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Abstract. Two-sided estimates are established for two types of generalized Hardy
operators on the cones of functions in weighted Lebesgue spaces with some properties
of monotonicity.

We prove the results announced in [7], and present some other equivalent forms for
the criterion of boundedness. Some other equivalent descriptions, particular cases, and
results in the case of degenerate measures will be given in our next paper.

1 Notation and formulation of results

1.1. Let 8 and 7 be nonnegative Borel measures on R, = (0,00);p,q € Ry, Q) be
a certain cone of nonnegative Borel measurable functions on R, and A be a positive
operator. We investigate the finiteness of the quantity

1/q -1/p

Ha (4) = sup / (AF) dy / ras| | (L1)
Ry Ry

Here, as 2 we consider the cones of functions that are monotone with respect to the
prescribed positive continuous functions k& and m:

Q={f20:f(0)/k(r)1}; Q"={fZ0:f(7)/m(7)T}. (1.2)

As operator A, we consider the generalized Hardy operators A,, and B, where p is a
nonnegative Borel measure on R ;

A= [ s B0 = [ fan (13)

(0,¢] [t,00)
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1.2. First, we formulate the result for Hg, (B,). For this purpose we need the following
notation:

1/p

wy (t) = /k’pdﬁ , t>0; \I/(t,T):/k;d,u, t<T; (1.4)

(0,t) [t,7)

1/p
V, (t) = (tl) U (t,7) (—d [wg'l(T)D Cop>1, -+ 7= 1; (1.6)
1/q
W, (1) = / dry ;o &a(T) = wp_l (awy (1)), 7€ R4, (1.7)
(0,7)

Here o € (0,1) is fixed; w, " is the right-continuous inverse function for the (increasing)
continuous function w,. Obviously, &, (1) < 7.

The criterion of finiteness of Hq, (B,) will be formulated by using the following
quantities:

1/q
1

w—(T) ., p<q; (1.8)

E,, = sup / W (t,7)dy(t)

TERL
[€a(7),7)

S/q 1/5

E, - / / W (¢, 7) dy (1) (—dL;(T)D Cpsa (L9)

Ry \ [a(r):7)

By = sp WG (O, (0], p <4 (110
1/s
Fy = /v; WA ®] s . p>a (1.11)

where as always in this paper s = pg/(p — q) for p > ¢. In addition, introduce the non-
degeneracy condition for measure (3 :

BeEN, (k) < / KPdg =1, / kPdf = co. (1.12)
(0,1) [1,00)

Theorem 1.1. Let 3 € N, (k) and the functions w, and W, be positive and
continuous on R, w, (+0) = 0. Then there exists co = ¢y (p,q, ) € [1,00) such that

051 (qu + qu) < Hq, (Bu) < ¢ (qu + qu) . (1.13)
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Some slightly different equivalent forms for the criterion of the boundedness of the
operator B, are presented below in Theorems 4.4 and 5.1.

1.3. Next, we present the corresponding results concerning Hom (A4,,). To this end
we denote

1/p
w, (t) = /mpdﬁ , 1> 0; (1,1) /md,u, T <t (1.14)
(t,00) (7,¢]
1
VO () = sup [cb T, t) — , 0,1 1.15
O = s (060 | pe (1.15)
1/p’
©0) (1) — p 1
|78 (t) = O (71,t)d . , p>1 (1.16)
wp (1)
(0,t)
1/q
W, (1) = /d7 : ga(T):ch_l(o@p(T)), TER,. (1.17)

Here a € (0,1) is fixed; @, ! is the right-continuous inverse function for the (decreas-
ing) continuous function w,. Obviously, 7 < ¢, (7). We also introduce the following
quantities:

1/q

0 — .
By = sup / (7, 1) dv (1) = , p<gq (1.18)

TERL
(T:5a (7)]

EY = / /@q(T,t)dv(t) d{;(ﬂ] . p>q. (1.19)

FQ = sup VO ()W, ()], p<q, (1.20)

/ —-dW;®)])p . p>q (1.21)
The non-degeneracy condltlon on measure (3 has the following form:
BeN,( & / mPdf = oo, / mPdf = 1. (1.22)

(0,1]

Theorem 1.2. Let 3 € N, (m) and functions @, and W, be positive and continuous
on Ry, @, (+00)=0.

ot (B + FO) < How (A,) < ¢ (B + ED), (1.23)
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where ¢ is the same as in Theorem 1.1. Some slightly different equivalent form for the
criterion of the boundedness is presented below in Theorem 5.2.

Remark 1.3. Let in Theorems 1.1 and 1.2 p < ¢. Then, we can change defini-
tions (1.8) and (1.18). Namely, estimates (1.13) and (1.23) with a certain constants
co,c1; ¢ =¢(p,q) €[1,00), i=0,1, remain true if we replace E,, in (1.13) or E},‘;)
in (1.23), by

1/q
. 1
E,, = su W9 (t, 1) dy(t , <gq; 1.24
w=sw || [wenan| —Sloe<e 02
(0,7)
by
1/q
. 1
EO = gy /cbq T t)dvy (t . p<q. 1.25
5 = sup mod | ] rs (1.25)
(7,00)
respectively.

Remark 1.4. The results concerning Hg, ( A,) and Hom (B,) were obtained in
our paper [5; Theorems 1.2 and 1.4|, and in some other forms in [1, 3, and 4|. The
detailed comparison for corresponding results in [5, 1, and 3| was made in [6].

Remark 1.5. It was found by A. Gogatishvili that for some p > ¢ the formula-
tions given by Theorems 1.1 and 1.3 in [5] were not correct (personal communication).
Here we establish the corrected versions of these results. They were formulated in |7].
Correction is realized by inserting in (1.9) the function &, defined by (1.7), and by
inserting in (1.19) the function ¢, defined in (1.17). Also, we establish some other new
equivalent variants for the result.

2 Discrete analogue of Theorem 1.1 on the cone of decreasing
functions

2.1. First, we establish a particular case of Theorem 1.1 corresponding to the function
k(t) =1, i.e., to the cone of decreasing functions

D ={f>0:f(r) L} (2.1)
Thus, we consider here Hq, (B,,) (see (1.1)—(1.3)). We preserve the notation of Section
1 and set there k(t) = 1. In this Section we prove a criterion of the finiteness for

Hg, (B,) in the discrete form. For this purposes we need some additional notation
related to the following discretisation procedure. We fix a > 1, and introduce

A =w ' (a"), nez. (2.2)

p

For 5 € N, (1) we have

0<w,T on Ry, w,(+0)=0, w,(+00) =00, (2.3)
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so that
0< A <Apg1, MEZ; N —0(n— —00),\, — 00(n— +00). (2.4)
Introduce the discrete analogues of E,, and F,,:

1/q7° 1/s

B ={Y o / B9 (, Ao ir) oy (1) , (2.5)

nel A

where as always s = pq/(p — q) for p > g; s = oo for p < ¢ (in this case we understand
qu as the supremum over n € Z of the expression in square brackets); A, = [Ay, Ant1).

ﬁpq = Slrllp Vo M) W (M)}, P<q, (2.6)

1/s
{ZVS Wy (M) — W;(Anl)}} , p>q (2.7)

nez

Theorem 2.1. Let § € N, (1) and the function w, be positive and continuous on R,
wp (+0) = 0. Then there exists ¢o = ¢y (p,q,a) € [1,00) such that

Gt (B8, + o) < Hoy (By) < G (B + Fg) - (2.8)
Here, if p,q € [0,00) for a certain 6 € R, then

1< & (pga) <cla,6) < (2.9)

2.2. To prove Theorem 2.1 we will need the following two Propositions (similar asser-
tions are frequently met in the works devoted to this subject; in particular they were
formulated and proved in [5; Propositions 2.1 and 2.2|).

Proposition 2.2. Under the hypotheses of Theorem 2.1 the following estimate
holds for f €

(1-a) (Z[ > /f”dﬁ < [a" f (An)]p) : (2.10)

nez
Proposition 2.3. Let 0 € (0,00];W,, > 0,n € Z,
W = inf (W, W, ') > 1

Then, for all 3, > 0,n € Z, the following inequalities hold

(o]} <o)

nez m>=n nez

(2.11)
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{Z [Wnlzﬁmr}l/g<C{Z[Wnlﬁn]”}w. (2.12)

nez m<n nez

Here, c=(1—-W=) " if 0 € [1,00], and c = (1= W) if 5 € (0,1].
Corollary 2.4. Under the hypotheses of Proposition 2.3 the following inequalities
hold for any j € Z :

j oy /e 1/o
{Z [Wn > @n] } Sc {Z [Wnﬁn]"} , (2.13)

n<y n<jy

{Z [Wnlnijﬁmr}l/a<C{Z[Wnlﬁn]”}l/a. (2.14)

nz=j nzj

2.3. Proof of Theorem 2.1.
1. Let us apply Proposition 2.2 to the denominator in Hg, (B,), see (1.1). Then

o 'Hy < Ho, (B,) < (1 —a™?) ™" Hy, (2.15)
where
L/a -1/p
m=sw | [0 (Z " f <An>1p) SENCRT)
fen nez
Ry
For b = {b,} we define
foit) = baxa, (1); An=[A, A1), neZ (2.17)
nez

The denominator in (2.16) is independent of the values of f € € outside the points
An, N € Z, therefore for a given set b= {Bn} of values b,, = f(An),n € Z the upper

bound is attained at the greatest function fg € ), among those corresponding to this
set, namely at the function fo () = fo (l;, t> (see (2.17) with b instead of b). Therefore,

1/q

q 2\
Hy = sup /(Bﬂf0> dry <Z [a"i)n] ) : (2.18)

o<hal | \ 4. neZ

Now, we introduce

1/q

—-1/p
H=sw || [ B an (Z[aw) . (219

0<bn
= Ry nez
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where fy (t) = fo(b;t) (see (2.17)). Obviously Hy < Hy. Let us prove the reverse
inequality. For any sequence b = {b,}, b, >0, we define b= {I;n} with

1/p
b, = (Z bfn) . sothat b, >b, >0, b, ]|, (2.20)
m>n

and

(Z [a"bn]p) ” —(1—a?)"” (Z [anén] p) l/p. (2.21)

neEL ne”Z

Therefore, fo () = fo(b;) < fo (5, ) =f() = B, fo < Bufo, and

1/a —1/p
/ (Byufo)" dy (Z [a"bn]p>
Ry neL
1/a -1/p
<@-ar)? / (Bafo)"dv (Z [G"B"r) <(L-a?) " .
Ry neZ
Consequently,
Hy< Hy < (1—a?)" " H,. (2.22)
Now, (2.15) and (2.22) imply
a ' (1—a?)"" Hy < H, (B,) < (1—a7?) " H,. (2.23)

2. Next, our aim is to estimate Hy (2.19). To this end we note that

(Bufo) ( /fodﬂ h (t) + ha (1), (2.24)

t,00)

where
0< hy (t) = by / dp b0 (£ 1), £ € Anin € Z:
[t,An+1)
0<ha(t) =) busi / A=Y b1 A1, Amsz) . tE A, N EL.
m2>2n N~ m2>n
Now, notice that
1/q 1/q

/ ndy | =D 0 / (t, dnsr)dy |, (2.25)

Ry neZ
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1/q

q 1/q
/ Mdy| = <Z (Z bm+1111()\m+1,)\m+2)> wg> : (2.26)
R neZ \m2z=n
N
where y
q
_ _ q q /g
wy, = /d’y = [WZ (1) = WIS (2.27)
Aﬂ/

By (2.24) and by triangle inequality in L, it follows that

1/q 1/q 1/q

wag | fuar ] < [@pra) <aX | [wn]
Ry

R, Ry J=1

where ¢, =1, q€[l,00); ¢, =271 ¢€(0,1).
We insert here (2.25) and (2.26) and obtain

max {Hl,HQ} < HO < Eq (Hl + Hg) s (228)

where

—-1/p
H; = bsu>% I [{bn}] <Z [anbn]p> . J=L12 (2.29)

nez
1/q
L [{b.}] = qu/ (t, M) dy |, (2.30)
neL A,
q\ 1/aq
L[{b}] = (qu <Z bt ¥ ( mH,AmH)) ) . (2.31)
neZ m>=n

First, we calculate H;. By Jensen’s inequality (when p < ¢) or Holder’s inequality
(when p > ¢), combined with the assertion about their sharpness on the set of all
nonnegative sequences, we have

1/47 8 1/s

H={Y" |a / B (1, M iy) dy (1) — B (2.32)

nel A

Next, consider Hy (2.29):

q\ 1/q -1/p
H, = sup (Z wl <Z bmH\If()\mH,)\mH)) ) (Z[ "] >

bn 20 nez m2n nel

We denote

A"ty om=a T (N1, Ase), mEZ, (2.33)

Ay =
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and obtain
q\ 1/q -1/p
Hy— s (z " (z go) ) (z )
an 20 neZ m>n neZ

We apply now the discrete generalized Hardy inequality (see [8; Theorem 2.1, Remark
2.5]. According to it we have

') F<Hy<ar(p,g) F, ci(p.q) €[1,00), (2.34)
where
F=sup[@,W,], p<g (2.35)
1/s
F= {Z o5 [We — Wi ] } . p>q. (2.36)
neZ
Here,
1/q 1/o
Wn = <Z w?n) = Wq ()‘nJrl) ) (I)n = <Z @?n) ) (237>
m<n m2>n
with

c=c0ifpe(0,1]; o=p ifp>1. (2.38)

Now, we introduce

1/o
B, = (Z [a™ ™V (An,Am+1)]"> , mELZ, (2.39)

and show that
(1—a") Buy1 < @, < By (2.40)

Indeed, we see by (2.37) and (2.33) that

1/0
(I)n g (Z [ai(erl)\Ij <)‘n+17 )\m+2>]g>

m>n
1/c
= ( Z [a_m\l’(/\n+1,)\m+1)]g> = Bn1
m>n—+1
However,

m o\ 1l/o
Bpy1 = ( Z [a_m Z @‘] ) ;o Bi= V(A Ai)

m>n+1 i=n+1

and we can apply inequality (2.14) with the appropriate notation:

Wn=a" W=a,0€](l,o0], c= (1—@‘1)71.
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Then,

1/o 1/o
By <c ( Z [a_mﬁm]a) =cC (Z [a_(m+1)ﬁm+1]a>

m>n—+1 m>=n

1/o 1/o
—¢ (Z [ A, Am+2)]0> =c (Z w”m> =,

m>n m2zn

and (2.40) follows. Now, let us derive the estimate
L (1=a)"" B, <V,(\) < B., necz (2.41)

For p € (0,1] we have (see (1.5) and (2.39) with ¢ = o0)

V, () = sup { sp [ Onr) ] }

m>n | r€mAmai] wp (7)

m>n 7€(Am>Ami1] Wp (7') m>n

1
< sup {\I] ()‘m )‘m-‘rl) sup } = Sup {\I[ (/\na )‘m—I—l) a—m} = Bn;

1
Vo (An) = sup {‘P(An,Am) sup }— sup {¥ (A, A) @™}

= sup { U (A, Any1) @™} =a7'B,. (2.42)

m>n

Thus, (2.41) holds with ¢ = co. Now, let p > 1,0 = p’. We have, taking into account
(1.6), that

o032 [ v ()

m>n()‘m7>\m+1} P
ag 1 ag —mao g
<Y U7 (A A1) / <—d Lg (T)D <Y U7 (A, Agr) a7 = BY;
m>2n m>2n

(Am,00)

HCED SR AW (_d L’;(T)D

m>n+1 p

m

= D ) [a —a M = (1—a) Y T (A A)a ™

m>2n—+1 m>2n+1

=a"(1-a") Y V(A A)a " =a (1-a") By,

m>n+1

and (2.41) follows for p > 1. Thus, (2.41) is established for all p € R,
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Estimates (2.41) and (2.40) imply

(1=a )V, ) SPu<a(l—a) "V, (Anp1), nez (2.43)

We insert these estimates in (2.35) and in (2.36) and (2.37), obtain that, taking into
account

—1/o

(1—a_1)G<F<a(1—a_”) G,

where

G =sup {Vp (Ant1) W, (Any1)} = Fpqs P

nez

1/s
G= {Z Vy asn) W5 ) = W5 (M]} =Fp, P>0

These assertions together with (2.34) yield

& (p,q,a) Fpy < Hy < 1 (p,q, a) Fy. (2.44)

Finally, by (2.23), (2.28), (2.32), and (2.44) we obtain estimate (2.8) which completes
the proof of Theorem 2.1. O
Remark 2.5. By (2.42) it follows in particular, that for p € (0, 1]

Vi, (A\n) = a0 (N A1), m > . (2.45)

The same estimate remains true for p > 1. Indeed, similarly to (2.43), we have for
m=n

o= [ 0w (_d lwﬁlmD

(An,00)

[/\m+1aoo)

>0 o) [ (|

[/\m+1uoo)

3 Some equivalent criteria of the finiteness of Hg (B,) in the
discrete form

In this Section we preserve the notations of Section 2.
Proposition 3.1. Let the conditions of Theorem 2.1 be satisfied and let

Tk 1/s

E,, = Z a " /\I/q (t, Ang2) dvy (t) . (3.1)

neL A,
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Then 3 ) ) 3 ) .

Co (qu + qu) < <E;?q + qu> < (qu + qu) . (3.2)
Corollary 3.2. These assertions together with Theorem 2.1 imply following the two-
sided estimate:

C1 (qu + qu) < Ho, (Bu) <G (qu + qu) (3.3)

Remark 3.3. Inequality (3.3) was proved directly in [5; Theorem 2.1].

To prove Proposition 3.1 we need the following lemma.

Lemma 3.4. For m € N,l € Np,0 < ¢ < s< 00, 0r 0 <qg<oo,s=00 consider
the quantity

1/q7 ¢ 1/s

A=l [ [ v i

neL Pn—t:An+1)

Under notation of Subsection 2.1, the following estimates hold with ¢ = ¢ (a,m,l,p,q) €
R+ .
Ap< A <c (Al,o + qu> : (3.4)

Proof. The left hand side inequality is evident. Let us prove the right—hand-side one.
1. We notice that

1\ (>\n+1, >\n+m) < am+n‘/;) ()\n+1) , 2 2. (35)

(see (2.45)). First, let s = co. It corresponds to the case p < ¢, when [, is determined
by (2.6). In this case

1/q
Ao =swp (o | [0t A 0] |- (3.6)
n An
The equality
\IJ (t, )\n+m) — ql (t, )\n+1) + \I/ ()\n+1, )\n+m) , (37)
together with the triangle inequality in L, imply
Am70 < C <A170 + Am@) s (38)

with ¢ = ¢,, where ¢, =1, g€ [l,00); ¢ =211 g€ (0,1). Here,
1/q

flmo =sup |a "V (Ans1, Arm) /dv (1)

n
An

Now, we apply (3.5), (1.7), and (2.6) and obtain that

Ao < a” 50 [V (hoit) Wy (Arsn)] = @By
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Thus, (3.4) follows in the case | = 0,m > 2.
Next let [,m € N. Then,

! 1/q
l<<zaquAg+m]O> , (3.9)

j=0
Indeed,
/ vl (t /\n+m d’Y Z / \Ijq t )‘n—I—m) d’}/, (310)

=0
[)\nflvA’rH»l) ] An l+j

and

l
" l < Z sup a " / el (t, )\ner) dfy
=0 "

An_iyj

l
= sy [k | WA d | | = 3L,
j=0

j=0 Ap

Now, to each term in (3.9) we apply the already proved variant of estimate (3.4) and
obtain (3.4) in the general case.

2. Let now 0 < ¢ < s < 00, and let F,, be determined by (2.7).

For [ = 0,m > 2 we see by the expression for A,,; that

1/q
Am,O = a " / & (t, )\ner) d’}/ . (311)
AVS

Ls/q
By (3.7), it follows that
W9t M) < €q [V (2 Angr) + 9 (A1, A
where ¢, = 1,¢ € (0,1]; ¢, = 277',¢ > 1. We insert this estimate in (3.11) and,
taking into account the triangle inequality in I,/ (here s > ¢), we obtain that
Ao < 1/!1(14‘{0—1-121 >/q,
where now
1/q
Amo = a "W (g1, Anim) /d'Y

An ls/q

1/s
= {ZCLM\PS ()‘nJrla )\ner) [Wg <)‘n+1) - Wf O‘n)} S/‘I} : (3'12>

neL
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Thus, to prove (3.4) it suffices to show that

Am,() < Cquv C= C<m7p7 q, CL) S R+' (313)

We insert (3.5) in (3.12), and obtain

1/s
Amg < a™ {Z Ve st [W ) = W ()] q} .

nel

Next, we use the following inequality (see (3.24) below; recall that here ¢ < s):

(W2 Ast) = WE D], [WE Asr) = W ()] -

q 9,8 q

Therefore,

1/s
Am,ﬂ < a™cys {Z Vps (Ans1) [W; (Ant1) — W; (/\n)] } . (3.14)

neL

Together with (2.7) this implies (3.13). Estimate (3.4) is proved for [ = 0, m > 2.
Next, let [ > 1. Inequality (3.9) remains true by similar arguments. Namely, we
use equality (3.10) and then the triangle inequality in

1/q
!
Ay = a " / U (t, M) dy
i=0
J An—H—j lS/q
1/q
I
<|2|jem [ veama
]:0 An—l+j ls/q
a/s 1/q

s/q
I

=Y D e / T (t, Ay ) dy

7=0 | nez N

We replace here n by k =n — [+ 7, and have

s/q] v/* Ve

I
Ay < Z ali=ha Z a=* /\I’q (t, Aevmti—j) dy
=0

keZ Ay

l 1/q
i—1
= (Za(] )qAZerlj,O) .
§=0
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To each term we apply the already proved estimate (3.4) with m + [ — j instead of m,
so that

Am+l jO <A10+qu) .

As the result we obtain (3.4) for m € N,l > 1. O
Corollary 3.5. By notation (2.5) and (3.1) we see that

—A207 —Alo

Therefore, according to (3.4) we have,

B < Epy <o (qu + qu> . (3.15)

Remark 3.6. This implies estimates (3.2) thus proving Proposition 3.1.

The following particular cases of Theorem 2.1 are of special interest.

Proposition 3.7. Let, in addition to the hypotheses of Theorem 2.1, V,ow, Le A,
that s

D, = sup[ ( )/V( )} 00, (3.16)

teR4

for a given a > 1. Then,

E), < aDyFy, (3.17)
and, consequently, 3
Ha, (Bu) = g (3.18)
Proof. 1. The condotion (3.16) implies
V() = Vi (w1 (a") < DV (" () = Doy (o). (319)
For p < ¢ we have
1/q
By =swda | [ WAy (o)
A
1/q
<sup § a "W (Ap, Adng1) /dv . (3.20)
n 2
Next, according to (2.45) (with m = n) and (3.19), we have
a "W (A, Any1) < @V, (An) < aDoV, (Ant1) ; (3.21)

and also,
1/q 1/q

[or] <| [ o] =W,

Ap (0,Mn41)
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We insert these inequalities in (3.20) and obtain

Bpy < aDasup {Vy (st Wy (Anir)} = aDaFpg.

Thus, (3.17) is proved for p < gq.
2. Next, let p > q. Then,

1/q]°®

() =% || [wermane

nel A,
1/q]°
g Z ainqj ()‘n7 )\n+1) /d,->, (t)
neL A,
= Z [afns\ps <)‘n7 )\n+1) [qu <)‘n+1) - qu (An)} S/q:| : (322)
neL

Now, we use the following inequality: let 0 < b < d,s > ¢ > 0, then,
(d? — b)Y <L eyy (d° — b°)Y7 (3.23)

where ¢, s € R} does not depend on d and b. We set in it d = W, (A41) ,0 = W, (\,)
and see that

(W8 Asr) = WA < [WE gr) = W2 (Aa)] - (3.24)

q 9,8 q

We substitute inequalities (3.21) and (3.24) in (3.22) and obtain

1/s
ES <c {Z Ve (Ansr) [WE (Angr) = W3 (A)] } = cFy,.
ne”Z
U
Remark 3.8. For the sake of completeness we present here the proof of inequality
(3.23).
If 0 < b<d/2, then d? — b7 = d7 d°* — b* = d°. This yields (3.23). If d/2 < b < d,
then
d—b1=2d (d—-b), d°—-b"=d(d-b),

and therefore, for s > ¢ we have

(d? — bq)l/q o~ J1-1/4 (d— b)l/q — J\-Va (d— b>1/q—1/S (d— b)l/s
< d"Mag Vs (q — b)Y = @tV (d — b)Y (df — be) Y

Proposition 3.9. Let the hypotheses of Theorem 2.1 be satisfied. If for a given
a>1,
bu = inf [W, (w, " (at)) /W, (w, " (1))] > 1, (3.25)

teR4
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then

F,y < cEy,, (3.26)
with )
=0 [a-1) @ -1 -1
and, consequently,
Hg, (B,) = E,,. (3.27)
Proof. From (2.6) and (2.7), we have

1/s
qu < {Z [V;? ()‘n+1) Wq (/\n+1)]8} :

neL

Estimates (2.41) and (2.42) show that

1/c
V;u ()\n+1) < (1 - a'_l)il ¢, @,= (Z prn) S (17 OO} )

m<n

where ¢, were defined in (2.33). Thus,

ak 1/s
Fry < (1=a™) 7 ST { W, (ag) (Z gom) : (3.28)
nez m<n
Let us note that according to (3.25),
Wy, (A1) = 0Wy (M), neZ. (3.29)

Indeed,
Wy (A1) = W (w (a™1) = 8., (w, ' (a™)) = 6. Wy (An) -

P
It means that Proposition 2.3 is applicable to (3.28) with W,, = W, (A\p41), W =6, > 1.
Therefore, we have

1/s
By < o {Z (W, wmr} Cce=ad,flo—1) (6 — 1]

ne’

We substitute here formulas (2.33), and obtain

F,

N

1/s
Ca {Z [a™ "W (N1, Ansz) Wy, (/\n+1)]5} . (3.30)

nez

On the other hand, (3.1) gives

1/q7° 1/s

CUES DNl ToWp Y By

nez A,
1/s

i {Z a7 O ) (W5 i) =W W)”q]s}

nel
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Now, we apply estimate (3.29), and obtain

1/s
Epy>a(l- 5;Q)1/q {Z [a™ DT (N1, Ang2) W, (AM)}S} : (3.31)

nez

Estimates (3.30) and (3.31) imply (3.26). Finally, (3.26) and (3.3) yield (3.27). O
Next, we present one equivalent criterion of the finiteness of Hq, (B,,) in the discrete
form slightly different from (2.8) and (3.3).
For given a > 1 we consider the function

o (t) =w, ' (aw, (1)), t€ Ry (3.32)

This definition is similar to (1.7), but with a > 1 instead of @ € (0, 1), so that &, (t) > t.
We define

V() =T (& (), teR,, (3.33)
1/q7 8 1/s
Epg =19 |a" / Vidy . (3.34)
nez A,

where, as always, s = oo for p < ¢, s = pq/ (p — q) for p > q.
Proposition 3.10. Under the hypotheses of Theorem 2.1 the following estimate

holds )
Hg, (Bu> = pg T qu' (3‘35)
Proof. First, we prove the two-sided estimate
1/q 1/q 1/q
/ V() dy | < / wiy | < / Wt ) dy | . (3.36)
An An A’ﬂ

Let us note that

t€ A, =M, A1) = @ <aw, (1) < a™? = A1 <& (1) < Mgo,s

so that
Wt i) S U (1,6 (8) < (o) (3.37)
and for the integral
v = [vee @ (339)
An An
we obtain inequality (3.36). Therefore, (see (3.34), (2.5), and (3.1))
Epy < &pq < Epg, (3.39)
and . ) . ) )
qu + Fpg < Epg + Fpg < Epg + Fiy. (3‘40)

Together with (3.2) and (3.3) this gives (3.35). O
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Remark 3.11. Introduce the quantities

1/o

V, = (Z (¥ (Am) amr) : (3.41)
m>n

where 0 = 0o for p € (0,1];0 =p' for p > 1,

fog =sup{V,W, (M)}, p<g (3.42)

1/s
foa = {Z Ve [WE (N) — W (An_l)]} . p>q. (3.43)

ne”L

Then,
HQl (Bu) = €~pq + ]qu- (3-44)

Indeed, ¥ (Am) = ¥ (Am, Am+1). Therefore, according to (2.33), (2.37), (2.40), and
(2.41) we have V, (\,) = V,,, so that

foa & Fo, (3.45)

and (3.44) follows by (3.35).

4 The criterion of the finiteness of Hg, (B,) in the continual
form

Here, we prove a particular case of Theorem 1.1 on the cone of decreasing functions
1, see (2.1). All the notation of Sections 1, 2 is preserved here with k (¢) = 1.

Theorem 4.1. Let € N, (1), and let the functions w, and W, be positive and
continuous on Ry, w,( +0) = 0. Then there exists ¢; = c1 (p,q, ) € [1,00) such that

Cfl (qu + qu) < HQI (Bu) <a (qu + qu) : (4~1>

Here, if p,q € [0,00) for a certain 6 € Ry , then 1 < ¢; (p,q, ) < ¢ (6, ) < 0.

- Remark 4.2. Assertions (4.1) remain true for p < q if we replace there E,, by

E,,.
Proof. 1. First, we consider the case p < ¢. Let us show that

Epg < Epg < Hoy (Bu) (4.2)

(see (1.8), (1.24)). The first inequality is obvious. We prove the second one.
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For all p,q € R, we have

1/q 1/q
( f (Buf)q d7> ( f (BMX(O,T))qd'7>

Ry

o (Bu) = ?ggg)l 1/p Z S:i%) 1/p
( / deﬁ) ( / (X(o;))pdﬁ)
Ry Ry
q 1/q
(f ( / x(o,f)du) dry (t))
Ry [t,OO)
= sup
>0 Wp (7)
q 1/q
( il ( il du) dry (t)>
(0,7) [t,T) .
=su =F, (4.3
S o (1) m (43)
This means, in particular, that
Epy < Epy < c [qu + qu] (4.4)

because of estimate (2.8). Later, it will be proved that

02 Epy < Epg, (4.5)
and also ) ) 3
Foy < Fpy<c [qu + qu} . (4.6)
Therefore, for p < g we will have
qu+qu = qu+qu = E;?q+ppq = HQI (Bu) (4-7)

(the last assertion follows by (2.8)).

Thus, Theorem 4.1 for p < q, as well as Remark 4.2 will be proved whenever (4.5)
and (4.6) are established.

Now, we prove estimate (4.5). To this end we fix the parameter of discretisation
a=a"'?>1, where a € (0,1) was introduced in (1.7), (1.8). According to (1.8), we

obtain
1/q

| wenaw

[§a(7),7)

E

1
pq
n TeAn+2 wp (T)

with &, (7) = w, ' (673w, (7). For 7 € Apyg = [Ang2, Anys) we have

wp_l (a_3wp (T)) < w;l (a_?’wp ()\n+3)) = wp_l (a™) = A\,

so that
An - P\m )‘n+1) C [504 (7-) 77-) :
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Therefore,
Wi (t,7)dy(t) > /\I/q (t, \py2) dy (1), T € Apqo, (4.8)
[€a(T),T) A,
and
1/q
B zsw || [0t ad (0] swp ()
n TEAp 12
An
1/q
= sup /‘I/q (t; Ant2) dy (1) a2 | = a—Qqu,
n 2

(see (3.1) with p < g, i.e., with s = c0). This proves (4.5).

The first inequality in (4.6) is evident; see (1.10) and (2.6). The second one was
proved in [5; Sections 3.3, 3.4] by using the same notation as here. Therefore, we obtain
inequalities (4.5) and (4.6) which completes the proof of Theorem 4.1 for p < q.

2. Next, we consider the case p > ¢q. We fix the parameter of discretisation
a=a '3 > 1, where a € (0,1) was introduced in (1.7), (1.9). According to (1.9), we

have
s/q

E;qzz/ / W (¢, 7) dy (1) (—d L}L(T)D (4.9)
"Langs \lea(r)m)

We apply here estimate (4.8) and obtain

s/q
s 1
qu = Z / e (ta )‘n+2) d/y (t) / (_d |:CUS (7_):|)
nez A, Amio p
s/q
=3 g / U9 (t Asa) dy (1) | = (Em) . (4.10)
nez A
This gives the first estimate in
1By < By < ¢ (qu + qu) . (4.11)

Let us prove the second one. Now, formula (1.9) is written otherwise:

s/q

mesf( [ verso] (L)

"CLA, \ [Ea(m)i7)
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For 7 € A, = [A\n, A1) we have U (¢, 7) < U (¢, A\yt1),

o (1) = w5 (a0, (1)) 2 5" (% (M) = 5" (@) = M,

so that
[éa <T> 7T> C [/\n—?)a )‘n—l—l) 5
and
s/q
s 1
Es, < Z/ / U9 (¢, Ay ) dy (—d [ws (T)D
"CLAn \ s Ang) P
s/q
q 1
- Z \Ij (tu )‘n—l-l) d/y —d 5
nez wp (T)
[)\n—37>\vz+l) An
s/q
= Z a " / W (t, Apy1) dy = (A3)".
neZ Doz Ani1)

(in the notation of Lemma 3.4). We apply now Lemma 3.4 with m = 1,1 = 3 and take
into account that qu = Ay 0. Thus, the second estimate in (4.11) is proved.
Now, we need the estimate (4.6) in the case p > ¢. According to (1.11) and (2.7),

we have
Fa= X [Ved (W) = SV ) [ a (9)) = 5,

nEZAn neL A,

This yields the first inequality in (4.6). The proof of the second one in the case p > ¢
is much more complicated. It was obtained in [5; Sections 3.5-3.7] by using the same
notations as here (see [5; (3.14)]):

quéc[qu—i—qu]

Finally, we recall (3.2) and arruve at the second inequality in (4.6).
Inequalities (4.6) and (4.11) imply Theorem 4.1, now for p > g. O
Remark 4.3. Let us note that under the hypotheses of Proposition 3.7, we can
easily justify inequality (4.6) and show that

Ey < Fpy < Doy (4.12)

Indeed, the first inequality in (4.12) is the same as in (4.6). Let us prove the second
one. For p < ¢ we have by (1.10)

Frq = sup sup [V (£) W, (£)] < sup Vy (M) sup W, (1) < sup Vy (A) W, ()

n teEAp tEA,

Now, we apply estimate (3.19) and obtain

Fyg < Do sup Vy (Ang1) Wy (A1) = Doy
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Similarly, for p > ¢, we have by (1.11) and (3.19),

=> / VEdW: <> Ve (A, / dw;

nGZ ne”Z A
n

=D V) W5 Qgn) = W5 ()]

nez

DSZV A1) (W (Masr) = WE (N)] = DEES,,

nel

and (4.12) follows. O

4.2. Next, we present one equivalent criterion of the finiteness of Hg, (B,) in
the continual form slightly different from (4.1). We recall notation (3.32)-(3.34), and
introduce the quantities

1/q

1 /

€pg = SUP | —— Yldy , P
H TeR, | Wp (T) @)
0,7

N

q, (4.13)

S/q 1/5

(T T ——

Theorem 4.4. Under the hypotheses of Theorem 4.1 there exists ca = c2 (p,q,a) €
[1,00) , such that

' (Epg + Fpg) < Hoy (Bu) < 2 (6pg + Fpq) - (4.15)
Proof. 1. Let us establish the following inequality
o (1-a )5, << (1—a™)" (1 —a )5, (4.16)

where as always s = oo for p < ¢ and s = pq/ (p — q) for p > q.
We have R, = JA, =JA,+1, and for p < g (4.13) yields

1/q
1
— B 1q
cw= s || [ v
(0,7)
1/q 1/q
1
> sup / Yy sup = sup / Yidry R
n TEAp+1 Wp (7_) n
(07)\n+1) (0 )\n+1

n

> a ' sup /¢qd7) a | =a'g, (4.17)
An
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On the other hand,

1/q

1
Epg = SUP SUp / Yidy <sup [a™" / Yldy
n TEAn wp (T) n
(077—) (07>"ﬂ+1)
1/q 1/q
= |la™ Z /wqd'y = |supga ™ Z /@qu’y

m<n An m<n A

Now, we apply Proposition 2.3 with W,, = a", 0 = 0o (see (2.12)) to the expression in
the square brackets. Then,

1/q
€pg S |CSUD a_nq/@qu'V = Cl/qépm
n ie
where
W=inf (Wo W) =a?>1, e=(1-WH ' '=(1-a)". (4.18)

Inequalities (4.17) and (4.18) imply (4.16) for p < q.
For p > ¢ we have from (4.14) and (3.34),

s/q

W= [ | [ (_d{wzlm])

nEZA n41 (0,7)

=a*(1-a™) Z ! / Yidry >a (1—a"%) &, (4.19)

(0>)‘n+1 )
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On the other hand, analogous arguments show that

s/q
1
w2 | fro] (l5w)
nGZA w;’ <T)
s/q
. 1
nez p T)
(07>"ﬂ+1) An
s/q
=(1-a7)) — / iy
nek (0.An+1)
Therefore,
s/a a/s 1/q

epg < (1 a_s)l/s Z ﬁ Z /W]CZW

nez m<n A

Now, we apply Proposition 2.3 with W,, = a"?, 0 = s/q > 1 (see (2.12)) to the expres-
sion in square brackets. Then,

a/s] 14
_s\1/s
Epg < (1—a™) / — /z/;qd’y : (4.20)
ez
Here, c is defined by (4.18).
Estimates (4.19) and (4.20) give (4.16) for p > q.
2. We see from estimates (4.6) and (3.38) that
Frg < Fq < 0 (300 + Frg) - (4.21)
Together with (4.16) it gives
Fog+epg = F g+ Epg = Ho, (By).
The last assertion is based on Proposition 3.10. Il

5 Proofs of Theorems 1.1 and 1.2. Some equivalent criteria

5.1 Proof of Theorem 1.1.

1. The proof of Theorem 1.1 for Hg, (B,,) will be obtained by reducing this theorem
to its particular case, Theorem 4.1. We will preserve the abbreviated notation (1.1)—
(1.11) and use also the following full variants of these notation. Namely, denote

Ho, (By) = Ho,, (Buip,q,5,7) (5.1)
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wy (t) =wp, (K, B5t), V(t,7)=V(k pt 1), (5.2)
Vo () = Vo (b, By pst) - We(t) =Wy (1), (5.3)
EPQEEPQ (k76777y')7 quEqu (kvﬁa77u) (54)

For measures 3 and ;. we denote by B, and py the measures on Ry defined by the
formulas

APy (§) = K (§)"dB (&), dpuw (&) = K (£) dp (8) - (5.5)

Let us show that the following relations hold, which allows one to reduce the problems
formulated on the cone €2, to the cone of decreasing functions €2;:

Ho, (Buip,q,8,7) = Ho, (B0, 4, Brp,Y) (5.6)
qu (k7677 ,u) PCI( 61610777 ,uk) (57)
Fpq (K, 8,7, 1) = Fq (1, Brp, vs ) (5.8)
B €N, (k)< B Ny(1). (5.9)
We have (see (1.2) and (1.4))

fe & f=kppe; frdB = | ©PdBy; (5.10)

Jree]
(Buf) ()= [ hdn = (Bu) (1) (5.11)

[t,00)
Substituting these formulas in (5.1), (1.1) we obtain (5.6). Similarly (see (1.4)—(1.6),
and (5.2)—(5.4)
wp(kaﬁa ) _wp( /ka, )7 \I’(k%%tﬂ') :\I](lnuk;t’T>7 (512)

‘/p(k7ﬁ>ﬂ;t) :%<1vﬁkp’Uk;t)' (513)

This implies equalities (5.7)-(5.9).
2. Now, suppose that the hypotheses of Theorem 1.1 are satisfied. Then the
hypotheses of Theorem 4.1 are satisfied for Hq, (By,:p, q, Bkp, ) and we obtain

HQ1 (Bukapa q, ﬂkpa ’7) = qu (17 ﬁkpa e ,uk) + qu (17 ﬁkpa e ,uk) (514)
with constants independent of measures [,, v, . We substitute formulas (5.6)-(5.8)
into (5.14) and obtain estimate (1.13). O

5.2. Proof of Theorem 1.2.
It can be reduced to Theorem 1.1. For a Borel set e € R, = (0, 00) we denote

t={teR,:t"ee}, (5.15)
and introduce the measures B .7, it by the formulas

Ble)=p(")a =) ile)=ple). (5.16)
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Then, for each Borel function f on R, we have
[r©di= [ 1 (5.17)

Similar formulas hold for the measures 7 and p. Note that,
feMeot)=fF") eUkt)=m (). (5.18)

Next (see (1.3) and (5.17)),

A O = [ rin= [ edi= B (). (5.19)
(0,¢] [t—1,00)
Therefore,
[uprar = [ aras, [ pas= [ ois (5.20)
R, Ry R, Ry

Hence (see (1.1)-(1.3)),
Hom (Aw;p,q, B,7) = Ho, (Bﬂ;p,qﬂﬁ) : (5.21)

where k (t) = m (t~1). Moreover, (5.17) implies the equivalence: 3 € N, (m) < ( €
N, (k). Thus, we can apply Theorem 1.1 to the right-hand side of (5.21) and obtain

Hﬂk (Bﬂ7p7 q, Ba P?) = qu (ka Bv ;5/7 ﬁ) + qu <ka B? 5/’ /1) . (522)
Recall notation (1.4)—(1.11) and the detailed version (5.1)—(5.4) and note that these
quantities can now be rewritten by using (5.17) as
1/p 1/p

Wp (k‘, B:; 7') = / mP (5_1) dj = / mPds =W, (7'_1) ;o (5.23)

(0,7) (7=1,00)

(see notation (1.14)-(1.17))

U (k, it 7) = / m (€ dji = / mdu = (r 1), (5.24)

[t,7) (r=1t=1]

so that 3
) = (k3 7) = V0 (1) 529

p
Indeed, when p € (0, 1], relations (1.5), (5.23), and (5.24) imply

Vo (ke Buiet) = sp [2 0] Bt

_ = Sup
TE(t,00) Wp (7- 1) |:

T€(0,t—1)
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which yields according to (1.15), equality (5.25). Similarly, for p > 1, we obtain (5.25)
by using (1.6), (5.23), and (5.24). Then (see (1.7) and (1.17)), we have

1/q 1/q
W, (7,t) = /d& = / dy =W, (t™). (5.26)
(0,t) (t=1,00)

Therefore, for p < ¢ we obtain from (1.10) and (1.20) that

i (k3.3 1) = sup [V, () W, (5,8)) = sup [V () W, (£71)] = E9).

teR teR

Similarly, from (1.11) and (1.21) we conclude that such equality holds for p > ¢. Thus,
for all p, g the equality

Foq (k. 5.5.1) = FLY, (5.27)
holds.

Now, we have,

/ W (k, fi;t,7) dy (t) = / 9 (7t dA (t)
[§a(T)7) [€a(T)7)
_ / B0 (r t) dy (). (5.28)
(r71,1/8a(7)]
Therefore, for p < ¢, we obtain by (1.8) and (5.23) that

1/q

Ep (k. 8,7, 12) = sup “(k, ist, ) d7 (t)
TER, [€

1/q

- 9 (771, t) dy (1) . (5.29)
(v 1, 1/5a ()]

= Sup
TER

Let us note that

o (T) = 1/¢o (77 (5.30)

Indeed, it follows by (5.23) that w,* (t) = 1/uf1 t), therefore,
7)) =

L/@, " (aw, (7))

and (5.30) follows. Now, we substitute (5.30) into (5.29) and obtain

& (T) = w, ! (aw, (1)) = 1/, (aw, (7

1/q

Ey, (k,ﬁ,i ﬂ) = sup ; / o1 (T_l,t) d (t)
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Together with (1.18), this proves the equality

for p < ¢. Similarly, from (1.9), (5.28), and (5.30) we obtain for p > ¢

Epq (. 3.7.1)

STANY AR EC NSl E=)

Ry \ (r7ca(r™h)]

Together with (1.19), this proves the equality (5.31) for p > g.

Finally, we substitute (5.27) and (5.31) into (5.22) and obtain, taking into account
(5.21), the needed estimate (1.23). O

5.3. Equivalent criterion for the finiteness of Hg, (B,).

Here we establish the general variant of Theorem 4.4 on the cone ;. We preserve
the notation (3.32)-(3.34), and (4.13), (4.14), but emphasize that now, unlike to Sec-
tions 24, is assumed that in (1.4)—(1.7) k& means a general positive continuous function
not necessary equal to 1.

Theorem 5.1. Let the hypotheses of Theorem 1.1 be satisfied. Then, there exists
co = ¢o (p,q,a) € [1,00) such that

061 (epq + Fpq) < Hoy (By) < co(Epg + Fpg) - (5.32)

Proof. The scheme of the proof is essentially the same as in Subsection 5.1. As in
(5.1)-(5.4) we use the following full variant of notation (4.13), (4.14)

Epg = Epqg (K, 8,7, 11) - (5.33)

The reduction of the problem initially formulated on the cone € to the cone ; is
realized by assertions (5.6)-(5.9), and by the similar equality for ¢,,, namely

5pq (k) 67 s /1“) - 61711 (17 ﬁkpa v, N/k) . (534)

Now, if the hypotheses of Theorem 1.1 are satisfied, then the hypotheses of Theorem
4.4 (the same as in Theorem 4.1) are satisfied too, and we obtain by (4.15) that

HQ1 (Buk;pa Qa ﬁkpa '7) = qu (L ﬁkpa /77 :uk’) + qu <1a ﬁkpy ’% /’Lk’) . (535)

Now, we substitute formulas (5.6)—(5.8), and (5.34) in (5.35) and obtain (5.32). O
5.4. Equivalent criterion for the boundedness of Hom (4,) .
We preserve the notation (1.14)-(1.17), and (1.20)—(1.22), but now we consider the
function
(7)) =, " (aw, (7)), T€ Ry, (5.36)

in (1.17), where a > 1 is the same as in (3.32). This implies that ¢, (7) < 7.
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Define,
() =P (w(t),t), teRy; (5.37)
1/q
O = sup | — / pldy| | p<g (5.38)
TERy | Wp (T)
(1,00)
s/a
0) _ g 1
Epd = oldry d|— @ P> q. (5.39)
P

Ry (1,00)

Theorem 5.2. Let the hypotheses of Theorem 1.2 be satisfied. Then,
eyt (51(3%) + FISS)) < Hom (A,) < ¢ (81(02) + Fég)) : (5.40)

with ¢ € [1,00) the same as in Theorem 5.1.
Proof. Theorem 5.2 is reduced to Theorem 5.1 similarly to how Theorem 1.2 was
reduced to Theorem 1.1. We have assertions (5.15)- (5.21), so that

To estimate Hq, (Bp; D, q, B, ’y) we apply Theorem 5.1 in corresponding notations, and

obtain

Hk<Buap7QB7>—5pq(kﬂ% >+qu<k6% ) (5-42)
For the second term in (5.42), equality (5.27) holds. Thus, our aim is to prove that

&qu (kv 57 :5/7 ﬂ) = 8;?1) (543)
For p < ¢ we have by (4.13)
1/q
pa (K2 3,7,71) = sup /wq i ) 5 (1)
TERY wp k: , 5; 7'

According to (5.23) and (5.17), this equality yields

1/q
qu <k7ﬁ~7ﬁ/7ﬁ) = Sup — 1 / wq (k?:avt_l) dﬁ)/ (t)
TERL wp (771)
(771,00)
1/q

1

= su Tk, st dy (¢ . (.44

bt e /@b( it dy (t) (5.44)

(7,00)
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Let us note that
(it = (), teR,. (5.45)
Indeed, according to (5.24)

1
(ke t™) =W (k,ast & (1)) =@ (—_1t> :
€ (171)
Now, we apply equalities (5.30), and (5.37), and obtain (5.45).
By (5.45) and (5.44), it follows that (5.43) holds for p < ¢. Similarly, (5.43) may
be established for p > ¢q. Namely, as well as in (5.44), we have by (4.14),

po (.59 71) = / /W(’ﬁﬁ;t‘l)dv(t) (—d[—;(il)b

Ry \ (771,00)

1/s

We apply here (5.45), and obtain,

w(rina) =S [ [ eono| (-i]at=])

Ry \ (771,00)

This equality together with (5.39) yields (5.43) for p > g.
Finally, we substitute (5.43) in (5.42), and in (5.41); therefore, (5.40) follows. [
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