u
− 1

p

(∫
Q

[∫
B(x,1)

|f(y)|v dy
]u/v

dx

)1/u

+ sup
Q∈Q
|Q|≤1

1

|Q|
1
u
− 1

p

(∫ 1

0

t−sq
[∫

Q

|bv,tf(x)|udx
]q/u

dt

t

)1/q

<∞ .

Furthermore, ‖ f ‖N s
p,q,u,unif

and ‖ f ‖∗N s
p,q,u,unif

are equivalent.

3.9.3 The classes Bs, τ
p,p and their relations to Q spaces

In recent years, independent of the existing literature on Nikol’skij-Besov and
Lizorkin-Triebel spaces, there were a lot of interest in Qα spaces.

Definition 15. Let α ∈ R. The space Qα is defined to be the collection of all f ∈ L`oc2

such that

‖f‖Qα := sup
Q

{
1

|Q|1− 2α
d

∫
Q

∫
Q

|f(x)− f(y)|2

|x− y|d+2α
dx dy

}1/2

<∞,

where Q ranges over all cubes in Rd.

Remark 31. The history of Qα spaces (or simply Q spaces) started in 1995 with
a paper by Aulaskari, Xiao and Zhao [2]. Originally they were defined as spaces of
holomorphic functions on the unit disk, which are geometric in the sense that they
transform naturally under conformal mappings (see [2], [93]). Following earlier con-
tributions of Essén and Xiao [20] and Janson [36] on the boundary values of these
functions on the unit circle, Essén, Janson, Peng and Xiao [19] extended these spaces
to the d-dimensional Euclidean space Rd. There is a rapidly increasing literature de-
voted to this subject, we refer, e.g., to [2, 93, 19, 20, 36, 11, 12, 91, 92, 94, 95, 103].
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Mainly as a consequence of Theorem 3.9.1 one can prove the following characteri-
zation of Bs, τ

p,p , see [102, 4.3.3].

Corollary 3.9.3. Let 1 ≤ p ≤ ∞, 0 < s < 1 and 0 ≤ τ ≤ 1/p. Then f ∈ Bs, τ
p,p if, and

only if, f ∈ Lτp and

|||f |||♦
Bs, τ

p,p
:= sup

Q∈Q

1

|Q|τ

{∫
Q

∫
Q

|f(x)− f(y)|p

|x− y|sp+n
dx dy

}1/p

<∞ . (3.9.2)

Furthermore, ‖f‖Lτ
p

+ |||f |||♦
Bs, τ

p,p
and ‖f‖Bs, τ

p,p
are equivalent.

Remark 32. (i) With other words: the spaces Bs, τ
2, 2 and Qα ∩Lτ2 coincide in the sense

of equivalent norms as far as 0 < s = α < 1 and τ = 1
2
− α/d ≥ 0.

(ii) Originally Dafni and Xiao [11] posed the question on the relation of Q spaces
and Nikol’skij-Besov-Lizorkin-Triebel spaces. In fact, it holds

Ḃ
α, 1

2
−α

d
2,2 = Qα

if α ∈ (0, 1) (d ≥ 2), see Yang and Yuan [97, 98]. Here Ḃα, 1
2
−α

d
2,2 denotes the homoge-

neous counterpart of Bα, 1
2
−α

d
2,2 .

3.10 Key theorems

Key theorems are those which are needed to establish a corresponding theory for
function spaces on smooth domains, see Triebel’s monograph [84]. We focus on
pointwise multipliers, diffeomorphisms and traces.

3.10.1 Pointwise multipliers
Pointwise multiplication in Besov and Triebel-Lizorkin spaces has been studied

extensively in the last 30 years; see, for example, [65], [83], [52], [84], [68] and [53].
The two monographs [52], [53] by Maz’ya and Shaposnikova are completely devoted to
this subject. However, the authors restrict their interest essentially to the Sobolev and
Bessel-potential spaces F s

p,2, 1 < p <∞, and the Slobodeckij spaces Bs
p,p, 1 ≤ p ≤ ∞.

Let X and Y be two quasi-Banach spaces of functions (distributions). Then the
basic question consists in descriptions of the associated multiplier space M(X, Y ) given
by

M(X, Y ) ≡ {f : f · g ∈ Y for all g ∈ X} .
This space is equipped with the induced quasi-norm

‖f‖M(X,Y ) := sup
‖g‖X≤1

‖f · g‖Y .

Here, in this survey, we will be concerned with the easier problem of proving embed-
dings into M(X) := M(X,X) with X = As, τp,q .

The first nontrivial result we want to present is the fact that some finite Hölder-
Zygmund regularity of a function is sufficient to be a pointwise multiplier for a space
As, τp,q , see [102, Theorem 6.1].
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Theorem 3.10.1. Let s ∈ R, 0 < p ≤ ∞, 0 < q ≤ ∞ and 0 ≤ τ ≤ 1/p. If m ∈ N is
sufficiently large, then there exists a positive constant c such that for all g ∈ Zm and
all f ∈ As, τp,q ,

‖ g · f ‖As, τ
p,q
≤ c ‖g‖Zm ‖f‖As, τ

p,q
. (3.10.1)

In case of the F -spaces a more precise estimate can be given.

Theorem 3.10.2. Let s ∈ R, 0 < p <∞, 0 < q ≤ ∞ and 0 ≤ τ < 1/p. Suppose

% > max

{
|s|, d

p
− d− s

}
. (3.10.2)

Then the embedding Z% ⊂M(F s, τ
p,q ) holds.

Remark 33. (i) For τ = 0 this is a well-known result, we refer to [83, Corollary 2.8.2],
[26] and [68, Section 4.7.1].

(ii) The proof can be found in [102, 6.1.2.3]. It uses paramultiplication, very much
in the spirit of [83, Corollary 2.8.2]. Further tools are Marschall’s pointwise inequality
for certain convolutions, see [50], [39] and [102, 6.1.2.1], and Nikol’skij type character-
izations, see [83, 2.5.2], [96], [68, 2.3.2] and [102, 6.1.2.1]. Probably these arguments
carry over the case of Besov type spaces. But we did not check all details.

Multiplication Algebras

This time we study the question under which conditions we have the embedding X ⊂
M(X). Just for having a simple reference at hand we concentrate on the F -case.
Essentially the same methods as used in the proof of Theorem 3.10.2 apply, see [102,
6.1.2.4].

Theorem 3.10.3. Let 0 < p <∞, 0 < q ≤ ∞, 0 ≤ τ < 1/p and s > σp,q. Then there
exists a positive constant c such that for all f, g ∈ F s, τ

p,q ∩ L∞,

‖f · g‖F s, τ
p,q
≤ c

(
‖f‖L∞‖g‖F s, τ

p,q
+ ‖g‖L∞‖f‖F s, τ

p,q

)
. (3.10.3)

Remark 34. (i) The estimate (3.10.3) implies that the spaces F s, τ
p,q ∩L∞ are algebras

with respect to pointwise multiplication.
(ii) For τ = 0 we refer to Runst [67] and [68, Theorem 4.6.4/2].
(iii) Such Moser-type estimates have been proved also for the spaces N s

p,q,u, see
Mazzucato [55].

Combining Theorem 3.10.3 with some embeddings, see Lemma 3.2, combined with
Corollary 2.2 and Proposition 2.6 in [102], we get the following conclusion concerning
the algebra properties of F s, τ

p,q .

Corollary 3.10.1. Let s ∈ R, 0 < p <∞, 0 < q ≤ ∞ and 0 ≤ τ < 1/p such that

s > d max

{
1

p
− τ,

1

q
− 1

}
.

Then F s, τ
p,q is an algebra with respect to pointwise multiplication.
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Remark 35. (i) For τ = 0 this question had some history. For the Bessel potential
spaces Hs

p = F s, 0
p,2 , p ∈ (1,∞), it was settled by Strichartz [77]. This was extended by

Triebel in [82, Section 2.6.2], Kalyabin [41, 42] and Franke [23]; see also [68, Theorem
4.6.4/1].

(ii) Characterizations of M(Wm
p ), Hs

p and M(Bs
p,p) can be found in the monographs

of Maz’ya and Shaposnikova [52, 53]. For a characterization of M(F s
p,q), s > d/p, we

refer to Franke [23] and [68, Theorem 4.9.1/1].
(iii) Mazzucato [55] proved that the classes N s

p,q,u are algebras with respect to
pointwise multiplication if either 1 ≤ u ≤ p < ∞, s > d/p and 1 < q ≤ ∞ or
1 ≤ u ≤ p <∞, s ≥ d/p and q = 1.

The case τ = 1/p can be treated separately, see [102, Theorem 6.4].

Theorem 3.10.4. Let 0 < q ≤ ∞ and σ1,q < s < ∞. Then M(F s
∞,q) = F s

∞,q in the
sense of equivalent quasi-norms.

Remark 36. (i) The assertion of Theorem 3.10.4 does not extend to s = 0. E.g, if
q = 2, the correct description of M(bmo ) was found by Janson [35]. For a description
of M(B0

∞,∞) we refer to [43].
(ii) Theorem 3.10.4 implies that the spaces F s

∞,q are algebras with respect to point-
wise multiplication, at least, if s > σ1,q. For q ≥ 1 a different proof of this fact can be
found in Marschall [49].

A characterization of M(F s
p,q), s < d/p

As said above, in case τ = 0 much more is known; see, for example, [74]. Of certain
relevance for this survey is the description of M(F s

p,q), 0 < p < 1, σp,q < s < d/p, given
by Netrusov [58].

Theorem 3.10.5. Let 0 < p ≤ 1, 0 < q ≤ ∞ and σp,q < s < d/p. Then f ∈ M(F s
p,q)

if, and only if, f ∈ L∞, f can be represented in S ′ in the form

f =
∞∑
j=0

fj , supp Ffj ⊂ {ξ : 2j−1 ≤ |ξ| ≤ 2j+1} , j ∈ N ,

supp Ff0 ⊂ {ξ : |ξ| ≤ 2}, such that

M(f) := sup
j∈N0

sup
x∈Rd

2j(
d
p
−s)

∫
B(x,2−j)

[
∞∑
k=j

2ksq|fk(x)|q
]p/q

dx

1/p

<∞ .

Remark 37. (i) Clearly, if either f ∈ F
s, 1

p
− s

d
p,q or f ∈ Es

u,q,p, u = d/s (see Proposition
3.3(iii) and Definition 11), then M(f) <∞, i.e.,

L∞ ∩ F
s, 1

p
− s

d
p,q ↪→ L∞ ∩ Es

d/s,q,p ↪→M(F s, τ
p,q ) (3.10.4)

if σp,q < s < d/p.
(ii) Netrusov [58] did not publish a proof of this remarkable result. A proof under

more restrictive conditions can be found in [75].
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For the special case p = q = 1 some more simple characterizations of M(F s
1,1) have

been found by Maz’ya and Shaposnikova; see [52, 3.4.2].

Theorem 3.10.6. Let s = m + σ, where m is a nonnegative integer and σ is a real
number with σ ∈ (0, 1). Then f ∈M(F s

1,1) if, and only if, f ∈ L∞ and

sup
0<r<1

sup
x∈Rd

rs−d
∑
|α|≤m

(∫
B(x,r)

|Dαf(y)| dy

+

∫
B(x,r)

∫
B(x,r)

|Dαf(y)−Dαf(x)|
|y − x|d+σ

dy dx

)
<∞ . (3.10.5)

We would like to reformulate Theorem 3.10.6. Therefore we recall that As,τp,q,unif has
been defined in Definition 10. Let m = 0 in Theorem 3.10.6. Then, as an immediate
conclusion of Corollary 3.9.3, we obtain the following.

Corollary 3.10.2. Let 0 < s < 1. Then f ∈M(F s
1,1) if, and only if f ∈ L∞ ∩F s,τ

1,1,unif ,
where τ = 1− s/d.

3.10.2 Diffeomorphisms
By C we denote the collection of all complex-valued bounded and continuous func-

tions on Rd. We begin with recalling the notion of diffeomorphisms; see, for example,
[84, p. 206].

Definition 16. (i) Let m ∈ N. A one-to-one mapping y = ψ(x) of Rd onto Rd is
called a m-diffeomorphism if the components ψj of ψ := (ψ1, · · · , ψd) have classical
derivatives up to order m with Dαψj ∈ C if 0 < |α| ≤ m, and | detψ∗(x)| ≥ c > 0 for
some positive constant c and all x ∈ Rd, where ψ∗ stands for the Jacobian matrix of ψ.
(ii) The mapping ψ is called a diffeomorphism if it is a m-diffeomorphism for any
m ∈ N.

We remark that if ψ is a m-diffeomorphism, then its inverse ψ−1 is also a m-
diffeomorphism. Further, if ψ is a diffeomorphism then the mapping

Dψ : f −→ f ◦ ψ , f ∈ S ′ ,

makes sense. If ψ is only a m-diffeomorphism and f ∈ As, τp,q , the composition f ◦ψ can
be defined via smooth atoms for As, τp,q . We do not go into details at this technical point.
Based on the smooth atomic decomposition of As, τp,q in [102, 3.1] we have the following
conclusion.

Theorem 3.10.7. Let m ∈ N, ψ be an m-diffeomorphism. Let 0 < p, q ≤ ∞, s ∈ R
and 0 ≤ τ ≤ 1/p. If m ∈ N is sufficiently large, then Dψ is an isomorphic mapping of
As, τp,q onto itself (p <∞ if As, τp,q = F s, τ

p,q ).

Remark 38. For the case τ = 0 we refer to [84, Proposition 4.3.1, Remark 4.3.1,
Theorem 4.3.2]. However, in special situations much more is known. In case of Sobolev
spaces the group around Reshetnyak, Gol’dstein and Vodop’yanov worked on this topic,
see, e.g., [29]. Also Maz’ya [51] has dealt with this topic. In case of Besov spaces we
refer to Vodop’yanov [88] and to Bourdaud and Sickel [8].
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3.10.3 Traces
We are interested in properties of the trace operator

Tr : f(x′, xd) → f(x′, 0) , x′ := (x1, . . . , xd−1) ∈ Rd−1 . (3.10.6)

For τ = 0 such problems have been treated extensively; see the remarks below. Clearly,
(3.10.6) makes sense for all continuous functions f and therefore, for smooth atoms.
Frazier and Jawerth [25, 26] were the first which have shown that the use of atomic
decompositions in the context of trace problems is a very good and successful idea. By
employing the method of Frazier and Jawerth Sawano, Yang and Yuan in [72] have been
able to characterize the images of the homogeneous spaces Ȧs,τp,q under the mapping Tr.
Essentially by the same arguments the nonhomogeneous case has been treated in [102,
Theorem 6.8].

Theorem 3.10.8. Let d ≥ 2, 0 < p, q ≤ ∞, 0 ≤ τ < 1/p and

s >
1

p
+ (d− 1)

( 1

min(1, p)
− 1
)

Then Tr is a linear, continuous and surjective operator from Bs, τ
p,q onto B

s− 1
p
, dτ
d−1

p,q (Rd−1)

and from F s, τ
p,q onto F

s− 1
p
, dτ
d−1

p,p (Rd−1) (p <∞).

Remark 39. (i) For τ = 0 we are back in the classical case. It is interesting to notice
that the mapping Tr does not lead to a change of the smoothness s only, but also to a
change of the Morrey parameter τ .

(ii) For the classical trace theorems for Nikol’xsij-Besov spaces and Triebel-Lizorkin
spaces, i.e., the case τ = 0, we refer to Nikol’skij [59], [60], Besov, Iljin and Nikol’skij
[4], Jawerth [37], Frazier and Jawerth [25, 26], and Triebel [83, Section 2.7.2], [84,
Section 4.4].

(iii) Limiting situations for τ = 0, i. e. s = 1
p

+ (d − 1) max{0, 1/p − 1}, are
investigated in Peetre [63], Burenkov and Gol’dman [10], Frazier and Jawerth [26],
Triebel [84, Section 4.4.3] and Farkas, Johnsen and S. [21].

(iv) Frazier and Jawerth proved in [26, Theorem 11.2] that in case s > 0, 0 < q ≤ ∞,
the operator Tr extends to a linear, continuous and surjective mapping of F s

∞,q(Rd) onto
F s
∞,q(Rd−1). In this context we also refer to Marschall [49].
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[87] H. Triebel, Function Spaces and wavelets on domains. EMS Publishing House, Zürich, 2008.
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