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Abstract. In this paper we study multiple trigonometric series with lacunary-
monotone coefficients. We obtain necessary and sufficient conditions for the sum of
such series to belong to Lp, 1 < p 6 ∞ and the generalized Lipschitz spaces (Nikol’skii
spaces).

1 Introduction

It is well known that trigonometric Fourier series

a0

2
+

∞∑
n=1

(an cosnx+ bn sinnx) (1.1)

with special conditions on coefficients {an} and {bn} possess many important proper-
ties. Such condition are, for example, monotonicity and lacunarity. In particular, for
the series with monotone or lacunary coefficients the following problems can be solved
completely: to find necessary and sufficient conditions on the Fourier coefficients for
the sum of series to belong to the space Lp, 1 < p 6 ∞, or to describe smoothness
properties of the sum of series in terms of behavior of coefficients. Both problems are of
great importance in Fourier analysis since the solution provides, e.g., an instrument to
deal with functions with ”limiting“ smoothness properties (see, e.g., [13], [17]). Surveys
on series with monotone or lacunary coefficients can be found in, e.g., [4] and [7].

Let the sequences {an} and {bn} be monotone (briefly {an}, {bn} ∈M), then series
(1.1) converges uniformly if and only if ([1, Ch. V, §30], [19, V, (1.3)])

∞∑
n=1

an <∞, lim
n→∞

nbn = 0. (1.2)

Moreover, in this case for the sum f of series (1.1) Lorentz proved ([1, Ch. X, §9], [9])
that

f ∈ Lip α ⇐⇒ an, bn = O
( 1

nα+1

)
, 0 < α < 1 (1.3)
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Here, the Lipschitz space Lip α := Lip (α,∞) is defined by

Lip (α, p) = {f ∈ Lp : ω(f, δ)p = O (δα)} , 0 < α 6 1,

where ω(f, δ)p is the modulus of continuity of f in Lp, i.e.,

ω(f, δ)p = sup
|h|6δ

‖∆hf(·)‖p, ∆hf(x) = f(x+ h)− f(x).

Let m = {mk} be a lacunary sequence of natural members, that is, satisfying the
condition λ = inf mk+1

mk
> 1 (λ is the degree of lacunarity), briefly {mk} ∈ Λ.

If the sequences {an} and {bn} are lacunary in the sense of Hadamard, i.e.,

an = 0, bn = 0 if n /∈ {mk}, where {mk} ∈ Λ

(briefly {an}, {bn} ∈ Λ̃), then series (1.1) converges uniformly if and only if ([1, Ch.
XI, §6])

∞∑
n=1

|an|+ |bn| <∞. (1.4)

Moreover ([1, Ch. XI, §6], [9]), we have

f ∈ Lip α ⇐⇒ an, bn = O
( 1

nα

)
, 0 < α < 1. (1.5)

The following two theorems (Hardy-Littlewood, Zygmund, and Konushkov, see [1,
Ch. X, §3 and Ch. XI, §6], [8], and [19, Ch. V, formula (8.20)]) generalize the above
results for the case Lp, 1 < p <∞.

Theorem A. Let series (1.1) be the Fourier series of an integrable function f and
{an}, {bn} ∈M . Then the necessary necessary and sufficient condition for f to belong
to Lp, 1 < p <∞, is

∞∑
k=1

(apk + bpk)k
p−2 <∞. (1.6)

Moreover,

f ∈ Lip (α, p) ⇐⇒ an, bn = O
(
n−α+1/p−1

)
, 0 < α < 1. (1.7)

Note that condition (1.6) is equivalent (see Lemma 2.3 below) to the following
condition

∞∑
r=1

r−p−2

(
r∑

k=1

k(ak + bk)

)p

<∞;

see also [5].
The counterpart for series with lacunary coefficients looks as follows.
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Theorem B. Let series (1.1) be the Fourier series of integrable function f and {an},
{bn} ∈ Λ̃. Then the necessary and sufficient condition for f to belong to Lp, 1 < p <∞,
is

∞∑
k=1

(a2
k + b2k) <∞. (1.8)

Moreover,

f ∈ Lip (α, p) ⇐⇒ an, bn = O
(
n−α

)
, 0 < α < 1. (1.9)

Analogues of Theorems A and B for multiple series were investigated when coeffi-
cients are monotone-type (see, e.g., [6]) or lacunary (see, e.g., [3]).

In this paper we study the following double trigonometric series

∞∑
k=0

∞∑
n=0

ak,nψmk
(x)ψn(y), (1.10)

where ψk(x) are cos kx, or sin kx, or eikx for every k. Here the sequence {mk} is lacunary
and for any fixed k the sequence ak,n is decreasing (non-increasing) with respect to n,
i.e., ak,n > ak,n+1, n ∈ N.

The paper is organized as follows. In Section 2 several auxiliary lemmas are given.
In Section 3 we study conditions for the sum of lacunary-monotone series to be in Lp,
1 < p < ∞. Note that if f ∈ Lp(T2) and 1 < p < ∞, then from [14] it follows that
for any (partial or full) function f̃ conjugate to f (see, e.g., [18, Part 2, Ch.I]) we
have f̃ ∈ Lp(T2). Then, considering trigonometric series (1.10) for any choice of ψk it
suffices to study, for example, sine-sine series (ψk ≡ sin kx). In particular, we prove
the following analogue of Theorems A and B.

Theorem 1.1. Let 1 < p < ∞ and let series (1.10) be the Fourier series of an
integrable on T2 function f such that {mk} ∈ Λ and for any fixed k the sequence ak,n
is convex with respect to n. Then the necessary and sufficient condition for f to belong
to Lp(T2) is

∞∑
r=1

r−p−2

 ∞∑
k=1

(
r∑

n=1

nak,n

)2


p
2

<∞.

In Sections 4 and 5 we obtain Lorentz-Konushkov type results on smoothness prop-
erties of the sums of lacunary-monotone series in Lp(T2) for the case 1 < p < ∞ and
for the case p = ∞. In particular, we prove

Theorem 1.2. Let 1 < p < ∞ and let series (1.10) be the Fourier series of an
integrable on T2 function f such that {mk} ∈ Λ and for any fixed k the sequence ak,n
is decreasing with respect to n. Then the necessary and sufficient condition for f to
satisfy the (α1, α2)-Lipschitz condition, that is,

sup
|t1|6δ1
|t2|6δ2

∥∥∥f(x+ t1, y + t2)− f(x+ t1, y)− f(x, y + t2) + f(x, y)
∥∥∥
Lp(T2)

= O
(
δα1
1 δα2

2

)
,
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where 0 < α1, α2 < 1, is
ak,n = O

(
m−α1
k n−α2+1/p−1

)
.

Throughout this paper, we denote by C,Ci, c positive constants that may be differ-
ent on different occasions.

2 Auxiliary results

Lemma 2.1. [11] Let {an}∞n=1 be a monotonic null-sequence,

SN(x) =
N∑
n=1

an sinnx

for N = 1, 2, ... and x ∈ (0, π), and

α(x) = x

[π
x
]∑

n=1

nan.

Then for all N one has

|SN(x)| 6 α(x), x ∈ (0, π). (2.1)

Lemma 2.2. [11, 15] Let a null-sequence {an}∞n=1 be convex, i.e.,

∆2an = an − 2an+1 + an+2 > 0

for n = 1, 2, ..., and

f(x) =
∞∑
n=1

an sinnx.

Then for a positive constant C > 0 and all x ∈ (0, 3π
4

) one has

f(x) > Cα(x). (2.2)

The next result is a simple corollary of Hardy’s inequality (see, e.g., [1, Add, §22]).

Lemma 2.3. Let {an}∞n=1 be a monotonic null-sequence and 1 < p < ∞. Then there
exist positive constants C1(p) and C2(p) such that

C1(p)
∞∑
n=1

apnn
p−2 6

∞∑
r=1

r−p−2

(
r∑

n=1

nan

)p

6 C2(p)
∞∑
n=1

apnn
p−2.

Proof. We have

∞∑
r=1

r−p−2

(
r∑

n=1

nan

)p

>
∞∑
r=1

r−p−2apr

(
r(r + 1)

2

)p
>

1

2p

∞∑
r=1

aprr
p−2.
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On the other hand,
∞∑
r=1

r−p−2

(
r∑

n=1

nan

)p

6
∞∑
r=1

r−p−2rp−1

r∑
n=1

npapn

=
∞∑
n=1

apnn
p

∞∑
r=n

r−3 6
3

2

∞∑
n=1

apnn
p−2.

3 Lp-integrability of lacunary-monotone series, 1 < p <∞

As was mentioned in Introduction, it suffices to investigate the series
∞∑
k=1

∞∑
n=1

ak,n sinmkx sinny. (3.1)

Theorem 3.1. Let 1 < p < ∞ and let series (3.1) be such that m = {mk} ∈ Λ and
for any fixed k the sequence ak,n is decreasing with respect to n. If

∞∑
r=1

r−p−2

 ∞∑
k=1

(
r∑

n=1

nak,n

)2


p
2

<∞. (3.2)

then series (3.1) is the Fourier series of a function f ∈ Lp(T2).

Proof. Note that condition (3.2) and Lemma 2.3 imply
∞∑
n=1

apk,nn
p−2 <∞

for k = 1, 2, .... Therefore, by Theorem A,

fk(y) =
∞∑
n=1

ak,n sinny ∈ Lp(T).

Hence for any fixed k0 the series

k0∑
k=1

∞∑
n=1

ak,n sinmkx sinny

is the Fourier series of a function f(k0, x, y) ∈ Lp(T2) and therefore this series square
converges to f(k0, x, y) in Lp(T2).

Further, for fixed ε > 0, we choose (see (3.2)) an integer k0 such that

∞∑
r=1

r−p−2

 ∞∑
k=k0+1

(
r∑

n=1

nak,n

)2


p
2

< ε. (3.3)



36 M.I. Dyachenko, S. Tikhonov

Considering the series
∞∑

k=k0+1

∞∑
n=1

ak,n sinmkx sinny,

let us denote by SN(x, y) for N = 1, 2, ... its square partial sums. Denote also k(N) :=
max{k : mk 6 N}, where we will consider sufficiently large N so that k(N) > k0.

Assuming first that 2 6 p <∞ and using Zygmind’s theorem ([1, Ch. XI]), Lemma
2.1 and (3.2), we have

‖SN(x, y)‖pp =

π∫
0

 π∫
0

|SN(x, y)|pdx

 dy

6 C(m, p)

π∫
0

 k(N)∑
k=k0+1

(
N∑
n=1

ak,n sinny

)2


p
2

dy

6 C(m, p)

π∫
0

 ∞∑
k=k0+1

y [π
y
]∑

n=1

nak,n

2


p
2

dy

= C(m, p)
∞∑
r=1

π
r∫

π
r+1

 ∞∑
k=k0+1

(
y

r∑
n=1

nak,n

)2


p
2

dy

6 C(m, p)
∞∑
r=1

r−p−2

 ∞∑
k=k0+1

(
r∑

n=1

nak,n

)2


p
2

< C(m, p) ε. (3.4)

Since the function f(k0, x, y) belongs to Lp(T2), by (3.4), the sequence of the square
partial sums of series (3.1) is a Cauchy sequence in Lp(T2). Then it converges to a
function in Lp(T2) and (3.1) is the Fourier series of this function.

If 1 < p < 2, then to estimate ‖SN(x, y)‖pp, we first apply Hölder’s inequality

‖SN(x, y)‖pp =

π∫
0

 π∫
0

|SN(x, y)|pdx

 dy 6 C(p)

π∫
0

 π∫
0

|SN(x, y)|2dx


p
2

dy,

and then repeat the previous calculations.

Theorem 3.2. Let 1 < p < ∞ and series (3.1) be the Fourier series of a function
f ∈ Lp(T2) such that m = {mk} ∈ Λ and for any fixed k the sequence {ak,n} is convex
with respect to n. Then

∞∑
r=1

r−p−2

 ∞∑
k=1

(
r∑

n=1

nak,n

)2


p
2

<∞.
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Proof. If 2 6 p <∞, then (see Lemma 2.2)

π∫
0

π∫
0

|f(x, y)|pdxdy > C(p)

π∫
0

 π∫
0

|f(x, y)|2dx


p
2

dy

= C(p)

π∫
0

 ∞∑
k=1

∣∣∣∣∣
∞∑
n=1

ak,n sinny

∣∣∣∣∣
2


p
2

dy

> C(p)

π∫
0

yp

 ∞∑
k=1

∣∣∣∣∣∣
[π
y
]∑

n=1

nak,n

∣∣∣∣∣∣
2


p
2

dy (3.5)

> C(p)
∞∑
r=1

r−p−2

 ∞∑
k=1

(
r∑

n=1

nak,n

)2


p
2

. (3.6)

If 1 < p < 2, then it is known that any function g ∈ Lp(T), with the Fourier series

∞∑
k=1

bk sinmkx,

should be a square integrable function. Moreover, there exists a constant C =
C(m, p) > 0 such that ‖g‖2 6 C‖g‖p. Then

π∫
0

π∫
0

|f(x, y)|pdxdy > C(m, p)

π∫
0

 π∫
0

|f(x, y)|2dx


p
2

dy.

To finish the proof, we use estimates (3.5) and (3.6).

Open question. Find necessary and sufficient conditions for the sum of series (1.10)
to belong to the space Lp(T2), 1 < p <∞, in terms of coefficients {ak,n} in the case in
which {mk} ∈ Λ and {ak,n}n ∈M for any fixed k ({ak,n}n is not necessary convex).

In connection with this question we give the following theorem on necessary condi-
tions for the sum of series (1.10) to be in Lp(T2).

Theorem 3.3. Let 1 < p <∞ and let series (3.1) be the Fourier series of a function
f ∈ Lp(T2) such that {mk} ∈ Λ and {ak,n}n ∈M for any fixed k. Then

∞∑
r=1

r−p−2

 ∞∑
k=1

(
r∑

n=1

n2(ak,n − ak,n+1)

)2


p
2

<∞. (3.7)

Proof. Consider the function

h(x, y) =
1

2
(f(x, y) + f(x, π − y)) ∈ Lp(T2)
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and its Fourier series
∞∑
k=1

∞∑
n=1

ak,2n−1 sinmkx sin(2n− 1)y.

The rest of the proof follows the same lines as the proof of Theorem 3.2 but using the
next result (Lemma 3.1) instead of Lemma 2.2.

Lemma 3.1. Let {an}∞n=1 be a monotonic null-sequence and

h(y) =
∞∑
n=1

a2n−1 sin(2n− 1)y.

Then there exists a constant C > 0 such that for any y ∈ (0, π
2
) one has

h(y) > Cy

[π
y
]∑

k=1

k2∆ak.

Proof. Denote for k = 1, 2, ... and y ∈ (0, π
2
),

Ek(y) = sin y + sin 3y + ...+ sin(2k − 1)y =
sin2 ky

sin y
> 0.

Hence,

h(y) =
∞∑
k=1

(a2k−1 − a2k+1)Ek(y) > y

[ π
2y

]∑
k=1

4

π2
(a2k−1 − a2k+1)k

2

> C y

[π
y
]∑

k=1

k2∆ak.

Example 1. Let 1 < p <∞ and α = 1− 1
p
+ ε, ε ∈ R. First, we consider series (1.10)

with coefficients a(1)
k,n = (k (n+ 1))−α. Then this series can be written as

f1(x) =
( ∞∑
k=0

1

kα
ψmk

(x)
)( ∞∑

n=0

1

nα
ψn(y)

)
,

and, by Theorems A and B,

f1 ∈ Lp(T2) ⇐⇒ ε > max
{

0,
1

p
− 1

2

}
.

On the other hand, denoting the sum of series (1.10) with coefficients a(2)
k,n = (k + n)−α

by f2, we have

f2 ∈ Lp(T2) ⇐⇒ ε >
1

2
. (3.8)
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Proof. To prove (3.8), let first ε > 1/2. Then

Ir :=

 ∞∑
k=1

(
r∑

n=1

na
(2)
k,n

)2


p
2

6 C(p, α)

 r∑
k=1

(
r∑

n=1

n1−α

)2


p
2

+ C(p, α)

 ∞∑
k=r+1

k−2α

(
r∑

n=1

n

)2


p
2

6 C(p, α)

(
r∑

n=1

n1−α

)p

rp/2 + C(p, α)r5p/2−αp,

since α > 1/2 + 1 − 1/p > 1/2. Further, if α < 2, then Ir 6 C(p, α)r5p/2−αp and if
α > 2, then Ir 6 C(p, α)rp/2 lnp(2r). Now it is easy to see that for ε > 1

2

∞∑
r=1

r−p−2Ir 6 C(p, α)
∞∑
r=1

r−p−2(r5p/2−αp + rp/2 lnp(2r)) <∞

and therefore Theorem 3.1 yields that f2 ∈ Lp(T2).
Conversely, if f2 ∈ Lp(T2), then, by Theorem 3.3, condition (3.7) holds. Then

∞ >
∞∑
r=1

r−p−2

 2r∑
k=r

 r∑
n=[r/2]

n2(a
(2)
k,n − a

(2)
k,n+1)

2
p
2

> C(p, α)
∞∑
r=1

r−p−2

 2r∑
k=r

 r∑
n=[r/2]

n2

(k + n+ 1)α+1

2
p
2

> C(p, α)
∞∑
r=1

r
3p
2
−αp−2,

which converges only if ε > 1
2
.

4 Smoothness properties of lacunary-monotone series
in Lp, 1 < p <∞

Denote by ωα1,α2(f ; δ1, δ2)p the mixed modulus of smoothness of a function f ∈ Lp(T2)
of orders α1 ∈ N and α2 ∈ N with respect to the variables x, y respectively, i.e.,

ωα1,α2(f ; δ1, δ2)p = sup
|h1|6δ1
|h2|6δ2

‖∆α1
h1

(∆α2
h2

(f))‖p. (4.1)

Here, the difference of order α1 > 0 with respect to the variable x and the difference
of order α2 > 0 with respect to the variable y are defined as follows:

∆α1
h1

(f) =

α1∑
k1=0

(−1)k1
(
α1

k1

)
f(x+ (α1 − k1)h1, y)



40 M.I. Dyachenko, S. Tikhonov

and

∆α2
h2

(f) =

α2∑
k2=0

(−1)k2
(
α2

k2

)
f(x, y + (α2 − k2)h2),

where, as usual,(
α

ν

)
=
α(α− 1) · · · (α− ν + 1)

ν!
for ν > 1 and

(
α

ν

)
=

{
α, for ν = 1
1, for ν = 0

.

We say that a function ω(t) is of class mβ (β > 0) if ω is continuous on [0, 2] and
satisfies the following conditions

0 = ω(0) 6 ω(µ) 6 ω(δ) for 0 6 µ 6 δ 6 1,

ω(µ)µ−β > ω(δ)δ−β for 0 < µ 6 δ 6 1.

Next, a function Ω(t1, t2) is of class Mα1,α2 (α1 > 0, α2 > 0) if Ω is continuous and
nonnegative on [0, 2]2 and satisfies Ω(·, δ2) ∈ mα1 for any fixed δ2 and Ω(δ1, ·) ∈ mα2

for any fixed δ1.
Also, a continuous nonnegative on [0, 2]2 function Ω(t1, t2) satisfies the two-

dimensional Bary-Stechkin conditions (briefly Ω ∈ BSα1,α2) if

u1∫
0

u2∫
0

Ω(t1, t2)
dt1
t1

dt2
t2

= O(Ω(u1, u2)),

uα1
1

2∫
u1

u2∫
0

Ω(t1, t2)

tα1
1

dt1
t1

dt2
t2

= O(Ω(u1, u2)),

(4.2)

and

uα2
2

u1∫
0

2∫
u2

Ω(t1, t2)

tα2
2

dt1
t1

dt2
t2

= O(Ω(u1, u2)),

uα1
1 u

α2
2

2∫
u1

2∫
u2

Ω(t1, t2)

tα1
1 t

α2
2

dt1
t1

dt2
t2

= O(Ω(u1, u2))

(4.3)

as u1, u2 → 0+.
We will use some notations in the two-dimensional case. Let L0

p(T2) (1 < p <∞)
be the collection of all functions f ∈ Lp(T2) such that

π∫
−π

f(x, y)dx = 0 for almost every y

and
π∫

−π

f(x, y)dy = 0 for almost every x.
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Let us define the Nikol’skii classes of functions with dominating mixed modulus
of smoothness. Denote by Hα1,α2

p (Ω) the Nikol’skii class, i.e., the set of functions
f ∈ L0

p(T2) such that

ωα1,α2

(
f ; δ1, δ2

)
p

6 C Ω(δ1, δ2),

where 1 6 p 6 ∞, α1 > 0, α2 > 0 and Ω ∈Mα1,α2 .
Note that any function f ∈ Lp(T2) can be represented as

f(x, y) = F (x, y) + φ(x) + ψ(y) + C, where F ∈ L0
p(T2).

This relation holds, for example, if

φ(x) =
1

2π

∫ π

−π
f(x, y) dy, ψ(y) =

1

2π

∫ π

−π
f(x, y) dx,

C = − 1

4π2

∫ π

−π

∫ π

−π
f(x, y) dxdy,

F (x, y) = f(x, y)− φ(x)− ψ(y)− C.

Since ωα1,α2(f ; δ1, δ2)p = ωα1,α2(F ; δ1, δ2)p, below we will assume that f ∈ L0
p(T2).

We will also use the following notation. Denote the partial sums of the Fourier
series of a function f ∈ Lp(T2) as

Sn,∞(f) =
1

π

π∫
−π

f(x+ t, y)Dn(t) dt, S∞,m(f) =
1

π

π∫
−π

f(x, y + t)Dm(t) dt,

Sn,m(f) =
1

π2

π∫
−π

π∫
−π

f(x+ t1, y + t2)Dn(t1)Dm(t2) dt1dt2,

where Dm is the Dirichlet kernel, i.e., Dm(x) =
sin(m+ 1

2
)x

2 sinx/2
.

As means of approximating a function f ∈ L0
p(T2) we use the best approximations

by two-dimensional angles (see [12]):

Yn1,n2(f)p = inf
Tn1,∞
T∞,n2

‖f − Tn1,∞ − T∞,n2‖p,

where the function Tn1,∞(x, y) is a trigonometric polynomial of order at most n1 in x,
and the function T∞,n2(x, y) is a trigonometric polynomial of order at most n2 in y.

Lemma 4.1. [12] If f ∈ L0
p(T2), 1 < p <∞, then

Yn1,n2(f)p �
∥∥∥f − (Sn1,∞(f) + S∞,n2(f)− Sn1,n2(f)

)∥∥∥
p
.
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Lemma 4.2. [12] If f ∈ L0
p(T2), 1 < p <∞, α1, α2 ∈ N, then

Yn1,n2(f)p 6 Cωα1,α2

(
f ;

1

n1

,
1

n2

)
p

6
C

nα1
1 n

α2
2

n1∑
k1=1

n2∑
k2=1

kα1−1
1 kα2−1

2 Yk1,k2(f)p.

Let, for α > 0, BSα denote the class of all function ω continuous on [0, 2] for which

u∫
0

ω(t)
dt

t
= O(ω(u)), uα

1∫
u

ω(t)

tα
dt

t
= O(ω(u)) as u→ 0.

Lemma 4.3. Let a function Ω defined on [0, 2]2 be such that Ω ∈ Mα1,α2 ∩ BSα1,α2,
where α1, α2 > 0. Then

(A) For any fixed t1 the function Ω(t1, ·) ∈ BSα2 and for any fixed t2 the function
Ω(·, t2) ∈ BSα1.

(B) There exists ε > 0 such that, for any t1, x−εΩ(t1, x) 6 C y−εΩ(t1, y) for any
x 6 y. Similarly, there exists ε > 0 such that, for any t2, x−εΩ(x, t2) 6 C y−εΩ(y, t2)
for any x 6 y.

(C)
Ω(2t1, t2) 6 CΩ(t1, t2) and Ω(t1, 2t2) 6 CΩ(t1, t2).

(D) If the sequence {mk} is lacunary, then for any positive β

∞∑
k=r

Ωβ(m−1
k , l−1) 6 C Ωβ(m−1

r , l−1),
∞∑
l=n

Ωβ(m−1
k , l−1)

l
6 C Ωβ(m−1

k , n−1).

Proof. Proof of part (A) follows immediately by conditions (4.2)-(4.3). Indeed, condi-
tions (4.2) and Ω ∈Mα1,α2 yield (for any fixed u2)

u1∫
0

Ω(t1, u2)
dt1
t1

6 C

u1∫
0

u2∫
u2/2

Ω(t1, t2)
dt1
t1

dt2
t2

6 CΩ(u1, u2)

and

uα1
1

2∫
u1

Ω(t1, u2)

tα1
1

dt1
t1

6 Cuα1
1

2∫
u1

u2∫
u2/2

Ω(t1, t2)

tα1
1

dt1
t1

dt2
t2

6 CΩ(u1, u2),

i.e., Ω(·, t2) ∈ BSα1 . Similarly, conditions (4.3) and Ω ∈Mα1,α2 give Ω(t1, ·) ∈ BSα2 .
Further, inequalities of parts (B) and (C) immediately follow by (A) and [2]. Finally,

(D) follows by (B). For example,

∞∑
k=r

Ωβ(m−1
k , l−1) 6 C mεβ

r Ωβ(m−1
r , l−1)

∞∑
k=r

m−εβ
k 6 C Ωβ(m−1

r , l−1),

where the inequality
∞∑
k=r

m−εβ
k 6 C m−εβ

r (for any fixed β > 0) holds because of lacu-

narity of the sequence {mk} (see also [16, Cor. 4.10]).
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Lemma 4.4. [10, 1.5.2] Let the series

∞∑
s1=1

∞∑
s2=1

as1,s2 sin s1x sin s2y

be the Fourier series of a function f ∈ L0
p(T2), 1 < p <∞. Let {nk} ∈ Λ . Then

‖f‖p �

 ∫
T2

[
∞∑
k1=0

∞∑
k2=0

42
k1,k2

] p
2

dx dy

 1
p

,

where

4k1,k2 :=

nk1+1−1∑
s1=nk1

nk2+1−1∑
s2=nk2

as1s2 sin s1x sin s2y, k1, k2 = 0, 1, 2, · · ·

The main result of this section is the following Lorentz-Konushkov type theorem.

Theorem 4.1. Let 1 < p < ∞ and Ω ∈ Mα1,α2 ∩ BSα1,α2, where α1, α2 ∈ N. Let
{mk} ∈ Λ and let for any fixed k the sequence {ak,n}∞n=1 be decreasing with respect to
n. Then the necessary and sufficient condition for the sum of series (3.1) to be the
Fourier series of a function f ∈ Hα1,α2

p (Ω) is

ak,n 6 C Ω
( 1

mk

,
1

n

)
n

1
p
−1. (4.4)

Proof. We remark that, by Ω ∈ BSα1,α2 and Lemma 4.2, the condition

Yk1,k2(f)p 6 C Ω
( 1

k1

,
1

k2

)
(4.5)

is necessary and sufficient for the series (3.1) to be the Fourier series of a function
f ∈ Hα1,α2

p (Ω).
Let us show that condition (4.5) implies condition (4.4). First, for the sequence

m = {mk} ∈ Λ, we construct a lacunary sequence {m∗
k} so that {mk} ⊂ {m∗

k} and
1 < λ1 < m∗

k+1/m
∗
k 6 2.

Secondly, define bmk,l := ak,l for k > 1 and bs,l := 0 for s 6= mk. Then using Lemma
4.1 (let z ∈ N be such that ms = m∗

z), we get

Yms−1,m∗
t−1(f)p = Ym∗

z−1,m∗
t−1(f)p �

∥∥∥ ∞∑
k=m∗

z

∞∑
l=m∗

t

bk,l sin kx sin ly
∥∥∥
p
.

Now applying the Littlewood-Paley theorem (see Lemma 4.4) for this series and for
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the sequence {m∗
k}, we estimate

Yms−1,m∗
t−1(f)p > C

∥∥∥m∗
z+1−1∑
k=m∗

z

m∗
t+1−1∑
l=m∗

t

bk,l sin kx sin ly
∥∥∥
p

> C

∫ π

0

∫ π/(4m∗
t )

0

∣∣∣m∗
t+1−1∑
l=m∗

t

as,l sinmsx sin ly
∣∣∣p dx dy

 1
p

> C

(m∗
t+1−1∑
l=m∗

t

las,l

)p ∫ π

0

| sinmsx|p dx
∫ π/(4m∗

t )

0

yp dy

 1
p

.

Making use of inequality (4.5) and monotonicity of the sequence {ak,n}n, we have
(m∗

t+1 6 l < m∗
t+2)

Ω
( 1

ms − 1
,
4

l

)
> C Yms−1,m∗

t−1(f)p > C
(
(m∗

t )
(p−1)aps,m∗

t+1

) 1
p

> C l1−
1
pas,l.

Thus, using condition of the function Ω, we arrive at (4.4).
Next, let condition (4.4) hold. To show (4.5), by Lemma 4.1, it suffices to check

that

Jp :=

∥∥∥∥∥
∞∑
k=s

∞∑
l=n

ak,l sinmkx sin ly

∥∥∥∥∥
p

p

6 C Ωp
( 1

ms

,
1

n

)
. (4.6)

First,

Jp 6 4p
π∫

1
n

π∫
0

∣∣∣∣∣
∞∑
k=s

∞∑
l=n

ak,l sin ly sinmkx

∣∣∣∣∣
p

dx dy

+ 4p

1
n∫

0

π∫
0

∣∣∣∣∣∣∣
∞∑
k=s

∞∑
l=[ 1

y
]+1

ak,l sin ly sinmkx

∣∣∣∣∣∣∣
p

dx dy

+ 4p

1
n∫

0

π∫
0

∣∣∣∣∣∣
∞∑
k=s

[ 1
y
]∑

l=n

ak,l sin ly sinmkx

∣∣∣∣∣∣
p

dx dy =: 4p
(
I1 + I2 + I3

)
.

Secondly, denote for any k > s

fk(y) :=
∞∑
l=n

ak,l sin ly for y ∈
[ 1

n
, π
]
,

gk(y) :=
∞∑

l=[ 1
y
]+1

ak,l sin ly for y ∈
[
0,

1

n

]
,

hk(y) :=

[ 1
y
]∑

l=n

ak,l sin ly for y ∈
[
0,

1

n

]
.
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Then, by the Abel transformation, we have

|fk(y)| 6 C
ak,n
y

6 C
Ω(m−1

k , n−1)

n1− 1
py

for k > s and y ∈ [ 1
n
, π]. Using this inequality, Zygmund’s theorem (see Theorem B),

and Lemma 4.3 (D), we get

I1 6 C(p,m)

π∫
1
n

 π∫
0

∣∣∣∣∣
∞∑
k=s

fk(y) sinmkx

∣∣∣∣∣
2

dx


p
2

dy

6 C(p,m)

π∫
1
n

(
∞∑
k=s

f 2
k (y)

) p
2

dy

6 C(p,m)n1−p

(
∞∑
k=s

Ω2(m−1
k , n−1)

) p
2

π∫
1
n

dy

yp

6 C(p,m)

(
∞∑
k=s

Ω2(m−1
k , n−1)

) p
2

6 C(p,m)Ωp(m−1
s , n−1).

Further, for k > s, l > n, and y ∈ [ 1
l+1
, 1
l
] the following inequality holds

|gk(y)| 6 C
Ω(m−1

k , l−1)

l1−
1
py

.

Then similarly to the estimate of I1, we have

I2 6
∞∑
l=n

1
l∫

1
l+1

 π∫
0

∣∣∣∣∣
∞∑
k=s

gk(y) sinmkx

∣∣∣∣∣
2

dx


p
2

dy

6 C(p,m)
∞∑
l=n

l1−p

(
∞∑
k=s

Ω2(m−1
k , l−1)

) p
2

1
l∫

1
l+1

dy

yp

6 C(p,m)
∞∑
l=n

l1−pΩp(m−1
s , l−1)lp−2 6 C(p,m)Ωp(m−1

s , n−1).

In the last two inequalities we used Lemma 4.3 (D).
To estimate I3, we should obtain a pointwise bound of |hk(y)|. By Lemma 4.3,

there exists α > 0 such that the function Ω(x, y)y−α is almost increasing. Take α < 1
p
.

Then for k > s and y ∈ [0, 1
n
] we get

|hk(y)| 6

[ 1
y
]∑

l=n

ak,l 6 C

[ 1
y
]∑

l=n

Ω(m−1
k , l−1)lα

l
p−1

p
+α

6 C(p, α) Ω(m−1
k , n−1)

nα

y
1
p
−α
.
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Hence,

I3 6

1
n∫

0

 π∫
0

∣∣∣∣∣
∞∑
k=s

hk(y) sinmkx

∣∣∣∣∣
2

dx


p
2

dy 6 C(p,m)

1
n∫

0

(
∞∑
k=s

h2
k(y)

) p
2

dy

6 C(p, α,m)

(
∞∑
k=s

Ω2(m−1
k , n−1)

) p
2

npα

1
n∫

0

dy

y1−pα

6 C(p, α,m) Ωp(m−1
s , n−1).

Thus, inequality (4.6) follows by the estimates of I1, I2, and I3.

5 Smoothness properties of lacunary-monotone series in L∞

In this section we prove several results on functions with lacunary-monotone Fourier
series belonging to the class Hα1,α2

p (Ω), where p = ∞. These results are supplements
to relations (1.3) and (1.5), which were mentioned in Introduction. For the sake of
simplicity, we consider only the case when α1 = α2 = 1 and denote H(Ω) := H1,1

∞ (Ω).

Theorem 5.1. Let Ω ∈M1,1 ∩ BS1,1 and {mk} ∈ Λ. If

|ak,n| 6 C
Ω(m−1

k , n−1)

n
, (5.1)

then series (3.1) converges uniformly to a function f ∈ H(Ω).

Proof. Without loss of generality let m0 = 1
2

and 2m1 > λ, where λ is the degree of
lacunarity of {mk}. Note that for any integer l and any v ∈ (0, 1), by Lemma 4.3, we
have

m−1
l−1∫

m−1
l

Ω(u, v)

u2
du >

λm−1
l∫

m−1
l

Ω(u, v)

u2
du > C(λ)m2

lm
−1
l Ω(m−1

l , v) = C(λ)ml Ω(m−1
l , v).(5.2)

Similarly, for any integer l and for any v ∈ (0, 1) we get

m−1
l∫

m−1
l+1

Ω(u, v)

u
du >

m−1
l∫

λ−1m−1
l

Ω(u, v)

u
du > C(λ)mlm

−1
l Ω(λ−1m−1

l , v) > C1(λ) Ω(m−1
l , v).(5.3)

Then

∞∑
k=1

∞∑
n=1

|ak,n| 6 C
∞∑
k=1

∞∑
n=1

Ω(m−1
k , n−1)

n
6 C(λ)

∞∑
k=1

∞∑
n=1

m−1
l∫

m−1
l+1

n−1∫
(n+1)−1

Ω(u, v)

uv
dudv

= C(λ)

m−1
1∫

0

1∫
0

Ω(u, v)

uv
dudv <∞.
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Therefore, series (3.1) is the Fourier series of a function f ∈ C(T2).
Letting 0 < t, h < 1

2
and denoting k0 := max{k : mk 6 1

t
} and n0 = [ 1

h
], we have

for any x, y

I := |f(x+ t, y + h)− f(x+ t, y)− f(x, y + h) + f(x, y)|

6 Cth

k0∑
k=1

n0∑
n=1

mkΩ(m−1
k , n−1) + Ct

k0∑
k=1

∞∑
n=n0+1

mk
Ω(m−1

k , n−1)

n

+ Ch
∞∑

k=k0+1

n0∑
n=1

Ω(m−1
k , n−1) + C

∞∑
k=k0+1

∞∑
n=n0+1

Ω(m−1
k , n−1)

n
.

Making use of (5.2) and (5.3) and taking into account that Ω ∈ M1,1 ∩ BS1,1, we
estimate

I 6 C(λ) th

k0∑
k=1

n0∑
n=1

m−1
k−1∫

m−1
k

n−1∫
(n+1)−1

Ω(u, v)

u2v2
dudv

+ C(λ) t

k0∑
k=1

∞∑
n=n0+1

m−1
k−1∫

m−1
k

n−1∫
(n+1)−1

Ω(u, v)

u2v
dudv

+ C(λ)h
∞∑

k=k0+1

n0∑
n=1

m−1
k∫

m−1
k+1

n−1∫
(n+1)−1

Ω(u, v)

uv2
dudv

+ C(λ)
∞∑

k=k0+1

∞∑
n=n0

m−1
k∫

m−1
k+1

n−1∫
(n+1)−1

Ω(u, v)

uv
dudv

6 C(λ) th

2∫
m−1

k0

1∫
(n0+1)−1

Ω(u, v)

u2v2
dudv + C(λ) t

2∫
m−1

k0

n−1
0∫

0

Ω(u, v)

u2v
dudv

+ C(λ)h

m−1
k0+1∫
0

1∫
(n0+1)−1

Ω(u, v)

uv2
dudv + C(λ)

m−1
k0+1∫
0

n−1
0∫

0

Ω(u, v)

uv
dudv

6 C(λ) Ω(t, h).

Theorem 5.2. Let Ω ∈ M1,1 ∩ BS1,1, {mk} ∈ Λ and let for any fixed k the sequence
{ak,n}∞n=1 be a decreasing null-sequence as n→∞. Let also series (3.1) be the Fourier
series of a function f ∈ H(Ω). Then for some positive C and all integers k and n
condition (5.1) holds.
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Proof. We fix k > 1 and n > 1 and put t = 1
2mk

and h = 1
2n

. Let σ(x, y) = σ2mk,2n(x, y)

be the Cesàro (1, 1) means. Consider

I = σ(t, h)− σ(t, 0)− σ(0, h) + σ(0, 0).

Then

|I| =
1

π2

∣∣∣∣∣∣
∫
T

∫
T

(
f(x+ t, y + h)− f(x+ t, y)− f(x, y + h) + f(x, y)

)
K2mk

(x)K2n(y)dxdy

∣∣∣∣∣∣
6

1

π2

∫
T

∫
T

∣∣∣f(x+ t, y + h)− f(x+ t, y)− f(x, y + h) + f(x, y)
∣∣∣K2mk

(x)K2n(y)dxdy

6 CΩ(t, h), (5.4)

where Ki(u) is the Fejér kernel. Also, if k0 = max{s : ms 6 2mk}, then

I = σ(t, h)− 0− 0 + 0 =

k0∑
r=1

2n∑
l=1

2mk −mr + 1

2mk + 1

2n− l + 1

2n+ 1
ar,l sinmrt sin lh

> C
n∑

l=[n/2]+1

ak,l > C1nak,n. (5.5)

Thus, the statement of the theorem follows by (5.4) and (5.5).

Let us now consider the partial moduli of continuity. Denote by ω1,0(f, t) and
ω0,1(f, t) the partial moduli with respect to x, y respectively. We present two results
for the cosine-cosine series

∞∑
k=1

∞∑
n=0

αnak,n cosmkx cosny, (5.6)

where α0 = 1
2

and αn = 1 for n > 1.

Theorem 5.3. Let ω(·) ∈ m1 ∩ BS1 and {mk} ∈ Λ. Let also {ak,n}∞,∞
k=1,n=0 be such

that
∞∑
k=1

|ak,n| 6 C
ω( 1

n+1
)

n+ 1
(5.7)

for any n > 0 and
∞∑
n=0

|ak,n| 6 Cω(
1

mk

) (5.8)

for any k > 1. Then series (5.6) is the Fourier series of a function f ∈ C(T2) and,
moreover, its partial moduli of continuity satisfy the inequalities

ω1,0(f, t) 6 Cω(t) and ω0,1(f, h) 6 Cω(h)

for some C > 0 and any t, h ∈ (0, 1/2).
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Proof. First we note that

∞∑
n=0

∞∑
k=1

|ak,n| 6 C

∞∑
n=0

ω( 1
n+1

)

n+ 1
6 C1

2∫
0

ω(t)

t
dt <∞.

This implies that series (5.6) is the Fourier series of a continuous function f . Further,
similarly to estimates (5.2) and (5.3), we have (here as in Theorem 5.1, m0 = 1/2)

m−1
l−1∫

m−1
l

ω(u)

u2
du > C(λ)mlω(m−1

l )

and
m−1

l∫
m−1

l+1

ω(u)

u
du > C(λ)ω(m−1

l ).

Next, if (x, y) ∈ T2 and t ∈ (0, 1
2
), then we put k0 := max{k : mk 6 1

t
}. Then

|f(x+ t, y)− f(x, y)| 6
∞∑
k=1

(
∞∑
n=0

αn
∣∣ak,n∣∣) ∣∣ cosmk(x+ t)− cosmkx

∣∣
6 Ct

k0∑
k=1

mkω(
1

mk

) + C
∞∑

k=k0+1

ω(
1

mk

)

6 C1(λ)t

2∫
1

mk0

ω(u)

u2
du+ C1(λ)

1
mk0+1∫
0

ω(u)

u
du 6 C2(λ)ω(t).

Similarly, if (x, y) ∈ T2 and h ∈ (0, 1
2
), then we put n0 = [ 1

h
]. Then

|f(x, y + h)− f(x, y)| 6
∞∑
n=0

αn

(
∞∑
k=1

∣∣ak,n∣∣) | cosn(y + h)− cosny|

6 Ch

n0∑
n=0

ω(
1

n+ 1
) + C

∞∑
n=n0+1

ω( 1
n+1

)

n+ 1

6 C1(λ)h

2∫
1

n0

ω(u)

u2
du+ C1(λ)

1
n0+1∫
0

ω(u)

u
du 6 C2(λ)ω(h).

Thus, both partial moduli of continuity of f have the order O(ω(u)) as u→ +0.

Note that the full modulus of continuity of f has the same order.
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Theorem 5.4. Let ω(·) ∈ m1 and a function f ∈ C(T2) be such that its partial moduli
of continuity satisfy ω1,0(f, t) 6 Cω(t) and ω0,1(f, h) 6 Cω(h) for some C > 0 and
for any t, h ∈ (0, 1/2). Let the Fourier series of f be given by (5.6), where {mk} ∈ Λ.
Let also for any fixed k a sequence {ak,n}∞n=0 be decreasing. Then for some C > 0
conditions (5.7) and (5.8) hold for any n > 0.

Proof. By means of continuity of f , we get

∞∑
n=0

∞∑
k=1

ak,n <∞.

Consider the function g(x) = f(x, 0), where x ∈ T. Then ω(g, δ) = O(ω(δ)) and the
Fourier coefficients of g satisfy an(g) = 0 for n /∈ {mk}∞k=1 and

amk
(g) =

∞∑
n=0

αnak,n, for k = 1, 2, · · ·

On the other hand, it is well known that the Fourier coefficients are bounded by
modulus of continuity, that is,

amk
(g) 6 Cω(

1

mk

).

This gives inequality (5.8).
Condition (5.7) follows by considering the function q(y) = f(0, y), where y ∈ T.

Indeed, ω(q, δ) = O(ω(δ)), and the Fourier coefficients of q satisfy the equality

an(q) =
∞∑
k=1

ak,n

and are decreasing. By Theorem A for the modulus of continuity with a general
majorant (see [1, Ch. X, §9]), we have

an(q) 6 C
ω(1/(n+ 1))

n+ 1
,

which yields the desired inequality.
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