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Abstract. We consider partial differential equations with discontinuous coefficients
and prove that, if the known term belongs to the Morrey space Lp,λ, the highest order
derivatives of the solutions of the equations belong to the same space. As a consequence
it is possible to obtain local Hölder continuity for the solutions. Moreover, are discussed
some estimates for the derivatives of local minimizers of variational integrals.

1 Introduction

We study regularity properties of solutions of partial differential equations and systems.
Preparatory to studying partial differential equations we shall discuss the action of some
integral operators, that we extensively use. Then, the regularity properties of solutions
of elliptic, parabolic and ultraparabolic equations of second order with discontinuous
coefficients, and later of systems, will be discussed in depth.

To be more specific let us consider in the sequel a bounded open set Ω ⊂ Rn with
∂Ω sufficiently smooth boundary, f ∈ Lp,λ(Ω), 1 < p < +∞, 0 < λ < n, and the
following equation

Lu ≡
n∑

i,j=1

aijuxixj
= f. (1.1)

where aij are, in general, discontinuous functions.
Let us now recall the definition of the Morrey spaces Lp,λ because in the sequel we

are interested in Morrey regularity of the highest order derivatives of u in these spaces.

Definition 1. ([29]). Let 1 < p < ∞ and 0 < λ < n. A measurable function f ∈
Lploc(Ω) is in the Morrey class Lp,λ(Ω) if the following norm is finite

‖f‖Lp,λ(Ω) = sup
x∈Ω,0<R<diamΩ

 1

Rλ

∫
Ω∩B(x,R)

|f(y)|pdy


1
p

,

where B(x,R) is the open ball centered at x of radius R.
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Definition 2. Let f ∈ L1(Ω), we set the integral mean fx,R by

fx,R=
1

|Ω∩B(x,R)|

∫
Ω∩B(x,R)

f(y)dy,

where |Ω ∩B(x,R)| is the Lebesgue measure of Ω ∩B(x,R).
If we are not interested in specifying which the center is, we write just fR.

Let us now give the definition of functions of bounded mean oscillation (BMO) that
appear at first in the note by John and Nirenberg [26].

Definition 3. Let f ∈ L1
loc(Rn). We say that f belongs to BMO(Rn) if the seminorm

‖f‖∗ ≡ sup
x∈Rn, R>0

1

|B(x,R)|

∫
B(x,R)

|f(y)− fx,R|dy

is finite

Let us recall the definition of the space of vanishing mean oscillation functions,
given at first by Sarason in [44].

Definition 4. Let f ∈ BMO(Rn), R > 0 and

η(f,R) = sup
x∈Rn, 0<ρ≤R

1

|B(x, ρ)|

∫
B(x,ρ)

|f(y)− fρ|dy

where B(x, ρ) ranges over the class of the balls of Rn of radius ρ.
A function f ∈ VMO(Rn) if

lim
R→0

η(f,R) = 0.

2 State of the art

Let us consider, first, the following second order elliptic equation in nondivergence form

Lu ≡
n∑

i,j=1

aij(x)uxixj
= f.

Regularity results for elliptic equations in nondivergence form with the right-hand
side f in Morrey spaces Lp,λ are obtained by Di Fazio and the author.

Let us consider the following second order differential operator

Lu ≡
m0∑
i,j=1

∂xi

(
ai,j(x, t)∂xj

u
)

+
N∑

i,j=1

bi,jxi∂xj
u− ∂tu,

where z = (x, t) ∈ RN+1, 0 < m0 ≤ N.
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This kind of linear operators of Fokker-Plank type are used in probability and in
mathematical physics, for instance in the study of brownian motion of a particle in a
fluid.

We point out that the natural geometry for the above operator is not euclidean but
is given by a suitable groups structure.

Let us suppose that the matrix A(z) is the N ×N matrix

A(z) =

(
A0(z) 0

0 0

)
where A0(z) =

(
ai,j(z)

)
i,j=1,...,m0

is symmetric and such that there exists Λ > 0 such
that

Λ−1|ξ|2 ≤ 〈A0(z)ξ, ξ〉 ≤ Λ|ξ|2 ∀ξ ∈ Rm0 ,∀z ∈ RN+1.

Suppose also that B = (bi,j) is a suitable N ×N constant real matrix.
Polidoro and Ragusa in [34] proved interior regularity for weak solutions to the

following equation

m0∑
i,j=1

∂xi

(
ai,j(z)∂xj

u
)

+
N∑

i,j=1

bi,jxi∂xj
u− ∂tu=

m0∑
j=1

∂xj
Fj(z), (2.1)

where Fj belong to a function space of Morrey type.
Local Hölder continuity of the solution u is also proved.
The authors considered 0 < m0 ≤ N and B =

(
bi,j
)
i,j=1,...,N

a constant real matrix
of the following form

B =


0 B1 0 . . . 0
0 0 B2 . . . 0
...

...
... . . . ...

0 0 0 . . . Br

0 0 0 . . . 0

 ,

where each Bj is a mj−1 × mj block matrix of rank mj, with j = 1, 2, ..., r, and
m0 ≥ m1 ≥ ... ≥ mr ≥ 1 such that m0 +m1 + ...+mr = N.

The study of this kind of operators arises in the stochastic theory, see the book [45]
by Shiryayev, and in the theory of diffusion processes, see [6] by Chandrasekhar and
[31] by Nguyen Dong An. Let us point out our attention to the operator

S ≡
n∑
j=1

∂2
xj

+
n∑
j=1

xj∂xn+j
− ∂tu (2.2)

for even N and n = N
2
.

This is the linearized prototype of the Fokker-Plank operator that describes, under
suitable conditions, the moving of brownian particles in a flow.

The operator S is of degenerate type because there are only N
2

second order deriva-
tives. If we set Xj = ∂xj

, j = 1, . . . , n, and

Y = 〈x,BD〉 − ∂t
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the operator S takes the following form

S =
n∑
j=1

X2
j + Y.

Let us observe that the equation we are studying is a linearized version of the
Landau equation that in its turns is a simplified model for the Boltzmann equation,
see the paper [24] by Landau.

We are interested in the interior regularity of weak solutions of the above equation
(2.1). If A is a constant matrix and Fj ∈ C∞ then u ∈ C∞, this is proved in the
note [23] by Lanconelli and Polidoro.

If aij are Hölder continuous the operator L considered in the above equation was
studied by Polidoro in the papers [32], [33] and also by Manfredini in [27]. In the last
mentioned paper interior Schauder estimates are also proved.

Some related results have been obtained by Lunardi and Da Prato in [25] and [9]
in the setting of semigroup theory.

If aij are not uniformly continuous the problem has been less studied. In the note
[2] by Bramanti, Cerutti and Manfredini the authors have studied interior regularity
of strong solutions to nondivergence form of above equation while regularity results in
the divergence case has been proved by Manfredini and Polidoro in [28].

In the study carried out by Polidoro and Ragusa in [34], the authors consider
discontinuous coefficients aij, precisely aij in the Sarason class VMOL of functions of
vanishing mean oscillation, the subset of the John-Nirenberg class BMOL. We remark
that in the notation for the classes BMOL and VMOL we emphasize the role of the
operator L, because they are naturally associated with the following group’s structure.

Definition 5. Let (x, t), (ξ, τ) be in RN+1. We set

(x, t) ◦ (ξ, τ) = (ξ + E(τ)x, t+ τ), E(t) = exp(−tBT )

and
D(λ) = diag

(
λIm0 , λ

3Im1 , . . . , λ
2r+1Imr

)
,

where Imj
is the mj ×mj identity matrix.

We say that
(
RN+1, ◦

)
is the “translation group associated to L” and that(

D(λ), λ2
)
λ>0

is the “dilation group associated to L”.

Definition 6. We call “homogeneous dimension” of RN+1 the integer Q+ 2, where

Q = m0 + 3m1 + . . .+ (2r + 1)mr.

In the above mentioned note [34] the authors improve the results of Manfredini and
Polidoro [28] assuming that the term F = (F1, F2, . . . , Fm0 , 0, . . . , 0) is such that every
Fj belongs the following Morrey space Lp,λ(L,Ω).

Definition 7. Let Ω be a bounded open subset of RN+1, 1 < p < +∞ and λ ∈]0, Q+2[,
where Q = m0 + 3m1 + . . .+ (2r + 1)mr. A function f ∈ Lploc(Ω) is in Lp,λ(L,Ω) if

‖f‖p
Lp,λ(L,Ω)

= supr>0,z∈Ω
1

rλ

∫
Ω∩Br(z)

|f(w)|pdw < +∞.
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The method used in [34] to obtain the results is inspired by the technique introduced
by Chiarenza, Frasca and Longo in the papers [7] and [8].

It is based on explicit representation formulas for the first derivatives of the weak
solutions of the above equation (1.1) and on the Lp,λ estimates of singular integral
operators and commutators of non convolution type with a Calderón-Zygmund kernel.

Let us now state the theorems obtained, using the notation

Y u = 〈x,BDu〉 − ∂tu,

which enables to equivalently write equation (2.1) in the following form

div (A(z)Du) + Y u = div(F ). (2.3)

The main results obtained by Polidoro and Ragusa [34] concerning the divergence
case are contained in the following two theorems.

Theorem 2.1. Let Ω be a bounded open subset of RN+1 and u be a weak solution in
Ω of the equation

div (A(x, t)Du) + Y u = div(F ).

Let us suppose that the matrix B has the above considered structure. Let us also assume
that aij ∈ VMOL, i, j = 1, . . . ,m0, u ∈ Lp(Ω), Fj ∈ Lp,λ(L,Ω), ∀j = 1, . . . ,m0,
0 < λ < Q+ 2, and 1 < p <∞.

Then, for any compact set K ⊂ Ω, we have that ∂xj
u ∈ Lp,λ(L,K), ∀j = 1, . . . ,m0,

for every 1 < p <∞ and 0 < λ < Q+ 2.
Moreover there exists a positive constant c depending only on p, λ,K,Ω and L such

that, ∀j = 1, . . . ,m0,

‖∂xj
u‖Lp,λ(L,K) ≤ c

(
m0∑
k=1

‖Fk‖Lp,λ(L,Ω) + ‖u‖Lp(Ω)

)
. (2.4)

Theorem 2.2. Let Ω be a bounded open subset of RN+1 and u be a weak solution in
Ω of equation (2.1).

Let us suppose that the operator L satisfies the same assumptions as in the above
theorem. Let us also assume that aij ∈ VMOL, i, j = 1, . . . ,m0, u ∈ Lp(Ω), Fj ∈
Lp,λ(L,Ω) ∀j = 1, . . . ,m0, 0 ≤ λ < Q+ 2, and p > Q+ 2− λ.

Then, for any compact K ⊂ Ω there exists a positive constant c depending only on
p, λ,K,Ω and L such that, ∀z, ζ ∈ K, z 6= ζ,

|u(z)− u(ζ)|
‖ζ−1 ◦ z‖1−Q+2

p
+λ

p

≤ c

(
m0∑
k=1

‖Fk‖Lp,λ(L,Ω) + ‖u‖Lp(Ω)

)
. (2.5)

Proof of Theorem 2.1. We give some definitions which will be useful in the sequel.
Let r, s ∈ R, with 0 < s < r and let φ ∈ C∞(Ω) be a function such that φ(y) = 1

for 0 ≤ y ≤ s and φ(y) = 0 for t ≥ r.
For every ζ ∈ Ω and r > 0 such that Br = Br(ζ) ⊂ Ω we set

η(z) = φ(‖ζ−1 ◦ z‖). (2.6)
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Let u be a solution of equation (2.1), then u satisfies the equality

L(ηu) = div (G) + g

where
G = ηF + uADη, g = 〈ADu,Dη〉 − 〈F,Dη〉+ uY ∗η, (2.7)

and Y ∗ is the adjoint of the operator Y.
The proof is based on the following representation formula of the first derivatives of

the function v(z) = η(x)u(z) in terms of singular integral operators and commutators
with a Calderón- Zygmund kernel.

For almost every z ∈ RN+1, we can write

∂xj
(ηu)(z) =

∑m0

h,j=1 limε→0

∫
‖ζ−1◦z‖≥ε

Γjh(z, ζ
−1 ◦ z)·

{(ahk(z)− ahk(ζ))∂xk
(ηu)(z)−Gh(ζ)} dζ +

+
∫

RN+1

Γj(z, ζ
−1 ◦ z) g(ζ)dζ +

∑m0

k=1 cjk(z)Gk(z),

where cjk =
∫
‖ζ‖=1

Γj(z; ζ)νk(ζ) dσ and (ν1, . . . , νN+1) is the outer normal of the set
ΣN+1.

Let us denote
Tjg(z) =

∫
RN+1

Γj(z, ζ
−1 ◦ z)g(ζ)dζ.

We can express the ∂xj
v(z) in the following form

∂xj
v(z) =

m0∑
h,k=1

Cj,h[ah,k; vk](z)−
m0∑
h=1

Tj,h(Gh)(z) + Tjg(z) +

m0∑
h=1

cj,hGh(z).

Then, we obtain

‖∂xj
v‖Lp,µ(L,Br) ≤ c

(∑m0

h,k=1 ‖ah,k‖∗ · ‖∂xk
v‖Lp,λ(L,Br) +

+‖G‖Lp,λ(L,Br) + ‖g‖Lp,ν(L,Br)

)
where 0 ≤ ν ≤ λ < Q+ 2 and µ = min(λ, ν + p).

Finally, using the definition of G and g we get the conclusion.
Proof of Theorem 2.2. Using the representation formula for η u instead for that

of ∂xj
v, and some useful Sobolev Morrey embedding estimates we obtain the desired

result.

Let us now study some estimates in Morrey spaces for the derivatives of local minimizers
of variational integrals of the form

A(u,Ω) =

∫
Ω

F (x, u,Du)dx
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where Ω is a domain in Rm, u : Ω → R and the integrand has the following form

F (x, u,Du) = A(x, u, g(x)h(u) |Du|2).

The functions g and h will be specified later.
We are not assuming the continuity of A and g with respect to x. Let suppose that

A(·, u, t)/(1 + t) and g(·) are in the class L∞ ∩ VMO.
A “local minimizer"of the functional A is a function u ∈ W 1,p

loc (Ω,Rn) which satisfies

A(u; suppϕ) ≤ A(u+ ϕ; suppϕ)

for every ϕ ∈ W 1,p
0 (Ω,Rn).

Partial regularity for solutions of nonlinear elliptic systems was well studied in
1968-1969 by Morrey in [30], Giusti in [19], Giusti and Miranda [20] using an indirect
argument similar to the one introduced by De Giorgi and Almgren in the regularity
theory of parametrix minimal surfaces. New perturbation arguments were later con-
sidered by Giaquinta and Giusti in 1973 in [12], by Giaquinta and Modica in 1979 in
[17] to study higher integrability of the gradient of the solutions. Using a perturba-
tion method or direct argument, Tachikawa and Ragusa in [40]- [43] studied partial
regularity for the minimizers of the variational integrals A(u; Ω), where u : Ω → Rn,
Du = (Dαu

i), α = 1, . . . ,m, i = 1, . . . , n. In [43] the integrand has the following special
form

F (x, u,Du) = A(x, u, gαβ(x)hijDαu
iDβu

j).

This kind of functionals arises as p−energy of maps between Riemannian manifolds.
From this point of view, the geometric interest may occur for the above functionals.
Moreover, let us observe that some methods of proofs of regularity for classes of non-
linear elliptic systems can also be applied to the equations of nonlinear Hodge theory,
studied, for instance by L.M. Sibner and R.B. Sibner in 1970 in [46].

Also, we recall that in 1986 in the note [14] Giaquinta and Giusti considered the
quadratic functionals ∫

Ω

gαβ(x)hij(u)Dαu
iDβu

j dx,

where gαβ and hij are symmetric positive definite matrices having smooth entries.
We mention that later Giaquinta and Modica, in 1986, in the paper [18] studied

partial regularity in the vector valued case and global regularity in the scalar case, for
the minimizers of the variational integrals∫

Ω

A(x, u,Du) dx

if the integrands has the special structure

A(x, u, |p|2)

or, more generally,
A(x, u, aαβ(x, u)bij(x, u)p

i
αp

j
β)
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where aαβ and bi j are symmetric positive definite matrices and g (x, u, t) is of class
C2 with respect to t.

A geometrically useful example is the following∫
B1(0)

|Du|2

(1 + |u|2)
dx

which is, in local coordinates, the energy of a map from the disk Dm to Sm.
Under assumptions similar to those in the previously mentioned paper by Giaquinta

and Modica it is proved by Ivert, Giaquinta, Giusti and Modica in [13], [15] and [16]
that minimizers have Hölder continuous derivatives in an open set Ω0 contained in Ω
such that |Ω\Ω0| = 0.

The hypothesis considered by Tachikawa and Ragusa has been inspired by [4] and
[5], where Campanato obtained deep Hölder regularity results in Lp,λ spaces for so-
lutions of elliptic systems having nonlinearity greater than or equal to 2. In these
notes the coefficients of second order elliptic differential operators are supposed to be
continuous.

The VMO assumption is a more recent idea. Let us focus our attention on the note
[41] where the authors investigated partial regularity of the minimizers of quadratic
functionals, whose integrands have VMO coefficients, using some majorizations for
the functionals, rather than the well known Euler’s equation associated to it. The
functional is ∫

Ω

{
Aαβij (x, u)Dαu

iDβu
j + g(x, u,Du)

}
dx,

where Ω ⊂ Rm, n ≥ 3, is a bounded open set, u : Ω → Rn, n > 1, u(x) =
(u1(x), . . . , un(x)), Du = (Dαu

i), Dα = ∂/∂xα, α = 1, . . . ,m, i = 1, . . . , n. Let us
assume that Aαβij are bounded functions on Ω × Rn which satisfy the following condi-
tions

1. Aαβij = Aβαji ;

2. for every u ∈ Rn, Aαβij (·, u) ∈ VMO(Ω);

3. for every x ∈ Ω and u, v ∈ Rn∣∣Aαβij (x, u)− Aαβij (x, v)
∣∣ ≤ ω(|u− v|2)

for some monotonically increasing concave function ω with ω(0) = 0;

4. there exists a positive constant ν such that

ν|ξ|2 ≤ Aαβij (x, u)ξiαξ
j
β

for almost all x ∈ Ω, for all u ∈ Rn and ξ ∈ Rmn.

We should mention that since C0 is a proper subset of VMO, the continuity of
Aαβij (x, u) with respect to x is not assumed.

It is also assumed that the function g is a Charathéodory function and has growth
less than quadratic.
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Theorem 2.3. Let u ∈ W 1,2(Ω,Rn) be a minimizer of the above defined functional.
Suppose that the above assumptions on Aαβij (x, u) and g(x, u,Du) are satisfied.

Then, for λ = m(1− 2
p
), we have

Du ∈ L2,λ
loc (Ω0,Rmn)

where
Ω0 ={x ∈ Ω: lim inf

R→0

1

Rm−2

∫
B(x,R)

|Du(y)|2dy = 0}.

As a corollary, for any α ∈ (0, 1),

u ∈ C0,α(Ω0,Rn).

We recall that, for linear systems, regularity results assuming that Aαβij are constants
or are in C0(Ω), have been obtained by Campanato in [3]. As for the case when the
continuity of the coefficients is not assumed let us mention the note by Acquistapace [1]
where the author refines Campanato’s results assuming that the coefficients Aαβij belong
to a class neither containing nor contained in C0(Ω) hence, in general, discontinuous.

Moreover we recall the study carried out by Huang [22] where he proved regularity
results for weak solutions of linear elliptic systems with coefficients in the class VMO.

Therefore, it seems to be natural to expect partial regularity results under the
condition that the coefficients of the principal terms Aαβij ∈ VMO, even for nonlinear
cases.

Daněček and Viszus in [10] treated regularity of the minimizers for the functional∫
Ω

{
Aαβij (x)Dαu

iDβu
j + g(x, u,Du)

}
dx,

where g(x, u,Du) is a lower order term which satisfies

|g(x, u, z)| ≤ f(x) + L|z|γ,

where f ∈ Lp(Ω), 2 < p ≤ ∞, f ≥ 0 almost everywhere in Ω, L is a nonnegative
constant, and 0 ≤ γ < 2.

They obtained Hölder regularity of a minimizer assuming that Aαβij ∈ VMO.
Tachikawa and Ragusa have extended both the results by Huang and Daněček and

Viszus because they treat the functional whose integrand contains the term g(x, u,Du)
and has coefficients Aαβij dependent not only on x but also on u. Let us now formulate
the regularity results proved in [40]-[42]. Let µ ≥ 0, p ≥ 2. Let the integrand function
A(x, u, t) be defined on Ω× Rn × Rmn, and following assumptions:

(A-1) there exist positive constants C, λ,Λ, λ ≤ Λ such that

λ(µ2 + t)
p
2 ≤ A(x, u, t) ≤ Λ(µ2 + t)

p
2 ,

λ(µ2 + t)
p
2
−1 ≤ |At(x, u, t)| ≤ Λ(µ2 + t)

p
2
−1,

λ (µ2 + t)
p
2
−2 ≤ Att(x, u, t) ≤ Λ (µ2 + t)

p
2
−2,

for all (x, u, t) ∈ Ω× Rn × Rmn;
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(A-2) for every (u, t) ∈ Rn ×Rmn, A(·, u, t) ∈ VMO(Ω) and the mean oscillation
of A(·, u, t)/(µ2 + |t|)(p/2) vanishes uniformly with respect to u, t in the following
sense: there exist a positive number ρ0 and a function σ(z, ρ) : Rm × [0, ρ0[→
[0,+∞[ with

lim
r→0

sup
ρ<r

1

|Q(x, ρ) ∩ Ω|

∫
Q(x,ρ)∩Ω

σ(z, ρ)dz = 0,

such that A(·, u, t) satisfies, for every x ∈ Ω and y ∈ Q(x, ρ0) ∩Ω, the inequality∣∣A(y, u, t)− Ax,ρ(u, t)
∣∣ ≤ σ(x− y, ρ)(µ2 + t)

p
2 ,

for all (u, t) ∈ Rn × Rmn, where

Ax,ρ(u, t) =
1

|Q(x, ρ) ∩ Ω|

∫
Q(x,ρ)∩Ω

A(z, u, t)dz;

(A-3) for every x ∈ Ω, t ∈ Rmn and u, v ∈ Rn,∣∣A(x, u, t)− A(x, v, t)
∣∣ ≤ ω(|u− v|2)(µ2 + t)

p
2

where ω is some monotonically increasing concave function with ω(0) = 0;

(A-4) for almost all x ∈ Ω and all u ∈ Rn, A(x, u, ·) ∈ C2(Rmn);

(A-5) there exist constants λ0, Λ0, λ1, Λ1,

λ0|ζ|2 ≤ gαβ(x)ζαζβ ≤ Λ0|ζ|2,

λ1|η|2 ≤ hij(u)η
iηj ≤ |η|2,

for all x ∈ Ω, u, ζ ∈ Rm and η ∈ Rn;

(A-6) for every u, v ∈ Rn

|h(u) − h(v) | ≤ ω(|u − v |2)

where ω is, as in (A-2), some monotonically increasing concave function with
ω(0) = 0;

(A-7) the function g is in the class L∞ ∩ VMO(Ω).

Theorem 2.4. Let Ω ⊂ Rm be a bounded domain with sufficiently smooth boundary
∂Ω. Let also u ∈ W 1,p(Ω,Rn), p ≥ 2, be a minimizer of the functional

A(u,Ω) =

∫
Ω

F (x, u,Du) dx

with the integrand of the form

F (x, u,Du) = A(x, u, gαβ(x)hij(u)Dαu
iDβu

j).

Suppose that A(x, u, t) satisfies assumptions (A-1)− (A-7) .
Then there exists an open set Ω0 ⊂ Ω such that u ∈ C0,α(Ω0) for any α ∈ (0, 1).
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Let us now give the idea of the proof. The theorem is proved proceeding as in the
note by Giaquinta and Modica [18]. Let x0 ∈Ω, R> 0, Q(2R) =Q(x0, 2R) ⊂⊂ Ω. For
every (u, t) ∈ Rn × Rmn let us set

AR(u, t) =
1

|Q(R)|

∫
Q(R)

A(y, u, t)dy, uR =
1

|Q(R)|

∫
Q(R)

u(y)dy,

gR =
1

|Q(R)|

∫
Q(R)

g(y) dy,

and
A0(ζ) = AR(uR, gR h(uR) |ζ|2).

Here and below, we omit indices α, β, i, j when there is no possibility of confusion.
Now, let us consider the following “frozen functional"

A0(u)=

∫
Q(R)

A0(Du)dx=

∫
Q(R)

AR(uR, gRh(uR)|Du|2)dx.

Let also v ∈ H
∞,√

(Q(R)) be a minimizer of A0(V , Q(R)) in the set of functions

{V ∈ H1,p(Q(R)) ; u − V ∈ H1,p
0 (Q(R))}

and w = u − v.
Moreover, as in the paper [18], let us put

H(ξ) = (µ2 + |ξ|2)
p
2 .

In the sequel we use a regularity theorem by Uhlenbeck, see [47], for the minimizers
of the functionals of the form

F(v) =

∫
F (Dv)dx.

According to it, for r < R
2
, we have :∫

Q(R)

H(Dv)dx ≤ c
( r
R

)m ∫
QR/2

H(Dv)dx

where c does not depend on r, R, x0.
Using formula (4.8) in [18] (or, for p = 2, formula (2.9) in [13]), we have∫

Q(R)

|Dw|pdx ≤
{
A0(u)−A0(v)

}
=

=

∫
Q(R)

[
AR(uR,gRh(uR)|Du|2)−AR(uR,gRh(uR)|Dv|2)

]
dx.

Adding and subtracting the terms

A(x, uR, gR h(uR)|Du|2), A(x, u, gR h(uR)|Du|2)
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A(x, u, g(x)h(uR)|Du|2), A(x, u, g(x)h(u)|Du|2)

A(x, u, g(x)h(v)|Dv|2), A(x, v, g(x)h(v)|Dv|2)

A(x, v, g(x)h(uR)|Dv|2), A(x, v, gR h(uR)|Dv|2)

we obtain four kind of integrals.
So we obtain, using the assumptions on A :∫

Q(R)

|Dw|p dx ≤ c

∫
Q(R)

H(Du)dx

[(
1

|Q(R)|

∫
Q(R)

σ(x− x0, R)q
′

dx

) 1

q
′

+

(
1

|Q(R)|

∫
Q(R)

ω(|uR − u|2)q
′

dx

) 1

q
′

+

(
1

|Q(R)|

∫
Q(R)

ω(|uR − v|2)q
′

dx

) 1

q
′

+

(
1

|Q(R)|

∫
Q(R)

|gR − g(x)|q′dx
) 1

q′
]

= I + II + III + IV.

where q > p and q′ is its conjugate (such that 1
q

+ 1
q′

= 1). Let us use the above
mentioned regularity theorem by Uhlenbeck in the first part of I, in II and III Hölder’s
inequality and also Jensen’s and Poincare’s inequality and in IV the assumption (A−7)
on g, we have∫

Q(R)

|Du|p dx ≤ C

{( r
R

)λ
+

(
1

|Q(R)|

∫
Q(R)

σ(x,R)dx

) q−1
q

+

+ω

(
Rp−m

∫
Q(R)

|Du|pdx
)q−1

q

+ η(g,R)

}
·
∫
Q(2R)

H(Du)dx.

Furthermore recalling the VMO assumption we have

1

|B(R)|

∫
B(R)

σ(x,R)dx→ 0, , η(g,R) → 0 as R→ 0.

Finally, applying an useful lemma contained in [11], the proof is completed.
Morrey spaces will be an object of future research of the author in cooperation with

V. Shakhmurov, more specifically on embedding theorems for vector valued Morrey
spaces and on separable differential operators.

3 Open Problems

1. Extend the paper by Polidoro and Ragusa [34] up to the boundary.
2. It is possible to start a new study of the results obtained in [35] inspired by new

definitions of modified Morrey spaces given by J. J. Hasanov, V. Guliyev and Y. Zeren
in [21].

3. Let us consider Herz spaces studied, e. g. in [37], [38]. I suggest to study the
nondivergence elliptic and parabolic case.
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4. In [39] new classes of functions, R(p,q,λ), are defined. These spaces generalize
Lorentz spaces and give a refinement of Lebesgue spaces Lp, of weak−Lp spaces and of
Morrey spaces Lp,λ. Some embeddings between these new classes are also proved and
some others could be proved.

5. The author suggest to study Vanishing-Morrey spaces and related properties
and continue the work statrted in [36].
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[10] J. Daněček, E. and Viszus, L2,λ-regularity for minima of variational integrals. Boll. Un. Mat.
Ital. 8 (6) (2003), 39–48.

[11] M. Giaquinta, Multiple integrals in the calculus of variations and nonlinear elliptic systems.
Ann. of Math. Studies 105 Princeton University Press, (1983).

[12] M. Giaquinta, E. Giusti, Partial regularity for the solution to nonlinear parabolic systems. Ann.
Mat. Pura Appl. (1973).

[13] M. Giaquinta, E. Giusti, Differentiability of minima of non-differentiables functionals. Inv. Math.
72 (2) (1983), 285–298.

[14] M. Giaquinta, E. Giusti, The singular set of the minima of certain quadratic functionals. Ann.
Sc. Norm. Sup. Pisa (1984), 45–55.

[15] M. Giaquinta, P, Ivert, Partial regularity for minima of variational inegrals. Ank. für Math. 25
(2) (1987), 221–229.

[16] M. Giaquinta, L. Modica, Partial regularity of minimizers of quasiconvex integrals. Ann. Inst.
H. Poincare’ Analyse nonlinéare 3 (3) (1986), 185–208.
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[19] E. Giusti, Regolarità parziale delle soluzioni di sistemi ellittici quasi lineari di ordine arbitrario,
Ann. Sc. Norm. Sup. Pisa 23 (3) (1969), 115–141.



108 M.A. Ragusa
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