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Abstract. In this paper we study multiple trigonometric series with lacunary-
monotone coefficients. We obtain necessary and sufficient conditions for the sum of
such series to belong to L,, 1 < p < oo and the generalized Lipschitz spaces (Nikol’skii
spaces).

1 Introduction

It is well known that trigonometric Fourier series
aop - .
E—i—;(ancosnx—i—bnsmnx) (1.1)

with special conditions on coefficients {a, } and {b,} possess many important proper-
ties. Such condition are, for example, monotonicity and lacunarity. In particular, for
the series with monotone or lacunary coefficients the following problems can be solved
completely: to find necessary and sufficient conditions on the Fourier coefficients for
the sum of series to belong to the space L,, 1 < p < oo, or to describe smoothness
properties of the sum of series in terms of behavior of coefficients. Both problems are of
great importance in Fourier analysis since the solution provides, e.g., an instrument to
deal with functions with "limiting" smoothness properties (see, e.g., [13], [17]). Surveys
on series with monotone or lacunary coefficients can be found in, e.g., [4] and [7].

Let the sequences {a, } and {b,} be monotone (briefly {a,}, {b,} € M), then series
(1.1) converges uniformly if and only if (|1, Ch. V, §30], [19, V, (1.3)])

Zan < 00, lim nb, = 0. (1.2)
n=1

Moreover, in this case for the sum f of series (1.1) Lorentz proved (|1, Ch. X, §9], [9])
that

fe lipa <= an,bn:O< O<a<l (1.3)

notl ) ’
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Here, the Lipschitz space Lip « := Lip (a, 00) is defined by
Lip (a,p) ={f € L, :w(f,d), =0 (%)}, 0<a<l,
where w(f, ), is the modulus of continuity of f in L,, i.e.,

w(f,0)p = o 1Anf Ol Anf(z) = flz+h) = fla).

Let m = {m;} be a lacunary sequence of natural members, that is, satisfying the
condition A = inf mm’“—? > 1 (X is the degree of lacunarity), briefly {ms} € A.
If the sequences {a,} and {b,} are lacunary in the sense of Hadamard, i.e.,

a, =0, b, =0if n ¢ {my}, where {my} € A

(briefly {a,},{b,} € A), then series (1.1) converges uniformly if and only if (|1, Ch.
X1, §6])

o0

Z lan| + |bn] < 00. (1.4)

n=1

Moreover ([1, Ch. XI, §6], [9]), we have
: 1
fe Lipa < an,bn:O(—), 0<a<l. (1.5)
na

The following two theorems (Hardy-Littlewood, Zygmund, and Konushkov, see |1,
Ch. X, §3 and Ch. XI, §6|, [8], and [19, Ch. V, formula (8.20)]) generalize the above
results for the case L,, 1 < p < oo.

Theorem A. Let series (1.1) be the Fourier series of an integrable function f and
{a,}, {bn} € M. Then the necessary necessary and sufficient condition for f to belong
to L,, 1 <p < o0, is

Za + )k < 0. (1.6)
k=1
Moreover,
f € Lip (a,p) <= ap,b, = O(n‘a+1/p_1>, 0<a<l. (1.7)
Note that condition (1.6) is equivalent (see Lemma 2.3 below) to the following
condition
Z P 2(2]{: (a + br) > < 00;
r=1
see also [5].

The counterpart for series with lacunary coefficients looks as follows.
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Theorem B. Let series (1.1) be the Fourier series of integrable function f and {a,},
{bn} € A. Then the necessary and sufficient condition for f to belong to L,, 1 < p < oo,
18
> (ap +b) < (1.8)
k=1

Moreover,
f € Lip (a,p) <= ap,b, = O(n_o‘>, 0<a<l. (1.9)

Analogues of Theorems A and B for multiple series were investigated when coeffi-
cients are monotone-type (see, e.g., [6]) or lacunary (see, e.g., [3]).
In this paper we study the following double trigonometric series

DD kb (2)n(y), (1.10)

k=0 n=0

where 1, () are cos kz, or sin kx, or e** for every k. Here the sequence {m;,} is lacunary
and for any fixed k the sequence ag,, is decreasing (non-increasing) with respect to n,
ie., Ak n > Ak i1, M E N.

The paper is organized as follows. In Section 2 several auxiliary lemmas are given.
In Section 3 we study conditions for the sum of lacunary-monotone series to be in L,
1 < p < oco. Note that if f € L,(T?) and 1 < p < oo, then from [14] it follows that
for any (partial or full) function f conjugate to f (see, e.g., [18, Part 2, Ch.I]) we
have f € L,(T?). Then, considering trigonometric series (1.10) for any choice of v, it
suffices to study, for example, sine-sine series (1 = sinkz). In particular, we prove
the following analogue of Theorems A and B.

Theorem 1.1. Let 1 < p < oo and let series (1.10) be the Fourier series of an
integrable on T? function f such that {my} € A and for any fized k the sequence ay,,

1s convex with respect to n. Then the necessary and sufficient condition for f to belong
to L,(T?) is

b
(o) o0 I8 2 2
E rP2 E E naj.n < 0.
r=1 k=1 n=1

In Sections 4 and 5 we obtain Lorentz-Konushkov type results on smoothness prop-
erties of the sums of lacunary-monotone series in L,(T?) for the case 1 < p < oo and
for the case p = oco. In particular, we prove

Theorem 1.2. Let 1 < p < oo and let series (1.10) be the Fourier series of an
integrable on T? function f such that {my} € A and for any fized k the sequence ay,
15 decreasing with respect to n. Then the necessary and sufficient condition for f to
satisfy the (a1, a)-Lipschitz condition, that is,

sup
[t1]1<81
[ta]<d2

@ty +t) = flaottuy) = floy+ )+ fay)| | =0o(sms),

Lp(T?)
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where 0 < ag, a9 < 1, is

!

Throughout this paper, we denote by C, C;, ¢ positive constants that may be differ-
ent on different occasions.

2 Auxiliary results

Lemma 2.1. [11] Let {a,},—, be a monotonic null-sequence,

N
= E a, sinnx
n=1

for N=1,2,... and x € (0,7), and

T)=1x i Ny,
n=1
Then for all N one has
|Sn(2)] < alz), x € (0,7). (2.1)
Lemma 2.2. [11, 15| Let a null-sequence {a,},, be convez, i.e.,
A%a, = a, — 2ap41 + Anpo =0

form=1,2, ..., and
[o¢]
= E a, sinnx.
n=1

Then for a positive constant C > 0 and all x € (0,%F) one has

f(z) = Ca(z). (2.2)
The next result is a simple corollary of Hardy’s inequality (see, e.g., [1, Add, §22]).

Lemma 2.3. Let {a,}, -, be a monotonic null-sequence and 1 < p < co. Then there
exist positive constants Cy(p) and Cy(p) such that

4 (p)Zapnp 2L Z P 2(2”%) < )Zaﬁnp_z.

n=1 n=1

Proof. We have

3 O I S e

r=1 r=1
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On the other hand,

o r p oo r
E rP2 E na, < E pPm2ppml E nPal
r=1 n=1 r=1 n=1

0 )

3 oo
— PP -3 e D, p—2
= E a,mn E r <2§ a,n"" °.
n=1 r=n n=1

3 L,-integrability of lacunary-monotone series, 1 < p < oo

As was mentioned in Introduction, it suffices to investigate the series

i iak,n sin myx sin ny. (3.1)

k=1 n=1

Theorem 3.1. Let 1 < p < oo and let series (3.1) be such that m = {my} € A and
for any fized k the sequence ay.,, is decreasing with respect to n. If

Zr‘p_Q Z <Z nak,n> < 00. (3.2)

r=1 k=1 \n=1
then series (3.1) is the Fourier series of a function f € L,(T?).

Proof. Note that condition (3.2) and Lemma 2.3 imply

o0

P P2
g Ay, 10 < 00

n=1
for k =1,2,.... Therefore, by Theorem A,

o0

fely) = Z agnsinny € Ly(T).

n=1
Hence for any fixed kg the series

o0

ko
g g Ay, SIN TNT SIN NY

k=1 n=1

is the Fourier series of a function f(ko,x,y) € L,(T?) and therefore this series square
converges to f(ko,z,y) in L,(T?).
Further, for fixed € > 0, we choose (see (3.2)) an integer ky such that

Z rP2 Z <Z nak7n> < e. (3.3)

k=ko+1 \n=1
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Considering the series
o0 o0
E E k. SINMT SIN DY,
k=ko+1 n=1

let us denote by Sy(z,y) for N = 1,2, ... its square partial sums. Denote also k(N) :=
max{k : my < N}, where we will consider sufficiently large N so that k() > k.

Assuming first that 2 < p < oo and using Zygmind’s theorem ([1, Ch. XI]), Lemma
2.1 and (3.2), we have

™ U

Isx@aly = [ | [isxwyrds | dy

0 0

IS}

" k(N) N

2\ 2
Z Z aj g SIN ny) dy

0 \k=ko+1 \n=1

VAN
Q
B
=
—

P
2\ 2
o0

2]
> vD nawa| | dy

0\ k=ko+1 n=1

/AN
p
B
3
—

oo % o0 T 2 %
= C(m,p) ) / > <yznak,n> dy
r=1 % k=ko+1 n=1
r+1
oo [e.e] T 2 g
< C’(m,p)Zr’p’2 Z < nak,n> < C(m,p)e. (3.4)
r=1 k=ko+1 n=1

Since the function f(ko,x,y) belongs to L,(T?), by (3.4), the sequence of the square
partial sums of series (3.1) is a Cauchy sequence in L,(T?). Then it converges to a
function in L,(T?) and (3.1) is the Fourier series of this function.

If 1 < p <2, then to estimate ||Sy(x,y)l[?, we first apply Hélder’s inequality

[SI5S]

Isxtelly = [ [1svtwnrds | ay<co) [ | [isvolis) ay
0 \o AN
and then repeat the previous calculations. O

Theorem 3.2. Let 1 < p < oo and series (3.1) be the Fourier series of a function
f € Ly(T?) such that m = {my.} € A and for any fized k the sequence {ay,} is convex
with respect to n. Then

o o ' 2 g
Zr_p_Q Z (Z nak’n) < Q.

r=1 k=1 n=1
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Proof. If 2 < p < 0o, then (see Lemma 2.2)

[SIS]

/ / ey Pdady > CO) / / fay)Pde | dy
0 0 0 0
= C(p) / YD arasinny| | dy
0 k=1 |n=1
o |13 2\ &
> ) [ | XY nana) |y (3.5)
0 k=1 |n=1

> C(p) Z rP2 kz_; <Z nak7n> : (3.6)

r=1 n=1

If 1 < p < 2, then it is known that any function g € L,(T), with the Fourier series

o0
E by sin myx,
k=1

should be a square integrable function. Moreover, there exists a constant C' =
C(m, p) > 0 such that |[g|, < C|lg]|,- Then

[ [t conn [ Fineara) o

To finish the proof, we use estimates (3.5) and (3.6). O

(M|

Open question. Find necessary and sufficient conditions for the sum of series (1.10)
to belong to the space L,(T?), 1 < p < oo, in terms of coefficients {ay,} in the case in
which {m} € A and {apn}n € M for any fived k ({akn}n is not necessary convez).

In connection with this question we give the following theorem on necessary condi-
tions for the sum of series (1.10) to be in L,(T?).

Theorem 3.3. Let 1 < p < 0o and let series (3.1) be the Fourier series of a function
[ € L,(T?) such that {my} € A and {ay,}n € M for any fived k. Then

Z o Z (Zn akn—akn+1)> < oo. (3.7)

r=1 k=1 n=1

Proof. Consider the function

W) = 5(7(@9) + Fla,m —)) € L(T)
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and its Fourier series

oo oo

Z Z g 2n—1 sin myx sin(2n — 1)y.

k=1 n=1

The rest of the proof follows the same lines as the proof of Theorem 3.2 but using the
next result (Lemma 3.1) instead of Lemma 2.2. O

Lemma 3.1. Let {a,} -, be a monotonic null-sequence and

o0

h(y) = Z agn—18in(2n — 1)y.

n=1

Then there exists a constant C' > 0 such that for any y € (0, %) one has

=]

h(y) = Cy > kK Aay.

k=1

Proof. Denote for k=1,2,... and y € (0, }),

Ey(y) = siny +sin 3y + ... +sin(2k — 1)y = Slsfllzl;y > 0.
Hence,
%0 3,
hly) = Z(a%‘l —ak)Er(y) =y ﬁ(aqu — Ggpy1) K

k=1 k=1
()
2 C’yz k2Aak.

k=1

]

Example 1. Letl <p<ooanda=1— % +¢, e € R. First, we consider series (1.10)

with coefficients a,(clﬂ)1 = (k(n+1))~*. Then this series can be written as

£i@) = (3 @) (3 a0,

=0 n=

and, by Theorems A and B,

1 1
f1 € L,(T?) = £ > max {O, - — 5}
p

On the other hand, denoting the sum of series (1.10) with coefficients agjzl =(k+n) @

by fa, we have

fa € L,(T?) = £> % (3.8)
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Proof. To prove (3.8), let first € > 1/2. Then

[SIS]
[SIS]

I, = Z (Z na,??)l) < Cp,a) (Z nl_a)

k=1 n=1

e r 2 %
+ Clp,a)| Y k™ (Z n)
r p
g C(p’ O{) <Z nl_a) rp/Z + C(p7 a)T5p/2—ap’
n=1

since @ > 1/2 4+ 1 — 1/p > 1/2. Further, if a < 2, then I, < C(p,a)r®/>=°P and if
a > 2, then I, < C(p, a)r?/?In?(2r). Now it is easy to see that for ¢ > 1

Zr_p_QIT < C(p, ) Zr_p_z(r5p/2_ap + P2 In”(2r)) < oo

r=1 r=1

and therefore Theorem 3.1 yields that f, € L,(T?).
Conversely, if fo € L,(T?), then, by Theorem 3.3, condition (3.7) holds. Then

2\ 5
00 2r r
. 2 2
oo > Y DD e — )
r=1 k=r n=[r/2]
2\ 3
00 ) 2r r n2 00 5 )
e 3oy
) S Dol D ol I IE) o
r=1 k=r \n=[r/2] r=1
which converges only if € > % m

4 Smoothness properties of lacunary-monotone series
in L), 1 <p<oo

Denote by wa, a,(f;d1,02), the mixed modulus of smoothness of a function f € L,(T?)
of orders a; € N and ay € N with respect to the variables z, y respectively, i.e.,

Wanaz (f301,02)p = sup [|AGHAR () lp- (4.1)

[h1]<61
[ho|<d2

Here, the difference of order oy > 0 with respect to the variable x and the difference
of order ap > 0 with respect to the variable y are defined as follows:

A0 = Y1 (1) o+ G = k)

k1=0
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and o
a
8530 = o0 (1) 1o+ (aa = k),
ko=0 2
where, as usual,

(a)_a(a—l)---(a—u+1) o bt g (Cj)_{a for v=1

v vl 1, for v=0

We say that a function w(t) is of class mg (6 > 0) if w is continuous on [0, 2] and
satisfies the following conditions

0=w(0) <w(p) <w(d) for 0< <o,
w(p) ™ = w()s" for O<p<o< L
Next, a function Q(t1,t2) is of class M**2 (a; > 0,9 > 0) if Q is continuous and
nonnegative on [0, 2]* and satisfies Q(+, d2) € my, for any fixed d, and Q(d1,-) € My,
for any fixed ;.
Also, a continuous nonnegative on [0,2]? function Q(¢;,t;) satisfies the two-

dimensional Bary-Stechkin conditions (briefly Q € BS**?) if

up U2
dt dt
// tl,tQ t—lt—zzO(Q(Ul,Uz)),
1 to
0
N u2 (4.2)
Oty o) dty dt
=0(0
ul
and
o dt, d
t t t1 dt
uZ// P SR 00, 1)
1 2
0 wuo
) oy (4.3)
t1,t2 aty diy
uStug? — 0(Q
Ul U2

as uy, us — 0.
We will use some notations in the two-dimensional case. Let L)(T?) (1 < p < 00)
be the collection of all functions f € L,(T?) such that

/f(:c, y)dx =0  for almost every vy

and

/f(x, y)dy =0 for almost every .
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Let us define the Nikol’skii classes of functions with dominating mixed modulus
of smoothness. Denote by H51%2(€2) the Nikol'skii class, i.e., the set of functions
f € L)(T?) such that

Gopea(fi00,82) < C001.0),

where 1 < p < o0, a3 > 0,a0 > 0 and 2 € M2,
Note that any function f € L,(T?) can be represented as

flz,y) = F(z,y) + ¢(x) + ¥(y) + C, where Fe Lg(Tg).

This relation holds, for example, if

o) =5 [ femdn vw =5 [ fgdn

1 s s
—— /_ﬁ Sy deay,

F(‘T?y) - f(‘r?y) - ¢(LL’) - ¢(y) - C.

Since Wayay (f; 01, 02)p = Wayae (F5 01, 02),, below we will assume that f € L)(T?).
We will also use the following notation. Denote the partial sums of the Fourier
series of a function f € L,(T?) as

C:

Sl == [ fattp)Du0)dt, Swnlf) = [ foy +0Du0) a1

Sn,m(f) = %//f(il? +t17y+t2)Dn(tl)Dm(t2) dtldtQa

. .. . . sin(m+%)z
where D,, is the Dirichlet kernel, i.e., D,,(z) = YT R

As means of approximating a function f € LS(TQ) we use the best approximations
by two-dimensional angles (see [12]):

Ym,nz(f)p = inf |f— Toyo0 — Toomz“;m

Tnq,00
Too,ng

where the function 7}, o (2,y) is a trigonometric polynomial of order at most n; in x,
and the function Ty ,,(x,y) is a trigonometric polynomial of order at most nsy in y.

Lemma 4.1. [12] If f € L)(T?), 1 < p < oo, then

Ym,nz(f)p = Hf - (thm(f) + Soomz(f) - Sm,nz (f))

p
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Lemma 4.2. [12] If f € LY)(T?), 1 < p < 00, ay,as €N, then

ni  no
Ymﬂm(f)p < Cwaya <fu ia i) < % Z Z kal 1ka2 1}/;91 k2(f)

L L L L I |

Let, for a > 0, BS, denote the class of all function w continuous on [0, 2| for which

u

1
/w(t)% = O(w(u)), u® / %% = O(w(u)) as u— 0.
0 u

Lemma 4.3. Let a function Q defined on [0,2]* be such that Q € M2 N BS¥2,
where aq, a9 > 0. Then

(A) For any fized ty the function Q(t1,-) € BS,, and for any fized ty the function
Q(-,tz) € BS,,.

(B) There exists € > 0 such that, for any t1, x=°Q(t,x) < Cy Qt1,y) for any
x < y. Similarly, there exists € > 0 such that, for any ty, x=°Q(x,t3) < Cy Q(y,ts)
for any x < y.

(C)

Q(2t1,t2) < CQt, ) and  Qty,2t) < CQt, t).

(D) If the sequence {my} is lacunary, then for any positive (3

0 QB -1 7-1
ZQﬁ L < QP (mt i, Z%< CQ%(mytn).

l=n

Proof. Proof of part (A) follows immediately by conditions (4.2)-(4.3). Indeed, condi-
tions (4.2) and Q € M**2 yield (for any fixed us)

ul

dty dt
/Q(tl,UQ / / tl,tg —1—2 < CQ(Ul,U2>

2

0 0 wua/2
and )
Qt1,uz) O(t, ta) dty dty
u1 U1l ug/2

ie., Q- ty) € BS,,. Similarly, conditions (4.3) and Q € M®1*2 give Q(t1,-) € BS,,.
Further, inequalities of parts (B) and (C) immediately follow by (A) and [2|. Finally,
(D) follows by (B). For example,

Zﬂﬁ D < OmPQPm )Y T m T < el (mt 1,

where the inequality 3 m;*’ < C'm;? (for any fixed § > 0) holds because of lacu-
k=r
narity of the sequence {my} (see also [16, Cor. 4.10]). O
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Lemma 4.4. [10, 1.5.2| Let the series

o0 o0
g g (g, s, SIN ST SIN SoY

s1=1 s2=1
be the Fourier series of a function f € L)(T?), 1 <p < co. Let {ny} € A . Then

p 1
P

1l = / [2 ZA%IMI drdy |

k1=0 k2=0

where
nk1+1—1 nk2+1—1

Dy ky i= E g (s, s, SIN S1T SIN Sy, k1, ke =0,1,2,---

slznkl 52=nk2

The main result of this section is the following Lorentz-Konushkov type theorem.

Theorem 4.1. Let 1 < p < o0 and Q € M2 N BS*V2 where oy, a9 € N. Let
{mi} € A and let for any fized k the sequence {ay,},_, be decreasing with respect to
n. Then the necessary and sufficient condition for the sum of series (3.1) to be the
Fourier series of a function f € HiV2(€2) is

g < CQ(L, l) nr L, (4.4)

mgp n

Proof. We remark that, by 2 € BS**? and Lemma 4.2, the condition

Yer ko (f)p < CQ(%%) (4.5)

is necessary and sufficient for the series (3.1) to be the Fourier series of a function
[ € Hy2 ().

Let us show that condition (4.5) implies condition (4.4). First, for the sequence
m = {my} € A, we construct a lacunary sequence {mj} so that {m;} C {m}} and
L <A <my,,/my <2.

Secondly, define by, ; := ay; for k > 1 and b,; := 0 for s # my,. Then using Lemma
4.1 (let z € N be such that ms = m?), we get

Yon,—1me—1(f)p = Yozr—1me—1(f)p = H Z Z bi sin kz sinly

— ¥
k=m} l=mj

p

Now applying the Littlewood-Paley theorem (see Lemma 4.4) for this series and for
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the sequence {m;}}, we estimate

x
miy—lmi,—1

Yms_Lm;—l(f)p 2 C‘ Z

k=m} l=mj

RS

1

n o pr/(Amy) | M1 »
/ / ‘ Z @5, SN M Sin ly‘ dx dy
0o Jo

ok
l=mj

WV
Q

D=

mt+1 1

/(4my)
( Z lasl / | sinmgx |pdx/ yP dy

l=mj}

Making use of inequality (4.5) and monotonicity of the sequence {ajn},, we have
(miyy <T<myi,)

3=

1 4 L
Q<m8 R 7) > CYms—lamZ—l(f)p > C((mf)(p_l)agm:+l> > ot P ).

Thus, using condition of the function 2, we arrive at (4.4).

Next, let condition (4.4) hold. To show (4.5), by Lemma 4.1, it suffices to check
that

1 1
P = l OQP(— —). 4.6
;;aklsmmkazsm Y o (4.6)
First,
Zak,l sin ly sinmyx| dx dy
k=s l=n
P

Z Z ag,; sinly sinmyz| dx dy

0/ k=s i=[5]+1
4] b

/ Z Zam sin ly sinmyx| dx dy =: 4p([1 + I + 13).
0

k=s l=n

o\:w o\:w :‘H\

Secondly, denote for any k > s

> 1
= in/ f [_7 :|a
fi(y) E apy sinly or ye |

1
ak(y) == Z ag, sinly for ye [O’E]’
[j1+1

) 1
- inly f e [o, —]
) Zaw sin ly or Yy -
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Then, by the Abel transformation, we have
Qmy ', n")

1—1
n o ry

ke,
[fe(y)l < C Z <C

for k > s and y € [1,7]. Using this inequality, Zygmund’s theorem (see Theorem B),
and Lemma 4.3 (D), we get

e com (]

P
2 2

)sinmgz| dx | dy

/AN
S
T]e
=
S
?r
\
\/
M)
3
&

< 0<p,m>(292<m,:1,n—1>> < Clpm)@(m; )

Further, for k > s, 1 > n, and y € |75, %] the following inequality holds
Oy 1)
zl“ '

Then similarly to the estimate of I;, we have

. x
o0
L < z/ /
l:ni 0 k=
I+1

< Clp 211P<ZQQ 111>

y) sin myx

dr | dy

[MiS]

E‘H\Np—-
S|&

< Clpm) S (s P2 < Clp,m) @m0 ).
l=n
In the last two inequalities we used Lemma 4.3 (D).
To estimate I3, we should obtain a pointwise bound of |hi(y)|. By Lemma 4.3,
there exists o > 0 such that the function Q(x,y)y~® is almost increasing. Take o < %.

Then for k > s and y € [0, 1] we get

L] 1] )
Q Y1 ne
() < Yag<c <ll+a’ Clp, @) Qmy" )~
l=n l=n yr
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Hence,
1 p 1
n n (e.0) 2 2 n oo g
Eo< [ | [IX mwsinma ar | < ctm) [ (Zhi@)) dy
0 0 k=s 0 k=s
= 2/ 1 -1 : pa / dy
< C(p,a,m) ZQ (mg ,n )| n e
k=s 0
< Clp,aym) (m;t 0.
Thus, inequality (4.6) follows by the estimates of I, I5, and I3. ]

5 Smoothness properties of lacunary-monotone series in L.,

In this section we prove several results on functions with lacunary-monotone Fourier
series belonging to the class Hfj“”(ﬂ), where p = 0o. These results are supplements
to relations (1.3) and (1.5), which were mentioned in Introduction. For the sake of
simplicity, we consider only the case when a; = ay = 1 and denote H(Q) := HL(Q).

Theorem 5.1. Let Q € MY N BSY and {m} € A. If

0 -1 -1
|akq| < C—(mkn’” ), (5.1)

then series (3.1) converges uniformly to a function f € H().

Proof. Without loss of generality let my = % and 2m; > A, where X is the degree of

lacunarity of {ms}. Note that for any integer [ and any v € (0, 1), by Lemma 4.3, we
have

—1

my_y >\ml
Qu,v Q(u,v _ _ _
/ (uz ) du > / (u—Q) du > C()\) m?ml 1Q(ml o) =COW\)my Q(m, L 0)(5.2)

my my

Similarly, for any integer | and for any v € (0,1) we get

m, my
0 Q
/ (u, v) > / (u,v) du > C()\) mum Q()\*lmfl,v) > 01()\) Q(m;l,’v)(5.3)
u U
m A_lmfl
Then

K
NE
E)
EN
A
o)
NE
NE

=
3
s (7
S
A
Q
>
gk
NE
=
gg
=
3
S
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Therefore, series (3.1) is the Fourier series of a function f € C(T?).

Letting 0 < ¢,h < 3 and denoting ko := max{k : mj, < 1} and ny = [}], we have
for any z,y
I = |flx+t,y+h)— flx+ty) — flz,y+h)+ flz,y)]
D o X Q(mt,n™h)
< CthY > mQm' ) +Cty Y my——FE =
k=1 n=1 k=1 n=no+1 n
00 no 00 00 0 -1 1
oon Y Somptayee Sy 2o
k=ko+1 n=1 k=ko+1 n=no+1 n

Making use of (5.2) and (5.3) and taking into account that Q € M N BS"!, we
estimate

mgl n—1
o o Q
+ C(\) Z Z / / (Z}U)dudv

bhorinng Ty

N\

Q
~
=

>

\w

—
)
=
=

QU

I

s

_l’_

Q
>~
=
\1\3
O\ 3\
)
=
=
QU
g

u?v? u?v
mk()l (no+1)7! mgol
1 -1 _
Mho+1 1 Q M+1 1 Q( )
+ C(\)h / Lf)dudwcm / / S qudv
uv uv
0 (n0+1)—1 0 0
< VL h)

Theorem 5.2. Let Q € M N BSY, {m;} € A and let for any fized k the sequence
{arn} ", be a decreasing null-sequence as n — oo. Let also series (3.1) be the Fourier
series of a function f € H(Q). Then for some positive C and all integers k and n
condition (5.1) holds.
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Proof. Wefixk > 1andn > 1 and put ¢t = 5 — and h = 5. Let o(z,y) = 0amy 20(2, )
be the Cesaro (1,1) means. Consider

I'=o0(t,h) —0o(t,0) —o(0,h) + (0,0).
Then

= / / (bt 4B = flr+ 1) = F g+ B) + 1 (.9)) Ko, (2) Koo (9)ddy

S %//)f(x"‘tay"‘h)—f(x‘i‘tay)—f(xyy-l-h)+f(l‘,y)‘Kgmk(x)Kgn(y)dxdy

T
< Ot h),
where K;(u) is the Fejér kernel. Also, if kg = max{s : m,; < 2my}, then

ko 2n

2my, —m, +12n —1+1 . .
I=0(t,h)—0—-040 = ZZ e 1 1 a,;sinm,t sinlh
r=1 =1

2 C Z Qi1 = C’lnak,n. (55)
I=[n/2]+1
Thus, the statement of the theorem follows by (5.4) and (5.5). O

Let us now consider the partial moduli of continuity. Denote by w;o(f,t) and
wo.1(f,t) the partial moduli with respect to x, y respectively. We present two results
for the cosine-cosine series

QA COS MET COS NY, (5.6)
k=1 n=0
where o = % and oy, = 1 for n > 1.

Theorem 5.3. Let w(-) € my N BS' and {my} € A. Let also {arn}, 1 .,_, be such

that
o0 e
> ol < ¢ 57
— ’ n+1
for any n >0 and
- 1
3 lakal < Co() (58)
n=0

for any k > 1. Then series (5.6) is the Fourier series of a function f € C(T?) and,
moreover, its partial moduli of continuity satisfy the inequalities

Wl,O(f’ t) < C(U(t) and wO,l(f? h) < CW(h)
for some C' >0 and any t,h € (0,1/2).

(5.4)
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Proof. First we note that

oo o 2
2D lawal <

/& dt < oo.
n k=1 n=0 ¢

0

Il
=)

This implies that series (5.6) is the Fourier series of a continuous function f. Further,
similarly to estimates (5.2) and (5.3), we have (here as in Theorem 5.1, mg = 1/2)

/ “’g)du > COmw(m ™)

and

/ Mdu > C(Nw(m ).
u
mlll1

Next, if (z,y) € T? and ¢ € (0, 1), then we put ko := max{k : my < $}. Then

f(x+ty)— f(z,y)] < Z (Zan|ak7n‘> | cosmy,(z +t) — cos myz|

k=1 \n=0
< Ct C
ITRENEE Spt
k=1 k=ko+1

2

< O\t /

_1
M

w(u)

Mg +1
du + Cy(\) / P du < Co(Nw(t).
0

Similarly, if (z,y) € T? and h € (0, 3), then we put ng = [+]. Then

|f(z,y+h)— Zan <Z|akn>|cosn(y+h)—cosny|

k=1
o = w(gh)
S Cth(n 1)+C Z n%jrll
n=0 n=ng+1
2 7101+1
< Ci(Vh / wfﬁduwm / “’T“)du < Co(\w(h)
1 0

Thus, both partial moduli of continuity of f have the order O(w(u)) as u — 0. O

Note that the full modulus of continuity of f has the same order.
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Theorem 5.4. Let w(-) € my and a function f € C(T?) be such that its partial moduli
of continuity satisfy wyo(f,t) < Cw(t) and woi(f,h) < Cw(h) for some C > 0 and
for any t,h € (0,1/2). Let the Fourier series of f be given by (5.6), where {my} € A.
Let also for any fived k a sequence {ar,},_, be decreasing. Then for some C' > 0
conditions (5.7) and (5.8) hold for any n > 0.

Proof. By means of continuity of f, we get

Consider the function g(z) = f(z,0), where z € T. Then w(g,d) = O(w(d)) and the
Fourier coefficients of g satisty a,(g) = 0 for n ¢ {my},-, and

g (9) =Y ng, for k=12,
n=0

On the other hand, it is well known that the Fourier coefficients are bounded by
modulus of continuity, that is,

1
am,, (9) < Cw(m—k)-
This gives inequality (5.8).
Condition (5.7) follows by considering the function ¢(y) = f(0,y), where y € T.
Indeed, w(q,d) = O(w(6)), and the Fourier coefficients of ¢ satisfy the equality

an(q) =Y apn
k=1

and are decreasing. By Theorem A for the modulus of continuity with a general
majorant (see [1, Ch. X, §9]), we have

w1/ +1))

an(9) S n+1

b

which yields the desired inequality. O
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