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Abstract. Two-sided estimates are established for two types of generalized Hardy
operators on the cones of functions in weighted Lebesgue spaces with some properties
of monotonicity.

We prove the results announced in [7], and present some other equivalent forms for
the criterion of boundedness. Some other equivalent descriptions, particular cases, and
results in the case of degenerate measures will be given in our next paper.

1 Notation and formulation of results

1.1. Let β and γ be nonnegative Borel measures on R+ = (0,∞) ; p, q ∈ R+, Ω be
a certain cone of nonnegative Borel measurable functions on R+, and A be a positive
operator. We investigate the finiteness of the quantity

HΩ (A) = sup
f∈Ω


 ∫

R+

(Af)q dγ

1/q ∫
R+

fpdβ

−1/p
 . (1.1)

Here, as Ω we consider the cones of functions that are monotone with respect to the
prescribed positive continuous functions k and m:

Ωk = {f > 0 : f (τ)/k (τ) ↓} ; Ωm = {f > 0 : f (τ)/m (τ) ↑} . (1.2)

As operator A, we consider the generalized Hardy operators Aµ, and Bµ where µ is a
nonnegative Borel measure on R+;

(Aµf) (t) =

∫
(0,t]

fdµ; (Bµf) (t) =

∫
[t,∞)

fdµ. (1.3)
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1.2. First, we formulate the result for HΩk
(Bµ). For this purpose we need the following

notation:

ωp (t) =

 ∫
(0,t)

kpdβ


1/p

, t > 0; Ψ (t, τ) =

∫
[t,τ)

kdµ, t < τ ; (1.4)

Vp (t) = sup
τ∈(t,∞)

[
Ψ (t, τ)

ωp (τ)

]
, p ∈ (0, 1] ; (1.5)

Vp (t) =


∫

(t,∞)

Ψp′ (t, τ)

(
−d
[

1

ωp
′
p (τ)

])
1/p′

; p > 1,
1

p
+

1

p′
= 1; (1.6)

Wq (τ) =

 ∫
(0,τ)

dγ


1/q

; ξα (τ) = ω−1
p (αωp (τ)) , τ ∈ R+. (1.7)

Here α ∈ (0, 1) is fixed; ω−1
p is the right-continuous inverse function for the (increasing)

continuous function ωp. Obviously, ξα (τ) < τ .
The criterion of finiteness of HΩk

(Bµ) will be formulated by using the following
quantities:

Epq = sup
τ∈R+


 ∫

[ξα(τ),τ)

Ψq (t, τ) dγ (t)


1/q

1

ωp (τ)

 , p 6 q; (1.8)

Epq =


∫
R+

 ∫
[ξα(τ),τ)

Ψq (t, τ) dγ (t)


s/q (

−d
[

1

ωsp (τ)

])
1/s

, p > q, (1.9)

Fpq = sup
t∈R+

[Vp (t)Wq (t)] , p 6 q, (1.10)

Fpq =


∫
R+

V s
p (t) d

[
W s
q (t)

]
1/s

, p > q, (1.11)

where as always in this paper s = pq/(p− q) for p > q. In addition, introduce the non-
degeneracy condition for measure β :

β ∈ Np (k) ⇔
∫

(0,1)

kpdβ = 1,

∫
[1,∞)

kpdβ = ∞. (1.12)

Theorem 1.1. Let β ∈ Np (k) and the functions ωp and Wq be positive and
continuous on R+, ωp (+0) = 0. Then there exists c0 = c0 (p, q, α) ∈ [1,∞) such that

c−1
0 (Epq + Fpq) 6 HΩk

(Bµ) 6 c0 (Epq + Fpq) . (1.13)
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Some slightly different equivalent forms for the criterion of the boundedness of the
operator Bµ are presented below in Theorems 4.4 and 5.1.

1.3. Next, we present the corresponding results concerning HΩm (Aµ). To this end
we denote

ω̄p (t) =

 ∫
(t,∞)

mpdβ


1/p

, t > 0; Φ (τ, t) =

∫
(τ,t]

mdµ, τ < t; (1.14)

V (0)
p (t) = sup

τ∈(0,t)

[
Φ (τ, t)

1

ω̄p (τ)

]
, p ∈ (0, 1] ; (1.15)

V (0)
p (t) =


∫

(0,t)

Φp′ (τ, t)d

[
1

ω̄p
′
p (τ)

]
1/p′

, p > 1; (1.16)

W̄q (τ) =

 ∫
(τ,∞)

dγ


1/q

; ςα (τ) = ω̄−1
p (αω̄p (τ)) , τ ∈ R+. (1.17)

Here α ∈ (0, 1) is fixed; ω̄−1
p is the right-continuous inverse function for the (decreas-

ing) continuous function ω̄p. Obviously, τ < ςα (τ) . We also introduce the following
quantities:

E(0)
pq = sup

τ∈R+


 ∫

(τ,ςα(τ)]

Φq (τ, t) dγ (t)


1/q

1

ω̄p (τ)

 , p 6 q; (1.18)

E(0)
pq =


∫
R+

 ∫
(τ,ςα(τ)]

Φq (τ, t) dγ (t)


s/q

d

[
1

ω̄sp (τ)

]
1/s

, p > q. (1.19)

F (0)
pq = sup

t∈R+

[
V (0)
p (t) W̄q (t)

]
, p 6 q, (1.20)

F (0)
pq =


∫
R+

(
V (0)
p

)s
(t)
(
−d
[
W̄ s
q (t)

])
1/s

, p > q. (1.21)

The non-degeneracy condition on measure β has the following form:

β ∈ N̄p (m) ⇔
∫

(0,1]

mpdβ = ∞,

∫
(1,∞)

mpdβ = 1. (1.22)

Theorem 1.2. Let β ∈ N̄p (m) and functions ω̄p and W̄q be positive and continuous
on R+, ω̄p (+∞) = 0.

c−1
0

(
E(0)
pq + F (0)

pq

)
6 HΩm (Aµ) 6 c0

(
E(0)
pq + F (0)

pq

)
, (1.23)
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where c0 is the same as in Theorem 1.1. Some slightly different equivalent form for the
criterion of the boundedness is presented below in Theorem 5.2.

Remark 1.3. Let in Theorems 1.1 and 1.2 p 6 q. Then, we can change defini-
tions (1.8) and (1.18). Namely, estimates (1.13) and (1.23) with a certain constants
c0, c1; ci = ci (p, q) ∈ [1,∞) , i = 0, 1, remain true if we replace Epq in (1.13) or E(0)

pq

in (1.23), by

Ėpq = sup
τ∈R+


 ∫

(0,τ)

Ψq (t, τ) dγ (t)


1/q

1

ωp (τ)

 , p 6 q; (1.24)

by

Ė(0)
pq = sup

τ∈R+


 ∫

(τ,∞)

Φq (τ, t) dγ (t)


1/q

1

ω̄p (τ)

 , p 6 q, (1.25)

respectively.
Remark 1.4. The results concerning HΩk

( Aµ) and HΩm (Bµ) were obtained in
our paper [5; Theorems 1.2 and 1.4], and in some other forms in [1, 3, and 4]. The
detailed comparison for corresponding results in [5, 1, and 3] was made in [6].

Remark 1.5. It was found by A. Gogatishvili that for some p > q the formula-
tions given by Theorems 1.1 and 1.3 in [5] were not correct (personal communication).
Here we establish the corrected versions of these results. They were formulated in [7].
Correction is realized by inserting in (1.9) the function ξα defined by (1.7), and by
inserting in (1.19) the function ςα defined in (1.17). Also, we establish some other new
equivalent variants for the result.

2 Discrete analogue of Theorem 1.1 on the cone of decreasing
functions

2.1. First, we establish a particular case of Theorem 1.1 corresponding to the function
k (t) ≡ 1, i.e., to the cone of decreasing functions

Ω1 = {f > 0 : f (τ) ↓} . (2.1)

Thus, we consider here HΩ1 (Bµ) (see (1.1)–(1.3)). We preserve the notation of Section
1 and set there k (t) ≡ 1. In this Section we prove a criterion of the finiteness for
HΩ1 (Bµ) in the discrete form. For this purposes we need some additional notation
related to the following discretisation procedure. We fix a > 1, and introduce

λn = ω−1
p (an) , n ∈ Z. (2.2)

For β ∈ Np (1) we have

0 < ωp ↑ on R+, ωp (+0) = 0, ωp (+∞) = ∞, (2.3)
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so that

0 < λn < λn+1, n ∈ Z; λn → 0 (n→ −∞) , λn →∞ (n→ +∞) . (2.4)

Introduce the discrete analogues of Epq and Fpq:

Ẽ0
pq =


∑
n∈Z

a−n
 ∫

∆n

Ψq (t, λn+1) dγ (t)

1/q

s

1/s

, (2.5)

where as always s = pq/(p− q) for p > q; s = ∞ for p 6 q (in this case we understand
Ẽ0
pq as the supremum over n ∈ Z of the expression in square brackets); ∆n = [λn, λn+1).

F̃pq = sup
n
{Vp (λn)Wq (λn)} , p 6 q, (2.6)

F̃pq =

{∑
n∈Z

V s
p (λn)

[
W s
q (λn)−W s

q (λn−1)
]}1/s

, p > q. (2.7)

Theorem 2.1. Let β ∈ Np (1) and the function ωp be positive and continuous on R+,
ωp (+0) = 0. Then there exists c̃0 = c̃0 (p, q, a) ∈ [1,∞) such that

c̃−1
0

(
Ẽ0
pq + F̃pq

)
6 HΩ1 (Bµ) 6 c̃0

(
Ẽ0
pq + F̃pq

)
. (2.8)

Here, if p, q ∈ [δ,∞) for a certain δ ∈ R+ then

1 6 c̃0 (p, q, a) 6 c (a, δ) <∞. (2.9)

2.2. To prove Theorem 2.1 we will need the following two Propositions (similar asser-
tions are frequently met in the works devoted to this subject; in particular they were
formulated and proved in [5; Propositions 2.1 and 2.2]).

Proposition 2.2. Under the hypotheses of Theorem 2.1 the following estimate
holds for f ∈ Ω1:

(
1− a−p

)(∑
n∈Z

[anf (λn)]
p

)
6
∫
R+

fpdβ 6 ap

(∑
n∈Z

[anf (λn)]
p

)
. (2.10)

Proposition 2.3. Let σ ∈ (0,∞] ;Wn > 0, n ∈ Z,

W := inf
n

(
Wn+1W

−1
n

)
> 1.

Then, for all βn > 0, n ∈ Z, the following inequalities hold{∑
n∈Z

[
Wn

∑
m>n

βm

]σ}1/σ

6 c

{∑
n∈Z

[Wnβn]
σ

}1/σ

, (2.11)
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{∑
n∈Z

[
W−1
n

∑
m6n

βm

]σ}1/σ

6 c

{∑
n∈Z

[
W−1
n βn

]σ}1/σ

. (2.12)

Here, c = (1−W−1)
−1 if σ ∈ [1,∞], and c = (1−W−σ)

−1/σ if σ ∈ (0, 1].
Corollary 2.4. Under the hypotheses of Proposition 2.3 the following inequalities

hold for any j ∈ Z :{∑
n6j

[
Wn

j∑
m=n

βm

]σ}1/σ

6 c

{∑
n6j

[Wnβn]
σ

}1/σ

, (2.13)

{∑
n>j

[
W−1
n

n∑
m=j

βm

]σ}1/σ

6 c

{∑
n>j

[
W−1
n βn

]σ}1/σ

. (2.14)

2.3. Proof of Theorem 2.1.
1. Let us apply Proposition 2.2 to the denominator in HΩ1 (Bµ), see (1.1). Then

a−1H̃0 6 HΩ1 (Bµ) 6
(
1− a−p

)−1/p
H̃0, (2.15)

where

H̃0 = sup
f∈Ω1


 ∫

R+

(Bµf)q dγ

1/q(∑
n∈Z

[anf (λn)]
p

)−1/p
 . (2.16)

For b = {bn} we define

f0 (b; t) =
∑
n∈Z

bnχ∆n (t); ∆n = [λn, λn+1) , n ∈ Z. (2.17)

The denominator in (2.16) is independent of the values of f ∈ Ω1 outside the points
λn, n ∈ Z, therefore for a given set b̃ =

{
b̃n

}
of values b̃n = f (λn) , n ∈ Z the upper

bound is attained at the greatest function f̃0 ∈ Ω1 among those corresponding to this
set, namely at the function f̃0 (t) = f0

(
b̃; t
)

(see (2.17) with b̃ instead of b). Therefore,

H̃0 = sup
06b̃n↓


 ∫

R+

(
Bµf̃0

)q
dγ

1/q(∑
n∈Z

[
anb̃n

]p)−1/p
 . (2.18)

Now, we introduce

H0 = sup
06bn


 ∫

R+

(Bµf0)
q dγ

1/q(∑
n∈Z

[anbn]
p

)−1/p
 . (2.19)
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where f0 (t) = f0 (b; t) (see (2.17)). Obviously H̃0 6 H0. Let us prove the reverse
inequality. For any sequence b = {bn} , bn > 0, we define b̃ =

{
b̃n

}
with

b̃n =

(∑
m>n

bpm

)1/p

, so that b̃n > bn > 0, b̃n ↓, (2.20)

and (∑
n∈Z

[anbn]
p

)1/p

=
(
1− a−p

)1/p(∑
n∈Z

[
anb̃n

]p)1/p

. (2.21)

Therefore, f0 (·) = f0 (b; ·) 6 f0

(
b̃; ·
)

= f̃0 (·) ⇒ Bµf0 6 Bµf̃0, and

 ∫
R+

(Bµf0)
q dγ

1/q(∑
n∈Z

[anbn]
p

)−1/p

6
(
1− a−p

)−1/p

 ∫
R+

(
Bµf̃0

)q
dγ

1/q(∑
n∈Z

[
anb̃n

]p)−1/p

6
(
1− a−p

)−1/p
H̃0.

Consequently,
H̃0 6 H0 6

(
1− a−p

)−1/p
H̃0. (2.22)

Now, (2.15) and (2.22) imply

a−1
(
1− a−p

)1/p
H0 6 HΩ1 (Bµ) 6

(
1− a−p

)−1/p
H0. (2.23)

2. Next, our aim is to estimate H0 (2.19). To this end we note that

(Bµf0) (t) =

∫
[t,∞)

f0dµ = h1 (t) + h2 (t) , (2.24)

where
0 6 h1 (t) = bn

∫
[t,λn+1)

dµ =bnΨ (t, λn+1) , t ∈ ∆n, n ∈ Z;

0 6 h2 (t) =
∑
m>n

bm+1

∫
∆m+1

dµ =
∑
m>n

bm+1Ψ (λm+1, λm+2) , t ∈ ∆n, n ∈ Z.

Now, notice that  ∫
R+

hq1dγ

1/q

=

∑
n∈Z

bqn

∫
∆n

Ψq (t, λn+1) dγ

1/q

, (2.25)
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 ∫
R+

hq2dγ

1/q

=

(∑
n∈Z

(∑
m>n

bm+1Ψ (λm+1, λm+2)

)q

wqn

)1/q

, (2.26)

where

wn =

 ∫
∆n

dγ

1/q

=
[
W q
q (λn+1)−W q

q (λn)
]1/q

. (2.27)

By (2.24) and by triangle inequality in Lq it follows that

max
j=1,2

 ∫
R+

hqjdγ

1/q

6

 ∫
R+

(Bµf0)
q dγ

1/q

6 c̄q

2∑
j=1

 ∫
R+

hqjdγ

1/q

,

where c̄q = 1, q ∈ [1,∞) ; c̄q = 21/q−1, q ∈ (0, 1) .
We insert here (2.25) and (2.26) and obtain

max {H1, H2} 6 H0 6 c̄q (H1 +H2) , (2.28)

where

Hj = sup
bn>0

Ij [{bn}]

(∑
n∈Z

[anbn]
p

)−1/p
 , j = 1, 2; (2.29)

I1 [{bn}] =

∑
n∈Z

bqn

∫
∆n

Ψq (t, λn+1) dγ

1/q

, (2.30)

I2 [{bn}] =

(∑
n∈Z

wqn

(∑
m>n

bm+1Ψ (λm+1, λm+2)

)q)1/q

. (2.31)

First, we calculate H1. By Jensen’s inequality (when p 6 q) or Hölder’s inequality
(when p > q), combined with the assertion about their sharpness on the set of all
nonnegative sequences, we have

H1 =


∑
n∈Z

a−n
 ∫

∆n

Ψq (t, λn+1) dγ (t)

1/q

s

1/s

= Ẽ0
pq. (2.32)

Next, consider H2 (2.29):

H2 = sup
bn>0


(∑
n∈Z

wqn

(∑
m>n

bm+1Ψ (λm+1, λm+2)

)q)1/q(∑
n∈Z

[
an+1bn+1

]p)−1/p
 .

We denote

αm = am+1bm+1, ϕm = a−(m+1)Ψ (λm+1, λm+2) , m ∈ Z, (2.33)
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and obtain

H2 = sup
αn>0


(∑
n∈Z

wqn

(∑
m>n

αmϕm

)q)1/q(∑
n∈Z

αpn

)−1/p
 .

We apply now the discrete generalized Hardy inequality (see [8; Theorem 2.1, Remark
2.5]. According to it we have

c−1
1 (p, q)F 6 H2 6 c1 (p, q)F, c1 (p, q) ∈ [1,∞) , (2.34)

where
F = sup

n
[ΦnWn] , p 6 q; (2.35)

F =

{∑
n∈Z

Φs
n

[
W s
n −W s

n−1

]}1/s

, p > q. (2.36)

Here,

Wn =

(∑
m6n

wqm

)1/q

= Wq (λn+1) , Φn =

(∑
m>n

ϕσm

)1/σ

, (2.37)

with
σ = ∞ if p ∈ (0, 1] ; σ = p′ if p > 1. (2.38)

Now, we introduce

Bn =

(∑
m>n

[
a−mΨ (λn, λm+1)

]σ)1/σ

, n ∈ Z, (2.39)

and show that (
1− a−1

)
Bn+1 6 Φn 6 Bn+1. (2.40)

Indeed, we see by (2.37) and (2.33) that

Φn 6

(∑
m>n

[
a−(m+1)Ψ (λn+1, λm+2)

]σ)1/σ

=

( ∑
m>n+1

[
a−mΨ (λn+1, λm+1)

]σ)1/σ

= Bn+1

However,

Bn+1 =

( ∑
m>n+1

[
a−m

m∑
i=n+1

βi

]σ)1/σ

, βi = Ψ (λi, λi+1) ,

and we can apply inequality (2.14) with the appropriate notation:

Wm = am, W = a, σ ∈ [1,∞] , c =
(
1− a−1

)−1
.
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Then,

Bn+1 6 c

( ∑
m>n+1

[
a−mβm

]σ)1/σ

= c

(∑
m>n

[
a−(m+1)βm+1

]σ)1/σ

= c

(∑
m>n

[
a−(m+1)Ψ (λm+1, λm+2)

]σ)1/σ

= c

(∑
m>n

ϕσm

)1/σ

= cΦn,

and (2.40) follows. Now, let us derive the estimate

a−1
(
1− a−σ

)1/σ
Bn 6 Vp (λn) 6 Bn, n ∈ Z. (2.41)

For p ∈ (0, 1] we have (see (1.5) and (2.39) with σ = ∞)

Vp (λn) = sup
m>n

{
sup

τ∈(λm,λm+1]

[
Ψ (λn, τ)

1

ωp (τ)

]}

6 sup
m>n

{
Ψ (λn, λm+1) sup

τ∈(λm,λm+1]

1

ωp (τ)

}
= sup

m>n

{
Ψ (λn, λm+1) a

−m} = Bn;

Vp (λn) > sup
m>n+1

{
Ψ (λn, λm) sup

τ∈∆m

1

ωp (τ)

}
= sup

m>n+1

{
Ψ (λn, λm) a−m

}
= sup

m>n

{
Ψ (λn, λm+1) a

−(m+1)
}

= a−1Bn. (2.42)

Thus, (2.41) holds with σ = ∞. Now, let p > 1, σ = p′. We have, taking into account
(1.6), that

V σ
p (λn) =

∑
m>n

∫
(λm,λm+1]

Ψσ (λn, τ)

(
−d
[

1

ωσp (τ)

])

6
∑
m>n

Ψσ (λn, λm+1)

∫
(λm,∞)

(
−d
[

1

ωσp (τ)

])
6
∑
m>n

Ψσ (λn, λm+1) a
−mσ = Bσ

n ;

V σ
p (λn) >

∑
m>n+1

Ψσ (λn, λm)

∫
∆m

(
−d
[

1

ωσp (τ)

])
=
∑

m>n+1

Ψσ (λn, λm)
[
a−mσ − a−(m+1)σ

]
=
(
1− a−σ

) ∑
m>n+1

Ψσ (λn, λm) a−mσ

= a−σ
(
1− a−σ

) ∑
m>n+1

Ψσ (λn, λm) a−(m−1)σ = a−σ
(
1− a−σ

)
Bσ
n ,

and (2.41) follows for p > 1. Thus, (2.41) is established for all p ∈ R+.
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Estimates (2.41) and (2.40) imply(
1− a−1

)
Vp (λn+1) 6 Φn 6 a

(
1− a−σ

)−1/σ
Vp (λn+1) , n ∈ Z. (2.43)

We insert these estimates in (2.35) and in (2.36) and (2.37), obtain that, taking into
account (

1− a−1
)
G 6 F 6 a

(
1− a−σ

)−1/σ
G,

where
G = sup

n
{Vp (λn+1)Wq (λn+1)} = F̃pq, p 6 q,

G =

{∑
n∈Z

V s
p (λn+1)

[
W s
q (λn+1)−W s

q (λn)
]}1/s

= F̃pq, p > q.

These assertions together with (2.34) yield

c̃−1
1 (p, q, a) F̃pq 6 H2 6 c̃1 (p, q, a) F̃pq. (2.44)

Finally, by (2.23), (2.28), (2.32), and (2.44) we obtain estimate (2.8) which completes
the proof of Theorem 2.1. �

Remark 2.5. By (2.42) it follows in particular, that for p ∈ (0, 1]

Vp (λn) > a−(m+1)Ψ (λn, λm+1) , m > n. (2.45)

The same estimate remains true for p > 1. Indeed, similarly to (2.43), we have for
m > n

V σ
p (λn) =

∫
(λn,∞)

Ψσ (λn, τ)

(
−d
[

1

ωσp (τ)

])

>
∫

[λm+1,∞)

Ψσ (λn, τ)

(
−d
[

1

ωσp (τ)

])

> Ψσ (λn, λm+1)

∫
[λm+1,∞)

(
−d
[

1

ωσp (τ)

])
= Ψσ (λn, λm+1) a

−(m+1)σ.

3 Some equivalent criteria of the finiteness of HΩ1
(Bµ) in the

discrete form

In this Section we preserve the notations of Section 2.
Proposition 3.1. Let the conditions of Theorem 2.1 be satisfied and let

Ẽpq =


∑
n∈Z

a−n
 ∫

∆n

Ψq (t, λn+2) dγ (t)

1/q

s

1/s

. (3.1)
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Then
c0

(
Ẽpq + F̃pq

)
6
(
Ẽ0
pq + F̃pq

)
6
(
Ẽpq + F̃pq

)
. (3.2)

Corollary 3.2. These assertions together with Theorem 2.1 imply following the two-
sided estimate:

c̃1

(
Ẽpq + F̃pq

)
6 HΩ1 (Bµ) 6 c̃0

(
Ẽpq + F̃pq

)
(3.3)

Remark 3.3. Inequality (3.3) was proved directly in [5; Theorem 2.1].
To prove Proposition 3.1 we need the following lemma.
Lemma 3.4. For m ∈ N, l ∈ N0, 0 < q 6 s < ∞, or 0 < q < ∞, s = ∞ consider

the quantity

Am,l =


∑
n∈Z

a−n
 ∫

[λn−l,λn+1)

Ψq (t, λn+m) dγ (t)


1/q

s

1/s

.

Under notation of Subsection 2.1, the following estimates hold with c = c (a,m, l, p, q) ∈
R+ :

A1,0 6 Am,l 6 c
(
A1,0 + F̃pq

)
. (3.4)

Proof. The left hand side inequality is evident. Let us prove the right–hand–side one.
1. We notice that

Ψ (λn+1, λn+m) 6 am+nVp (λn+1) ,m > 2. (3.5)

(see (2.45)). First, let s = ∞. It corresponds to the case p 6 q, when F̃pq is determined
by (2.6). In this case

Am,0 = sup
n

a−n
 ∫

∆n

Ψq (t, λn+m) dγ (t)

1/q
 . (3.6)

The equality
Ψ (t, λn+m) = Ψ (t, λn+1) + Ψ (λn+1, λn+m) , (3.7)

together with the triangle inequality in Lq imply

Am,0 6 c
(
A1,0 + Ãm,0

)
, (3.8)

with c = c̄q, where c̄q = 1, q ∈ [1,∞) ; c̄q = 21/q−1, q ∈ (0, 1) . Here,

Ãm,0 = sup
n

a−nΨ (λn+1, λn+m)

 ∫
∆n

dγ (t)

1/q
 .

Now, we apply (3.5), (1.7), and (2.6) and obtain that

Ãm,0 6 am sup
n

[Vp (λn+1)Wq (λn+1)] = amF̃pq.
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Thus, (3.4) follows in the case l = 0,m > 2.
Next let l,m ∈ N . Then,

Am,l 6

(
l∑

j=0

a(j−l)qAql+m−j,0

)1/q

. (3.9)

Indeed, ∫
[λn−l,λn+1)

Ψq (t, λn+m) dγ =
l∑

j=0

∫
∆n−l+j

Ψq (t, λn+m) dγ, (3.10)

and

Aqm,l 6
l∑

j=0

sup
n

a−nq
 ∫

∆n−l+j

Ψq (t, λn+m) dγ




=
l∑

j=0

a(j−l)q sup
k

a−kq
 ∫

∆k

Ψq (t, λk+l−j+m) dγ

 =
l∑

j=0

a(j−l)qAql+m−j,0.

Now, to each term in (3.9) we apply the already proved variant of estimate (3.4) and
obtain (3.4) in the general case.

2. Let now 0 < q 6 s <∞, and let F̃pq be determined by (2.7).
For l = 0,m > 2 we see by the expression for Am,l that

Am,0 =


∥∥∥∥∥∥
a−nq

 ∫
∆n

Ψq (t, λn+m) dγ


∥∥∥∥∥∥
ls/q


1/q

. (3.11)

By (3.7), it follows that

Ψq (t, λn+m) 6 cq [Ψq (t, λn+1) + Ψq (λn+1, λn+m)] ,

where cq = 1, q ∈ (0, 1] ; cq = 2q−1, q > 1. We insert this estimate in (3.11) and,
taking into account the triangle inequality in ls/q (here s > q), we obtain that

Am,0 6 c1/qq

(
Aq1,0 + Ãqm,0

)1/q

,

where now

Ãm,0 =


∥∥∥∥∥∥
a−nqΨq (λn+1, λn+m)

 ∫
∆n

dγ


∥∥∥∥∥∥
ls/q


1/q

=

{∑
n∈Z

a−nsΨs (λn+1, λn+m)
[
W q
q (λn+1)−W q

q (λn)
]s/q}1/s

. (3.12)
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Thus, to prove (3.4) it suffices to show that

Ãm,0 6 cF̃pq, c = c (m, p, q, a) ∈ R+. (3.13)

We insert (3.5) in (3.12), and obtain

Ãm,0 6 am

{∑
n∈Z

V s
p (λn+1)

[
W q
q (λn+1)−W q

q (λn)
]s/q}1/s

.

Next, we use the following inequality (see (3.24) below; recall that here q 6 s):[
W q
q (λn+1)−W q

q (λn)
]s/q

6 csq,s
[
W s
q (λn+1)−W s

q (λn)
]
.

Therefore,

Ãm,0 6 amcq,s

{∑
n∈Z

V s
p (λn+1)

[
W s
q (λn+1)−W s

q (λn)
]}1/s

. (3.14)

Together with (2.7) this implies (3.13). Estimate (3.4) is proved for l = 0, m > 2.
Next, let l > 1. Inequality (3.9) remains true by similar arguments. Namely, we

use equality (3.10) and then the triangle inequality in

Am,l =


∥∥∥∥∥∥∥


l∑
j=0

a−nq ∫
∆n−l+j

Ψq (t, λn+m) dγ



∥∥∥∥∥∥∥
ls/q


1/q

6

 l∑
j=0

∥∥∥∥∥∥∥
a−nq

∫
∆n−l+j

Ψq (t, λn+m) dγ


∥∥∥∥∥∥∥
ls/q


1/q

=


l∑

j=0

∑
n∈Z

a−ns

 ∫
∆n−l+j

Ψq (t, λn+m) dγ


s/q

q/s


1/q

.

We replace here n by k = n− l + j, and have

Am,l 6

 l∑
j=0

a(j−l)q

∑
k∈Z

a−ks

 ∫
∆k

Ψq (t, λk+m+l−j) dγ

s/q

q/s


1/q

=

(
l∑

j=0

a(j−l)qAqm+l−j,0

)1/q

.
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To each term we apply the already proved estimate (3.4) with m+ l− j instead of m,
so that

Am+l−j,0 6 c
(
A1,0 + F̃pq

)
.

As the result we obtain (3.4) for m ∈ N, l > 1. �
Corollary 3.5. By notation (2.5) and (3.1) we see that

Ẽpq = A2,0; Ẽ
0
pq = A1,0.

Therefore, according to (3.4) we have,

Ẽ0
pq 6 Ẽpq 6 c

(
Ẽ0
pq + F̃pq

)
. (3.15)

Remark 3.6. This implies estimates (3.2) thus proving Proposition 3.1.
The following particular cases of Theorem 2.1 are of special interest.
Proposition 3.7. Let, in addition to the hypotheses of Theorem 2.1, Vp ◦ω−1

p ∈ ∆2

that is
Da = sup

t∈R+

[
Vp
(
ω−1
p (t)

)/
Vp
(
ω−1
p (at)

)]
<∞, (3.16)

for a given a > 1. Then,
Ẽ0
pq 6 aDaF̃pq, (3.17)

and, consequently,
HΩ1 (Bµ) ∼= F̃pq. (3.18)

Proof. 1. The condotion (3.16) implies

Vp (λn) = Vp
(
ω−1
p (an)

)
6 DaVp

(
ω−1
p

(
an+1

))
= DaVp (λn+1) . (3.19)

For p 6 q we have

Ẽ0
pq = sup

n

a−n
 ∫

∆n

Ψq (t, λn+1) dγ (t)

1/q


6 sup
n

a−nΨ (λn, λn+1)

 ∫
∆n

dγ

1/q
 . (3.20)

Next, according to (2.45) (with m = n) and (3.19), we have

a−nΨ (λn, λn+1) 6 aVp (λn) 6 aDaVp (λn+1) ; (3.21)

and also,  ∫
∆n

dγ

1/q

6

 ∫
(0,λn+1)

dγ


1/q

= Wq (λn+1) .
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We insert these inequalities in (3.20) and obtain

Ẽ0
pq 6 aDa sup

n
{Vp (λn+1)Wq (λn+1)} = aDaF̃pq.

Thus, (3.17) is proved for p 6 q.
2. Next, let p > q. Then,

(
Ẽ0
pq

)s
=
∑
n∈Z

a−n
 ∫

∆n

Ψq (t, λn+1) dγ (t)

1/q

s

6
∑
n∈Z

a−nΨ (λn, λn+1)

 ∫
∆n

dγ (t)

1/q

s

=
∑
n∈Z

[
a−nsΨs (λn, λn+1)

[
W q
q (λn+1)−W q

q (λn)
]s/q]

. (3.22)

Now, we use the following inequality: let 0 < b 6 d, s > q > 0, then,

(dq − bq)1/q 6 cq,s (ds − bs)1/s , (3.23)

where cq,s ∈ R+ does not depend on d and b. We set in it d = Wq (λn+1) , b = Wq (λn)
and see that [

W q
q (λn+1)−W q

q (λn)
]s/q

6 csq,s
[
W s
q (λn+1)−W s

q (λn)
]
. (3.24)

We substitute inequalities (3.21) and (3.24) in (3.22) and obtain

Ẽ0
pq 6 c

{∑
n∈Z

V s
p (λn+1)

[
W s
q (λn+1)−W s

q (λn)
]}1/s.

= cF̃pq.

�
Remark 3.8. For the sake of completeness we present here the proof of inequality

(3.23).
If 0 < b < d/2, then dq − bq ∼= dq, ds − bs ∼= ds. This yields (3.23). If d/2 6 b 6 d,

then
dq − bq ∼= dq−1 (d− b) , ds − bs ∼= ds−1 (d− b) ,

and therefore, for s > q we have

(dq − bq)1/q ∼= d1−1/q (d− b)1/q = d1−1/q (d− b)1/q−1/s (d− b)1/s

6 d1−1/qd1/q−1/s (d− b)1/s = d1−1/s (d− b)1/s ∼= (ds − bs)1/s .

Proposition 3.9. Let the hypotheses of Theorem 2.1 be satisfied. If for a given
a > 1,

δa = inf
t∈R+

[
Wq

(
ω−1
p (at)

)/
Wq

(
ω−1
p (t)

)]
> 1, (3.25)
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then
F̃pq 6 cẼpq, (3.26)

with
c = δ2

a

[
(a− 1) (δa − 1) (δqa − 1)1/q

]−1

,

and, consequently,
HΩ1 (Bµ) ∼= Ẽpq. (3.27)

Proof. From (2.6) and (2.7), we have

F̃pq 6

{∑
n∈Z

[Vp (λn+1)Wq (λn+1)]
s

}1/s

.

Estimates (2.41) and (2.42) show that

Vp (λn+1) 6
(
1− a−1

)−1
Φn, Φn =

(∑
m6n

ϕσm

)1/σ

, σ ∈ (1,∞] ,

where ϕm were defined in (2.33). Thus,

F̃pq 6
(
1− a−1

)−1

∑
n∈Z

Wq (λn+1)

(∑
m6n

ϕσm

)1/σ
s

1/s

. (3.28)

Let us note that according to (3.25),

Wq (λn+1) > δaWq (λn) , n ∈ Z. (3.29)

Indeed,
Wq (λn+1) = Wq

(
ω−1
p

(
an+1

))
> δaWq

(
ω−1
p (an)

)
= δaWq (λn) .

It means that Proposition 2.3 is applicable to (3.28) withWn = Wq (λn+1), W = δa > 1.
Therefore, we have

F̃pq 6 ca

{∑
n∈Z

[ϕnWq (λn+1)]
s

}1/s

, ca = aδa [(a− 1) (δa − 1)]−1 .

We substitute here formulas (2.33), and obtain

F̃pq 6 ca

{∑
n∈Z

[
a−(n+1)Ψ (λn+1, λn+2)Wq (λn+1)

]s}1/s

. (3.30)

On the other hand, (3.1) gives

Ẽpq >


∑
n∈Z

a−nΨ (λn+1, λn+2)

 ∫
∆n

dγ

1/q

s

1/s

=

{∑
n∈Z

[
a−nΨ (λn+1, λn+2)

(
W q
q (λn+1)−W q

q (λn)
)1/q]s}1/s

.
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Now, we apply estimate (3.29), and obtain

Ẽpq > a
(
1− δ−qa

)1/q{∑
n∈Z

[
a−(n+1)Ψ (λn+1, λn+2)Wq (λn+1)

]s}1/s

. (3.31)

Estimates (3.30) and (3.31) imply (3.26). Finally, (3.26) and (3.3) yield (3.27). �
Next, we present one equivalent criterion of the finiteness of HΩ1 (Bµ) in the discrete

form slightly different from (2.8) and (3.3).
For given a > 1 we consider the function

ξa (t) = ω−1
p (aωp (t)) , t ∈ R+. (3.32)

This definition is similar to (1.7), but with a > 1 instead of α ∈ (0, 1), so that ξa (t) > t.
We define

ψ (t) = Ψ (t, ξa (t)) , t ∈ R+, (3.33)

ε̃pq =


∑
n∈Z

a−n
 ∫

∆n

ψqdγ

1/q

s

1/s

. (3.34)

where, as always, s = ∞ for p 6 q, s = pq/ (p− q) for p > q.
Proposition 3.10. Under the hypotheses of Theorem 2.1 the following estimate

holds
HΩ1 (Bµ) ∼= ε̃pq + F̃pq. (3.35)

Proof. First, we prove the two-sided estimate ∫
∆n

Ψq (t, λn+1) dγ

1/q

6

 ∫
∆n

ψqdγ

1/q

6

 ∫
∆n

Ψq (t, λn+2) dγ

1/q

. (3.36)

Let us note that

t ∈ ∆n = [λn, λn+1) ⇒ an+1 6 aωp (t) < an+2 ⇒ λn+1 6 ξa (t) 6 λn+2,

so that
Ψ (t, λn+1) 6 Ψ (t, ξa (t)) 6 Ψ (t, λn+2) , (3.37)

and for the integral ∫
∆n

ψqdγ =

∫
∆n

Ψq (t, ξa (t)) dγ (t) (3.38)

we obtain inequality (3.36). Therefore, (see (3.34), (2.5), and (3.1))

Ẽ0
pq 6 ε̃pq 6 Ẽpq, (3.39)

and
Ẽ0
pq + F̃pq 6 ε̃pq + F̃pq 6 Ẽpq + F̃pq. (3.40)

Together with (3.2) and (3.3) this gives (3.35). �
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Remark 3.11. Introduce the quantities

Vn =

(∑
m>n

[
ψ (λm) a−m

]σ)1/σ

, (3.41)

where σ = ∞ for p ∈ (0, 1] ;σ = p′ for p > 1,

f̃pq = sup
n
{VnWq (λn)} , p 6 q; (3.42)

f̃pq =

{∑
n∈Z

V s
n

[
W s
q (λn)−W s

q (λn−1)
]}1/s

, p > q. (3.43)

Then,

HΩ1 (Bµ) ∼= ε̃pq + f̃pq. (3.44)

Indeed, ψ (λm) = Ψ (λm, λm+1). Therefore, according to (2.33), (2.37), (2.40), and
(2.41) we have Vp (λn) ∼= Vn, so that

f̃pq ∼= F̃pq, (3.45)

and (3.44) follows by (3.35).

4 The criterion of the finiteness of HΩ1
(Bµ) in the continual

form

Here, we prove a particular case of Theorem 1.1 on the cone of decreasing functions
Ω1, see (2.1). All the notation of Sections 1, 2 is preserved here with k (t) ≡ 1.

Theorem 4.1. Let β ∈ Np (1) , and let the functions ωp and Wq be positive and
continuous on R+, ωp ( +0) = 0. Then there exists c1 = c1 (p, q, α) ∈ [1,∞) such that

c−1
1 (Epq + Fpq) 6 HΩ1 (Bµ) 6 c1 (Epq + Fpq) . (4.1)

Here, if p, q ∈ [δ,∞) for a certain δ ∈ R+ , then 1 6 c1 (p, q, α) 6 c̄1 (δ, α) <∞.

Remark 4.2. Assertions (4.1) remain true for p 6 q if we replace there Epq by
Ėpq.

Proof. 1. First, we consider the case p 6 q. Let us show that

Epq 6 Ėpq 6 HΩ1 (Bµ) (4.2)

(see (1.8), (1.24)). The first inequality is obvious. We prove the second one.



72 M.L. Goldman

For all p, q ∈ R+ we have

HΩ1 (Bµ) = sup
f∈Ω1

( ∫
R+

(Bµf)q dγ

)1/q

( ∫
R+

fpdβ

)1/p
> sup

τ>0

( ∫
R+

(
Bµχ(0,τ)

)q
dγ

)1/q

( ∫
R+

(
χ(0,τ)

)p
dβ

)1/p

= sup
τ>0

(∫
R+

( ∫
[t,∞)

χ(0,τ)dµ

)q

dγ (t)

)1/q

ωp (τ)

= sup
τ>0

( ∫
(0,τ)

( ∫
[t,τ)

dµ

)q

dγ (t)

)1/q

ωp (τ)
= Ėpq. (4.3)

This means, in particular, that

Epq 6 Ėpq 6 c
[
Ẽ0
pq + F̃pq

]
(4.4)

because of estimate (2.8). Later, it will be proved that

a−2Ẽpq 6 Epq, (4.5)

and also
F̃pq 6 Fpq 6 c

[
Ẽ0
pq + F̃pq

]
. (4.6)

Therefore, for p 6 q we will have

Epq + Fpq ∼= Ėpq + Fpq ∼= Ẽ0
pq + F̃pq ∼= HΩ1 (Bµ) (4.7)

(the last assertion follows by (2.8)).
Thus, Theorem 4.1 for p 6 q, as well as Remark 4.2 will be proved whenever (4.5)

and (4.6) are established.
Now, we prove estimate (4.5). To this end we fix the parameter of discretisation

a = α−1/3 > 1, where α ∈ (0, 1) was introduced in (1.7), (1.8). According to (1.8), we
obtain

Epq = sup
n

sup
τ∈∆n+2

 1

ωp (τ)

 ∫
[ξα(τ),τ)

Ψq (t, τ) dγ (t)


1/q


with ξα (τ) = ω−1
p (a−3ωp (τ)). For τ ∈ ∆n+2 = [λn+2, λn+3) we have

ω−1
p

(
a−3ωp (τ)

)
6 ω−1

p

(
a−3ωp (λn+3)

)
= ω−1

p (an) = λn,

so that
∆n = [λn, λn+1) ⊂ [ξα (τ) , τ) .
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Therefore, ∫
[ξα(τ),τ)

Ψq (t, τ) dγ (t) >
∫

∆n

Ψq (t, λn+2) dγ (t), τ ∈ ∆n+2, (4.8)

and

Epq > sup
n


 ∫

∆n

Ψq (t, λn+2) dγ (t)

1/q

sup
τ∈∆n+2

ωp (τ)−1


= sup

n


 ∫

∆n

Ψq (t, λn+2) dγ (t)

1/q

a−(n+2)

 = a−2Ẽpq.

(see (3.1) with p 6 q, i.e., with s = ∞). This proves (4.5).
The first inequality in (4.6) is evident; see (1.10) and (2.6). The second one was

proved in [5; Sections 3.3, 3.4] by using the same notation as here. Therefore, we obtain
inequalities (4.5) and (4.6) which completes the proof of Theorem 4.1 for p 6 q.

2. Next, we consider the case p > q. We fix the parameter of discretisation
a = α−1/3 > 1, where α ∈ (0, 1) was introduced in (1.7), (1.9). According to (1.9), we
have

Es
pq =

∑
n∈Z

∫
∆n+2

 ∫
[ξα(τ),τ)

Ψq (t, τ) dγ (t)


s/q (

−d
[

1

ωsp (τ)

])
. (4.9)

We apply here estimate (4.8) and obtain

Es
pq >

∑
n∈Z

 ∫
∆n

Ψq (t, λn+2) dγ (t)

s/q ∫
∆n+2

(
−d
[

1

ωsp (τ)

])

∼=
∑
n∈Z

a−ns

 ∫
∆n

Ψq (t, λn+2) dγ (t)

s/q

=
(
Ẽpq

)s
. (4.10)

This gives the first estimate in

c1Ẽpq 6 Epq 6 c2

(
Ẽ0
pq + F̃pq

)
. (4.11)

Let us prove the second one. Now, formula (1.9) is written otherwise:

Es
pq =

∑
n∈Z

∫
∆n

 ∫
[ξα(τ),τ)

Ψq (t, τ) dγ (t)


s/q (

−d
[

1

ωsp (τ)

])
.
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For τ ∈ ∆n = [λn, λn+1) we have Ψ (t, τ) 6 Ψ (t, λn+1),

ξα (τ) = ω−1
p

(
a−3ωp (τ)

)
> ω−1

p

(
a−3ωp (λn)

)
= ω−1

p

(
an−3

)
= λn−3,

so that
[ξα (τ) , τ) ⊂ [λn−3, λn+1) ,

and

Es
pq 6

∑
n∈Z

∫
∆n

 ∫
[λn−3,λn+1)

Ψq (t, λn+1) dγ


s/q (

−d
[

1

ωsp (τ)

])

=
∑
n∈Z

 ∫
[λn−3,λn+1)

Ψq (t, λn+1) dγ


s/q ∫

∆n

(
−d
[

1

ωsp (τ)

])

∼=
∑
n∈Z

a−ns

 ∫
[λn−3,λn+1)

Ψq (t, λn+1) dγ


s/q

= (A1,3)
s .

(in the notation of Lemma 3.4). We apply now Lemma 3.4 with m = 1, l = 3 and take
into account that Ẽ0

pq = A1,0. Thus, the second estimate in (4.11) is proved.
Now, we need the estimate (4.6) in the case p > q. According to (1.11) and (2.7),

we have
F s
pq =

∑
n∈Z

∫
∆n

V s
p d
(
W s
q

)
>
∑
n∈Z

V s
p (λn+1)

∫
∆n

d
(
W s
q

)
= F̃ s

pq.

This yields the first inequality in (4.6). The proof of the second one in the case p > q
is much more complicated. It was obtained in [5; Sections 3.5-3.7] by using the same
notations as here (see [5; (3.14)]):

Fpq 6 c
[
Ẽpq + F̃pq

]
Finally, we recall (3.2) and arruve at the second inequality in (4.6).

Inequalities (4.6) and (4.11) imply Theorem 4.1, now for p > q. �
Remark 4.3. Let us note that under the hypotheses of Proposition 3.7, we can

easily justify inequality (4.6) and show that

F̃pq 6 Fpq 6 DaF̃pq. (4.12)

Indeed, the first inequality in (4.12) is the same as in (4.6). Let us prove the second
one. For p 6 q we have by (1.10)

Fpq = sup
n

sup
t∈∆n

[Vp (t)Wq (t)] 6 sup
n
Vp (λn) sup

t∈∆n

Wq (t) 6 sup
n
Vp (λn)Wq (λn+1) .

Now, we apply estimate (3.19) and obtain

Fpq 6 Da sup
n
Vp (λn+1)Wq (λn+1) = DaF̃pq.
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Similarly, for p > q, we have by (1.11) and (3.19),

F s
pq =

∑
n∈Z

∫
∆n

V s
p dW

s
q 6

∑
n∈Z

V s
p (λn)

∫
∆n

dW s
q

=
∑
n∈Z

V s
p (λn)

[
W s
q (λn+1)−W s

q (λn)
]

6 Ds
a

∑
n∈Z

V s
p (λn+1)

[
W s
q (λn+1)−W s

q (λn)
]

= Ds
aF̃

s
pq,

and (4.12) follows. �
4.2. Next, we present one equivalent criterion of the finiteness of HΩ1 (Bµ) in

the continual form slightly different from (4.1). We recall notation (3.32)-(3.34), and
introduce the quantities

εpq = sup
τ∈R+

 1

ωp (τ)

 ∫
(0,τ)

ψqdγ


1/q
 , p 6 q, (4.13)

εpq =


∫
R+

 ∫
(0,τ)

ψqdγ


s/q (

−d
[

1

ωsp (τ)

])
1/s

, p > q. (4.14)

Theorem 4.4. Under the hypotheses of Theorem 4.1 there exists c2 = c2 (p, q, a) ∈
[1,∞) , such that

c−1
2 (εpq + Fpq) 6 HΩ1 (Bµ) 6 c2 (εpq + Fpq) . (4.15)

Proof. 1. Let us establish the following inequality

a−1
(
1− a−s

)1/s
ε̃pq 6 εpq 6

(
1− a−s

)1/s (
1− a−q

)1/q
ε̃pq, (4.16)

where as always s = ∞ for p 6 q and s = pq/ (p− q) for p > q.
We have R+ =

⋃
n

∆n =
⋃
n

∆n+1, and for p 6 q (4.13) yields

εpq = sup
n

sup
τ∈∆n+1

 1

ωp (τ)

 ∫
(0,τ)

ψqdγ


1/q


> sup
n

 ∫
(0,λn+1)

ψqdγ


1/q

sup
τ∈∆n+1

1

ωp (τ)
= sup

n


 ∫

(0,λn+1)

ψqdγ


1/q

a−(n+1)


> a−1 sup

n


 ∫

∆n

ψqdγ

1/q

a−n

 = a−1ε̃pq (4.17)
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On the other hand,

εpq = sup
n

sup
τ∈∆n

 1

ωp (τ)

 ∫
(0,τ)

ψqdγ


1/q
 6 sup

n

a−n
 ∫

(0,λn+1)

ψqdγ


1/q


=

a−n
∑
m6n

∫
∆n

ψqdγ

1/q
 =

sup
n

a−nq
∑
m6n

∫
∆m

ψqdγ


1/q

.

Now, we apply Proposition 2.3 with Wn = anq, σ = ∞ (see (2.12)) to the expression in
the square brackets. Then,

εpq 6

c sup
n

a−nq
∫
∆n

ψqdγ


1/q

= c1/qε̃pq,

where

W = inf
n

(
Wn+1W

−1
n

)
= aq > 1, c =

(
1−W−1

)−1
=
(
1− a−q

)−1
. (4.18)

Inequalities (4.17) and (4.18) imply (4.16) for p 6 q.

For p > q we have from (4.14) and (3.34),

εspq =
∑
n∈Z

∫
∆n+1

 ∫
(0,τ)

ψqdγ


s/q (

−d
[

1

ωsp (τ)

])

>
∑
n∈Z

 ∫
(0,λn+1)

ψqdγ


s/q ∫

∆n+1

(
−d
[

1

ωsp (τ)

])

= a−s
(
1− a−s

)∑
n∈Z

1

ans

 ∫
(0,λn+1)

ψqdγ


s/q

> a−s
(
1− a−s

)
ε̃spq. (4.19)
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On the other hand, analogous arguments show that

εspq =
∑
n∈Z

∫
∆n

 ∫
(0,τ)

ψqdγ


s/q (

−d
[

1

ωsp (τ)

])

6
∑
n∈Z

 ∫
(0,λn+1)

ψqdγ


s/q ∫

∆n

(
−d
[

1

ωsp (τ)

])

=
(
1− a−s

)∑
n∈Z

1

ans

 ∫
(0,λn+1)

ψqdγ


s/q

.

Therefore,

εpq 6
(
1− a−s

)1/s


∑
n∈Z

 1

anq

∑
m6n

∫
∆m

ψqdγ

s/q

q/s


1/q

.

Now, we apply Proposition 2.3 with Wn = anq, σ = s/q > 1 (see (2.12)) to the expres-
sion in square brackets. Then,

εpq 6
(
1− a−s

)1/s
c

∑
n∈Z

 1

anq

∫
∆n

ψqdγ

s/q

q/s


1/q

. (4.20)

Here, c is defined by (4.18).
Estimates (4.19) and (4.20) give (4.16) for p > q.
2. We see from estimates (4.6) and (3.38) that

F̃pq 6 Fpq 6 c0

(
ε̃pq + F̃pq

)
. (4.21)

Together with (4.16) it gives

Fpq + εpq ∼= F̃pq + ε̃pq ∼= HΩ1 (Bµ) .

The last assertion is based on Proposition 3.10. �

5 Proofs of Theorems 1.1 and 1.2. Some equivalent criteria

5.1 Proof of Theorem 1.1.
1. The proof of Theorem 1.1 for HΩk

(Bµ) will be obtained by reducing this theorem
to its particular case, Theorem 4.1. We will preserve the abbreviated notation (1.1)–
(1.11) and use also the following full variants of these notation. Namely, denote

HΩk
(Bµ) ≡ HΩk

(Bµ; p, q, β, γ) , (5.1)
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ωp (t) ≡ ωp (k, β; t) , Ψ (t, τ) ≡ Ψ (k, µ; t, τ) , (5.2)

Vp (t) ≡ Vp (k, β, µ; t) , Wq (t) ≡ Wq (γ, t) , (5.3)

Epq ≡ Epq (k, β, γ, µ) , Fpq ≡ Fpq (k, β, γ, µ) . (5.4)

For measures β and µ we denote by βkp and µk the measures on R+ defined by the
formulas

dβkp (ξ) = k (ξ)p dβ (ξ) , dµk (ξ) = k (ξ) dµ (ξ) . (5.5)

Let us show that the following relations hold, which allows one to reduce the problems
formulated on the cone Ωk to the cone of decreasing functions Ω1:

HΩk
(Bµ; p, q, β, γ) = HΩ1 (Bµk

; p, q, βkp, γ) , (5.6)

Epq (k, β, γ, µ) = Epq (1, βkp, γ, µk) , (5.7)

Fpq (k, β, γ, µ) = Fpq (1, βkp, γ, µk) , (5.8)

β ∈ Np (k) ⇔ βkp ∈ Np (1) . (5.9)

We have (see (1.2) and (1.4))

f ∈ Ωk ⇔ f = kϕ, ϕ ∈ Ω1;

∫
R+

fpdβ =

∫
R+

ϕpdβkp; (5.10)

(Bµf) (t) =

∫
[t,∞)

ϕkdµ = (Bµk
ϕ) (t) . (5.11)

Substituting these formulas in (5.1), (1.1) we obtain (5.6). Similarly (see (1.4)–(1.6),
and (5.2)–(5.4)

ωp (k, β; t) = ωp (1, βkp; t) , Ψ (k, µ; t, τ) = Ψ (1, µk; t, τ) , (5.12)

Vp (k, β, µ; t) = Vp (1, βkp, µk; t) . (5.13)

This implies equalities (5.7)-(5.9).
2. Now, suppose that the hypotheses of Theorem 1.1 are satisfied. Then the

hypotheses of Theorem 4.1 are satisfied for HΩ1 (Bµk
; p, q, βkp, γ) and we obtain

HΩ1 (Bµk
; p, q, βkp, γ) ∼= Epq (1, βkp, γ, µk) + Fpq (1, βkp, γ, µk) (5.14)

with constants independent of measures βkp, γ, µk. We substitute formulas (5.6)-(5.8)
into (5.14) and obtain estimate (1.13). �

5.2. Proof of Theorem 1.2.
It can be reduced to Theorem 1.1. For a Borel set e ∈ R+ = (0,∞) we denote

e−1 =
{
t ∈ R+ : t−1 ∈ e

}
, (5.15)

and introduce the measures β̃, γ̃, µ̃ by the formulas

β̃ (e) = β
(
e−1
)
, γ̃ (e) = γ

(
e−1
)
, µ̃ (e) = µ

(
e−1
)
. (5.16)
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Then, for each Borel function f on R+ we have∫
e

f (ξ) dβ̃ =

∫
e−1

f
(
ξ−1
)
dβ. (5.17)

Similar formulas hold for the measures γ and µ. Note that,

f ∈ Ωm ⇔ ϕ (t) = f
(
t−1
)
∈ Ωk, k (t) = m

(
t−1
)
. (5.18)

Next (see (1.3) and (5.17)),

(Aµf) (t) =

∫
(0,t]

fdµ =

∫
[t−1,∞)

ϕdµ̃ = (Bµ̃ϕ)
(
t−1
)
. (5.19)

Therefore, ∫
R+

(Aµf)qdγ =

∫
R+

(Bµ̃ϕ)qdγ̃,

∫
R+

fpdβ =

∫
R+

ϕpdβ̃. (5.20)

Hence (see (1.1)-(1.3)),

HΩm (Aµ; p, q, β, γ) = HΩk

(
Bµ̃; p, q, β̃, γ̃

)
, (5.21)

where k (t) = m (t−1). Moreover, (5.17) implies the equivalence: β ∈ N̄p (m) ⇔ β̃ ∈
Np (k). Thus, we can apply Theorem 1.1 to the right–hand side of (5.21) and obtain

HΩk

(
Bµ̃; p, q, β̃, γ̃

)
∼= Epq

(
k, β̃, γ̃, µ̃

)
+ Fpq

(
k, β̃, γ̃, µ̃

)
. (5.22)

Recall notation (1.4)–(1.11) and the detailed version (5.1)–(5.4) and note that these
quantities can now be rewritten by using (5.17) as

ωp

(
k, β̃; τ

)
=

 ∫
(0,τ)

mp
(
ξ−1
)
dβ̃


1/p

=

 ∫
(τ−1,∞)

mpdβ


1/p

= ω̄p
(
τ−1
)
; (5.23)

(see notation (1.14)-(1.17))

Ψ (k, µ̃; t, τ) =

∫
[t,τ)

m
(
ξ−1
)
dµ̃ =

∫
(τ−1,t−1]

mdµ =Φ
(
τ−1, t−1

)
, (5.24)

so that
Vp (t) = Vp

(
k, β̃, µ̃; t

)
= V (0)

p

(
t−1
)
. (5.25)

Indeed, when p ∈ (0, 1], relations (1.5), (5.23), and (5.24) imply

Vp

(
k, β̃, µ̃; t

)
= sup

τ∈(t,∞)

[
Φ (τ−1, t−1)

ω̄p (τ−1)

]
= sup

τ∈(0,t−1)

[
Φ (τ, t−1)

ω̄p (τ)

]
,
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which yields according to (1.15), equality (5.25). Similarly, for p > 1, we obtain (5.25)
by using (1.6), (5.23), and (5.24). Then (see (1.7) and (1.17)), we have

Wq (γ̃, t) =

 ∫
(0,t)

dγ̃


1/q

=

 ∫
(t−1,∞)

dγ


1/q

= W̄q

(
t−1
)
. (5.26)

Therefore, for p 6 q we obtain from (1.10) and (1.20) that

Fpq

(
k, β̃, γ̃, µ̃

)
= sup

t∈R+

[Vp (t)Wq (γ̃, t)] = sup
t∈R+

[
V (0)
p

(
t−1
)
W̄q

(
t−1
)]

= F (0)
pq .

Similarly, from (1.11) and (1.21) we conclude that such equality holds for p > q. Thus,
for all p, q the equality

Fpq

(
k, β̃, γ̃, µ̃

)
= F (0)

pq , (5.27)

holds.
Now, we have,∫

[ξα(τ),τ)

Ψq (k, µ̃; t, τ) dγ̃ (t) =

∫
[ξα(τ),τ)

Φq
(
τ−1, t−1

)
dγ̃ (t)

=

∫
(τ−1,1/ξα(τ)]

Φq
(
τ−1, t

)
dγ (t). (5.28)

Therefore, for p 6 q, we obtain by (1.8) and (5.23) that

Epq

(
k, β̃, γ̃, µ̃

)
= sup

τ∈R+

 1

ωp

(
k, β̃; τ

)
 ∫

[ξα(τ),τ)

Ψq (k, µ̃; t, τ) dγ̃ (t)


1/q


= sup
τ∈R+

 1

ω̄p (τ−1)

 ∫
(τ−1,1/ξα(τ)]

Φq
(
τ−1, t

)
dγ (t)


1/q
 . (5.29)

Let us note that
ξα (τ) = 1/ςα

(
τ−1
)
. (5.30)

Indeed, it follows by (5.23) that ω−1
p (t) = 1

/
ω̄−1
p (t), therefore,

ξα (τ) = ω−1
p (αωp (τ)) = 1

/
ω̄−1
p (αωp (τ)) = 1

/
ω̄−1
p

(
αω̄p

(
τ−1
))
,

and (5.30) follows. Now, we substitute (5.30) into (5.29) and obtain

Epq

(
k, β̃, γ̃, µ̃

)
= sup

τ∈R+

 1

ω̄p (τ−1)

 ∫
(τ−1,ςα(τ−1)]

Φq
(
τ−1, t

)
dγ (t)


1/q
 .
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Together with (1.18), this proves the equality

Epq

(
k, β̃, γ̃, µ̃

)
= E(0)

pq (5.31)

for p 6 q. Similarly, from (1.9), (5.28), and (5.30) we obtain for p > q

Epq

(
k, β̃, γ̃, µ̃

)

=


∫
R+

 ∫
(τ−1,ςα(τ−1)]

Φq
(
τ−1, t

)
dγ (t)


s/q (

−d
[

1

ω̄sp (τ−1)

]) .

Together with (1.19), this proves the equality (5.31) for p > q.
Finally, we substitute (5.27) and (5.31) into (5.22) and obtain, taking into account

(5.21), the needed estimate (1.23). �
5.3. Equivalent criterion for the finiteness of HΩk

(Bµ).
Here we establish the general variant of Theorem 4.4 on the cone Ωk. We preserve

the notation (3.32)–(3.34), and (4.13), (4.14), but emphasize that now, unlike to Sec-
tions 2–4, is assumed that in (1.4)–(1.7) k means a general positive continuous function
not necessary equal to 1.

Theorem 5.1. Let the hypotheses of Theorem 1.1 be satisfied. Then, there exists
c0 = c0 (p, q, a) ∈ [1,∞) such that

c−1
0 (εpq + Fpq) 6 HΩk

(Bµ) 6 c0 (εpq + Fpq) . (5.32)

Proof. The scheme of the proof is essentially the same as in Subsection 5.1. As in
(5.1)-(5.4) we use the following full variant of notation (4.13), (4.14)

εpq = εpq (k, β, γ, µ) . (5.33)

The reduction of the problem initially formulated on the cone Ωk to the cone Ω1 is
realized by assertions (5.6)-(5.9), and by the similar equality for εpq, namely

εpq (k, β, γ, µ) = εpq (1, βkp, γ, µk) . (5.34)

Now, if the hypotheses of Theorem 1.1 are satisfied, then the hypotheses of Theorem
4.4 (the same as in Theorem 4.1) are satisfied too, and we obtain by (4.15) that

HΩ1 (Bµk
; p, q, βkp, γ) ∼= εpq (1, βkp, γ, µk) + Fpq (1, βkp, γ, µk) . (5.35)

Now, we substitute formulas (5.6)–(5.8), and (5.34) in (5.35) and obtain (5.32). �
5.4. Equivalent criterion for the boundedness of HΩm (Aµ) .
We preserve the notation (1.14)–(1.17), and (1.20)–(1.22), but now we consider the

function
ςa (τ) = ω̄−1

p (aω̄p (τ)) , τ ∈ R+, (5.36)

in (1.17), where a > 1 is the same as in (3.32). This implies that ςa (τ) < τ .
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Define,
ϕ (t) = Φ (ςa (t) , t) , t ∈ R+; (5.37)

ε(0)
pq = sup

τ∈R+

 1

ω̄p (τ)

 ∫
(τ,∞)

ϕqdγ


1/q
 , p 6 q; (5.38)

ε(0)
pq =


∫
R+

 ∫
(τ,∞)

ϕqdγ


s/q

d

[
1

ω̄sp (τ)

] , p > q. (5.39)

Theorem 5.2. Let the hypotheses of Theorem 1.2 be satisfied. Then,

c−1
0

(
ε(0)
pq + F (0)

pq

)
6 HΩm (Aµ) 6 c0

(
ε(0)
pq + F (0)

pq

)
, (5.40)

with c0 ∈ [1,∞) the same as in Theorem 5.1.
Proof. Theorem 5.2 is reduced to Theorem 5.1 similarly to how Theorem 1.2 was

reduced to Theorem 1.1. We have assertions (5.15)- (5.21), so that

HΩm (Aµ) = HΩk

(
Bµ̃; p, q, β̃, γ̃

)
. (5.41)

To estimate HΩk

(
Bµ̃; p, q, β̃, γ̃

)
we apply Theorem 5.1 in corresponding notations, and

obtain
HΩk

(
Bµ̃; p, q, β̃, γ̃

)
∼= εpq

(
k, β̃, γ̃, µ̃

)
+ Fpq

(
k, β̃, γ̃, µ̃

)
. (5.42)

For the second term in (5.42), equality (5.27) holds. Thus, our aim is to prove that

εpq

(
k, β̃, γ̃, µ̃

)
= ε(0)

pq . (5.43)

For p 6 q we have by (4.13)

εpq

(
k, β̃, γ̃, µ̃

)
= sup

τ∈R+

 1

ωp

(
k, β̃; τ

)
 ∫

(0,τ)

ψq (k, µ̃; t) dγ̃ (t)


1/q
 .

According to (5.23) and (5.17), this equality yields

εpq

(
k, β̃, γ̃, µ̃

)
= sup

τ∈R+

 1

ω̄p (τ−1)

 ∫
(τ−1,∞)

ψq
(
k, µ̃; t−1

)
dγ (t)


1/q


= sup
τ∈R+

 1

ω̄p (τ)

 ∫
(τ,∞)

ψq
(
k, µ̃; t−1

)
dγ (t)


1/q
 . (5.44)
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Let us note that
ψ
(
k, µ̃; t−1

)
= ϕ (t) , t ∈ R+. (5.45)

Indeed, according to (5.24)

ψ
(
k, µ̃; t−1

)
= Ψ

(
k, µ̃; t−1, ξa

(
t−1
))

= Φ

(
1

ξa (t−1)
, t

)
.

Now, we apply equalities (5.30), and (5.37), and obtain (5.45).
By (5.45) and (5.44), it follows that (5.43) holds for p 6 q. Similarly, (5.43) may

be established for p > q. Namely, as well as in (5.44), we have by (4.14),

εpq

(
k, β̃, γ̃, µ̃

)
=


∫
R+

 ∫
(τ−1,∞)

ψq
(
k, µ̃; t−1

)
dγ (t)


s/q (

−d
[

1

ω̄sp (τ−1)

])
1/s

.

We apply here (5.45), and obtain,

εpq

(
k, β̃, γ̃, µ̃

)
=


∫
R+

 ∫
(τ−1,∞)

ϕq (t) dγ (t)


s/q (

−d
[

1

ω̄sp (τ−1)

]) .

This equality together with (5.39) yields (5.43) for p > q.
Finally, we substitute (5.43) in (5.42), and in (5.41); therefore, (5.40) follows. �
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