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Abstract.In the work, conditions of well–definiteness, compact continuity, compact
differentiability and multiple compact differentiability of the Euler–Lagrange one–
dimensional variational functional in Sobolev–Bochner spaces W 1,p([a; b], F ) are ob-
tained in terms of belonging of the integrand to the corresponding Weierstrass pseu-
dopolynomial classes.

1 Introduction. Preliminaries

The remarkable I.V. Skrypnik theorem [15] states that a variational functional

Φ(y) =

b∫
a

f(x, y, y′)dx, (y(·) ∈ W 1,2[a; b]) (1.1)

is twice strongly differentiable only if the integrand f(x, y, ·) is purely quadratic. Skryp-
nik’s result initiates the problem on the natural smoothness related to variational func-
tionals in Sobolev spaces W 1,p[a; b]. Solving it will enable us, in particular, to avoid
applying the classical direct methods (see, e.g., [4]–[6], [17]) in extremal problems.

The main idea, based on this observation and developed by the author jointly with
E. Bozhonok, first in the case of W 1,2[a; b] (see [2], [7]–[11]) is to study compact–
analytical functional characteristics considered on each subspace of W 1,p[a; b] generated
by an appropriate compact set. It turned out that variational functional (1.1) has the
required characteristics in Sobolev spaces (e.g., K–continuity, K–differentiability, K–
extremum, etc.), if some natural conditions on the integrand are satisfied.

The topological background of the well–definiteness of K–characteristics
(see [10], [12]) is the possibility to present any Banach space as the inductive limit
of its subspaces spanned by absolutely convex compacts (K–scale). K–characteristic
of a functional is introduced as analogous local characteristic on each space in K–scale.

For instance, the functional Φ is K–continuous (K–differentiable, twice K–
differentiable, etc.) in W 1,p[a; b], if, for any absolutely convex compact C ⊂ W 1,p[a; b],
the restriction of Φ to span (C) is continuous (Fréchet differentiable, twice Fréchet
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differentiable, etc.) with respect to the norm ‖ · ‖C , generated by C. In addition,
K–derivatives (multiple K–derivatives), being linear (multilinear) operators, are con-
tinuous in the usual sense.

The paper consists of four main sections. In Section 2 we introduce the class of K–
pseudopolynomials Kp(z) of order p, 1 6 p <∞, and prove that belonging of the inte-
grand f of the principal variational functional to this class guarantees well–definiteness
of the functional in the corresponding Sobolev–Bochner space W 1,p([a; b], F ) (Theo-
rem 2.1).

In Section 3 we introduce the class of Weierstrass pseudopolynomials WKp(z) of
order p and prove K–continuity of the variational functional in W 1,p([a; b], F ) under
the condition f ∈ WKp(z) (Theorem 3.1).

In Section 4 we introduce a more narrow class of the Weierstrass pseudopolynomials
W 1Kp(z) and prove K–differentiability of the variational functional in W 1,p([a; b], F )
under the condition f ∈ W 1Kp(z) (Theorem 4.1).

Finally, in Section 5 we introduce the general Weierstrass classes W nKp(z) and
prove n–multiple K–differentiability of the variational functional under the condition
f ∈ W nKp(z). Moreover, the formula for theK–variation of order n is presented via the
coefficients of the K–pseudopolynomial representation of f . A series of the examples
is considered.

2 Pseudopolynomiality. Well–definiteness conditions for varia-
tional functionals in Sobolev spaces

As is well known [4], well–definiteness of the variational functionals in Sobolev spaces
W 1,p

Φ(y) =

b∫
a

f(x, y, y′)dx, (y(·) ∈ W 1,p[a; b], 1 6 p <∞) (2.1)

is closely connected to an estimates of the integrand f via |y′|p. However, the classical
sufficient well–definiteness condition

|f(x, y, z)| 6 α+ β · |z|p (β > 0)

essentially restricts the class of admissible integrands. We introduce a much wider
class of K–pseudopolynomial in z integrands of order p for which functional (2.1) is
well defined as well. Below, Z∗

k is the space of k–linear symmetric continuous real forms
acting in a Banach space Z, k ∈ N0, Z∗

0 = R.

Definition 1. Let X, Y , Z be real Banach spaces; Dx ⊂ X, Dy ⊂ Y , Dz ⊂ Z be open
domains; f : Dx ×Dy ×Dz → R; p ∈ N0. We say that f is a K–pseudopolynomial of
order p, if f admits a representation of the form:

f(x, y, z) =

p∑
k=0

Rk(x, y, z) · (z)k, (2.2)
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where the coefficients Rk : Dx ×Dy ×Dz → Z∗
k (k = 0, p) are Borel mappings satisfy-

ing the condition of the dominating in x, y mixed boundedness (see general definition
of the dominating mixed smoothness in [14], [16] ):

for any compacts Cx ⊂ Dx, Cy ⊂ Dy, the coefficients Rk are bounded on
Cx × Cy ×Dz, independently of the choice of z ∈ Dz.

In this case we write f ∈ Kp(z).

Example 2. In case of Z = Rm, Rk(x, y, z) · (z)k are homogeneous K–
pseudopolynomials in z = (z1, . . . zm) of order k and representation (2.2) takes the
form

f(x, y, z) =

p∑
k=0

( ∑
k1+...+km=k

rk(x, y, z) · zk11 z
k2
2 · . . . · zkm

m

)
=

=
∑

k1+...+km6p

ak1...km(x, y, z) · zk11 z
k2
2 · . . . · zkm

m .

Let us check that K–pseudopolynomiality of the integrand f guarantees well–
definiteness of the principal variational functional in the corresponding Sobolev–
Bochner space W 1,p([a; b], F ), where F is an arbitrary real Banach space. In what
follows, ‖y‖W 1,p is norm in W 1,p([a; b], F ), ‖Rk(x, y, y

′)‖ is norm in Z∗
k .

Theorem 2.1. If an integrand f : [a; b]× F × F → R is in the class Kp(z), p ∈ N,
then the variational functional

Φ(y) =

b∫
a

f(x, y, y′)dx, (y(·) ∈ W 1,p([a; b], F )) (2.3)

is well defined in the space W 1,p([a; b], F ). Moreover, for each compact
C ⊂ W 1,p([a; b], F ) the following power estimate:

|Φ(y)| 6 αC + βC · (‖y‖W 1,p)p (y ∈ C) (2.4)

holds.

Proof. Let us fix y(·) ∈ W 1,p([a; b], F ) and denote Cy = y([a; b]), a compact in F . Then,
according to Definition 1, there exist such constants Mk <∞, (k = 0, p) that

|R0(x, y, y
′)| 6 M0, ‖Rk(x, y, y

′)‖ 6 Mk (x ∈ [a; b], k = 1, p). (2.5)

Using the K–pseudopolynomial representation (2.2) for f leads to

Φ(y) =

p∑
k=0

b∫
a

Rk(x, y, y
′) · (y′)kdx . (2.6)
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From (2.6), taking into account the well–known properties of multilinear continuous
forms [3] and the Hölder–Minkowski inequality [13], it follows that
a) for k = 0 : ∣∣∣∣∣∣

b∫
a

R0(x, y, y
′)dx

∣∣∣∣∣∣ 6
b∫

a

|R0(x, y, y
′)|dx 6 M0 · (b− a) ; (2.7)

b) for 1 6 k 6 p :∣∣∣∣∣∣
b∫

a

Rk(x, y, y
′) · (y′)kdx

∣∣∣∣∣∣ 6
b∫

a

‖Rk(x, y, y
′)‖ · ‖y′‖kdx 6 Mk ·

b∫
a

‖y′‖kdx

6 Mk

 b∫
a

(
‖y′‖k

) p
k dx


k
p

·

 b∫
a

dx


p−k

p

6 Mk(b− a)
p−k

p · (‖y‖W 1,p)k . (2.8)

From (2.5)–(2.8) it follows that

|Φ(y)| =

∣∣∣∣∣∣
p∑

k=0

b∫
a

Rk(x, y, y
′) · (y′)kdx

∣∣∣∣∣∣
6

p∑
k=0

b∫
a

‖Rk(x, y, y
′)‖ · ‖y′‖kdx 6

p∑
k=0

Mk · (b− a)
p−k

p · (‖y‖W 1,p)k <∞ . (2.9)

Thus, |Φ(y)| <∞, i.e. functional (2.3) is well defined everywhere on W 1,p([a; b], F ).
Let us obtain now estimate (2.4), whose coefficients depends only on the choice of a
compact C ⊂ W 1,p([a; b], F ). As C is a compact, the set

C̃ = {y(x)
∣∣ a 6 x 6 b, y(·) ∈ C} =

⋃
y∈C

Cy

is also compact in F . Since the coefficients Rk(x, y, z) of representation (2.6) are
bounded locally compactly in x, y and globally in z, the estimates of type (2.5) are
also satisfied on the set [a; b]× C̃ × F :

|R0(x, y, z)| 6 M̃0, ‖Rk(x, y, z)‖ 6 M̃k (x ∈ [a; b], k = 1, p). (2.10)

Using estimates (2.10), with the constants M̃k depending only on the choice of a
compact C, and estimate (2.9) leads to the inequality

|Φ(y)| 6 A0
C + A1

C · ‖y‖W 1,p + . . .+ ApC · (‖y‖W 1,p)p , (2.11)

with the coefficients A0
C , A1

C , . . . ApC depending only on the choice of C too.
Since for 1 6 k 6 p− 1 (

‖y‖W 1,p

)k
6 1 +

(
‖y‖W 1,p

)p
inequality (2.11) implies estimate (2.4).
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So, K–pseudopolynomiality of the integrand of variational functional (2.3) in the
Sobolev–Bochner space W 1,p([a; b], F ), p ∈ N, guarantees, besides well–definiteness of
the functional, a power estimate of order p with respect to the Sobolev norm ‖y‖W 1,p

on each compact from the given Sobolev–Bochner space.

3 Compact–continuity conditions for variational functionals in
Sobolev spaces

Let us pass to conditions of K–continuity of variational functionals in Sobolev–Bochner
spaces. To this end, let us introduce an appropriate smoothness class WKp(z) of the
K–pseudopolynomial integrands of order p.

Definition 2. Let, under the notation of Definition 1, the integrand f be continuous
and belong to the class Kp(z), p ∈ N. We say that f is a Weierstrass pseudopoly-
nomial of order p, briefly f ∈ WKp(z), if the coefficients Rk in K–pseudopolynomial
representation (2.2) can be chosen in such a way that for arbitrary compacts Cx ⊂ Dx,
Cy ⊂ Dy, they are uniformly continuous and bounded on Cx × Cy ×Dz (independently
on the choice of z). In this case, introduce also notation Rk ∈ WK(z).

Let us prove now an important lemma which will be serve as a base for proofs of the
consequent theorems on K–continuity and K–differentiability of variational functionals
in W 1,p.

Basic Lemma. Let the mappings

ϕ : [a; b]× F → R, ψ : [a; b] → R (F is a Banach space)

satisfy the following conditions:

i) ϕ(x, u) = o(‖u‖k), 0 6 k 6 p, as u→ 0 uniformly in x ∈ [a; b];

ii) ψ ∈ L1([a; b],R);

iii) the mapping χ(h) = ϕ(·, h) · ψ is a continuous mapping from a compact
C1 ⊂ Lp([a; b], F ) to L1([a; b],R).

Then
b∫

a

ϕ(x, h(x)) · ψ(x)︸ ︷︷ ︸
χ(h)(x)

dx = o
(
(‖h‖Lp)

k
)

as ‖h‖Lp → 0, h ∈ C1 . (3.1)

Proof. 1) In view of continuity of the mapping χ, the set χ(C1) ⊂ L1([a; b],R) is com-
pact. Therefore it is possible to apply the strengthened property of absolute continuity
of the Lebesgue integral on functional compact (see, e.g. [16]) to integral (3.1). Denote,
to this end, for every N > 0,

EN = {x ∈ [a; b]
∣∣ |ψ(x)| 6 N}, eN = {x ∈ [a; b]

∣∣ |ψ(x)| > N}.
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Since ψ ∈ L1 then meas(eN) → 0 as N →∞. Hence, according to the abovementioned
property, there exists such N > 0 that∣∣∣∣∣∣

∫
eN

χ(h)dx

∣∣∣∣∣∣ 6 1

2

b∫
a

|χ(h)| dx . (3.2)

Because [a; b] = EN
⋃̇
eN , it easily follows from (3.2) that∣∣∣∣∣∣

b∫
a

χ(h)dx

∣∣∣∣∣∣ 6 1

1− 1
2

∫
EN

|χ(h)| dx = 2

∫
EN

|χ(h)| dx . (3.3)

2) Fix h ∈ C1 and, for arbitrary δ > 0, set

ENδ = {x ∈ EN
∣∣ ‖h(x)‖ < δ}, eNδ = {x ∈ EN

∣∣ ‖h(x)‖ > δ}.

Evidently, EN = ENδ
⋃̇
eNδ, besides,

(‖h‖Lp < δ
p+1

p ) ⇒ (meas eNδ < δ) . (3.4)

Indeed, assuming the contrary, we obtain

(‖h‖Lp)
p =

b∫
a

‖h(x)‖pdx >
∫
eNδ

‖h(x)‖pdx > δp ·meas eNδ > δp+1.

Take advantage, again, of the strengthened property of absolute continuity of the
Lebesgue integral for the integral in the right-hand side of (3.3). Taking into ac-
count (3.4), there exists such δ1 > 0 that(

‖h‖Lp < δ
p+1

p

)
⇒
(
meas eNδ < δ

)
⇒
(∫
eNδ

|χ(h)| dx 6
1

2

∫
EN

|χ(h)| dx
)
. (3.5)

By analogy with the case from part 1) of the proof, it easily follows from (3.5) that∫
EN

|χ(h)| dx 6 2 ·
∫
ENδ

|χ(h)| dx . (3.6)

3) Let us fix now ε > 0 and, using property i) of the mapping ϕ, find such δ(ε) > 0

that
|ϕ(x, u)| 6 ε · ‖u‖k

for all u ∈ F satisfying ‖u‖ < δ(ε) and x ∈ [a; b]. In particular,

|ϕ(x, h(x))| 6 ε · ‖h(x)‖k (3.7)

for x ∈ ENδ and δ < δ(ε).
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4) Finally, it follows from (3.3), (3.6) and (3.7), for δ < δ1(ε) = min(δ1, δ(ε)), that∣∣∣∣∣∣
b∫

a

χ(h)dx

∣∣∣∣∣∣ 6 2 ·
∫
EN

|χ(h)| dx 6 4 ·
∫
ENδ

|χ(h)| dx 6 4N ·
∫
ENδ

|ϕ(x, h(x))| dx

6 4Nε ·
∫
ENδ

‖h‖kdx 6 4Nε ·
b∫

a

‖h‖kdx ,

whence, using the Hölder–Minkowski inequality, we obtain∣∣∣∣∣∣
b∫

a

ϕ(x, h(x)) · ψ(x)dx

∣∣∣∣∣∣ 6
[
4N · (b− a)

p−k
p

]
· ε ·

(
‖h‖Lp

)k
for ‖h‖Lp < (δ1(ε))

p+1
p , h ∈ C1. The last estimate implies the conclusion of the Lemma.

Theorem 3.1. If the integrand of variational functional (2.3) belongs to the Weier-
strass class WKp(z), p ∈ N, then functional (2.3) is K–continuous everywhere in the
space W 1,p([a; b], F ).

Proof. 1) Let us fix y(·) ∈ W 1,p([a; b], F ) and an arbitrary absolutely convex compact
C ⊂ W 1,p([a; b], F ). Use a canonical representation of the integrand f (2.2), where
the coefficients Rk : T = [a; b]× F × F → F ∗

k , by condition f ∈ WKp(z), are uniformly
continuous and bounded dominantly in x, y (i.e., locally compactly in x, y, and globally
in z). Note that, by virtue of compactness of the set C in the space W 1,p([a; b], F ), the
set

Ky :=
⋃
h∈C

(y + h)([a; b])

is compact in F , too. Hence, on the set T y := [a; b]×Ky × F all the coefficient Rk are
uniformly continuous and bounded. This implies the following estimates:

‖Rk(x, y, z)‖ 6 Mk <∞
(
(x, y, z) ∈ T y; k = 0, p

)
. (3.8)

Now, substituting representation (2.2) in (2.3), we find the increment of the
variational functional Φ at the point y(·) for h ∈ C :

Φ(y + h)− Φ(y) =

∫ b

a

f(x, y + h, y′ + h′)dx−
∫ b

a

f(x, y, y′)dx =

=

∫ b

a

[
p∑

k=0

Rk(x, y + h, y′ + h′) · (y′ + h′)k

]
dx−

∫ b

a

[
p∑

k=0

Rk(x, y, y
′) · (y′)k

]
dx

=

p∑
k=0

∫ b

a

∆k︷ ︸︸ ︷[
Rk(x, y + h, y′ + h′) · (y′ + h′)k −Rk(x, y, y

′) · (y′)k
]
dx . (3.9)
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Let us fix k and transform the expression ∆k :

∆k = Rk(x, y + h, y′ + h′) ·

(
k∑
l=0

C l
k(h

′)k−l(y′)l

)
−Rk(x, y, y

′) · (y′)k

=
k−1∑
l=0

C l
kRk(x, y + h, y′ + h′) · (h′)k−l · (y′)l︸ ︷︷ ︸

Akl

+

∆Rk︷ ︸︸ ︷
[Rk(x, y + h, y′ + h′)−Rk(x, y, y

′)] ·(y′)k︸ ︷︷ ︸
Bk

. (3.10)

2) First let us estimate the integrals of Akl (l = 0, k − 1). Since, in view of (3.8),

‖Akl‖ 6 Mk · ‖h′‖k−l · ‖y′‖l ,

then ∣∣∣∣∣∣
k−1∑
l=0

b∫
a

Akldx

∣∣∣∣∣∣ 6
k−1∑
l=0

C l
k ·Mk ·

b∫
a

‖h′‖k−l · ‖y′‖ldx . (3.11)

Applying to the integrals in the right-hand side of in (3.11) the Hölder–Minkowski
inequality [13] with p1 = p/(k − l) leads to the inequality∣∣∣∣∣∣

k−1∑
l=0

b∫
a

Akldx

∣∣∣∣∣∣ 6
k−1∑
l=0

C l
k ·Mk ·

 b∫
a

‖h′‖pdx


k−l

p

·

 b∫
a

‖y′‖
pl

p−k+ldx


p−k+l

p

6
k−1∑
l=0

C l
k ·Mk · (Nkl)

l · (‖y‖W 1,p)l · (‖h‖W 1,p)k−l , (3.12)

where, in view of pl/(p− k + l) 6 p , Nkl are constants in the inequality:

‖y‖
W

1,
pl

p−k+l
6 Nkl · ‖y‖W 1,p .

Finally, from (3.12) it follows that∣∣∣∣∣∣
k−1∑
l=0

b∫
a

Akldx

∣∣∣∣∣∣→ 0 as ‖h‖W 1,p → 0, h ∈ C∆ . (3.13)

3) Now, using Basic Lemma, we estimate the integral of Bk. Since∣∣∣∣∣∣
b∫

a

Bkdx

∣∣∣∣∣∣ 6
b∫

a

|∆Rk · (y′)k|dx 6

b∫
a

‖∆Rk‖ · ‖y′‖kdx ,
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then, in the framework of Basic Lemma, this enables us to set

ϕ(x, u) = ‖Rk(x, y(x) + u1, y
′(x) + u2)−Rk(x, y(x), y

′(x))‖ (u = (u1, u2) ∈ F × F ),

ψ(x) = ‖y′(x)‖k .

Let us check fulfillment of the conditions of Basic Lemma on the set T 0. Let

J(h) = (h, h′); J : W 1,p([a; b], F ) → Lp([a; b], F × F ).

Since J is an isometry between the spaces above, then J(C) is compact in Lp([a; b], F ×
F ).

i) By uniform continuity of Rk on the set T y,

ϕ(x, u) = o(1) = o(‖u‖0) as u = (u1, u2) → 0, (u1, u2) ∈ J(C),

uniformly along x ∈ [a; b].
ii) The function ψ = ‖y′‖k ∈ L1([a; b],R), as y′ ∈ Lp, k 6 p.
iii) The mapping

χ(h1) = ‖Rk(·, y + h, y′ + h′)−Rk(·, y, y′)‖ · ‖y′‖k (h1 = (h, h′) ∈ J(C))

is a continuous mapping from J(C) to L1([a; b],R), in view of continuity and bound-
edness of Rk and summability of ‖y′‖k. Thus, Basic Lemma is applicable, hence∣∣∣∣∣∣

b∫
a

Bkdx

∣∣∣∣∣∣ 6
b∫

a

ϕ(x, J(h)) · ψ(x)dx = o(1) as ‖J(h)‖Lp = ‖h‖W 1,p → 0, h ∈ C.

(3.14)
4) Finally, from identities (3.9)–(3.10) and estimates (3.13)–(3.14) we obtain

Φ(y + h)− Φ(y) =

p∑
k=0

k−1∑
l=0

b∫
a

Akldx+

b∫
a

Bkdx

→ 0 as ‖h‖W 1,p → 0, h ∈ C .

(3.15)
Since C is compact in W 1,p([a; b], F ), the norm ‖ · ‖C majorizes the norm ‖ · ‖W 1,p ,

therefore condition (3.15) is fulfilled all the more as ‖h‖C → 0. By virtue of the
choice of C, this implies K–continuity of variational functional (2.3) at any point
y(·) ∈ W 1,p([a; b], F ).

Remark 1. Thus, K–continuity of variational functional (2.3) is guaranteed by be-
longing of the integrand to the class of Weierstrass pseudopolynomials. Note that, in
fact, Theo-
rem 3.1 states a stronger assertion, the usual continuity of all restrictions of func-
tional (2.3) to subspaces span(C) (C is absolutely convex compact in W 1,p([a; b], F ))
with the induced topologies. However these subspaces, in the infinite-dimensional case,
are not closed.

It makes more suitable using the K–continuity (and further K–differentiability).
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4 Compact–differentiability conditions for variational function-
als in Sobolev spaces

Now we pass from the initial Weierstrass class WKp(z) that was introduced in section
2 to other Weierstrass class W 1Kp(z), and show that belonging of the integrand to
W 1Kp(z) guarantees K–differentiability of the corresponding variational functional.

Definition 3. Let, under the notation of Definition 1, a functional

f : Dx ×Dy ×Dz → R (Dx ⊂ X, Dy ⊂ Y, Dz ⊂ Z)

be K–pseudopolynomial of order p in z : f ∈ Kp(z). We say that f is a Weierstrass
pseudopolynomial of the class W 1Kp(z) if f ∈ C1 and f admits a K–pseudopolynomial
representation of form (2.2), whose coefficients Rk have first order jets

(Rk,∇yzRk) ∈ WK(z) .

(
Here ∇yzRk =

(
∂Rk

∂y
,
∂Rk

∂z

))
.

In this case, we write Rk ∈ W 1
K(z). More in detail: for any compacts Cx ⊂ Dx,

Cy ⊂ Dy, the jets (Rk,∇yzRk) are uniformly continuous and bounded on Cx × Cy ×Dz.

Let us give a simple example.

Example 3. Let f(z) = Rp(z) · (z)p (z ∈ Rm, p ∈ N), in addition Rp ∈ C1 and

lim
‖z‖→∞

Rp(z) = lim
‖z‖→∞

R′
p(z) = 0 .

Then Rp and R′
p are continuous mappings having zero limits in infinity, whence their

uniform continuity and boundedness globally in z follow. Hence, f ∈ W 1Kp(z). An
evident generalization is:

f(x, y, z) = Rp(x, y, z) · (z)p (z ∈ Rm, p ∈ N),

where Rp ∈ C1 and
lim

‖z‖→∞
Rp(z) = lim

‖z‖→∞
∇yzRp(z) = 0

dominantly in x, y.

Let us prove now K–differentiability in space W 1,p of the principal variational func-
tional with the integrand in W 1Kp(z). The proof is again based on Basic Lemma.

Theorem 4.1. Let the integrand f of variational functional (2.3) in the space
W 1,p([a; b], F ) belong to the Weierstrass class W 1Kp(z), p ∈ N. Then Euler–Lagrange
functional (2.3) is K–differentiable everywhere in W 1,p([a; b], F ). In addition, there
holds the classical first variation formula

Φ′
K(y)h =

b∫
a

[
∂f

∂y
(x, y, y′)h+

∂f

∂z
(x, y, y′)h′

]
dx . (4.1)
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By using pseudopolynomial representation (2.2) of the integrand f, equality (4.1) takes
the form

Φ′
K(y)h =

p∑
k=0

b∫
a

[
∇yzRk(x, y, y

′) · (h, h′) · (y′)k +Rk(x, y, y
′) · (h′) · k(y′)k−1

]
dx .

(4.2)

Proof. 1) Fix y(·) ∈ W 1,p([a; b], F ) and an arbitrary absolutely convex compact
C ⊂ W 1,p([a; b], F ) in the given space. Note that the coefficients Rk, according to
condition f ∈ W 1Kp(z), have first order jets (Rk,∇yzRk) which are uniformly contin-
uous and bounded in T locally compactly in x, y and globally in z (i.e., dominantly in
x, y).

As it was noticed in a similar situation in the proof of Theorem 3.1 (part 1),
the numerial set Ky is compact, by virtue of compactness of C. Hence, all the jets
(Rk,∇yzRk) are uniformly continuous and bounded on the set T y. From here, in
particular, the estimates

‖Rk(x, y, z)‖ 6 Mk <∞, ‖∇yzRk(x, y, z) · (h, h′)‖ 6 Mk1 <∞(
(x, y, z) ∈ T y, h ∈ C, k = 0, p

)
(4.3)

follow. Next we use equalities (3.9)–(3.10) from the proof of Theorem 3.1. Let us
transform the expression ∆k, taking into account that

Rk(x, y+u1, z+u2)−Rk(x, y, z) = ∇yzRk(x, y, z) · (u1, u2)+ rk(x, y, z;u1, u2) · (u1, u2),

(4.4)
where

‖rk(x, y, z;u1, u2)‖ → 0 as ‖(u1, u2)‖ → 0 .

Substituting (4.4) in (3.10) and separating the last term of the sum in (3.10) (for
k > 2) we obtain

∆k =
k−2∑
l=0

C l
k ·Rk(x, y + h, y′ + h′) · (h′)k−l · (y′)l︸ ︷︷ ︸

Akl

+ k · [Rk(x, y + h, y′ + h′)−Rk(x, y, y
′)] · (h′) · (y′)k−1︸ ︷︷ ︸

Bk

+∇yzRk(x, y, y
′) · (h, h′) · (y′)k︸ ︷︷ ︸
Ck

+ rk(x, y, y
′;h, h′) · (h, h′) · (y′)k︸ ︷︷ ︸

Dk

+ k ·Rk(x, y, y
′) · (h′) · (y′)k−1︸ ︷︷ ︸
Ek

. (4.5)

Let us estimate the integrals of every summand in expression (4.5).
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2) Using estimate (3.1) for the integrals of Akl, which was obtained in the proof of
Theorem 3.1 ∣∣∣∣∣∣

k−2∑
l=0

b∫
a

Akldx

∣∣∣∣∣∣ 6
k−2∑
l=0

C l
k ·Mk0 ·

b∫
a

‖h′‖k−l · ‖y′‖ldx (4.6)

and applying to the integrals in the right-hand side of (4.6) the Hölder–Minkowski
inequality with pkl = p/(k − l) leads to∣∣∣∣∣∣

k−2∑
l=0

b∫
a

Akldx

∣∣∣∣∣∣ 6
k−2∑
l=0

C l
k ·Mk0 ·

 b∫
a

‖h′‖pdx


k−l

p

·

 b∫
a

‖y′‖
lp

p−k+ldx


p−k+l

p

6
k−2∑
l=0

C l
k·Mk0·(‖h‖W 1,p)k−l·(‖y‖

W
1,

lp
p−k+l

)l 6
k−2∑
l=0

C l
k·Mk0·(Np

kl)
l·(‖y‖W 1,p)l·(‖h‖W 1,p)k−l ,

(4.7)
where Np

kl are the constants in the inequality

‖y‖
W

1,
lp

p−k+l
6 Np

kl · ‖y‖W 1,p . (4.8)

We took into account that lp
p−k+l 6 p since k − l > 2, it follows immediately from (4.7)

that ∣∣∣∣∣∣
k−2∑
l=0

b∫
a

Akldx

∣∣∣∣∣∣ = o(‖h‖W 1,p) as ‖h‖W 1,p → 0, h ∈ C∆ . (4.9)

3) Now, let us estimate the integral of Bk in (4.5) by using Basic Lemma. First of
all, ∣∣∣∣∣∣

b∫
a

Bkdx

∣∣∣∣∣∣ 6 k ·
b∫

a

‖Rk(x, y + h, y′ + h′)−Rk(x, y, y
′)‖︸ ︷︷ ︸

∆Rk

·‖h′‖ · ‖y′‖k−1dx .

This enables us, in the framework of Basic Lemma, to set

ϕ(x, u) = ‖Rk(x, y(x)+u1, y
′(x)+u2)−Rk(x, y(x), y

′(x))‖·‖u2‖ (u = (u1, u2) ∈ F×F ),

ψ(x) = k · ‖y′(x)‖k−1 .

Let us check fulfillment of the conditions of Basic Lemma.
i) By virtue of uniform continuity of Rk on the set T y,

ϕ(x, u) = o(‖u2‖) = o(‖(u1, u2)‖) as ‖u‖ = ‖(u1, u2)‖ → 0

uniformly in x ∈ [a; b], u ∈ J(C).
ii) The function ψ = k · ‖y′‖k−1 ∈ L1([a; b],R) in view of y′ ∈ Lp and k − 1 6 p.
iii) The mapping

χ(h1) = ‖Rk(·, y + h, y′ + h′)−Rk(·, y, y′)‖ · ‖h′‖ · k‖y′‖k−1 (h1 = (h, h′) = Jh)
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is a continuous mapping from J(C) to L1([a; b],R), in view of continuity and bound-
edness of Rk, continuity of the mapping h1 = (h, h′) 7→ ‖h′‖ and summability of the
product ‖h′‖ · ‖y′‖k−1. Thus, Basic Lemma is applicable, whence∣∣∣∣∣∣

b∫
a

Bkdx

∣∣∣∣∣∣ 6
b∫

a

ϕ(x, h1) · ψ(x)dx

=

b∫
a

‖∆Rk‖ · ‖h′‖ · ‖y′‖k−1dx = o(‖(h, h′)‖Lp) = o(‖h‖W 1,p) (4.10)

as ‖h‖W 1,p → 0, h ∈ C .
4) Next, let us estimate the integral of Ck in (4.5) with the help of the Hölder–

Minkowski inequality. Using estimate (4.4) leads to∣∣∣∣∣∣
b∫

a

Ckdx

∣∣∣∣∣∣ 6
b∫

a

|∇yzRk(x, y, y
′) · (h, h′)| · ‖y′‖kdx 6 Mk1 ·

b∫
a

‖y′‖kdx

6 Mk1 · (b− a)
p−k

p · (‖y′‖Lp)
k 6

[
Mk1 · (b− a)

p−k
p

]
· (‖y‖W 1,p)k <∞.

So,
b∫
a

Ckdx is a bounded linear functional in h on the subspace span(C) with respect

to the norm ‖ · ‖C . By virtue of arbitrariness of the choice of C ⊂ W 1,p([a; b], F ), this
implies K–continuity of the functional and the last property, in view of linearity of the
functional (see [8]) is equivalent to its usual continuity on the space W 1,p([a; b], F ).

5) Next, let us estimate the integral of Dk in (4.5) with the help of Basic Lemma.
First of all, ∣∣∣∣∣∣

b∫
a

Dkdx

∣∣∣∣∣∣ 6
b∫

a

|rk(x, y, y′;h, h′) · (h, h′)| · ‖y′‖kdx.

Note also that, in view of continuous differentiability of Rk and compactness of C,

|rk(x, y, y′;h, h′) · (h, h′)| = o(‖(h, h′)‖) (4.11)

uniformly in x ∈ [a; b]. This enables us, in the framework of Basic Lemma, to set

ϕ(x, u) = |rk(x, y, y′;u1, u2) · (u1, u2)| (u = (u1, u2) ∈ F × F ),

ψ(x) = ‖y′(x)‖k .

Let us check fulfillment of the conditions of Basic Lemma.
i) From estimate (4.11) it follows immediately that

ϕ(x, u) = o(‖u‖) as ‖u‖ → 0, uniformly in x ∈ [a; b]

ii) The function ψ = ‖y′‖k ∈ L1([a; b],R) in view of y′ ∈ Lp and k 6 p.
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iii) The mapping

χ(h1) = |rk(x, y, y′;h, h′) · (h, h′)| · ‖y′‖k (h1 = Jh = (h, h′) ∈ J(C)) (4.12)

is a continuous mapping from J(C) to L1([a; b],R) in view of continuity in h1 = (h, h′),
boundedness of the first multiple from the right in (4.12) and summability of the second
multiple therein. Thus, Basic Lemma is applicable, whence∣∣∣∣∣∣

b∫
a

Dkdx

∣∣∣∣∣∣ 6
b∫

a

ϕ(x, h1) · ψ(x)dx =

b∫
a

|rk(x, y, y′;h, h′) · (h, h′)| · ‖y′‖kdx

= o(‖(h, h′)‖Lp) = o(‖h‖W 1,p) as ‖h‖W 1,p → 0, h ∈ C . (4.13)

6) Finally, let us estimate the integral of Ek in (4.5) using the first estimate in (4.3)
and the Hölder–Minkowski inequality. Taking into account that ‖h′‖ · ‖y′‖k−1 ∈ L1, we
obtain∣∣∣∣∣∣

b∫
a

Ekdx

∣∣∣∣∣∣ 6 k ·
b∫

a

‖Rk(x, y, y
′)‖ · ‖h′‖ · ‖y′‖k−1dx 6 kMk0 ·

b∫
a

‖h′‖ · ‖y′‖k−1dx

6 k ·Mk0 · ‖h′‖Lp · (‖y′‖Lp)
k−1 6

(
k ·Mk0 · (‖y‖W 1,p)k−1

)
· ‖h‖W 1,p .

Thus,
b∫
a

Ekdx is a bounded linear functional in h on the subspace span(C) with

respect to the norm ‖ · ‖W 1,p and all the more with respect to the norm ‖ · ‖C . Conti-
nuity of the functional on the whole space W 1,p([a; b], F ) follows from here, by analogy
with part 4) of the proof.

7) So, from the obtained estimates (4.9)–(4.10), (4.13) and the conclusions of parts
4)–6) of the proof it follows that

b∫
a

∆kdx =

b∫
a

[
∇yzRk(x, y, y

′) · (h, h′) · (y′)k + kRk(x, y, y
′) · (h′) · (y′)k−1

]
dx

+o(‖h‖W 1,p), (4.14)

where the integral functional in the right-hand side of (4.14) is continuous. Since, in
view of compactness of C, the norm ‖ · ‖C majorizes the norm ‖ · ‖W 1,p in span(C)

then the second term in the right-hand side of (4.14) is o(‖h‖C) .
Therefore, by summing up equalities (4.14) in k = 0, p we arrive at K–

differentiability of Φ and equality (4.2).
8) Finally, let us show that equality (4.2) can be transformed to standard form (4.1).

Using K–pseudopolynomial representation (2.2) leads to

∂f

∂y
(x, y, y′)h =

∂R0

∂y
(x, y, y′) · h+

p∑
k=1

∂Rk

∂y
(x, y, y′) · h · (y′)k ,
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∂f

∂z
(x, y, y′)h′ =

∂R0

∂z
(x, y, y′) · h′

+

p∑
k=1

[∂Rk

∂z
(x, y, y′) · (h′) · (y′)k +Rk(x, y, y

′) · (h′) · k(y′)k−1
]
.

From here it follows that

∇yzf(x, y, y′)(h, h′) =
∂f

∂y
(x, y, y′) · h+

∂f

∂z
(x, y, y′) · h′

=
[∂R0

∂y
(x, y, y′) · h+

∂R0

∂z
(x, y, y′) · h′

]
+

p∑
k=1

[(∂Rk

∂y
(x, y, y′) · (h) · (y′)k

+
∂Rk

∂z
(x, y, y′) · (h′) · (y′)k

)
+Rk(x, y, y

′) · (h′) · k(y′)k−1
]

= ∇yzR0(x, y, y
′) · (h, h′)

+

p∑
k=1

[
∇yzRk(x, y, y

′) · (h, h′) · (y′)k +Rk(x, y, y
′) · (h′) · k(y′)k−1

]
=

p∑
k=0

[
∇yzRk(x, y, y

′) · (h, h′) · (y′)k +Rk(x, y, y
′) · (h′) · k(y′)k−1

]
,

and it is none other than the integrand in the right-hand side of (4.2).

In the conclusion of this section we give examples of some classes of integrands
which are enclosed by Theorem 4.1.

Example 4. Some types of integrands in the Weierstrass class W 1Kp(z).
1) Let

f(x, y, z) =

p∑
k=0

Rk(x, y) · (z)k (Rk ∈ C1
xy).

Here independence Rk of z automatically implies that Rk ∈ W 1
K(z), whence

f ∈ W 1Kp(z).
2) Let us generalize the preceding example. Let

f(x, y, z) =
∑
k∈K

Rk(x, y) · (z)k +
∑
k′∈K′

Rk′(x, y, z) · (z)k
′

(K∪̇K′ = {0, p}),

where Rk ∈ C1
xy for k ∈ K, Rk′ ∈ W 1

K(z) for k′ ∈ K′. Then f ∈ W 1Kp(z) as well.
3) Let

f(x, y, z) =

p∑
k=0

ϕk(rk(x, y, z)︸ ︷︷ ︸
t

) · (z)k (ϕk ∈ C1
t , rk ∈ W 1

K(z)).

Then, obviously, Rk = ϕk(rk) ∈ WK(z) and

∇yzRk =
dϕk
dt

· ∇yzrk ∈ WK(z) ,

whence it follows that f ∈ W 1Kp(z).
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5 General Weierstrass classes. Multiple K–differentiability
conditions for variational functionals in Sobolev spaces

To pass to the high order K–derivatives of variational functionals we need a corre-
sponding generalization of the Weierstrass classes.

Definition 4. Let, under the notation of Definition 1, a functional
f : Dx ×Dy ×Dz → R be K–pseudopolynomial of order p : f ∈ Kp(z), p ∈ N,
where f ∈ Cn(Dx ×Dy ×Dz), n ∈ N0. We say that f belongs to the Weierstrass class
W nKp(z), if there exists a K–pseudopolynomi-
al representation (2.2) whose all coefficients Rk have n–th order jets in y, z

(Rk,∇yzRk, . . . ,∇n
yzRk) (k = 0, p) (5.1)

in the Weierstrass class WK(z). In this case, we write Rk ∈ W n
K(z).

In the other words, the coefficients Rk(x, y, z) of representation 2.2 have dominating
(in x, y) mixed smoothness of order n. More explicitly: for any compacts Cx ⊂ Dx,
Cy ⊂ Dy, jets (5.1) are uniformly continuous and bounded on Cx × Cy ×Dz.

Remark 2. Obviously,

W 0Kp(z) = WKp(z), W
nKp(z) ⊂ W n−1Kp(z);

W 0
K(z) = WK(z), W n

K(z) ⊂ W n−1
K (z).

Let us give a simple example generalizing Example 3.

Example 5. Let f(z) = Rp(z) · (z)p (z ∈ Rm, p ∈ N), in addition Rp ∈ Cn and

lim
‖z‖→∞

Rp(z) = lim
‖z‖→∞

R′
p(z) = . . . = lim

‖z‖→∞
R(n)
p (z) = 0 . (5.2)

Then Rp, R
′
p, . . . , R

(n)
p are continuous mappings with zero limits at infinity, whence

their uniform continuity and boundedness globally in z follow. Hence, f ∈ W nKp(z).
In particular, any rapidly decreasing function Rp ∈ S(Rm) satisfies conditions (5.2).

An evident generalization is:

f(x, y, z) = Rp(x, y, z) · (z)p (z ∈ Rm, p ∈ N),

where Rp ∈ Cn and

lim
‖z‖→∞

Rp(z) = lim
‖z‖→∞

∇yzRp(z) = . . . = lim
‖z‖→∞

∇n
yzRp(z) = 0

dominantly in x, y.

Remark 3. It is easy to see that f ∈ W nKp(z) implies that (∂s+tf/∂ys∂zt) ∈
W n−s−tKp(z) with s+ t 6 n and

∂s+tf

∂ys∂zt
(x, y, z) =

p∑
k=0

Rs,t
k (x, y, z) · (z)k , (5.3)

where Rs,t
k ∈ W n−s−t

K (z).
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Now, let us show that belonging of an integrand to the Weierstrass class W nKp(z)
guarantees n–multiple K–differentiability of the principal variational functional.

Theorem 5.1. Let the integrand f of variational functional (2.3) belong to the Weier-
strass class W nKp(z), (p ∈ N, n ∈ N). Then Euler–Lagrange functional (2.3) is n

times K–differentiable everywhere in W 1,p([a; b], F ). In addition, there holds the fol-
lowing n–th variation formula

Φ
(n)
K (y) · (h1, . . . , hn) =

b∫
a

 n∑
l=0

∂nf

∂yn−l∂zl
(x, y, y′) ·

∑(h
(i1)
1 , h

(i2)
2 , . . . , h(in)

n )
i=(i1,...,in):|i|=l (is=0,1)

 dx.
(5.4)

In particular, on the diagonal h1 = h2 = . . . = hn = h K—derivative Φ
(n)
K (y) takes the

form

Φ
(n)
K (y) · (h)n =

b∫
a

[
n∑
l=0

C l
n ·

∂nf

∂yn−l∂zl
(x, y, y′) · (h)n−l · (h′)l

]
dx. (5.5)

Moreover, using K–pseudopolynomial representation (2.2) leads to the formula

Φ
(n)
K (y) · (h)n =

p∑
k=0

b∫
a

[n−1∑
l=0

C l
n−1 ·

(
∇yzR

n−1−l,l
k (x, y, y′) · (h, h′) · (y′)k

+Rn−1−l,l
k (x, y, y′) · (h′) · k(y′)k−1

)
· (h)n−1−l · (h′)l

]
dx . (5.6)

Proof. Let us carry out the proof by induction. For n = 1 formula (5.6) reduces
to the proved above formula for the first K–variation (4.1) together with its K–
pseudopolynomial variant (4.2).

Suppose by the inductive hypothesis, that for a given n formula (5.6) holds, under
the hypotheses of the theorem. Let us prove now analogous equality of (n+ 1)–th order,
under the assumption f ∈ W n+1Kp(z). Call to mind that [3] a symmetric n–form is
uniquely defined by its diagonal values (under preserving continuity).

1) Like in the proof of Theorem 4.1, let us fix y(·) ∈ W 1,p([a; b], F ) and an arbitrary
absolutely convex compact C ⊂ W 1,p([a; b], F ).

In this case, according to supposition f ∈ W n+1Kp(z) the (n+ 1)–th order jets in
y, z of the coefficients Rk : T = [a; b]× F × F → F ∗

k ,

(Rk,∇yzRk, . . . ,∇n+1
yz Rk) (k = 0, p) (5.7)

are uniformly continuous and bounded on T locally compactly in x, y and globally in
z.

As it was noticed already above (in the proofs of Theorems 3.1 and 4.1), in view
of compactness of the set (y + C) the numerical set Ky is compact as well. Hence, on
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the set T y = [a; b]×Ky × F all the jets (5.7) are bounded and uniformly continuous.
From here, in particular, there follow the estimates∥∥∥∂s+tRk

∂ys∂zt (x, y, z) · (h)s(h′)t
∥∥∥ 6 Mk

st <∞
(
(x, y, z) ∈ T y,∆

h ∈ C∆, s+ t 6 n+ 1, k = 0, p
)
.

(5.8)

From estimates (5.8), Remark 3, and representation (5.3) there also follow the
estimates ∥∥∥Rn−l,l

k (x, y, z) · (h)n−l(h′)l
∥∥∥ 6 Mk0

n−l,l <∞; (5.9)∥∥∥∇yzR
n−l,l
k (x, y, z) · (h, h′) · (h)n−l(h′)l

∥∥∥ 6 Mk1
n−l,l <∞; (5.10)

where (x, y, z) ∈ T y, h ∈ C, s+ t 6 n+ 1, k = 0, p.
2) Using the inductive hypothesis and representation (5.5), write the increment of

the functional Φ
(n)
K (y) on a diagonal multivector (h)n in the form

[Φ
(n)
K (y + h)− Φ

(n)
K (y)] · (h)n

=
n∑
l=0

C l
n ·

b∫
a

[
∂nf

∂yn−l∂zl
(x, y + h, y′ + h′)− ∂nf

∂yn−l∂zl
(x, y, y′)

]
︸ ︷︷ ︸

∆fn−l,l

·(h)n−l · (h′)ldx . (5.11)

Let us transform the integrands in the right-hand side of (5.11), using representa-
tion (5.3) and expansion into principal and small parts

Rn−l,l
k (x, y + h, y′ + h′)−Rn−l,l

k (x, y, y′) = ∆Rn−l,l
k

= ∇yzR
n−l,l
k (x, y, y′) · (h, h′) +∇yzr

n−l,l
k (x, y, y′;h, h′) · (h, h′).

From here it follows that

∆fn−l,l =

p∑
k=0

∆
(
Rn−l,l
k (x, y, y′) · (y′)k

)
· (h)n−l · (h′)n−l

=

p∑
k=0

[
Rn−l,l
k (x, y + h, y′ + h′) ·

(
(y′)k

+k(y′)k−1 · (h′) +
k−2∑
m=0

Cm
k · (y′)m · (h′)k−m

)
−Rn−l,l

k (x, y, y′) · (y′)k
]
· (h)n−l · (h′)l

=

p∑
k=0

[(
Rn−l,l
k (x, y, y′) +∇yzR

n−l,l
k (x, y, y′) · (h, h′) +∇yzr

n−l,l
k (x, y, y′;h, h′) · (h, h′)

)
·

·
(
(y′)k + k(y′)k−1 · (h′) +

k−2∑
m=0

Cm
k · (y′)m · (h′)k−m

)
−Rn−l,l

k (x, y, y′) · (y′)k
]
· (h)n−l · (h′)l
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=

p∑
k=0

[
∇yzR

n−l,l
k (x, y, y′) · (h, h′) · (h)n−l · (h′)l · (y′)k︸ ︷︷ ︸

Akl

+Rn−l,l
k (x, y, y′) · (h)n−l · (h′)l+1 · k(y′)k−1︸ ︷︷ ︸

Bkl

]
+

p∑
k=0

[
∆Rn−l,l

k · (h)n−l · (h′)l+1 · k(y′)k−1︸ ︷︷ ︸
Ckl

+∇yzr
n−l,l
k (x, y, y′;h, h′) · (h, h′) · (h)n−l · (h′)l · (y′)k︸ ︷︷ ︸

Dkl

+
k−2∑
m=0

Cm
k ·R

n−l,l
k (x, y + h, y′ + h′) · (h)n−l · (h′)l+k−m · (y′)m︸ ︷︷ ︸

Eklm

]
. (5.12)

Here in the first square brackets from the right the principal terms of the decomposition,
Akl and Bkl, are collected, in the second square brackets from the right the small terms
of the decomposition, Ckl, Dkl and Dklm, are collected. Let us estimate the integrals
of each of the summands in (5.12).

4) First, let us estimate the integrals of Akl and Bkl.
a) Note that the functional in h,

b∫
a

Akldx =

b∫
a

∇yzR
n−l,l
k (x, y, y′) · (h, h′) · (h)n−l · (h′)l · (y′)kdx , (5.13)

is homogeneous of order (n+ 1). Using estimates (5.10) and the Hölder–Minkowski
inequality (as ‖y′‖k ∈ L1 for k 6 p) leads to∣∣∣∣∣∣

b∫
a

Akldx

∣∣∣∣∣∣ 6
b∫

a

∥∥∥∇yzR
n−l,l
k (x, y, y′) · (h, h′) · (h)n−l · (h′)l

∥∥∥ · ‖y′‖kdx
6 Mk1

n−l,l ·
b∫

a

‖y′‖kdx 6
[
Mk1

n−l,l · (b− a)
p−k

p

]
· (‖y‖W 1,p)k as h ∈ C∆ ,

whence boundedness of the functional on the subspace span(C) with respect to the
norm ‖ · ‖C follows. By arbitrariness of the choice of C ⊂ W 1,p([a; b], F ) this implies
K–continuity of functional (5.13) and therefore, by virtue of its homogeneity ([10], [12])
usual continuity of the given functional on W 1,p([a; b], F ).

b) The homogeneous functional in h, of order (n+ 1)

b∫
a

Bkldx = k ·
b∫

a

Rn−l,l
k (x, y, y′) · (h)n−l · (h′)l+1 · k(y′)k−1dx

can be estimated in a similar way. Namely,∣∣∣∣∣∣
b∫

a

Bkdx

∣∣∣∣∣∣ 6 k ·
b∫

a

‖Rn−l,l
k (x, y, y′) · (h)n−l · (h′)l‖ · ‖h′‖ · ‖y′‖k−1dx
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6 k ·Mk0
n−l,l ·

b∫
a

‖h′‖ · ‖y′‖k−1dx 6 k ·Mk0
n−l,l · ‖h′‖Lp · (‖y′‖L (k−1)p

p−l

)k−1

6
[
k ·Mk0

n−l,l · ‖y‖
W

1,
(k−1)p

p−l

]
· ‖h‖W 1,p ,

whence continuity of the functional with respect to the norm ‖ · ‖W 1,p , and moreover,
continuity with respect to the norm ‖ · ‖C on the subspace span(C) follows. Repeat-
ing of the argument of part a) implies usual continuity of the given functional in
W 1,p([a; b], F ).

5) Let us begin estimating the integrals of the small terms Ckl, Dkl and Eklm of
decomposition (5.12). Here we use Basic Lemma.

a) The estimate∣∣∣∣∣∣
b∫

a

Ckldx

∣∣∣∣∣∣ 6 k ·
b∫

a

(
‖∆Rn−l,l

k (x, h, h′) · (h)n−l · (h′)l‖ · ‖h′‖
)
· ‖y′‖k−1dx

enables us in the framework of Basic Lemma to use the functions

ϕ(x, u) = ‖∆Rn−l,l
k (x, u1, u2) · (u1)

n−l · (u2)
l)‖ · ‖u2‖ (u = (u1, u2) ∈ F × F ),

ψ(x) = k · ‖y′(x)‖k−1 .

Let us check fulfillment of conditions i)–iii) of Basic Lemma for ϕ and ψ.
i) In view of uniform continuity Rn−l,l

k on T y,

‖∆Rn−l,l
k (x, u)‖ → 0 as ‖u‖ → 0 uniformly in x ∈ [a; b].

Therefore the estimate

|ϕ(x, u)| 6 ‖∆Rn−l,l
k (x, u)‖ · ‖u1‖n−l · ‖u2‖l+1 6 ‖∆Rn−l,l

k (x, u)‖ · ‖(u1, u2)‖n+1

implies ϕ(x, u) = o(‖u‖n+1) as ‖u‖ → 0 uniformly in x ∈ [a; b].
ii) The function ψ = k · ‖y′‖k−1 ∈ L1 because y′ ∈ Lp and (k − 1) 6 p.
iii) The mapping

χ(h1) = ϕ(·, (h, h′)) · ψ

= ‖(Rn−l,l
k (·, y + h, y′ + h′)−Rn−l,l

k (·, y, y′)) · (h)n−l · (h′)l‖ · (‖h′‖ · ‖y′‖k−1) (5.14)

is, obviously, continuous in h ∈ J(C) mapping into L1([a; b],R), in view of continuity in
h1 and boundedness on J(C) of the first multiple in the right-hand side of (5.14) and of
summability of the second multiple, arising from h′, y′ ∈ Lp and 1 + (k − 1) = k 6 p.

Thus, Basic Lemma is applicable, whence for h ∈ C it follows∣∣∣∣∣∣
b∫

a

Ckldx

∣∣∣∣∣∣ 6
b∫

a

ϕ(x, (h, h′)) · ψ(x)dx = o
((
‖(h, h′)‖Lp

)n+1
)

= o
(
(‖h‖W 1,p)n+1) .

(5.15)
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b) The estimate∣∣∣∣∣∣
b∫

a

Dkldx

∣∣∣∣∣∣ 6
b∫

a

‖∇yzr
n−l,l
k (x, y, y′;h, h′) · (h, h′) · (h)n−l · (h′)l‖ · ‖y′‖kdx

enables us in the framework of Basic Lemma to use the functions

ϕ(x, u) = ‖∇yzr
n−l,l
k (x, y, y′; (u1, u2)) · (u1, u2) · (u1)

n−l · (u2)
l‖ (u = (u1, u2) ∈ F ×F ),

ψ(x) = ‖y′(x)‖k .

Let us check fulfillment of conditions i)–iii) of Basic Lemma for ϕ and ψ.
i) In view of uniform continuity ∇yzr

n−l,l
k on T y,

‖∇yzr
n−l,l
k (x, y, y′; (u1, u2))‖ → 0 as ‖u‖ → 0 uniformly in x ∈ [a; b].

Therefore the estimate

|ϕ(x, u)| 6 ‖∇yzr
n−l,l
k (x, y, y′;u)‖ · ‖(u1, u2)‖ · ‖u1‖n−l · ‖u2‖l

6 ‖∇yzr
n−l,l
k (x, y, y′;u)‖ · ‖u‖n+1 = o(‖u‖n+1) uniformly in x ∈ [a; b]

shows fulfillment of condition i).
ii) The function ψ = ‖y′‖k ∈ L1 because y′ ∈ Lp and (k) 6 p.
iii) The mapping

χ(h1) = ϕ(·, (h, h′)) · ψ

= ‖∇yzr
n−l,l
k (x, y, y′;h, h′) · (h, h′) · (h)n−l · (h′)l‖ · ‖y′‖k (5.16)

is, obviously, continuous in h1 = (h, h′) ∈ J(C) mapping into L1([a; b],R) in view of
continuity in h1 and boundedness on J(C) of the first multiple in the right-hand side
of (5.16) and of summability of the second multiple.

Thus, Basic Lemma is applicable, whence for h ∈ C it follows∣∣∣∣∣∣
b∫

a

Dkldx

∣∣∣∣∣∣ 6
b∫

a

ϕ(x, (h, h′)) · ψ(x)dx = o
((
‖(h, h′)‖Lp

)n+1
)

= o
(
(‖h‖W 1,p)n+1) .

(5.17)
c) The estimate∣∣∣∣∣∣

b∫
a

Eklmdx

∣∣∣∣∣∣ 6 k ·
b∫

a

‖Rn−l,l
k (x, y + h, y′ + h′) · (h)n−l · (h′)l‖ · ‖h′‖k−m · ‖y′‖mdx

enables us, in the framework of Basic Lemma, to use the functions

ϕ(x, u) = ‖Rn−l,l
k (x, y + u1, y

′ + u2) · (u1)
n−l · (u2)

l‖ · ‖u2‖k−m (u = (u1, u2) ∈ F × F ),

ψ(x) = ‖y′(x)‖m .
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Let us check fulfillment of conditions i)–iii) of Basic Lemma for ϕ and ψ.
i) Using estimate (5.9) for Rn−l,l

k on T y leads to

|ϕ(x, u)| 6 ‖Rn−l,l
k (x, y+u1, y

′+u2)‖·‖u1‖n−l ·‖u2‖l+k−m 6 Mk0
n−l,l ·(‖u1‖+‖u2‖)n+(k−m)

= O(‖u‖n+2) = o(‖u‖n+1) as ‖u‖ → 0 uniformly in x ∈ [a; b].

ii) The function ψ = k · ‖y′‖k−1 ∈ L1 because y′ ∈ Lp and (k − 1) 6 p.
iii) The mapping

χ(h1) = ϕ(·, (h, h′)) · ψ

= ‖Rn−l,l
k (·, y + h, y′ + h′) · (h)n−l · (h′)l‖ · (‖h′‖k−m · ‖y′‖m) (5.18)

is , obviously, continuous in h ∈ J(C) mapping into L1([a; b],R), in view of continuity in
h1 of the first multiple in the right-hand side of (5.18), arising from uniform continuity
Rn−l,l
k on T y, and of summability of the second multiple, arising from h′, y′ ∈ Lp and

(k −m) +m 6 p.

Thus, Basic Lemma is applicable, whence for h ∈ C it follows∣∣∣∣∣∣
b∫

a

Eklmdx

∣∣∣∣∣∣ 6 Cm
k ·

b∫
a

ϕ(x, (h, h′)) ·ψ(x)dx = o
((
‖(h, h′)‖Lp

)n+1
)

= o
(
(‖h‖W 1,p)n+1) .

(5.19)
6) So, from decompositions (5.11)–(5.12), from the obtained above esti-

mates (5.15), (5.17), (5.19), and from the results of part 4) of the proof it follows
that

(Φ
(n)
K (y + h)− Φ

(n)
K (y)) · (h)n =

n∑
l=0

C l
n ·

b∫
a

( p∑
k=0

[
∇yzR

n−l,l
k (x, y, y′) · (h, h′) · (y′)k

+kRn−l,l
k (x, y, y′) · (h′) · (y′)k−1

]
· (h)n−l · (h′)l

)
dx+ o

(
(‖h‖W 1,p)n+1

)
, (5.20)

where the integral functional in the right-hand side of (5.20) is continuous. Since, in
view of compactness of C, the norm ‖ · ‖C majorizes the norm ‖ · ‖W 1,p in span(C)

then the small term in the right-hand side of (5.20) is o ((‖h‖C)n+1) . Thus, we come
to (n+ 1)–multiple K–differentiability Φ and to the equality

Φ
(n+1)
K (y) · (h)n+1 =

n∑
l=0

C l
n ·

b∫
a

( p∑
k=0

[
∇yzR

n−l,l
k (x, y, y′) · (h, h′) · (y′)k

+k ·Rn−l,l
k (x, y, y′) · (h′) · (y′)k−1

]
· (h)n−l · (h′)l

)
dx . (5.21)

7) Finally, let us check that equality (5.21) can be transformed to form (5.5) with
n replaced byn+ 1.
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a) First, let us prove the identity

∂n+1f

∂yn+1−l∂zl
(x, y, y′) · h+

∂n+1f

∂yn−l∂zl+1
(x, y, y′) · h′

=

p∑
k=0

(
∇yzR

n−l,l
k (x, y, y′) · (h, h′) · (y′)k + k ·Rn−l,l

k (x, y, y′) · (h′) · (y′)k−1
)
. (5.22)

In the first place,

∂n+1f

∂yn+1−l∂zl
(x, y, y′) · h =

∂

∂y

(
∂nf

∂yn−l∂zl

)
(x, y, y′) · h

=
∂

∂y

(
p∑

k=0

Rn−l,l
k (x, y, z) · (z)k

)∣∣∣∣
z=y′

· h =

p∑
k=0

∂Rn−l,l
k

∂y
(x, y, y′) · (h) · (y′)k . (5.23)

Secondly, in analogous way,

∂n+1f

∂yn−l∂zl+1
(x, y, y′) · h′ = ∂

∂z

(
∂nf

∂yn−l∂zl

)
(x, y, y′) · h′

=
∂

∂z

( p∑
k=0

Rn−l,l
k (x, y, z) · (z)k

)∣∣∣∣
z=y′

· h′

=

(
p∑

k=0

[
∂Rn−l,l

k

∂y
(x, y, z) · (z)k +Rn−l,l

k (x, y, z) · k · (z)k−1

]∣∣∣∣
z=y′

)
· h′

=

p∑
k=0

[
∂Rn−l,l

k

∂y
(x, y, y′) · (h′) · (y′)k +Rn−l,l

k (x, y, y′) · (h′) · k · (y′)k−1

]
. (5.24)

The term by term adding of equalities (5.23) and (5.24) results in (5.22).
b) Now, let us transform the right-hand side of (5.21), using equalities (5.22). It

follow that

Φ
(n+1)
K (y) · (h)n+1 =

b∫
a

( n∑
l=0

[ ∂n+1f

∂yn+1−l∂zl
(x, y, y′) · h

+
∂n+1f

∂yn−l∂zl+1
(x, y, y′) · h′

]
· (h)n−l · (h′)l

)
dx

=
n∑
l=0

[ b∫
a

C l
n ·

∂n+1f

∂yn+1−l∂zl
(x, y, y′) · (h)n+1−l · (h′)ldx

+

b∫
a

C l
n ·

∂n+1f

∂y(n+1)−(l+1)∂zl+1
(x, y, y′) · (h)(n+1)−(l+1) · (h′)l+1dx

]
. (5.25)
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Finally, replacing l+ 1 by l in the last integrals of the right-hand side of (5.25) we
get the equality

Φ
(n+1)
K (y) · (h)n+1 =

n+1∑
l=0

Cl
n+1︷ ︸︸ ︷

(C l
n + C l−1

n ) ·
b∫

a

∂n+1f

∂yn+1−l∂zl
(x, y, y′) · (h)n+1−l · (h′)ldx ,

which is none other than the equality (5.5) with n replaced by n+ 1.
Thus, by induction, both formula (5.5) and its pseudopolynomial variant (5.6) are

proved.

Useful examples, can be obtained by considering particular cases of Theorem 5.1
for n = 2.

Example 6. For n = 2 formula (5.5) takes the form

Φ′′
K(y)(h)2 =

b∫
a

[∂2f

∂y2
(x, y, y′) · (h)2 +2

∂2f

∂y∂z
(x, y, y′) · (h) · (h′)+

∂2f

∂z2
(x, y, y′) · (h′)2

]
dx.

It is also possible to obtain a variant of formula (5.6) where the integrand is ex-
pressed explicitly via the coefficients of the initial K–pseudopolynomial representation
of f .

Remark 4. Equality (5.6) can be transformed to the following form

Φ
(n)
K (y)(h)n =

p∑
k=0

b∫
a

[ n∑
l=0

C l
n·k(k−1) · · · (k−l+1)·∇n−l

yz Rk(x, y, y
′)·(h, h′)n−l·(y′)k−l

]
dx .

(5.26)
In particular, for n = 1 (5.26) reduces to equality (4.2), for n = 2 (5.26) reduces to the
equality

Φ′′
K(y)(h)2 =

p∑
k=0

b∫
a

[
∇2
yzRk(x, y, y

′) · (h, h′)2 · (y′)k +2k ·∇yzRk(x, y, y
′) · (h, h′) · (y′)k−1

+k(k − 1) ·Rk(x, y, y
′) · (y′)k−2

]
dx .

It is clear that the number of non–zero summands in the sum under the integral sign
in (5.26) does not exceed k. The readers are recommended to carry out the calculations
independently, as an exercise.

In the conclusion of this section we give examples of some classes of integrands,
which are enclosed by Theorem 5.1.
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Example 7. Some types of integrands in the Weierstrass class W nKp(z).
1) Let

f(x, y, z) =

p∑
k=0

Rk(x, y) · (z)k (Rk ∈ Cn
xy; k = 0, p).

Here independence ∇m
yzRk (m = 0, n) from z automatically leads to the conditions

Rk ∈ W n
K(z), whence f ∈ W nKp(z).

2) As an obvious generalization of the preceding example, let consider

f(x, y, z) =
∑
k∈K

Rk(x, y) · (z)k +
∑
k′∈K′

Rk′(x, y, z) · (z)k
′
,

where K∪̇K′ = {0, p}, Rk ∈ Cn
xy (k ∈ K), Rk′ ∈ W n

K(z) (k′ ∈ K′).
3) Let

f(x, y, z) =

p∑
k=0

ϕk(rk(x, y, z)︸ ︷︷ ︸
t

) · (z)k (ϕk ∈ Cn
t , rk ∈ W n

K(z)).

Then f ∈ W nKp(z).
4) Note one more evident example. Let Rk ∈ Cn

xyz (k = 0, p) and Rk be periodic in
z (with the periods not depending on x, y). Then f ∈ W nKp(z) as well.
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