EURASIAN MATHEMATICAL JOURNAL

ISSN 2077-9879

Volume 3, Number 2 (2012), 85 – 93

SOME FIXED POINT THEOREMS IN SYMMETRIC G-CONE METRIC SPACES

M.S. Khan, K.P.R. Rao, K.R.K. Rao

Communicated by T.V. Tararykova

Key words: Symmetric G- cone metric space, common fixed point, compatible mappings.

AMS Mathematics Subject Classification: 47H10; 54H25.

Abstract. In this paper we obtain a unique common fixed point theorem for two pairs of weakly compatible mappings in symmetric G-cone metric spaces.

1 Introduction and Preliminaries

Mustafa and Sims [18] and Naidu et. al [21, 22, 23] demonstrated that most of the claims concerning the fundamental topological structure of D-metric introduced by Dhage [6, 7, 8, 9] and hence all theorems are incorrect. As an alternative Mustafa and Sims [19] introduced the concept of G-metric space (a generalized metric space).

In recent years many authors have obtained different fixed point and common fixed point theorems for mappings satisfing various contractive conditions on G-metric spaces. For a survey of fixed point theory, its applications, comparision of different contractive conditions and related topics in G-metric spaces we refer the reader to [3, 2, 24, 1, 5, 26, 13-20] and the references therein.

Based on cone metric spaces introduced by [10] and on G-metric spaces introduced by [19], I. Beg et. al [4] introduced generalized cone metric spaces as follows:

Let E be a real Banach space and P be a subset of E. Then P is called a cone if it has the following properties:

- (i) P is non empty, closed and $P \neq \{0\}$;
- (ii) $0 \leqslant a, b \in R$ and $x, y \in P \Rightarrow ax + by \in P$;
- (iii) $P \cap (-P) = \{0\}$.

For a given cone $P \subseteq E$, we can define a partial ordering \leq on E with respect to P by $x \leq y$ if and only if $y - x \in P$. We will write x < y if $x \leq y$ and $x \neq y$, while x << y will stands for $y - x \in P^o$, where P^o denotes the interior of P.

Proposition 1.1. [12]. Let P be a cone in a real Banach space E. If $a \in P$ and $a \leq \lambda a$ for some $\lambda \in [0, 1)$, then a = 0.

Proposition 1.2. [25, Corollary 1.4] Let P be a cone in a real Banach space E.

- (i) If $a \leq b$ and $b \ll c$, then $a \ll c$.
- (ii) If $a \in E$ and a << c for all $c \in P^o$, then a = 0.

Remark 1. [25] $\lambda P^o \subseteq P^o$ for $\lambda > 0$ and $P^o + P^o \subseteq P^o$.

Definition 1. [4] Let X be a nonempty set and let $G: X \times X \times X \to E$ be a function satisfying the following properties:

- (G_1) : G(x, y, z) = 0 if x = y = z,
- (G_2) : 0 < G(x, x, y) for all $x, y \in X$ with $x \neq y$,
- (G_3) : $G(x, x, y) \leq G(x, y, z)$ for all $x, y, z \in X$ with $y \neq z$,
- (G_4) : G(x, y, z) = G(x, z, y) = G(y, z, x) = ...(symmetry in three variables),
- $(G_5): G(x, y, z) \leq G(x, a, a) + G(a, y, z) \text{ for all } x, y, z, a \in X.$

Then the function G is called a generalized cone metric on X and X is called a generalized cone metric space or a G- cone metric space.

It is clear that if G(x, y, z) = 0 then x = y = z for any $x, y, z \in X$.

Definition 2. [4] A G-cone metric space X is called symmetric if G(x, x, y) = G(x, y, y) for all $x, y \in X$.

Definition 3. [4] Let X be a G-cone metric space and $\{x_n\}$ be a sequence in X. The sequence $\{x_n\}$ is said to converge to a point $x \in X$ if for every $c \in E$ with 0 << c there is N such that $G(x_n, x_m, x) << c$ for all n, m > N. In this case, we write $x_n \to x$ as $n \to \infty$.

The sequence $\{x_n\}$ is said to be a G-Cauchy sequence in X if for every $c \in E$ with 0 << c there is N such that $G(x_n, x_m, x_l) << c$ for all n, m, l > N.

X is said to be complete if every G-Cauchy sequence in X is convergent in X.

Proposition 1.3. [4, Lemma 2.8] Let X be a G-cone metric space. Then for a sequence $\{x_n\} \subseteq X$ and a point $x \in X$, the following statements are equivalent:

- (i) $\{x_n\}$ is G-convergent to x,
- (ii) $G(x_n, x_n, x) \to 0$ as $n \to \infty$,
- (iii) $G(x_n, x, x) \to 0$ as $n \to \infty$,
- (iv) $G(x_m, x_n, x) \to 0$ as $m, n \to \infty$.

Proposition 1.4. [4, Lemma 2.9] Let X be a G-cone metric space. Then the function G(x, y, z) is jointly continuous in all three of its variables.

Remark 2. [12] If $c \in P^o, 0 \le a_n$ and $a_n \to 0$, then there exists $n_0 \in \mathbb{N}$ such that for all $n > n_0$ we have $a_n << c$.

Ismat Beg et. al [4] proved the following

Theorem 1.1. [4, Theorem 3.1] Let X be a complete symmetric G-cone metric space and $T: X \to X$ be a mapping satisfying one of the following conditions

$$G(Tx, Ty, Tz) \leqslant aG(x, y, z) + bG(x, Tx, Tx) + cG(y, Ty, Ty) + dG(z, Tz, Tz)$$

or

$$G(Tx,Ty,Tz)\leqslant aG(x,y,z)+bG(x,x,Tx)+cG(y,y,Ty)+dG(z,z,Tz)$$

for all $x, y, z \in X$, where $0 \le a + b + c + d < 1$.

Then T has a unique fixed point in X.

Now, we state the lemma for G-cone metric spaces which is similar to the one for cone metric spaces proved by Jain et. al [11].

Lemma 1.1. Let X be a G-cone metric space, P be a cone in a real Banach space E, let $k_1, k_2, k_3, k_4 \ge 0$ be such that $k_1 + k_2 + k_3 + k_4 > 0$, and let k > 0. If $x_n \to x, y_n \to y, z_n \to z$ and $p_n \to p$ in X and

$$ka \leq k_1 G(x_n, x_m, x) + k_2 G(y_n, y_m, y) + k_3 G(z_n, z_m, z) + k_4 G(p_n, p_m, p),$$
 (1.1)

then a=0.

Proof. Since $x_n \to x, y_n \to y, z_n \to z$ and $p_n \to p$, we have for $c \in P^o$, there exists a positive integer N_c such that

$$\begin{split} &\frac{c}{k_1+k_2+k_3+k_4}-G(x_n,x_m,x), \frac{c}{k_1+k_2+k_3+k_4}-G(y_n,y_m,y), \\ &\frac{c}{k_1+k_2+k_3+k_4}-G(z_n,z_m,z), \frac{c}{k_1+k_2+k_3+k_4}-G(p_n,p_m,p) \in P^o \ \forall \ n>N_c. \end{split}$$

By Remark 1.3, we have

$$\begin{split} & \frac{k_1c}{k_1+k_2+k_3+k_4} - k_1G(x_n,x_m,x), \frac{k_2c}{k_1+k_2+k_3+k_4} - k_2G(y_n,y_m,y), \\ & \frac{k_3c}{k_1+k_2+k_3+k_4} - k_3G(z_n,z_m,z), \frac{k_4c}{k_1+k_2+k_3+k_4} - k_4G(p_n,p_m,p) \in P^o \ \forall \ n > N_c. \end{split}$$

Adding these four elements, by Remark 1.3, we have

$$c - [k_1G(x_n, x_m, x) + k_2G(y_n, y_m, y) + k_3G(z_n, z_m, z) + k_4G(p_n, p_m, p)] \in P^o \ \forall \ n > N_c.$$

Now by (1.1) and Proposition 1.2(i), we have $ka \ll c$ for all $c \in P^o$. By Proposition 1.2(ii), we have a = 0 since k > 0.

2 The main result

Theorem 2.1. Let (X,G) be a symmetric G-cone metric space, P be a cone and $S,T,f,g:X\to X$ be mappings satisfying

- $(2.1.1) S(X) \subseteq g(X) \text{ and } T(X) \subseteq f(X) ,$
- (2.1.2) one of f(X) and g(X) is a G-complete subspace of X,
- $(2.1.3)\ the\ pairs\ (S,f)\ and\ (T,g)\ are\ weakly\ compatible,$
- (2.1.4) $G(Sx,Ty,z) \leqslant q \ M(x,y,z)$ for all $x,y,z \in X$ with z=Sx or Ty, where $0 \leqslant q < 1$ and

$$M(x,y,z) \in \left\{ \begin{array}{c} G(fx,gy,z), G(fx,Sx,z), G(gy,Ty,z), \\ \frac{1}{2}[G(fx,Ty,z) + G(gy,Sx,z)], \\ G(fx,Sx,Sx), G(gy,Ty,Ty), G(fx,gy,gy) \end{array} \right\}.$$

Then the maps S, T, f and g have a unique common fixed point in X.

Proof. Let $x_0 \in X$ be an arbitrary point, then by (2.1.1) there exist sequences $\{x_n\}$ and $\{y_n\}$ in X such that

$$y_{2n} = Sx_{2n} = gx_{2n+1}, y_{2n+1} = Tx_{2n+1} = fx_{2n+2}$$
 for $n = 0, 1, 2, \dots$

Case (i): Suppose that $y_{2n+1} = y_{2n+2}$ for some n. Then fu = Su, where $u = x_{2n+2}$. Since $S(X) \subseteq g(X)$, there exists $v \in X$ such that Su = gv. Suppose $Su \neq Tv$. Note that

$$G(Su, Tv, Su) \leq q \ M(u, v, u),$$

where

$$M(u,v,u) \in \left\{ \begin{array}{l} G(fu,gv,Su), G(fu,Su,Su), G(gv,Tv,Su), \\ \frac{1}{2}[G(fu,Tv,Su) + G(gv,Su,Su)], \\ G(fu,Su,Su), G(gv,Tv,Tv), G(fu,gv,gv) \end{array} \right\} \\ = \left\{ \begin{array}{l} 0,0, G(Su,Tv,Su), \frac{1}{2}G(Su,Tv,Su), \\ 0, G(Su,Tv,Tv), 0 \end{array} \right\} \\ = G(Su,Tv,Su), \end{array}$$

since (X,G) is symmetric. Thus

$$G(Su, Tv, Su) \leq q G(Su, Tv, Su).$$

By Proposition 1.1, we have G(Su, Tv, Su) = 0, so that Su = Tv. Thus

$$fu = Su = Tv = qv = p, (2.1)$$

for some $p \in X$.

Since the pairs (S, f) and (T, g) are weakly compatible, we have

$$fp = Sp$$
 and $Tp = gp$. (2.2)

Moreover,

$$G(Sp, p, p) = G(Sp, Tv, Tv) \leqslant q \ M(p, u, v),$$

where

$$\begin{split} M(p,u,v) &\in \left\{ \begin{array}{l} G(fp,gv,Tv), G(fp,Sp,Tv), G(gv,Tv,Tv), \\ \frac{1}{2}[G(fp,Tv,Tv) + G(gv,Sp,Tv)], \\ G(fp,Sp,Sp), G(gv,Tv,Tv), G(fp,gv,gv) \end{array} \right\} \\ &= \left\{ \begin{array}{l} G(Sp,p,p), G(Sp,Sp,p), 0, \\ \frac{1}{2}[G(Sp,p,p) + G(p,Sp,p)], 0, 0, G(Sp,p,p) \end{array} \right\} \\ &= G(p,p,Sp), \end{split}$$

since (X,G) is symmetric. Thus

$$G(Sp, p, p) \leq qG(p, p, Sp).$$

By Proposition 1.1, we have G(p, p, Sp) = 0, so that Sp = p. Hence

$$fp = Sp = p. (2.3)$$

Next

$$G(p, p, Tp) = G(Sp, Sp, Tp) = G(Sp, Tp, Sp) \leqslant q M(p, p, p),$$

where

$$\begin{aligned} M(p,p,p) &\in \left\{ \begin{array}{l} G(fp,gp,Sp), G(fp,Sp,Sp), G(gp,Tp,Sp), \\ \frac{1}{2}[G(fp,Tp,Sp) + G(gp,Sp,Sp)], \\ G(fp,Sp,Sp), G(gp,Tp,Tp), G(fp,gp,gp) \end{array} \right\} \\ &= \left\{ \begin{array}{l} G(p,Tp,p), 0, G(Tp,Tp,p), \\ \frac{1}{2}[G(p,Tp,p) + G(Tp,p,p)], 0, 0, G(Tp,Tp,p) \\ = G(p,p,Tp), \end{array} \right\} \end{aligned}$$

since (X,G) is symmetric. Thus

$$G(p, p, Tp) \leqslant qG(p, p, Tp).$$

By Proposition 1.1, we have G(p, p, Tp) = 0, so that Tp = p. Hence

$$gp = Tp = p. (2.4)$$

By (2.3) and (2.4), p is a common fixed point of f, g, S and T. Suppose p' is another common fixed point of f, g, S and T. Note that

$$G(p, p', p) = G(Sp, Tp', Sp) \leq q M(p, p', p),$$

where

$$M(p, p', p) \in \left\{ \begin{array}{l} G(p, p', p), 0, G(p', p', p), \\ \frac{1}{2}[G(p, p', p) + G(p', p, p)], \\ 0, 0, G(p, p', p') \end{array} \right\}$$

$$= G(p, p', p),$$

since (X, G) is symmetric. Thus

$$G(p, p', p) \leqslant qG(p, p', p).$$

By Proposition 1.1, we have G(p, p', p) = 0, so that p' = p. Thus p is the unique common fixed point of f, g, S and T.

Case (ii): Suppose that $y_{2n} = y_{2n+1}$ for some n. Then gv = Tv, where $v = x_{2n+1}$. The rest of the proof follows in the similar lines as in Case (i).

Case (iii): Suppose that $y_n \neq y_{n+1}$ for all n. Denote $d_n = G(y_n, y_{n+1}, y_{n+1})$. Then

$$d_{2n} = G(y_{2n}, y_{2n+1}, y_{2n+1}) = G(y_{2n}, y_{2n+1}, y_{2n}), \text{ since } (X, G) \text{ is symmetric.}$$

$$d_{2n} = G(Sx_{2n}, Tx_{2n+1}, Sx_{2n}) \leqslant q \ M(x_{2n}, x_{2n+1}, x_{2n}),$$

where

$$M(x_{2n}, x_{2n+1}, x_{2n}) \in \left\{ \begin{array}{l} G(y_{2n-1}, y_{2n}, y_{2n}), G(y_{2n-1}, y_{2n}, y_{2n}), G(y_{2n}, y_{2n+1}, y_{2n}), \\ \frac{1}{2}[G(y_{2n-1}, y_{2n+1}, y_{2n}) + G(y_{2n}, y_{2n}, y_{2n})], \\ G(y_{2n-1}, y_{2n}, y_{2n}), G(y_{2n}, y_{2n+1}, y_{2n+1}), G(y_{2n-1}, y_{2n}, y_{2n}) \end{array} \right\}$$

$$= \left\{ d_{2n-1}, d_{2n-1}, d_{2n}, \frac{1}{2}[d_{2n-1} + d_{2n} + 0], d_{2n-1}, d_{2n}, d_{2n-1} \right\}.$$

Thus $d_{2n} \leq \alpha d_{2n-1}$ where $\alpha = \max \left\{ q, \frac{\frac{q}{2}}{1 - \frac{q}{2}} \right\} < 1$. Moreover,

$$d_{2n+1} = G(y_{2n+1}, y_{2n+2}, y_{2n+2}) = G(y_{2n+2}, y_{2n+1}, y_{2n+1}).$$

Since (X, G) is symmetric

$$d_{2n+1} = G(Sx_{2n+2}, Tx_{2n+1}, Tx_{2n+1}) \leqslant q \ M(x_{2n+2}, x_{2n+1}, x_{2n+1}),$$

where

$$M(x_{2n+2}, x_{2n+1}, x_{2n+1}) \in A$$

and

$$A = \left\{ \begin{array}{l} G(y_{2n+1}, y_{2n}, y_{2n+1}), G(y_{2n+1}, y_{2n+2}, y_{2n+1}), G(y_{2n}, y_{2n+1}, y_{2n+1}), \\ \frac{1}{2}[G(y_{2n+1}, y_{2n+1}, y_{2n+1}) + G(y_{2n}, y_{2n+2}, y_{2n+1})], \\ G(y_{2n+1}, y_{2n+2}, y_{2n+2}), G(y_{2n}, y_{2n+1}, y_{2n+1}), G(y_{2n+1}, y_{2n}, y_{2n}) \end{array} \right\}$$

$$= \left\{ d_{2n}, d_{2n+1}, d_{2n}, \frac{1}{2}[0 + d_{2n} + d_{2n+1}], d_{2n+1}, d_{2n}, d_{2n} \right\}.$$

Thus $d_{2n+1} \leq \alpha d_{2n}$. Hence

$$d_n \leqslant \alpha \ d_{n-1} \leqslant \alpha^2 \ d_{n-2} \cdots \leqslant \alpha^n d_0 = \alpha^n \ G(y_0, y_1, y_1).$$

Now for m > n

$$G(y_n, y_n, y_m) \leq G(y_n, y_n, y_{n+1}) + G(y_{n+1}, y_{n+1}, y_{n+2}) + \dots + G(y_{m-1}, y_{m-1}, y_m)$$

$$\leq \alpha^n G(y_0, y_1, y_1) + \alpha^{n+1} G(y_0, y_1, y_1) + \dots + \alpha^{m-1} G(y_0, y_1, y_1)$$

$$\leq \frac{\alpha^n}{1-\alpha} G(y_0, y_1, y_1) \to 0 \text{ as } n \to \infty.$$

By Remark 2, it follows that for 0 << c and large n, we have $\frac{\alpha^n}{1-\alpha} G(y_0, y_1, y_1) << c$. Now, from Proposition 1.2(i), we have $G(y_n, y_n, y_m) << c$ for m > n. Hence $\{y_n\}$ is a G-Cauchy sequence.

Suppose f(X) is G-complete. Then there exist $p, t \in X$ such that $y_{2n+1} \to p = ft$. Since $\{y_n\}$ is G-Cauchy, it follows that $y_{2n} \to p$ as $n \to \infty$.

Next

$$G(p, p, St) = G(p, St, St)$$

$$\leqslant G(p, Tx_{2n+1}, Tx_{2n+1}) + G(Tx_{2n+1}, St, St)$$

$$= G(p, p, Tx_{2n+1}) + G(St, Tx_{2n+1}, St)$$

$$= G(p, p, y_{2n+1}) + G(St, Tx_{2n+1}, St)$$

$$\leqslant G(p, p, y_{2n+1}) + q M(t, x_{2n+1}, t),$$

where

$$M(t, x_{2n+1}, t) \in B$$

and

$$B = \begin{cases} G(p, y_{2n}, St), G(p, St, St), G(y_{2n}, y_{2n+1}, St), \\ \frac{1}{2}[G(p, y_{2n+1}, St) + G(y_{2n}, St, St)], \\ G(p, St, St), G(y_{2n}, y_{2n+1}, y_{2n+1}), G(p, y_{2n}, y_{2n}) \end{cases}$$

$$= \begin{cases} G(p, y_{2n}, p) + G(p, St, St), G(p, St, St), \\ G(y_{2n}, y_{2n+1}, p) + G(p, St, St), \\ \frac{1}{2}[G(p, y_{2n+1}, p) + G(p, St, St) + G(y_{2n}, y_{2n}, p) + G(p, St, St)], \\ G(p, St, St), G(y_{2n}, y_{2n+1}, p) + G(p, y_{2n+1}, y_{2n+1}), \\ G(p, y_{2n}, y_{2n}) \end{cases}$$

Now we have
$$(1-q)G(p,p,St) \leq G(p,p,y_{2n+1}) + q G(p,p,y_{2n})$$
 or $(1-q)G(p,p,St) \leq G(p,p,y_{2n+1})$ or $(1-q)G(p,p,St) \leq G(p,p,y_{2n+1}) + q G(y_{2n},y_{2n+1},p)$ or $(1-q)G(p,p,St) \leq G(p,p,y_{2n+1}) + q G(y_{2n},y_{2n+1},p)$ or $(1-q)G(p,p,St) \leq (1+\frac{q}{2}) G(p,p,y_{2n+1}) + \frac{q}{2} G(p,p,y_{2n})$ or $G(p,p,St) \leq (1+q)G(p,p,y_{2n+1})$ or $G(p,p,St) \leq G(p,p,y_{2n+1}) + q G(p,y_{2n},y_{2n})$.

By Proposition 1.3 and Lemma 1.1, we have St = p. Thus ft = p = St. Since the pair (S, f) is weakly compatible, we have fp = Sp.

The rest of the proof follows in the similar lines as in Case (i).

Similarly, we can prove the theorem when g(X) is G-complete.

Corollary 2.1. Let (X,G) be a symmetric G-cone metric space and

 $T, f, g: X \rightarrow X$ be mappings satisfying

$$(2.2.1)$$
 $T(X) \subseteq f(X)$ and $T(X) \subseteq g(X)$,

$$(2.2.2)$$
 $f(X)$ or $g(X)$ is G-complete,

(2.2.3) the pairs (T, f) and (T, g) are weakly compatible,

(2.2.4) $G(Tx, Ty, Ty) \leqslant q M(x, y, y)$, where $0 \leqslant q < 1$ and

$$M(x,y,y) \in \left\{ \begin{array}{c} G(fx,gy,Ty), G(fx,Tx,Ty), G(gy,Ty,Ty), G(fx,Tx,Tx), \\ G(fx,gy,gy), \frac{1}{2}[G(fx,Ty,Ty) + G(gy,Tx,Ty)] \end{array} \right\}$$

for all $x, y \in X$.

Then the maps T, f and g have a unique common fixed point.

Corollary 2.2. Let (X,G) be a symmetric G-cone metric space and $T, f: X \to X$ be mappings satisfying

$$(2.3.1) T(X) \subseteq f(X),$$

(2.3.2) f(X) is G-complete,

(2.3.3) the pair (T, f) is weakly compatible,

(2.3.4) $G(Tx, Ty, Ty) \leqslant q M(x, y, y)$, where $0 \leqslant q < 1$ and

$$M(x,y,y) \in \left\{ \begin{array}{c} G(fx,fy,Ty), G(fx,Tx,Ty), G(fy,Ty,Ty), G(fx,Tx,Tx), \\ G(fx,fy,fy), \frac{1}{2}[G(fx,Ty,Ty) + G(fy,Tx,Ty)] \end{array} \right\}$$

for all $x, y \in X$.

Then the maps T and f have a unique common fixed point.

Acknowledgments

The authors are grateful to the referee for his valuble suggestions.

References

- [1] M. Abbas, B.E. Rhoades, Common fixed point results for non-commuting mappings with out continuity in generalized metric spaces. Comput. Math. Appl. 215 (2009), 262 269.
- [2] H. Aydi, E. Karapinar, Z. Mustafa, On common fixed points in G-Metric spaces using (E.A) Property. Comput. Math. Appl. 64 (2012), no.6, 1944 1956.
- [3] H. Aydi, W. Shatanawi, C. Vetro, On generalized weakly G-contraction mapping in G-metric spaces. Comput Math Appl. 62 (2011), 4222 4229.
- [4] I. Beg, M. Abbas, T. Nazir, Generalized cone metric spaces. J. Nonlinear Sci. Appl. 3 (2010), no.1, 21 31.
- [5] R. Chugh, T. Kadian, A. Rani, B.E. Rhoades, *Property P in G-metric spaces*. Fixed Point Theory Appl., 2010, 12 pages, Article ID 401684.(doi:10.1155/2010/401684).
- [6] B.C. Dhage, Generalised metric spaces and mappings with fixed point. Bull. Calcutta Math. Soc., 84 (1992), no. 4, 329 - 336.
- [7] B.C. Dhage, On generalized metric spaces and topological structure II. Pure. Appl. Math. Sci., 40 (1994), no. 1 2, 37 41.
- [8] B.C. Dhage, A common fixed point principle in D-metric spaces. Bull. Cal. Math. Soc., 91 (1999), no. 6, 475 - 480.
- [9] B.C. Dhage, Generalized metric spaces and topological structure I. Annalele Stiintifice ale Universitatii Al. I. Cuza, 46 (2000), no. 1, 3 24.
- [10] L.G. Huang, X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings. J. Math. Anal. Appl. 332 (2007), no. 2, 1468 - 1476.
- [11] S. Jain, S. Jain, L. Bahadur, Compatibility and weak compatibility for four self maps in a cone metric space. Bulletin of Mathematical Analysis and Applications, 2 (2010), no. 1, 15 - 24.
- [12] G. Jungck, S. Radenovic, S. Radojevic, V.Rakocevic, Common fixed point theorems for weakly compatible pairs on cone metric spaces. Fixed Point Theory Appl., 2009, 13 pages, Article ID 643840 (doi:10.1155/2009/643840).
- [13] Z. Mustafa, F. Awawdeh, W.Shatanawi, Fixed point theorem for expansive mappings in G-metric spaces. Int. J. Contemp. Math. Sciences 5 (2010), no. 50, 2463 2472.
- [14] Z. Mustafa, M. Khandaqji, W. Shatanawi, Fixed point results on complete G-metric spaces. Stud. Sci. Math. Hungar. 48 (2011), 304 319.
- [15] Z. Mustafa, H. Obiedat, F. Awawdeh, Some fixed point theorem for mapping on complete Gmetric spaces. Fixed Point Theory Appl., 2008, 12 pages, Article ID 189870.
- [16] Z. Mustafa, H. Obiedat, A fixed point theorem of Riech in G-metric spaces. Cubo A Mathematics Journal 12 (2010), no. 1, 83 - 93.
- [17] Z. Mustafa, W. Shatanawi, M. Bataineh, Existence of fixed point results in G-metric spaces. Int. J. Math. Sci., 2009, 10 pages, Article ID 283028.
- [18] Z. Mustafa, B. Sims, *Some remarks concerning D-metric spaces*. Proceedings of the International Conferences on fixed point theory and Applications, Valencia (Spain), July (2003), 189 198.
- [19] Z. Mustafa, B. Sims, A new approach to generalized metric spaces. Journal of Nonlinear and Convex Analysis 7 (2006), no. 2, 289 297.

- [20] Z. Mustafa, B. Sims, Fixed point theorems for contractive mappings in complete G-metric spaces. Fixed Point Theory Appl., 2009, 10 pages, Article ID 917175.
- [21] S.V.R. Naidu, K.P.R. Rao, N. Srinivasa Rao, On the topology of D-metric spaces and the generation of D-metric spaces from metric spaces. Int. J. Math. Math. Sci., 2004, no. 51, 2719 2740 (doi:10.1155/S0161171204311257).
- [22] S.V.R. Naidu, K.P.R. Rao, N. Srinivasa Rao, On the concepts of balls in a D-metric space. Int. J. Math. Math. Sci., 2005, no. 1, 133 141 (doi:10.1155/IJMMS.2005.133).
- [23] S.V.R. Naidu, K.P.R. Rao, N. Srinivasa Rao, On convergent sequences and fixed point theorems in D-Metric spaces. Int. J. Math. Math. Sci., 2005, no. 12, 1969 1988 (doi:10.1155/IJMMS.2005.1969).
- [24] K.P.R. Rao, K.B. Lakshmi, Z. Mustafa, A unique common fixed point theorem for six maps in G-metric spaces. Int. J. Nonlinear Anal. Appl. (to appear).
- [25] S. Rezapour, R.Hamlbarani, Some notes on the paper "Cone metric spaces and fixed point theorems of contractive mappings". J. Math. Anal. Appl. 345 (2008), 719 724.
- [26] W. Shatanawi, Fixed point theory for contractive mappings satisfying φ-maps in G-metric spaces. Fixed Point Theory and Appl., 2010, 9 pages, Article ID 181650 (doi:10.1155/2010/181650).

M.S. Khan, Department of Mathematics and Statistics Sultan Qaboos University,Post Box.36 P.C.123 Al-khod, Sultanate of Oman E-mail: mohammad@squ.edu.om

K.P.R. Rao, Department of Mathematics Acharya Nagarjuna University Nagarjuna Nagar-522 510, A.P., India E-mail: kprrao2004@yahoo.com

K.R.K. Rao, Department of Mathematics Vignana Bharathi Institute of Technology Aushapur(V), Ghatkesar(M), Hyderabad-501 301, India E-mail: krkr08@gmail.com

Received: 10.11.2010