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Abstract. In this paper, we study the boundedness of sublinear operators and their
higher order commutators generated by Calderon-Zygmund operators and Riesz po-
tentials on generalized weighted Morrey space.

1 Introduction

The classical Morrey spaces Lp,λ were originally introduced by Morrey in [30] to study
the local behavior of solutions to second order elliptic partial differential equations.
For the properties and applications of classical Morrey spaces, we refer the readers to
[30, 32]. In [8], Chiarenza and Frasca showed the boundedness of the Hardy-Littlewood
maximal operator, the Riesz potential and the Calderon-Zygmund singular integral
operator these spaces. The boundedness of the Riesz potential was originally studied
by Adams [1].

On the other hand, in harmonic analysis it is very important to study weighted
estimates for these operators. On the weighted Lp spaces, the boundedness of operators
above was obtained by Muckenhoupt [29], Mukenhoupt and Wheeden [30], and Coifman
and Fefferman [9]. Recently, Komori and Shirai [22] defined the weighted Morrey
spaces Lp,κ(w) and studied the boundedness of the aforementioned classical operators
these spaces. These results were extended to several other spaces. However, their
boundedness in generalized weighted Morrey spaces Mp,ϕ(w) have not yet been studied.

Therefore, in this paper, we shall investigate the boundedness of sublinear opera-
tors and their higher order commutators generated by Calderon-Zygmund operators
and Riesz potentials in generalized weighted Morrey space, that is, the maximal op-
erator, the fractional maximal operator, the Riesz potential, the Calderon-Zygmund
operators, the Littlewood-Paley operator, the Marcinkiewicz operator, the Bochner-
Riesz operator.
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2 Definitions and notation

Let Rn be the n−dimensional Euclidean space of points x = (x1, ..., xn) with the norm
|x| = (

∑n
i=1 x

2
i )

1/2. For x ∈ Rn and r > 0, let B(x, r) be the open ball centered at x
of radius r, {

B(x, r) denote its complement, and |B(x, r)| be the Lebesgue measure of
the ball B(x, r).

The fractional maximal operator Mα and the Riesz potential Iα are defined by

Mαf(x) = sup
t>0

|B(x, t)|−1+α
n

∫
B(x,t)

|f(y)|dy, 0 ≤ α < n,

Iαf(x) =

∫
Rn

f(y) dy

|x− y|n−α
, 0 < α < n.

If α = 0, then M ≡M0 is the Hardy-Littlewood maximal operator.
Let K be a Calderón-Zygmund singular integral operator, briefly a Calderón-

Zygmund operator, i.e., a linear operator bounded from L2(Rn) to L2(Rn) taking all
infinitely continuously differentiable functions f with compact support to functions in
Lloc

1 (Rn), represented for such functions by

Kf(x) =

∫
Rn

k(x, y)f(y) dy a.e. on
{
suppf.

Here k(x, y) is a continuous function away from the diagonal which satisfies the stan-
dard estimates: there exist c1 > 0 and 0 < ε ≤ 1 such that

|k(x, y)| ≤ c1|x− y|−n

for all x, y ∈ Rn, x 6= y, and

|k(x, y)− k(x′, y)|+ |k(y, x)− k(y, x′)| ≤ c1

(
|x− x′|
|x− y|

)ε
|x− y|−n

whenever 2|x− x′| ≤ |x− y|. Such operators were introduced in [11].
It is well known that the fractional maximal operator, Riesz potential and Calderón-

Zygmund operators play an important role in harmonic analysis (see [14, 28, 37, 39]).
Suppose that Tα, α ∈ [0, n) represents a linear or a sublinear operator, which

satisfies, for any f ∈ L1(Rn) with compact support and x /∈ suppf , the inequality

|Tαf(x)| ≤ c1

∫
Rn

|f(y)|
|x− y|n−α

dy, (2.1)

where c1 is independent of f and x.
For a function b, suppose that the kth-order commutator operator Tb,α,k, α ∈ [0, n)

represents a linear or a sublinear operator, which satisfies, for any f ∈ L1(Rn) with
compact support and x /∈ suppf , the inequality

|Tb,α,kf(x)| ≤ c2

∫
Rn

|b(x)− b(y)|k |x− y|−n+α|f(y)|dy, (2.2)
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where c2 is independent of f and x.
We point out that the condition (2.1) with α = 0 was first introduced by Soria

and Weiss in [34] . Condition (2.1) is satisfied by many interesting operators in har-
monic analysis, such as the Calderón–Zygmund operator, Carleson’s maximal opera-
tor, Hardy-Littlewood maximal operators, fractional maximal operator, C. Fefferman’s
singular multipliers, R. Fefferman’s singular integrals, Riesz potentials, Ricci–Stein’s
oscillatory singular integrals, Bochner–Riesz means and so on (see [12], [27], [34] for
details).

We define the generalized weighed Morrey spaces as follows.

Definition 1. Let 1 ≤ p <∞, ϕ be a positive measurable function on Rn× (0,∞) and
w be non-negative measurable function on Rn. We denote by Mp,ϕ(w) the generalized
weighted Morrey space, the space of all functions f ∈ Lloc

p,w(Rn) with finite norm

‖f‖Mp,ϕ(w) = sup
x∈Rn,r>0

ϕ(x, r)−1w(B(x, r))−
1
p ‖f‖Lp,w(B(x,r)),

where Lp,w(B(x, r)) denotes the weighted Lp-space of measurable functions f for which

‖f‖Lp,w(B(x,r)) ≡ ‖fχ
B(x,r)

‖Lp,w(Rn) =

(∫
B(x,r)

|f(y)|pw(y)dy

) 1
p

.

Furthermore, by WMp,ϕ(w) we denote the weak generalized weighted Morrey space
of all functions f ∈ WLloc

p,w(Rn) for which

‖f‖WMp,ϕ(w) = sup
x∈Rn,r>0

ϕ(x, r)−1w(B(x, r))−
1
p ‖f‖WLp,w(B(x,r)) <∞,

where WLp,w(B(x, r)) denotes the weak Lp,w-space of measurable functions f for which

‖f‖WLp,w(B(x,r)) ≡ ‖fχ
B(x,r)

‖WLp,w(Rn) = sup
t>0

t

(∫
{y∈B(x,r): |f(y)|>t}

w(y)dy

) 1
p

.

Remark 1. (1) If w ≡ 1, then Mp,ϕ(1) = Mp,ϕ is the generalized Morrey space.
(2) If ϕ(x, r) ≡ w(B(x, r))

κ−1
p , then Mp,ϕ(w) = Lp,κ(w) is the weighted Morrey

space.
(3) If ϕ(x, r) ≡ v(B(x, r))

κ
pw(B(x, r))−

1
p , then Mp,ϕ(w) = Lp,κ(v, w) is the two

weighted Morrey space.
(4) If w ≡ 1 and ϕ(x, r) = r

λ−n
p with 0 < λ < n, then Mp,ϕ(w) = Lp,λ(Rn) is the

classical Morrey space and WMp,ϕ(w) = WLp,λ(Rn) is the weak Morrey space.
(5) If ϕ(x, r) ≡ w(B(x, r))−

1
p , then Mp,ϕ(w) = Lp,w(Rn) is the weighted Lebesgue

space.

In [20], we proved the boundedness of the sublinear operator T0 satisfying condition
(2.1) with α = 0 from Mp,ϕ1(w) to Mp,ϕ2(w) with w ∈ Ap, 1 < p < ∞, and from
M1,ϕ1(w) to the weak space WM1,ϕ2(w) with w ∈ A1, where Ap is the Muckenhoupt
class [29] (see the definition in Section 4).
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In this work, we prove the boundedness of the sublinear operator Tα, α ∈ (0, n)
satisfies the condition (2.1) generated by the Riesz potential operator from Mp,ϕ1(w

p)
to Mq,ϕ2(w

q) with w ∈ Ap,q, 1 < p < q < ∞, 1/p − 1/q = α/n, and from M1,ϕ1(w) to
the weak space WMq,ϕ2(w

q) with w ∈ A1,q, 1 < q < ∞, 1 − 1/q = α/n, where Ap,q is
the Muckenhoupt-Wheeden class [30] (see the definition in Section 4).

In the case b ∈ BMO(Rn) and Tb,0,k a sublinear kth-order commutator operator,
satisfying condition (2.2) with α = 0, we find the sufficient conditions on the pair
(ϕ1, ϕ2) which ensure the boundedness of the operator Tb,0,k from Mp,ϕ1(w) to Mp,ϕ2(w)
with w ∈ Ap, 1 < p < ∞. Also, in the case b ∈ BMO(Rn) and Tb,α,k, α ∈ (0, n) a
sublinear kth-order commutator operator, satisfying condition (2.2) with α ∈ (0, n),
we find the sufficient conditions on the pair (ϕ1, ϕ2) which ensure the boundedness
of the operator Tb,α,k from Mp,ϕ1(w

p) to Mq,ϕ2(w
q) with w ∈ Ap,q, 1 < p < q < ∞,

1/p − 1/q = α/n. Finally, as application, we apply this result to several particular
operators such as Littlewood-Paley operator, Marcinkiewicz operator, Bochner-Riesz
operator and fractional powers of some analytic semigroups.

By A . B we mean that A ≤ CB with some positive C is independent of insignif-
icant quantities. If A . B and B . A, then we write A ≈ B and say that A and B
are equivalent.

3 Main results

The following statements, were proved in [20, 21].

Theorem 3.1. Let 1 ≤ p <∞, w ∈ Ap and (ϕ1, ϕ2) satisfy the condition

∫ ∞

r

ess inf
t<s<∞

ϕ1(x, s)w(B(x, s))
1
p

w(B(x, t))
1
p

dt

t
≤ C ϕ2(x, r), (3.1)

where C does not depend on x and r. Let T0 be a sublinear operator satisfying condition
(2.1) with α = 0 bounded on Lp,w(Rn) for p > 1, and bounded from L1,w(Rn) to
WL1,w(Rn). Then the operator T0 is bounded from Mp,ϕ1(w) to Mp,ϕ2(w) for p > 1 and
from M1,ϕ1(w) to WM1,ϕ2(w).

Note that, in the case w = 1 Theorem 3.1 was proved in [17] and for the operators
M and K in [3].

Theorem 3.2. Let 1 < p < ∞, w ∈ Ap, b ∈ BMO(Rn), and (ϕ1, ϕ2) satisfy the
condition ∫ ∞

r

ln
(
e+

t

r

)ess inf
t<s<∞

ϕ1(x, s)w(B(x, s))
1
p

w(B(x, t))
1
p

dt

t
≤ C ϕ2(x, r), (3.2)

where C does not depend on x and r. Let Tb,0,1 be a sublinear operator satisfying
condition (2.2) with α = 0, k = 1 and bounded on Lp,w(Rn). Then the operator Tb,0,1
is bounded from Mp,ϕ1(w) to Mp,ϕ2(w).

Note that for ϕ1(x, r) = ϕ2(x, r) ≡ w(B(x, r))
κ−1

p , from Theorems 3.1 and 3.2 we
get the following new results.
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Corollary 3.1. Let 1 < p < ∞, 0 < κ < 1 and w ∈ Ap. Let also T0 be a sublinear
operator satisfying condition (2.1) with α = 0 bounded on Lp,w(Rn) for p > 1, and
bounded from L1,w(Rn) to WL1,w(Rn). Then the operator T0 is bounded on Lp,κ(w) for
p > 1 and from L1,κ(w) to WL1,κ(w) (see [21]).

Corollary 3.2. Let 1 < p < ∞, 0 < κ < 1, w ∈ Ap, b ∈ BMO(Rn) and let Tb be
a sublinear operator satisfying condition (2.2) with α = 0, k = 1. Let also Tb,0,1 be
bounded on Lp,w(Rn). Then the operator Tb,0,1 is bounded on Lp,κ(w) (see [21]).

Note that from Corollaries 3.1 and 3.2 for the Hardy-Littlewood maximal operators
M and the Calderón-Zygmund operators K we get results which were proved in [22].

From Theorem 3.1 we also get the following result.

Corollary 3.3. Let 1 ≤ p < ∞, 0 < λ < n, λ − n < β < n(p − 1) (λ − n < β ≤ 0,
if p = 1) and let T0 be a sublinear operator satisfying condition (2.1) with α = 0
bounded on Lp,|·|β(Rn) for p > 1, and bounded from L1,|·|β(Rn) to WL1,|·|β(Rn). Then
the operator T is bounded on Mp,λ(| · |β) for p > 1 and from M1,λ(| · |β) to WM1,λ(| · |β).

Corollary 3.4. Let 1 ≤ p <∞, 0 < λ < n, λ− n < β < n(p− 1) (λ− n < β ≤ 0, if
p = 1). Then the operators M and K are bounded on Mp,λ(| · |β) for p > 1 and from
M1,λ(| · |β) to WM1,λ(| · |β) for p = 1.

Next we state our main results. First we present some estimates which are the main
tools for proving our theorems, on the boundedness of the operators Tα with α ∈ (0, n)
on the generalized weighted Morrey spaces.

Theorem 3.3. Let 1 ≤ p < q <∞, 0 < α < n
p
, 1
q

= 1
p
− α

n
, and w ∈ Ap,q. Let also Tα

be a sublinear operator satisfying condition (2.1), bounded from Lp,wp(Rn) to Lq,wq(Rn)
for p > 1, and bounded from L1,w(Rn) to WLq,wq(Rn) for p = 1.

Then, for 1 < p < n
α

the inequality

‖Tαf‖Lq,wq (B(x,r)) .
(
wq(B(x, r))

) 1
q

∫ ∞

2r

‖f‖Lp,wp (B(x,t))

(
wq(B(x, t))

)− 1
q
dt

t

holds for any ball B(x, r) and for all f ∈ Lloc
p,w(Rn).

Moreover, for p = 1 the inequality

‖Tαf‖WLq,wq (B(x,r)) .
(
wq(B(x, r))

) 1
q

∫ ∞

2r

‖f‖L1,w(B(x,t))

(
wq(B(x, t))

)− 1
q
dt

t
, (3.3)

holds for any ball B(x, r) and for all f ∈ Lloc
1,w(Rn).

Theorem 3.4. Let 1 ≤ p < q < ∞, 0 < α < n
p
, 1
q

= 1
p
− α

n
, w ∈ Ap,q, and (ϕ1, ϕ2)

satisfy the condition

∫ ∞

r

ess inf
t<s<∞

ϕ1(x, s)
(
wp(B(x, s))

) 1
p(

wq(B(x, t))
) 1

q

dt

t
≤ C ϕ2(x, r), (3.4)



38 V.S. Guliyev

where C does not depend on x and r. Let Tα be a sublinear operator satisfying condition
(2.1) with α ∈ (0, n), bounded from Lp,wp(Rn) to Lq,wq(Rn) for p > 1, and bounded from
L1,w(Rn) to WLq,wq(Rn) for p = 1. Then the operator Tα is bounded from Mp,ϕ1(w

p)
to Mq,ϕ2(w

q) for p > 1 and from M1,ϕ1(w) to WMq,ϕ2(w
q) for p = 1. Moreover, for

p > 1
‖Tαf‖Mq,ϕ2 (wq) . ‖f‖Mp,ϕ1 (wp),

and for p = 1
‖Tαf‖WMq,ϕ2 (wq) . ‖f‖M1,ϕ1 (w).

Note that, in the case w = 1 Theorem 3.4 was proved in [18].

Corollary 3.5. Let 1 ≤ p < q < ∞, 0 < α < n
p
, 1
q

= 1
p
− α

n
, w ∈ Ap,q and (ϕ1, ϕ2)

satisfy condition (3.4). Then the operators Mα and Iα are bounded from Mp,ϕ1(w
p) to

Mq,ϕ2(w
q) for p > 1 and from M1,ϕ1(w) to WMq,ϕ2(w

q) for p = 1.

For ϕ1(x, r) = ϕ2(x, r) ≡ w(B(x, r))
κ−1

p , from Theorem 3.4 we get the following
new result.

Corollary 3.6. Let 1 ≤ p < q <∞, 0 < α < n
p
, 1
q

= 1
p
− α

n
, 0 < κ < p

q
and w ∈ Ap,q.

Let also Tα be a sublinear operator satisfying condition (2.1) with α ∈ (0, n) bounded
from Lp,wp(Rn) to Lq,wq(Rn) for p > 1, and bounded from L1,w(Rn) to WLq,wq(Rn).
Then the operator Tα is bounded from Lp,κ(w

p, wq) to Lq,κq/p(w
q) for p > 1 and from

L1,κ(w,w
q) to WLq,κq(w

q) for p = 1.

Now we present some estimates which are the main tools for proving our theorems,
on the boundedness of the operators Tb,α,k, α ∈ [0, n) on the generalized weighted
Morrey spaces.

Theorem 3.5. Let 1 < p < ∞, w ∈ Ap, b ∈ BMO(Rn), and Tb,0,k be a sublinear
kth-order commutator operator satisfying condition (2.2) with α = 0. Let also Tb,0,k be
bounded on Lp,w(Rn). Moreover, let

‖Tb,0,kf‖Lp,w(Rn) . ‖b‖k∗ ‖f‖Lp,w(Rn),

where ‖b‖∗ is the norm in BMO(Rn) (see Definition 2 below).
Then the inequality

‖Tb,0,kf‖Lp,w(B(x,r)) . ‖b‖k∗ w(B(x, r))
1
p

∫ ∞

2r

lnk
(
e+

t

r

)
‖f‖Lp,w(B(x,t))w(B(x, t))−1/p dt

t

holds for any ball B(x, r) and for all f ∈ Lloc
p,w(Rn).

Theorem 3.6. Let 1 < p < q < ∞, 0 < α < n
p
, 1
q

= 1
p
− α

n
, b ∈ BMO(Rn),

and w ∈ Ap,q. Let also Tb,α,k be a sublinear kth-order commutator operator satisfying
condition (2.2), and bounded from Lp,wp(Rn) to Lq,wq(Rn). Moreover, let

‖Tb,α,kf‖Lq,wq (Rn) . ‖b‖k∗ ‖f‖Lp,wp (Rn).

Then the inequality

‖Tb,α,kf‖Lq,wq (B(x,r)) . ‖b‖k∗
(
wq(B(x, r))

) 1
q

∫ ∞

2r

lnk
(
e+

t

r

)
‖f‖Lp,wp (B(x,t))

(
wq(B(x, t))

)− 1
q
dt

t

holds for any ball B(x, r) and for all f ∈ Lloc
p,wp(Rn).
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Now we give theorem about the boundedness of the operators Tb,α,k on the gener-
alized weighted Morrey spaces.

Theorem 3.7. Let 1 < p < ∞, w ∈ Ap, b ∈ BMO(Rn) and (ϕ1, ϕ2) satisfy the
condition

∫ ∞

r

lnk
(
e+

t

r

)ess inf
t<s<∞

ϕ1(x, s)w(B(x, s))
1
p

w(B(x, t))
1
p

dt

t
≤ C ϕ2(x, r), (3.5)

where C does not depend on x and r. Let Tb,0,k be a sublinear kth-order commutator
operator satisfying condition (2.2) with α = 0 and bounded on Lp,w(Rn). Moreover, let

‖Tb,0,kf‖Lp,w(Rn) . ‖b‖k∗ ‖f‖Lp,w(Rn).

Then the operator Tb,0,k is bounded from Mp,ϕ1(w) to Mp,ϕ2(w). Moreover,

‖Tb,0,kf‖Mp,ϕ2 (w) . ‖b‖k∗ ‖f‖Mp,ϕ1 (w).

Note that from Theorem 3.7 we get new results in particular for the sublinear
kth order commutator of the maximal operator Mb,k and for the linear kth order
commutator of the Calderón-Zygmund operator

[bk, K]f(x) ≡ [b . . . [b,K] . . .︸ ︷︷ ︸
k

]f(x) =

∫
Rn

(
b(x)− b(y)

)k
k(x, y)f(y)dy.

For ϕ1(x, r) = ϕ2(x, r) ≡ w(B(x, r))
κ−1

p , from Theorem 3.7 we also get the following
new result.

Corollary 3.7. Let 1 < p < ∞, 0 < κ < 1, w ∈ Ap, b ∈ BMO(Rn) and let Tb,0,k be
a sublinear kth-order commutator operator satisfying condition (2.2) with α = 0. Let
also Tb,0,k is bounded on Lp,w(Rn). Then the operator Tb,0,k be bounded on Lp,κ(w).

Proof. Let 1 < p <∞, w ∈ Ap, 0 < κ < 1, b ∈ BMO(Rn). Then the pair
(w(B(x, r))

κ−1
p , w(B(x, r))

κ−1
p ) satisfies condition (3.5). Indeed,

∫ ∞

r

lnk
(
e+

t

r

) ess inf
t<s<∞

w(B(x, s))
κ
p

w(B(x, t))1/p

dt

t
=

∫ ∞

r

lnk
(
e+

t

r

)
w(B(x, t))

κ−1
p
dt

t

≤ C w(B(x, r))
κ−1

p ,

with where the last inequality with C > 0 independent of x and r follows from Lemma
13 in [4].

Note that, in the case k = 1, from Corollary 3.7 for the operator [bk, K] we get
results which were proved in [22].
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Theorem 3.8. Let 1 < p < q < ∞, 0 < α < n
p
, 1
q

= 1
p
− α

n
, w ∈ Ap,q, b ∈ BMO(Rn)

and (ϕ1, ϕ2) satisfy the condition

∫ ∞

r

lnk
(
e+

t

r

) ess inf
t<s<∞

ϕ1(x, s)
(
wp(B(x, s))

) 1
p(

wq(B(x, t))
) 1

q

dt

t
≤ C ϕ2(x, r), (3.6)

where C does not depend on x and r. Let Tb,α,k be a sublinear kth-order commutator op-
erator satisfying condition (2.2), and bounded from Lp,wp(Rn) to Lq,wq(Rn). Moreover,
let

‖Tb,α,kf‖Lq,wq (Rn) . ‖b‖k∗ ‖f‖Lp,wp (Rn).

Then the operator Tb,α,k is bounded from Mp,ϕ1(w
p) to Mq,ϕ2(w

q). Moreover,

‖Tb,α,kf‖Mq,ϕ2 (wq) . ‖b‖k∗ ‖f‖Mp,ϕ1 (wp).

For the sublinear kth order commutator of the fractional maximal operator

Mb,α,k(f)(x) = sup
t>0

|B(x, t)|−1+α
n

∫
B(x,t)

|b(x)− b(y)|k|f(y)|dy

and for the linear kth order commutator of the Riesz potential

[bk, Iα]f(x) ≡ [b . . . [b, Iα] . . .︸ ︷︷ ︸
k

]f(x) =

∫
Rn

(
b(x)− b(y)

)k f(y)

|x− y|n−α
dy

from Theorem 3.8 we get the following new result.

Corollary 3.8. Let 1 < p < q <∞, 0 < α < n
p
, 1
q

= 1
p
− α

n
, w ∈ Ap,q, b ∈ BMO(Rn)

and (ϕ1, ϕ2) satisfy condition (3.6). Then, the operators Mb,α,k and [bk, Iα] are bounded
from Mp,ϕ1(w

p) to Mq,ϕ2(w
q).

In the case ϕ1(x, r) = ϕ2(x, r) ≡ w(B(x, r))
κ−1

p , from Theorem 3.8 we get the
following new results.

Corollary 3.9. Let 1 < p < q < ∞, 0 < α < n
p
, 1
q

= 1
p
− α

n
, 0 < κ < p

q
, b ∈

BMO(Rn), and w ∈ Ap,q. Let also Tb,α,k be a sublinear kth-order commutator operator
satisfying condition (2.2) bounded from Lp,wp(Rn) to Lq,wq(Rn). Then the operator
Tb,α,k is bounded from Lp,κ(w

p, wq) to Lq,κq/p(wq).

Corollary 3.10. Let 1 < p < q < ∞, 0 < α < n
p
, 1
q

= 1
p
− α

n
, 0 < κ < p

q
, b ∈

BMO(Rn), and w ∈ Ap,q. Then, the operators Mb,α,k and [bk, Iα] are bounded from
Lp,κ(w

p, wq) to Lq,κq/p(wq).

Note that in the case k = 1 Corollary 3.10 was proved in [22].
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4 Preliminaries and some lemmas

By a weight function, briefly weight, we mean a locally integrable function on Rn

which takes values in (0,∞) almost everywhere. For a weight w and a measurable set
E, we define w(E) =

∫
E
w(x)dx, and denote the Lebesgue measure of E by |E| and

the characteristic function of E by χ
E
. Given a weight w, we say that w satisfies the

doubling condition if there exists a constant D > 0 such that for any ball B, we have
w(2B) ≤ Dw(B). When w satisfies this condition, we write brevity w ∈ ∆2.

If w is a weight function, we denote by Lp,w(Rn) ≡ Lp(Rn, w) the weighted Lebesgue
space defined by finiteness of the norm

‖f‖Lp,w =

(∫
Rn

|f(x)|pw(x)dx

) 1
p

<∞, if 1 ≤ p <∞

and by ‖f‖L∞,w = ess sup
x∈Rn

|f(x)|w(x) if p = ∞.

We recall that a weight function w is in the Muckenhoupt’s class Ap [29], 1 < p <∞,
if

[w]Ap : = sup
B

[w]Ap(B)

= sup
B

(
1

|B|

∫
B

w(x)dx

)(
1

|B|

∫
B

w(x)1−p′dx

)p−1

<∞,

where the sup is taken with respect to all the balls B and 1
p

+ 1
p′

= 1. Note that, for
all balls B by Hölder’s inequality

[w]
1/p
Ap(B) = |B|−1‖w‖1/p

L1(B) ‖w
−1/p‖Lp′ (B) ≥ 1. (4.1)

For p = 1, the class A1 is defined by the condition Mw(x) ≤ Cw(x) with [w]A1 =

sup
x∈Rn

Mw(x)
w(x)

, and for p = ∞ A∞ =
⋃

1≤p<∞Ap and [w]A∞ = inf
1≤p<∞

[w]Ap .

A weight function w belongs to the Muckenhoupt-Wheeden class Ap,q [30] for 1 <
p, q <∞ if

[w]Ap,q : = sup
B

[w]Ap,q(B)

= sup
B

(
1

|B|

∫
B

w(x)qdx

)1/q (
1

|B|

∫
B

w(x)−p
′
dx

)1/p′

<∞,

where the sup is taken with respect to all balls B. Note that, for all balls B by Hölder’s
inequality

[w]Ap,q(B) = |B|
1
p
− 1

q
−1‖w‖Lq(B) ‖w−1‖Lp′ (B) ≥ 1. (4.2)

If p = 1, w is in A1,q with 1 < q <∞ if

[w]A1,q : = sup
B

[w]A1,q(B)

= sup
B

(
1

|B|

∫
B

w(x)qdx

)1/q (
ess sup
x∈B

1

w(x)

)
<∞,

where the sup is taken with respect to all balls B.



42 V.S. Guliyev

Remark 2. [14, 15] If w ∈ Ap,q with 1 < p < q < ∞, then the following statements
are true:

(a) wq ∈ At with t = 1 + q/p′.
(b) w−p

′ ∈ At′ with t′ = 1 + p/q′.
(c) w ∈ Aq,p.
(d) wp ∈ As with s = 1 + p/q′.
(e) w−q

′ ∈ As′ with s′ = 1 + q′/p.

Lemma 4.1. ([15]) (1) If w ∈ Ap for some 1 ≤ p <∞, then w ∈ ∆2. Moreover, for
all λ > 1

w(λB) ≤ λnp[w]Apw(B).

(2) If w ∈ A∞, then w ∈ ∆2. Moreover, for all λ > 1

w(λB) ≤ 2λ
n

[w]A∞w(B).

(3) If w ∈ Ap for some 1 ≤ p ≤ ∞, then there exit C > 0 and δ > 0 such that for
any ball B and a measurable set S ⊂ B,

w(S)

w(B)
≤ C

( |S|
|B|

)δ
.

We are going to use the following result on the boundedness of the Hardy operator

(Hg)(t) :=
1

t

∫ t

0

g(r)dµ(r), 0 < t <∞,

where µ is a non-negative Borel measure on (0,∞).

Theorem 4.1. ([7]) The inequality

ess sup
t>0

w(t)Hg(t) ≤ c ess sup
t>0

v(t)g(t)

holds for all functions g non-negative and non-increasing on (0,∞) if and only if

A := sup
t>0

w(t)

t

∫ t

0

dµ(r)

ess sup
0<s<r

v(s)
<∞,

and c ≈ A.

We also need the following statement on the boundedness of the Hardy type oper-
ator

(H1g)(t) :=
1

t

∫ t

0

lnk
(
e+

t

r

)
g(r)dµ(r), 0 < t <∞,

where µ is a non-negative Borel measure on (0,∞).
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Theorem 4.2. The inequality

ess sup
t>0

w(t)H1g(t) ≤ c ess sup
t>0

v(t)g(t)

holds for all functions g non-negative and non-increasing on (0,∞) if and only if

A1 := sup
t>0

w(t)

t

∫ t

0

lnk
(
e+

t

r

) dµ(r)

ess sup
0<s<r

v(s)
<∞,

and c ≈ A1.

Note that, Theorem 4.2 can be proved analogously to Theorem 4.3 in [17].

Definition 2. BMO(Rn) is the Banach space modulo constants with the norm ‖ · ‖∗
defined by

‖b‖∗ = sup
x∈Rn,r>0

1

|B(x, r)|

∫
B(x,r)

|b(y)− bB(x,r)|dy <∞,

where b ∈ Lloc
1 (Rn) and

bB(x,r) =
1

|B(x, r)|

∫
B(x,r)

b(y)dy.

Lemma 4.2. ([30], Theorem 5, p. 236) Let w ∈ A∞. Then the norm ‖·‖∗ is equivalent
to the norm

‖b‖∗,w = sup
x∈Rn,r>0

1

w(B(x, r))

∫
B(x,r)

|b(y)− bB(x,r),w|w(y)dy,

where
bB(x,r),w =

1

w(B(x, r))

∫
B(x,r)

b(y)w(y)dy.

Remark 3. (1) The John-Nirenberg inequality : there are constants C1, C2 > 0, such
that for all b ∈ BMO(Rn) and β > 0

|{x ∈ B : |b(x)− bB| > β}| ≤ C1|B|e−C2β/‖b‖∗ , ∀B ⊂ Rn.

(2) For 1 ≤ p <∞ the John-Nirenberg inequality implies that

‖b‖∗ ≈ sup
B

(
1

|B|

∫
B

|b(y)− bB|pdy
) 1

p

(4.3)

and for 1 ≤ p <∞ and w ∈ A∞

‖b‖∗ ≈ sup
B

(
1

w(B)

∫
B

|b(y)− bB|pw(y)dy

) 1
p

. (4.4)
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Note that, by the John-Nirenberg inequality and Lemma 4.1 (part 3) it follows that

w({x ∈ B : |b(x)− bB| > β}) ≤ Cδ
1w(B)e−C2βδ/‖b‖∗

for some δ > 0. Hence∫
B

|b(y)− bB|pw(y)dy = p

∫ ∞

0

βp−1 w({x ∈ B : |b(x)− bB| > β})dβ

≤ pCδ
1 w(B)

∫ ∞

0

βp−1 e−C2βδ/‖b‖∗ dβ = C3w(B)‖b‖p∗,

where C3 > 0 depends only on Cδ
1 , C2, p, and δ, which implies (4.4).

Also (4.3) is a particular case of (4.4) with w ≡ 1.
The following lemma was proved in [23].

Lemma 4.3. Let b ∈ BMO(Rn). Let also 1 ≤ p <∞, x ∈ Rn, and r1, r2 > 0. Then

(
1

|B(x, r1)|

∫
B(x,r1)

|b(y)− bB(x,r2)|pdy
) 1

p

≤ C

(
1 +

∣∣∣ ln r1
r2

∣∣∣) ‖b‖∗,
where C > 0 is independent of f , x, r1, and r2.

The following lemma is valid.

Lemma 4.4. i) Let w ∈ A∞ and b ∈ BMO(Rn). Let also 1 ≤ p <∞, x ∈ Rn, k > 0
and r1, r2 > 0. Then

( 1

w(B(x, r1))

∫
B(x,r1)

|b(y)− bB(x,r2),w|kpw(y)dy
) 1

p ≤ C

(
1 +

∣∣∣ ln r1
r2

∣∣∣)k ‖b‖k∗,
where C > 0 is independent of f , w, x, r1, and r2.

ii) Let w ∈ Ap and b ∈ BMO(Rn). Let also 1 < p < ∞, x ∈ Rn, k > 0 and
r1, r2 > 0. Then

( 1

w1−p′(B(x, r1))

∫
B(x,r1)

|b(y)− bB(x,r2),w|kp
′
w(y)1−p′dy

) 1
p′ ≤ C

(
1 +

∣∣∣ ln r1
r2

∣∣∣)k ‖b‖k∗,
where C > 0 is independent of f , w, x, r1, and r2.
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Proof. i) From (4.4) and Lemma 4.3 we have(
1

w(B(x, r1))

∫
B(x,r1)

|b(y)− bB(x,r2),w|kpw(y)dy

) 1
p

≤
(

1

w(B(x, r1))

∫
B(x,r1)

|b(y)− bB(x,r1)|kpw(y)dy

) 1
p

+ |bB(x,r1) − bB(x,r2)|k + |bB(x,r2) − bB(x,r2),w|k

≤
(

1

w(B(x, r1))

∫
B(x,r1)

|b(y)− bB(x,r1)|kpw(y)dy

) 1
p

+
( 1

|B(x, r1)|

∫
B(x,r1)

|b(y)− bB(x,r2)|dy
)k

+
( 1

w(B(x, r2))

∫
B(x,r2)

|b(y)− bB(x,r2)|w(y)dy
)k

.
(
1 +

∣∣∣ ln r1
r2

∣∣∣)k‖b‖k∗.
This completes the proof of the first part of the lemma.
ii) From (4.4) and Lemma 4.3 we have

(
1

w1−p′(B(x, r1))

∫
B(x,r1)

|b(y)− bB(x,r2),w|kp
′
w(y)1−p′dy

) 1
p′

≤
( 1

w1−p′(B(x, r1))

∫
B(x,r1)

|b(y)− bB(x,r1)|kp
′
w(y)1−p′dy

) 1
p′

+
∣∣∣bB(x,r1) − bB(x,r2)

∣∣∣k +
∣∣∣bB(x,r2) − bB(x,r2),w1−p′

∣∣∣k
≤
(

1

w1−p′(B(x, r1))

∫
B(x,r1)

|b(y)− bB(x,r1),w1−p′ |kp
′
w(y)1−p′dy

) 1
p′

+
( 1

|B(x, r1)|

∫
B(x,r1)

|b(y)− bB(x,r2)|dy
)k

+

(
1

w1−p′(B(x, r2))

∫
B(x,r2)

|b(y)− bB(x,r2),w1−p′ |w(y)1−p′dy

)k
.
(
1 +

∣∣∣ ln r1
r2

∣∣∣)k‖b‖k∗.
This completes the proof of the second part of the lemma.

The following lemma can be proved analogously.

Lemma 4.5. i) Let w ∈ A∞ and b ∈ BMO(Rn). Let also 1 ≤ q <∞, x ∈ Rn, k > 0,
and r1, r2 > 0. Then( 1

wq(B(x, r1))

∫
B(x,r1)

|b(y)− bB(x,r2),wq |kq wq(y)dy
) 1

q ≤ C

(
1 +

∣∣∣ ln r1
r2

∣∣∣)k ‖b‖k∗,
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where C > 0 is independent of f , w, x, r1 and r2.
ii) Let 1 < p < q < ∞, w ∈ Ap,q and b ∈ BMO(Rn). Let also x ∈ Rn, k > 0, and

r1, r2 > 0. Then

( 1

w−p′(B(x, r1))

∫
B(x,r1)

|b(y)− bB(x,r2),w−p′ |kp
′
w(y)−p

′
dy
) 1

p′ ≤ C

(
1 +

∣∣∣ ln r1
r2

∣∣∣)k ‖b‖k∗,
where C > 0 is independent of f , w, x, r1 and r2.

Note that, Lemma 4.3 is a particular case of Lemma 4.4 (statement i) with w ≡ 1
and k = 1).

5 Proofs of Theorems 3.3, 3.4, 3.5, 3.6, 3.7, and 3.8

In this section we shall prove Theorems 3.3, 3.4, 3.5, 3.6, 3.7, and 3.8. First we
shall prove Theorem 3.3.

Proof of Theorem 3.3. Let 1 < p < q < ∞, 0 < α < n
p
, 1
q

= 1
p
− α

n
, and w ∈ Ap,q.

For arbitrary x ∈ Rn, set B = B(x, r), 2B ≡ B(x, 2r). We represent f as

f = f1 + f2, f1(y) = f(y)χ2B(y), f2(y) = f(y)χ {(2B)
(y), r > 0, (5.1)

and have
‖Tαf‖Lq,wq (B) ≤ ‖Tαf1‖Lq,wq (B) + ‖Tαf2‖Lq,wq (B).

Since f1 ∈ Lp,wp(Rn), Tαf1 ∈ Lq,wq(Rn) and from the boundedness of Tα from
Lp,wp(Rn) to Lq,wq(Rn) it follows that:

‖Tαf1‖Lq,wq (B) ≤ ‖Tαf1‖Lq,wq ≤ C‖f1‖Lp,wp = C‖f‖Lp,wp (2B),

where constant C > 0 is independent of f .
It is clear that z ∈ B, y ∈ {

(2B) implies 1
2
|x− y| ≤ |z − y| ≤ 3

2
|x− y|. We get

|Tαf2(z)| ≤ 2n−αc0

∫
{(2B)

|f(y)|
|x− y|n−α

dy.

By Fubini’s theorem we have∫
{(2B)

|f(y)|
|x− y|n−α

dy ≈
∫

{(2B)

|f(y)|
(∫ ∞

|x−y|

dt

tn+1−α

)
dy

≈
∫ ∞

2r

(∫
2r≤|x−y|<t

|f(y)|dy
) dt

tn+1−α

≤
∫ ∞

2r

(∫
B(x,t)

|f(y)|dy
) dt

tn+1−α .
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By applying Hölder’s inequality, we get∫
{(2B)

|f(y)|
|x− y|n−α

dy .
∫ ∞

2r

‖f‖Lp,wp (B(x,t)) ‖w−1‖Lp′ (B(x,t))
dt

tn+1−α

.
∫ ∞

2r

‖f‖Lp,wp (B(x,t))

(
wq(B(x, t))

)− 1
q
dt

t
.

(5.2)

Moreover, for all p ∈ [1,∞) the inequality

‖Tαf2‖Lq,wq (B) . wq(B)
1
q

∫ ∞

2r

‖f‖Lp,wp (B(x,t))w
q(B(x, t)−

1
q
dt

t
(5.3)

is valid. Thus

‖Tαf‖Lq,wq (B) . ‖f‖Lp,wp (2B) + wq(B)
1
q

∫ ∞

2r

‖f‖Lp,wp (B(x,t)) ‖w−1‖Lp′ (B(x,t))
dt

tn+1−α .

On the other hand,

‖f‖Lp,wp (2B) ≈ |B|1−
α
n ‖f‖Lp,wp (2B)

∫ ∞

2r

dt

tn+1−α

≤ |B|1−
α
n

∫ ∞

2r

‖f‖Lp,wp (B(x,t))
dt

tn+1−α (5.4)

. wq(B)
1
q ‖w−1‖Lp′ (B)

∫ ∞

2r

‖f‖Lp,wp (B(x,t))
dt

tn+1−α

. wq(B)
1
q

∫ ∞

2r

‖f‖Lp,wp (B(x,t)) ‖w−1‖Lp′ (B(x,t))
dt

tn+1−α

. [w]Ap,q w
q(B)

1
q

∫ ∞

2r

‖f‖Lp,wp (B(x,t))

(
wq(B(x, t))

)− 1
q
dt

t
.

Thus
‖Tαf‖Lq,wq (B) . wq(B)

1
q

∫ ∞

2r

‖f‖Lp,wp (B(x,t))

(
wq(B(x, t))

)− 1
q
dt

t
.

Let p = 1. From the weak (1, q) boundedness of Tα and (5.4) it follows that:

‖Tαf1‖WLq,wq (B) ≤ ‖Tf1‖WLq,wq

. ‖f1‖L1,w = ‖f‖L1,w(2B)

≈ |B|1−
α
n ‖f‖L1,w(2B)

∫ ∞

2r

dt

tn+1−α

≤ |B|1−
α
n

∫ ∞

2r

‖f‖L1,w(B(x,t))
dt

tn+1−α

. wq(B)
1
q ‖w−1‖Lp′ (B)

∫ ∞

2r

‖f‖L1,w(B(x,t))
dt

tn+1−α

. wq(B)
1
q

∫ ∞

2r

‖f‖L1,w(B(x,t)) ‖w−1‖L∞(B(x,t))
dt

tn+1−α

. wq(B)
1
q

∫ ∞

2r

‖f‖L1,w(B(x,t))

(
wq(B(x, t))

)− 1
q
dt

t
.

(5.5)
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By (5.3) and (5.5) we get the inequality (3.3).
�

Proof of Theorem 3.4. By Lemma 3.3 and Theorem 4.1 we have for p > 1

‖Tαf‖Mq,ϕ2 (wq) . sup
x∈Rn, r>0

ϕ2(x, r)
−1

∫ ∞

r

‖f‖Lp,wp (B(x,t))

(
wq(B(x, t))

)− 1
q
dt

t

= sup
x∈Rn, r>0

ϕ2(x, r)
−1

∫ r−1

0

‖f‖Lp,wp (B(x,t−1))

(
wq(B(x, t−1))

)− 1
q
dt

t

= sup
x∈Rn, r>0

ϕ2(x, r
−1)−1 r

1

r

∫ r

0

‖f‖Lp,wp (B(x,t−1))

(
wq(B(x, t−1))

)− 1
q

1

t
dt

. sup
x∈Rn,r>0

ϕ1(x, r
−1)−1

(
wp(B(x, r−1))

)− 1
p ‖f‖Lp,wp (B(x,r−1))

= sup
x∈Rn,r>0

ϕ1(x, r)
−1
(
wp(B(x, r))

)− 1
p ‖f‖Lp,wp (B(x,r)) = ‖f‖Mp,ϕ1 (wp)

and for p = 1

‖Tαf‖WMq,ϕ2 (wq) = sup
x∈Rn, r>0

ϕ2(x, r)
−1

∫ r−1

0

‖f‖L1,w(B(x,t−1))

(
wq(B(x, t−1))

)− 1
q
dt

t

= sup
x∈Rn, r>0

ϕ2(x, r
−1)−1 r

1

r

∫ r

0

‖f‖L1,w(B(x,t−1))

(
wq(B(x, t−1))

)− 1
q

1

t
dt

. sup
x∈Rn,r>0

ϕ1(x, r
−1)−1w(B(x, r−1))−1 ‖f‖Lp,wp (B(x,r−1))

= sup
x∈Rn,r>0

ϕ1(x, r)
−1w(B(x, r))−1 ‖f‖L1,w(B(x,r)) = ‖f‖M1,ϕ1 (w).

�

Proof of Theorem 3.5. Let p ∈ (1,∞) and b ∈ BMO(Rn). For arbitrary x ∈ Rn,
set B = B(x, r) for the ball centered at x and of radius r. Write f = f1 + f2 with
f1 = fχ2B and f2 = fχ {(2B)

. Hence

‖Tb,0,kf‖Lp,w(B) ≤ ‖Tb,0,kf1‖Lp,w(B) + ‖Tb,0,kf2‖Lp,w(B).

From the boundedness of Tb,0,k in Lp,w(Rn) it follows that:

‖Tb,0,kf1‖Lp,w(B) ≤ ‖Tb,0,kf1‖Lp,w

. ‖b‖k∗ ‖f1‖Lp,w = ‖b‖k∗ ‖f‖Lp,w(2B).

For z ∈ B we have

|Tb,0,kf2(z)| .
∫

Rn

|b(y)− b(z)|k

|z − y|n
|f2(y)|dy

≈
∫

{(2B)

|b(y)− b(z)|k

|x− y|n
|f(y)|dy.
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Then

‖Tb,0,kf2‖Lp,w(B) .

(∫
B

(∫
{(2B)

|b(y)− b(z)|k

|x− y|n
|f(y)|dy

)p
w(z)dz

) 1
p

.

(∫
B

(∫
{(2B)

|b(y)− bB,w|k

|x− y|n
|f(y)|dy

)p
w(z)dz

) 1
p

+

(∫
B

(∫
{(2B)

|b(x)− bB,w|k

|x− y|n
|f(y)|dy

)p
w(z)dz

) 1
p

= I1 + I2.

Let us estimate I1.

I1 = w(B)
1
p

∫
{(2B)

|b(y)− bB,w|k

|x− y|n
|f(y)|dy

≈ w(B)
1
p

∫
{(2B)

|b(y)− bB,w|k|f(y)|
∫ ∞

|x−y|

dt

tn+1
dy

≈ w(B)
1
p

∫ ∞

2r

∫
2r≤|x−y|≤t

|b(y)− bB,w|k|f(y)|dy dt

tn+1

. w(B)
1
p

∫ ∞

2r

∫
B(x,t)

|b(y)− bB,w|k|f(y)|dy dt

tn+1
.

Applying Hölder’s inequality and by Lemma 4.4, we get

I1 . w(B)
1
p

∫ ∞

2r

(∫
B(x,t)

|b(y)− bB(x,r),w|kp
′
w(y)1−p′dy

) 1
p′

‖f‖Lp,w(B(x,t))
dt

tn+1

. [w]
1
p

Ap
‖b‖k∗ w(B)

1
p

∫ ∞

2r

(
1 + lnk

t

r

)
‖w−1/p‖Lp′ (B(x,t)) ‖f‖Lp,w(B(x,t))

dt

tn+1

. [w]
1
p

Ap
‖b‖k∗ w(B)

1
p

∫ ∞

2r

lnk
(
e+

t

r

)
‖f‖Lp,w(B(x,t))w(B(x, t))−1/p dt

t
.

In order to estimate I2 note that

I2 =

(∫
B

|b(z)− bB,w|kpw(z)dz

) 1
p
∫

{(2B)

|f(y)|
|x− y|n

dy.

By Lemma 4.4, we get

I2 . ‖b‖k∗ w(B)
1
p

∫
{
(2B)

|f(y)|
|x− y|n

dy.

Applying Hölder’s inequality, we get∫
{(2B)

|f(y)|
|x− y|n

dy .
∫ ∞

2r

‖f‖Lp,w(B(x,t)) ‖w−1/p‖Lp′ (B(x,t))
dt

tn+1

≤ [w]
1/p
Ap

∫ ∞

2r

‖f‖Lp,w(B(x,t))w(B(x, t))−1/p dt

t
.

(5.6)
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Thus, by (5.9)

I2 . ‖b‖k∗ w(B)
1
p

∫ ∞

2r

‖f‖Lp,w(B(x,t))w(B(x, t))−1/p dt

t
.

Summing up I1 and I2, for all p ∈ [1,∞) we get

‖Tb,0,kf2‖Lp,w(B) . ‖b‖k∗ w(B)
1
p

∞∫
2r

lnk
(
e+

t

r

)
‖f‖Lp,w(B(x,t))w(B(x, t))−1/p dt

t
. (5.7)

On the other hand,

‖f‖Lp,w(2B) ≈ |B|‖f‖Lp,w(2B)

∫ ∞

2r

dt

tn+1

. |B|
∫ ∞

2r

‖f‖Lp,w(B(x,t))
dt

tn+1
(5.8)

≤ w(B)
1
p‖w−1/p‖Lp′ (B)

∫ ∞

2r

‖f‖Lp,w(B(x,t))
dt

tn+1

≤ w(B)
1
p

∫ ∞

2r

‖f‖Lp,w(B(x,t)) ‖w−1/p‖Lp′ (B(x,t))
dt

tn+1

≤ [w]
1/p
Ap
w(B)

1
p

∫ ∞

2r

‖f‖Lp,w(B(x,t))w(B(x, t))−1/p dt

t
.

Finally,

‖Tb,0,kf‖Lp,w(B) . ‖b‖k∗ ‖f‖Lp,w(2B)

+ ‖b‖k∗ w(B)
1
p

∫ ∞

2r

lnk
(
e+

t

r

)
‖f‖Lp,w(B(x,t))w(B(x, t))−1/p dt

t
,

and the statement of Theorem 3.5 follows by (5.8).
�

Now we shall get to the proof of Theorem 3.6.
Proof of Theorem 3.6.
Let 1 < p < q < ∞, 0 < α < n

p
, 1
q

= 1
p
− α

n
, b ∈ BMO(Rn) and w ∈ Ap,q. For

arbitrary x ∈ Rn, set B = B(x, r). Write f = f1 +f2 with f1 = fχ2B and f2 = fχ {(2B)
.

Hence
‖Tb,α,kf‖Lq,wq (B) ≤ ‖Tb,α,kf1‖Lq,wq (B) + ‖Tb,α,kf2‖Lq,wq (B).

From the boundedness of Tb,α,k from Lp,wp(Rn) to Lq,wq(Rn) it follows that:

‖Tb,α,kf1‖Lq,wq (Rn)(B) ≤ ‖Tb,α,kf1‖Lq,wq (Rn)

. ‖b‖k∗ ‖f1‖Lp,wp (Rn) = ‖b‖k∗ ‖f‖Lp,wp (Rn)(2B).

For z ∈ B we have

|Tb,α,kf2(z)| .
∫

Rn

|b(y)− b(z)|k

|z − y|n−α
|f2(y)|dy

≈
∫

{(2B)

|b(y)− b(z)|k

|x− y|n−α
|f(y)|dy.
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Then

‖Tb,α,kf2‖Lq,wq (Rn)(B) .

(∫
B

(∫
{(2B)

|b(y)− b(z)|k

|x− y|n−α
|f(y)|dy

)q
wq(z)dz

) 1
q

.

(∫
B

(∫
{(2B)

|b(y)− bB,w|k

|x− y|n−α
|f(y)|dy

)q
wq(z)dz

) 1
q

+

(∫
B

(∫
{(2B)

|b(z)− bB,w|k

|x− y|n−α
|f(y)|dy

)q
wq(z)dz

) 1
q

= I1 + I2.

Let us estimate I1.

I1 =
(
wq(B)

) 1
q

∫
{(2B)

|b(y)− bB,w|k

|x− y|n−α
|f(y)|dy

≈
(
wq(B)

) 1
q

∫
{(2B)

|b(y)− bB,w|k |f(y)|
∫ ∞

|x−y|

dt

tn−α+1
dy

≈
(
wq(B)

) 1
q

∫ ∞

2r

∫
2r≤|x−y|≤t

|b(y)− bB,w|k |f(y)|dy dt

tn−α+1

.
(
wq(B)

) 1
q

∫ ∞

2r

∫
B(x,t)

|b(y)− bB,w|k |f(y)|dy dt

tn−α+1
.

Applying Hölder’s inequality and by Lemma 4.4, we get

I1 .
(
wq(B)

) 1
q

∫ ∞

2r

(∫
B(x,t)

|b(y)− bB(x,r),w|kp
′
w(y)−p

′
dy

) 1
p′

‖f‖Lp,wp (B(x,t))
dt

tn−α+1

. ‖b‖k∗
(
wq(B)

) 1
q

∫ ∞

2r

(
1 + lnk

t

r

)
‖w−1‖Lp′ (B(x,t)) ‖f‖Lp,wp (B(x,t))

dt

tn−α+1

. [w]Ap,q‖b‖k∗
(
wq(B)

) 1
q

∫ ∞

2r

lnk
(
e+

t

r

)
‖f‖Lp,wp (B(x,t))

(
wq(B(x, t))

)− 1
q
dt

t
.

In order to estimate I2 note that

I2 =

(∫
B

|b(z)− bB,w|kqwq(z)dz
) 1

q
∫

{(2B)

|f(y)|
|x− y|n−α

dy.

By Lemma 4.4, we get

I2 . ‖b‖k∗
(
wq(B)

) 1
q

∫
{
(2B)

|f(y)|
|x− y|n−α

dy.

Applying Hölder’s inequality, we get∫
{(2B)

|f(y)|
|x− y|n−α

dy .
∫ ∞

2r

‖f‖Lp,wp (B(x,t)) ‖w−1‖Lp′ (B(x,t))
dt

tn−α+1

≤ [w]Ap,q

∫ ∞

2r

‖f‖Lp,wp (B(x,t))

(
wq(B(x, t))

)− 1
q
dt

t
.

(5.9)
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Thus, by (5.9)

I2 . ‖b‖k∗
(
wq(B)

) 1
q

∫ ∞

2r

‖f‖Lp,wp (B(x,t))

(
wq(B(x, t))

)− 1
q
dt

t
.

Summing up I1 and I2, for all p ∈ [1,∞) we get

‖Tb,α,kf2‖Lp,wp (B) . ‖b‖k∗
(
wq(B)

) 1
q

∞∫
2r

lnk
(
e+

t

r

)
‖f‖Lp,wp (B(x,t))

(
wq(B(x, t))

)− 1
q
dt

t
.

(5.10)
Finally,

‖Tb,α,kf‖Lp,wp (B) . ‖b‖k∗ ‖f‖Lp,wp (2B)

+ ‖b‖k∗
(
wq(B)

) 1
q

∫ ∞

2r

lnk
(
e+

t

r

)
‖f‖Lp,wp (B(x,t))

(
wq(B(x, t))

)− 1
q
dt

t
,

and the statement of Theorem 3.6 follows by (5.4).
�

Now we shall get to the proof of Theorem 3.7
Proof of Theorem 3.7. By Theorem 3.5 and Theorem 4.1 we have

‖Tb,0,kf‖Mp,ϕ2 (w) . ‖b‖k∗ sup
x∈Rn, r>0

ϕ2(x, r)
−1

∫ ∞

r

lnk
(
e+

t

r

)
‖f‖Lp,w(B(x,t))w(B(x, t))−

1
p
dt

t

= ‖b‖k∗ sup
x∈Rn, r>0

ϕ2(x, r)
−1

∫ r−1

0

lnk
(
e+

1

tr

)
‖f‖Lp,w(B(x,t−1))w(B(x, t−1))−

1
p
dt

t

= ‖b‖k∗ sup
x∈Rn, r>0

ϕ2(x, r
−1)−1 r

1

r

∫ r

0

lnk
(
e+

r

t

)
‖f‖Lp,w(B(x,t−1))w(B(x, t−1))−

1
p
dt

t

. ‖b‖k∗ sup
x∈Rn,r>0

ϕ1(x, r
−1)−1w(B(x, r−1))−

1
p ‖f‖Lp,w(B(x,r−1))

= ‖b‖k∗ sup
x∈Rn,r>0

ϕ1(x, r)
−1w(B(x, r))−

1
p ‖f‖Lp,w(B(x,r))

= ‖b‖k∗ ‖f‖Mp,ϕ1 (w).

�

Now we shall get to the proof of Theorem 3.8.
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Proof of Theorem 3.8. By Theorem 3.6 and Theorem 4.2 we have

‖Tb,α,kf‖Mp,ϕ2 (wq) . ‖b‖k∗ sup
x∈Rn, r>0

ϕ2(x, r)
−1

∫ ∞

r

lnk
(
e+

t

r

)
‖f‖Lp,wp (B(x,t))

(
wq(B(x, t))

)− 1
q
dt

t

= ‖b‖k∗ sup
x∈Rn, r>0

ϕ2(x, r)
−1

∫ r−1

0

lnk
(
e+

1

tr

)
‖f‖Lp,wp (B(x,t−1))

(
wq(B(x, t))

)− 1
q
dt

t

= ‖b‖k∗ sup
x∈Rn, r>0

ϕ2(x, r
−1)−1 r

1

r

∫ r

0

lnk
(
e+

r

t

)
‖f‖Lp,wp (B(x,t−1))

(
wq(B(x, t))

)− 1
q
dt

t

. ‖b‖k∗ sup
x∈Rn,r>0

ϕ1(x, r
−1)−1

(
wp(B(x, r−1))

)− 1
p ‖f‖Lp,w(B(x,r−1))

= ‖b‖k∗ sup
x∈Rn,r>0

ϕ1(x, r)
−1
(
wp(B(x, r))

)− 1
p ‖f‖Lp,wp (B(x,r))

= ‖b‖k∗ ‖f‖Mp,ϕ1 (wp).

�

6 Some applications

In this section, we shall apply Theorems 3.7 and 3.8 to several particular operators
such as the Littlewood-Paley operator, the Marcinkiewicz operator, the Bochner-Riesz
operator and the fractional powers of some analytic semigroups.

6.1 Littlewood-Paley operator

The Littlewood-Paley functions play an important role in classical harmonic analysis,
for example in the study of non-tangential convergence of Fatou type and boundedness
of Riesz transforms and multipliers [35, 36, 37, 39]. The Littlewood-Paley operator
(see [24, 39]) is defined as follows.

Definition 3. Suppose that ψ ∈ L1(Rn) satisfies∫
Rn

ψ(x)dx = 0. (6.1)

Then the generalized Littlewood-Paley g function gψ is defined by

gψ(f)(x) =

(∫ ∞

0

|Ft(f)(x)|2dt
t

)1/2

,

where ψt(x) = t−nψ(x/t) for t > 0 and Ft(f) = ψt ∗ f .
The sublinear kth order commutator of the operator gψ is defined by

[bk, gψ](f)(x) =

(∫ ∞

0

|F b,k
t (f)(x)|2dt

t

)1/2

,
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where
F b,k
t (f)(x) =

∫
Rn

[b(x)− b(y)]kψt(x− y)f(y)dy.

The following theorem is valid (see [28], Theorem 5.2.2).

Theorem 6.1. Suppose that ψ ∈ L1(Rn) satisfies (6.1) and the following properties:

|ψ(x)| ≤ C

(1 + |x|)n+1
, (6.2)

|∇ψ(x)| ≤ C

(1 + |x|)n+2
, (6.3)

where C > 0 is independent of x. Then gψ is bounded on Lp,w(Rn) for 1 < p <∞ and
w ∈ Ap.

Let H be the space H = {h : ‖h‖ = (
∫∞

0
|h(t)|2dt/t)1/2 <∞}, then, for each fixed

x ∈ Rn, Ft(f)(x) may be viewed as a mapping from [0,∞) to H, and it is clear that
gψ(f)(x) = ‖Ft(f)(x)‖.

In fact, by Minkowski inequality and the conditions on ψ, we get

∣∣[bk, gψ]
∣∣ ≤ ∫

Rn

|b(x)− b(y)|k|f(y)|
(∫ ∞

0

|ψt(x− y)|2dt
t

)1/2

dy

.
∫

Rn

|b(x)− b(y)|k|f(y)|
(∫ ∞

0

t−2n

(1 + |x− y|/t)2(n+1)

dt

t

)1/2

dy

=

∫
Rn

|b(x)− b(y)|k

|x− y|n
|f(y)|dy.

Thus we get

Corollary 6.1. Let 1 < p < ∞, and w ∈ Ap. Suppose that (ϕ1, ϕ2) satisfy condi-
tion (3.5), b ∈ BMO(Rn) and ψ ∈ L1(Rn) satisfies (6.1)-(6.3). Then the kth order
commutator of Littlewood-Paley operator [bk, gψ] is bounded from Mp,ϕ1(w) to Mp,ϕ2(w).

From Corollary 3.7 we get the following

Corollary 6.2. Let 1 < p <∞, 0 < κ < 1, w ∈ Ap, and b ∈ BMO(Rn). Suppose that
ψ ∈ L1(Rn) satisfies (6.1)-(6.3). Then the operator [bk, gψ] is bounded on Lp,κ(w).

6.2 Marcinkiewicz operator

Let Sn−1 = {x ∈ Rn : |x| = 1} be the unit sphere in Rn equipped with the Lebesgue
measure dσ. Suppose that Ω satisfies the following conditions.

(a) Ω is the homogeneous function of degree zero on Rn \ {0}, that is,

Ω(µx) = Ω(x), for any µ > 0, x ∈ Rn \ {0}.
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(b) Ω has mean zero on Sn−1, that is,∫
Sn−1

Ω(x′)dσ(x′) = 0.

(c) Ω ∈ Lipγ(S
n−1), 0 < γ ≤ 1, that is there exists a constant M > 0 such that,

|Ω(x′)− Ω(y′)| ≤M |x′ − y′|γ for any x′, y′ ∈ Sn−1.

In 1958, Stein [36] defined the Marcinkiewicz integral of higher dimension µΩ as

µΩ(f)(x) =

(∫ ∞

0

|FΩ,t(f)(x)|2dt
t3

)1/2

,

where
FΩ,t(f)(x) =

∫
|x−y|≤t

Ω(x− y)

|x− y|n−1
f(y)dy.

Since Stein’s work in 1958, the continuity of Marcinkiewicz integral has been exten-
sively studied as a research topic and also provides useful tools in harmonic analysis
[28, 35, 37, 39].

The Marcinkiewicz operator is defined by (see [40])

µΩ,α(f)(x) =

(∫ ∞

0

|FΩ,α,t(f)(x)|2dt
t3

)1/2

,

where
FΩ,α,t(f)(x) =

∫
|x−y|≤t

Ω(x− y)

|x− y|n−1−αf(y)dy.

Note that µΩf = µΩ,0f .
The sublinear kth-order commutator of the operator µΩ,α is defined by

µb,Ω,α,k(f)(x) =

(∫ ∞

0

|F b
Ω,α,k,t(f)(x)|2dt

t3

)1/2

,

where
F b

Ω,α,k,t(f)(x) =

∫
|x−y|≤t

Ω(x− y)

|x− y|n−1−α [b(x)− b(y)]kf(y)dy.

Let H be the space H = {h : ‖h‖ = (
∫∞

0
|h(t)|2dt/t3)1/2 < ∞}. Then, it is clear

that µΩ(f)(x) = ‖FΩ,t(x)‖.
By Minkowski inequality and the above conditions on Ω, we get

µΩ,α(f)(x) ≤
∫

Rn

|Ω(x− y)|
|x− y|n−1−α |f(y)|

(∫ ∞

|x−y|

dt

t3

)1/2

dy ≤ C

∫
Rn

|f(y)|
|x− y|n−α

dy

and

µb,Ω,α,k(f)(x) ≤
∫

Rn

|Ω(x− y)| |b(x)− b(y)|k

|x− y|n−1−α |f(y)|
(∫ ∞

|x−y|

dt

t3

)1/2

dy

≤ C

∫
Rn

|b(x)− b(y)|k

|x− y|n−α
|f(y)|dy.
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Thus, µΩ,α and µb,Ω,α,k satisfies conditions (2.1) and (2.2) respectively. It is known that
for w ∈ Ap,q µΩ,α is bounded from Lp,wp(Rn) on Lq,wq(Rn) for p > 1, and from L1,w(Rn)
to WLq,wq(Rn) (see [40]), then from Theorems 3.7 and 3.8 we get the following new
results.

Corollary 6.3. Let 1 ≤ p < q < ∞, 0 < α < n
p
, 1
q

= 1
p
− α

n
, w ∈ Ap,q, (ϕ1, ϕ2)

satisfy condition (3.4), and Ω satisfies conditions (a)− (c). Then µΩ,α is bounded from
Mp,ϕ1(w

p) to Mq,ϕ2(w
q) for p > 1 and bounded from M1,ϕ1(w) to WMq,ϕ2(w

q).

Corollary 6.4. Let 1 < p < q <∞, 0 < α < n
p
, 1
q

= 1
p
− α

n
, w ∈ Ap,q, b ∈ BMO(Rn),

(ϕ1, ϕ2) satisfy condition (3.6), and Ω satisfies conditions (a) − (c). Then µb,Ω,α,k is
bounded from Mp,ϕ1(w

p) to Mq,ϕ2(w
q).

Note that, in the case w = 1, α = 0 and k = 1 Corollaries 6.3, 6.4 was proved in
[19].

Corollary 6.5. Let 1 ≤ p < q <∞, 0 < α < n
p
, 1
q

= 1
p
− α

n
, 0 < κ < p

q
, w ∈ Ap,q, and

Ω satisfies conditions (a)− (c). Then µΩ,α is bounded from Lp,κ(w
p, wq) to Lq,κq/p(wq)

for p > 1 and from L1,κ(w,w
q) to WLq,κq(w

q) for p = 1.

Corollary 6.6. Let 1 < p < ∞, 0 < α < n
p
, 1
q

= 1
p
− α

n
, 0 < κ < p

q
, w ∈ Ap,q,

b ∈ BMO(Rn), and Ω satisfies conditions (a) − (c). Then µb,Ω,α,k is bounded from
Lp,κ(w

p, wq) to Lq,κq/p(wq).

6.3 Bochner-Riesz operator

Let δ > (n − 1)/2, Bδ
t (f)ˆ(ξ) = (1 − t2|ξ|2)δ+f̂(ξ) and Bδ

t (x) = t−nBδ(x/t) for t > 0.
The maximal Bochner-Riesz operator is defined by (see [25, 26])

Bδ,∗(f)(x) = sup
t>0

|Bδ
t (f)(x)|.

Let H be the space H = {h : ‖h‖ = supt>0 |h(t)| < ∞}, then it is clear that
Bδ,∗(f)(x) = ‖Bδ

t (f)(x)‖.
By [14]

Bδ,∗(f)(x) .
∫

Rn

|f(y)|
|x− y|n

dy.

Thus, Bδ,∗ satisfies condition (2.1) with α = 0. It is known that Bδ,∗ is bounded on
Lp,w(Rn) for 1 < p < ∞ and w ∈ Ap, and bounded from L1,w(Rn) to WL1,w(Rn) for
w ∈ A1 (see [33, 38]), then from Theorem 3.7 we get

Corollary 6.7. Let 1 < p < ∞, and w ∈ Ap. Suppose that (ϕ1, ϕ2) satisfy condition
(3.5), δ > (n − 1)/2 and b ∈ BMO(Rn). Then the operator [bk, Bδ,∗] is bounded from
Mp,ϕ1(w) to Mp,ϕ2(w).

From Corollary 6.7 we get the following

Corollary 6.8. Let 1 < p <∞, 0 < κ < 1, w ∈ Ap, b ∈ BMO(Rn), and δ > (n−1)/2.
Then the operator [bk, Bδ,∗] is bounded on Lp,κ(w).
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6.4 Fractional powers of some analytic semigroups

The theorems of the previous sections can be applied to various operators which are
estimated from above by the Riesz potentials. We give some examples.

Suppose that L is a linear operator on L2 which generates an analytic semigroup
e−tL with the kernel pt(x, y) satisfying a Gaussian upper bound, that is,

|pt(x, y)| ≤
c1
tn/2

e−c2
|x−y|2

t (6.4)

for x, y ∈ Rn and all t > 0, where c1, c2 > 0 are independent of x, y and t.
For 0 < α < n, the fractional powers L−α/2 of the operator L are defined by

L−α/2f(x) =
1

Γ(α/2)

∫ ∞

0

e−tLf(x)
dt

t−α/2+1
.

Note that if L = −4 is the Laplacian on Rn, then L−α/2 is the Riesz potential Iα.
See, for example, Chapter 5 in [35].

Property (6.4) is satisfied for large classes of differential operators (see, for example
[4]). In [4] also other examples of operators which are estimates from above by the
Riesz potentials are given. In these cases Theorems 3.4 and 3.8 are also applicable for
proving boundedness of those operators and commutators fromMp,ϕ1(w

p) toMq,ϕ2(w
q).

Theorem 6.2. Let condition (6.4) be satisfied. Moreover, let 1 ≤ p <∞, 0 < α < n
p
,

1
q

= 1
p
− α

n
, w ∈ Ap,q, and (ϕ1, ϕ2) satisfy condition (3.4). Then L−α/2 is bounded from

Mp,ϕ1(w
p) to Mq,ϕ2(w

q) for p > 1 and from M1,ϕ1(w) to WMq,ϕ2(w
q) for p = 1.

Proof. Since the semigroup e−tL has the kernel pt(x, y) which satisfies condition (6.4),
it follows that

|L−α/2f(x)| . Iα(|f |)(x)

(see [13]). Hence by the aforementioned theorems we have

‖L−α/2f‖Mq,ϕ2 (wq) . ‖Iα(|f |)‖Mq,ϕ2 (wq) . ‖f‖Mp,ϕ1 (wp).

Corollary 6.9. Let condition (6.4) be satisfied. Moreover, let 1 ≤ p <∞, 0 < α < n
p
,

1
q

= 1
p
− α

n
, 0 < κ < p

q
, and w ∈ Ap,q. Then L−α/2 is bounded from Lp,κ(w

p, wq) to
Lq,κq/p(w

q) for p > 1 and from L1,κ(w,w
q) to WLq,κq(w

q) for p = 1.

Let b be a locally integrable function on Rn, the kthe order commutator of b and
L−α/2 is defined as follows

[bk, L−α/2]f(x) = L−α/2
(
(b(x)− b(·))kf

)
(x).

In [13] extended the result of [6] from (−∆) to the more general operator L defined
above. More precisely, they showed that when b ∈ BMO(Rn), then the kthe order
commutator operator [bk, L−α/2] is bounded from Lp(Rn) to Lq(Rn) for 1 < p < q <∞
and 1

q
= 1

p
− α

n
. Then from Theorem 3.8 we get
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Theorem 6.3. Let condition (6.4) be satisfied. Moreover, let 1 < p < q < ∞, 0 <
α < n

p
, 1
q

= 1
p
− α

n
, b ∈ BMO(Rn), w ∈ Ap,q, and (ϕ1, ϕ2) satisfy condition (3.6). Then

[bk, L−α/2] is bounded from Mp,ϕ1(w
p) to Mq,ϕ2(w

q).

Proof. Since the semigroup e−tL has the kernel pt(x, y) which satisfies condition (6.4),
it follows that

|[bk, L−α/2]f(x)| . [bk, Iα](|f |)(x)

(see [13]). Hence by the aforementioned theorems we have

‖[bk, L−α/2]f‖Mq,ϕ2 (wq) . ‖[bk, Iα](|f |)‖Mq,ϕ2 (wq) . ‖b‖k∗ ‖f‖Mp,ϕ1 (wp).

Corollary 6.10. Let condition (6.4) be satisfied. Moreover, let 1 < p < q < ∞,
0 < α < n

p
, 1
q

= 1
p
− α

n
, b ∈ BMO(Rn), 0 < κ < p

q
, and w ∈ Ap,q. Then [b, L−α/2] is

bounded from Lp,κ(w
p, wq) to Lq,κq/p(wq).
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