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Abstract. A subset M of a normed linear space X is called R-weakly convex (R > 0)
if (Dr(x,y)\ {z,y}) "M # @& for any =,y € M satisfying 0 < ||z — y|| < 2R. Here,
Dg(z,y) is the intersection of all closed balls of radius R containing x,y. The paper
is concerned with the connectedness of R-weakly convex subsets of Banach spaces
satisfying the linear ball embedding condition (BEL) (note that C'(Q) and ¢'(n) €
(BEL)). An R-weakly convex subset M of a space X € (BEL) is shown to be m-
connected (Menger-connected) under the natural condition on the spread of points
in M. A closed subset M of a finite-dimensional space X € (BEL) is shown to be
R-weakly convex with some R > 0 if and only if M is a disjoint union of monotone
path-connected suns in X, the Hausdorff distance between any connected components
of M being less than 2R. In passing we obtain a characterization of three-dimensional
spaces with subequilateral unit ball.

1 Introduction

The theory of R-weakly convex sets is in active development at present (see [18],
[7], [17], |[4] and references given therein). The interest in R-weakly convex sets stems
from their applications to the theory of extremal problems, problems of optimal control,
theory of differential games, approximation theory and set-valued analysis [18].

In a recent paper 4] the author examined the problem of m-connectedness (Menger-
connectedness) and monotone path-connectedness of R-weakly convex sets in the
space C'(Q).

In the present paper we continue the study of this problem considering a more
general setting of general normed linear spaces. In this context, the class (BEL) of
spaces with linear embedding of balls (see (4) below) and the class of spaces with
subequilateral (edge-antipodal) balls are quite natural; these spaces contain C(Q)-
spaces and the space ¢*(n).

In Theorem 3.1 we characterize three-dimensional spaces X € (BEL). It turns out
that these spaces are precisely the spaces whose unit ball is a cube or an octahedron.
In Theorem 4.1 it is shown that an R-weakly convex subset M of a space X € (BEL)
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is m-connected (under the natural condition on the spread of points of M); if M is
closed and X is finite-dimensional, it is shown that any connected component of M is
monotone path-connected and is a sun in X (Theorem 4.2).

In what follows, X is a real normed linear space, X,, is a finite-dimensional space X
of dimension n, B(z,r) is a closed ball with centre x and radius r, B (x,r) is an open
ball, B := B(0, 1) is the unit ball, S is the unit sphere.

2 Definitions and auxiliary results

Let R > 0 be fixed and let z,y € X, ||z — y|| < 2R. The set

Dp(z.y)= () B(zR) (2.1)

z,yeB(z,R)

is called an R-strongly convex segment (18], |7] (or C-spindle). A subset @ # M C X
is called R-weakly convez® |7] if

(Dr(z,y) \{z,yh)nM #2  VeyeM, 0<|z—y| <2k (2:2)
We note at once that (see |7, Lemma 3.13|):
Dg(z,y) C Dy(z,y) for z,y € X, ||z —y| <2r, r<R. (2.3)

For a bounded set @ # M C X, the Banach-Mazur hull m(M) of M (see [12]) is
defined as the intersection of all closed balls that contain M (as distinct from (2.1),
here the radius of the balls is not assumed fixed).

A subset @ # M C X is called m-connected [12| (or Menger-connected) if
m({z,y}) N M # {x,y} for any two distinct points x,y € M. In what follows, we
write for compactness m({z,y}) = m(z,y).

For example, in the spaces C(Q) and Cy(Q) the structure of m(M) is quite trans-
parent: m(z,y) = {z € C(Q) | 2(q) € [2(q),y(q)], ¢ € Q} (Q is a metrizable compact
set).

Let k(7), 0 < 7 < 1, be a continuous curve in a normed linear space X. Follow-
ing [11] we say that a curve k(-) is monotone if f(k(7)) is a monotone function in 7 for
any f € ext S*; here ext S* is the set of extreme points of the dual unit sphere S*.

A subset M C X is called monotone path-connected |2] if two arbitrary points in M
can be connected by a continuous monotone curve k(-) C M. It is readily verified
that a monotone path-connected set is m-connected. The converse assertion is true
for closed subsets of a finite-dimensional space (this follows from Lemma 2 of [2]| in
view of Straszewicz’s theorem on the density of exposed points among the extreme
points of the unit sphere); in infinite-dimensional case there is an example of a closed
m-connected set consisting of two connected components (see [16], [2]).

Let us introduce the following class of normed linear spaces?

Tn the terminology of Balashov and Ivanov [18], |7] such sets are called weakly convez (in the sense
of Vial) with constant R > 0.
2BEL is derived from the phrase “linear balls embedding”.
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(BEL): Vz,ye B 3z€ B: z,y € B(z, ||z —y||/2) C B. (2.4)

It is easily verified that Euclidean spaces fail to lie in (BEL).

We shall show that the class (BEL) contains all the spaces C(Q) and ¢'(n). Be-
sides, Theorem 3.1 states that a three-dimensional space X lies in (BEL) if and only
if the unit ball B of X is either a cube or octahedron (up to an affine transform);
consequently, a two-dimensional space X lies in the class (BEL) if and only if its unit
ball is a parallelogram.

Lemma 2.1. Let X € (BEL), z,y € X, ||z —y||/2 <r < R. Then

Dgr(z,y) = D,(x,y).

Proof of Lemma 2.1. There is no loss of generality in assuming that R = 1. By (2.3),
Dy(z,y) C D,(z,y). We claim that D;(z,y) = D,(x,y).

It is clear that Dy(x,y) C Ds(z,y), where 6 := ||z —y||/2. Assume, on the contrary,
that Dy(z,y) & Ds(x,y). Thenv ¢ B(E, 1) for some £ € X and v € Ds(x,y). However,
since X € (BEL), there exists a point z such that x,y € B(z,§) C B(£,1). But in this
case x,y € B(z,d) # v, which is impossible, because v € Ds(z,y) by the assumption.
Hence Dy (x,y) = Ds(z,y). Now Dy(z,y) = D,(x,y) by (2.3). 0.

As a corollary of Lemma 2.1, we have the following result.

Proposition 2.1. Let X € (BEL) and R > 0. Then Dg(z,y) = m(x,y), whenever
r,y e X, ||lr—yl <2R.

The next result is clear.

Proposition 2.2. Let [a,b] be a one-dimensional face of the unit ball B. Then
m(a,b) = [a,b].

3 Spaces with linear embedding of balls. Subequilateral (edge-
antipodal) balls

Recall that a set P is antipodal if, for any distinct « and y, there exist parallel (distinct)
hyperplanes supporting conv P at z and y (such points x and y are called antipodal).
A polytope P is called antipodal if its vertex set is antipodal. It is well known that
an antipodal set (in a finite-dimensional space) is always finite. Moreover, if A is
an antipodal set in R™, then card A < 2", the equality attaining if and only if A is
affine equivalent to the vertex set of the n-dimensional cube [15]. Three-dimensional
antipodal sets are completely described in [20]. In particular, the following result is
valid (see |20, §5]).

Proposition A. A centrally-symmetric three-dimensional polytope is antipodal if and
only if it is an octahedron or a cube (up to an affine transform).

Remark 1. We do not know the structure of centrally-symmetric antipodal polytopes
in spaces X,, of dimension > 4. In this connection we point out that in these spaces
this condition is satisfied (together with a cube and octahedron (cross-polytope)) also
by Hanner polytopes (see [19])— such a polytope is built using £*°- and ¢*-sums of the
interval [0, 1].
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A convex polytope P C R™ is called edge-antipodal [22] if any two vertices that
determine an edge of the polytope lie on distinct parallel supporting hyperplanes of P.
An edge-antipodal 3-polytope is known [8] to have at most 8 vertices, the bound at-
taining only for the affine cubes. Also note [21] that the number of vertices of an
edge-antipodal n-polytope is bounded by (% 4 1)™.

It is clear that a two-dimensional edge-antipodal polytope is antipodal. For three-
dimensional spaces, it is noted in [8] that the vertices of an edge-antipodal 3-polytope
make up an antipodal set. However, for each n > 4, Talata [22] (see also [14, p. 202])
constructed an edge-antipodal n-polytope having a pair of non-antipodal vertices.

A polytope is called equilateral (with respect to some norm ||-||) if its vertices form an
equidistant set. An equidistant set is well known to be antipodal. A polytope P is called
subequilateral [21] if the length in the norm |[|-|| p of each of its edges equals the diameter
of P (the norm || - ||p is defined by the unit ball $(P — P)). It is easily verified |21,
§2.2] that an edge-antipodal polytope P is subequilateral (in the norm || - ||p). The
converse assertion is also quite clear: any subequilateral polytope P is edge-antipodal
(and as a corollary, is antipodal if dim X < 3 or if the degree of any vertex thereof
equals the dimension of the space [9]). It is also worth noting that the faces of an
edge-antipodal polytope are edge-antipodal themselves and that if all two-dimensional
faces of an edge-antipodal n-polytope P are parallelograms, then P is an n-cube [9].

In what follows, by an subequilateral ball of a space X,, we will understand a ball
that is a subequilateral (or, equivalently, edge-antipodal) polytope. It is clear that
a cube and an octahedron (cross-polytope) are subequilateral polytopes (in the norm
they define).

Note that spaces with subequilateral balls naturally arise in the problem of the
number of connected components in the complement to Chebyshev sets and suns (see
[1], [6] and the references cited therein).

We have the following results.

Proposition 3.1. The unit ball B of a space X, € (BEL) is a subequilateral (edge-
antipodal) polytope.

Proposition 3.2. The spaces C(Q) (Q is a metrizable compact set) and £*(n) lie in
the class (BEL).

Proof of Proposition 3.1. First we assume that the unit ball B contains more than
2" exposed points. Then [6, § 3] (see also [10, Theorem 9.11.1]) among them there
are v and v such that ||ju —v||/2 =: d < 1. Let H, be a supporting hyperplane of the
ball B at the point u such that H, N B = {u}, and let H, be the similar supporting
hyperplane at the point v.

We have X,, € (BEL). Hence, by the definition, for points u,v € B, there exists
a point z € B such that u,v € B(z,d) C B. As a corollary, any hyperplane that
supports the ball B at the point u (at the point v) is a supporting hyperplane to the
ball B(z,d) at the same point u (at the point v). Let @ and © be the inverse images of
the points u and v under the mapping x +— dx + 2z, x € X. Then u,v € S, and by the
above, u € H, and v € H,. Now u,u € H,, a contradiction with the fact that u is an
exposed point of the ball B. Consequently, B contains at most 2" exposed points. In
particular, B is a polytope.
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Assume that a polytope B is not subequilateral. Then B contains an edge (a one-
dimensional face) [z, y] whose length is less than two. It is quite clear that condition (4)
fails hold for such points x,y (see Proposition 2.2). O

Proof of Proposition 3.2. The assertion for C'(Q) is established in |4, Proposition 1.
Correspondingly, in what follows we will assume that X = ¢'(n). Let u,v € B,
|lu —v|| = 2r < 2. We need to show that u,v € B((,r) C B for some ¢ € B.

The following property of the unit ball B in X = ¢!(n) will be of considerable value
for us:

B =[w,Q] == {z| f(z) € [f(w), F(Q)] Vf€exts}: (3.1)

here w, ) are arbitrary opposite vertices of the unit ball (an octahedron or cross-
polytope). Equality (3.1) is clear—it suffices to use a representation for the general
bounded linear functional in X (from which it follows that | f(w)| = 1 for any f € ext S*,
and hence, B C [w,?]]) and then invoke the fact that any point not lying in a closed
ball can always be strictly separated from the ball by an extreme functional (see, for
example, [5]).

Let F' = (fi)ier be all extreme (exposed) points of the dual unit sphere S* (card I =
2™). By (3.1), for any i € I we always have |f;(w)| =1 or |f;(©2)| = 1. Notice that in
any normed linear space

||| = sup f(z) = sup f(z). (3.2)
fes* f€Eext S*

Hence |f;(u) — fi(v)| < 2r for all ¢, and also | f;(u) — f;(v)| = 2r at least for one j € I.
For each i € I, we set

m; = max{fi(u), fi(v)},  mi=min{fi(u), fi(v)}, (3.3)

We have —1 < m; < m; <1, m; — m; < 2r, also, m; — m; = 2r for some j. Further,
we set
a; =1— my, a;=m;—1

(it is clear that a;,a; > 0).
For any hyperstrip —1 < f;(z) < 1 in (3.1), we defined the proper subhyperstrip as

follows:
{Z | fZ(Z) S [n_zz -, 77_11]} if a; < o,

{z] fi(z) € [ms, mi+ 7]} if & > a (3-4)

the width of such a hyperstrip is 2r. From the construction it is clear that —1 <
m;—r<m; <1, —1< m; < m;+r <1 Now we define II as the intersection of all
hyperstrips (3.4) over all i. From (3.1) it follows that IT is a ball of radius r; we we also
have IT C B, since any hyperstrip (3.4) is contained in the hyperstrip —1 < f;(z) < 1.
Finally, from the construction it follows that any of the points u, v lies in any hyperstrip
of the form (3.4), which forces u,v € Il. The proof of Proposition 3.2 is complete. [

The next result, which puts forward a characterization of subequilateral three-
dimensional spaces, has some independent interest.

Theorem 3.1. Let X be a three-dimensional normed linear space. Then the following
conditions are equivalent:
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a) the space X lies in the class (BEL); that is,
Ve,ye B 3z € B : z,y € B(z, ||z —y||/2) C B;

b) the unit ball B of X is a cube or octahedron (up to an affine transform);
c) the unit ball B is a subequilateral (edge-antipodal) polytope;
d) the unit ball B is an antipodal polytope.

Proof of Theorem 3.1. Implication b)=-c) is clear: the length of any edge of a cube
(or an octahedron) equals 2 in the norm it defines.

c¢)=b) Let P be a centrally-symmetric subequilateral three-dimensional polytope.
In |21] it is noted, for an n-dimensional polytope, that the property of subequilaterality
is equivalent to edge-antipodality. Further, in [8] it is shown that the number of vertices
of a three-dimensional edge-antipodal polytope P is at most 8, the equality attaining
only in the case when P is an (affine) cube. On the other hand, any polytope that
defines a norm on a three-dimensional space has at least 6 vertices (the lower bound is
attained at an octahedron).

Implication b)=-a) is contained in Proposition 3.2.

c)=-d) Above it was noted (see [8]) that the vertices of a subequilateral (edge-
antipodal) 3-polytope form an antipodal set.

For implication d)<b), see Proposition A; that a)=-c) is secured by Proposition 3.1.

4 The main results

Below we put forward results on the monotone path-connectedness and m-connected-
ness of R-weakly convex subsets of spaces of the class (BEL) (and in particular, in
C(Q) and (*(n)).

Recall that the connectedness of R-weakly convex sets was examined by Vial, Bal-
ashov and Ivanov (see [23], [18], [7], [17]), this problem was being studied mostly for
sufficiently smooth or finite-dimensional spaces. We mention the following results (re-
spectively, Lemmas 4.1, 4.13 and 4.17 in [7]; see also [17, Theorem 4.1]), which we
summarize as follows.

Theorem A (Balashov—Ivanov). Let X be a Banach space and let M C X be an
R-weakly convex set for some R > 0. Also let x,y € M, ||z —y|| < 2R. Then:
a) if M N Dr(x,y) is compact, then it is connected,
b) if X is uniformly convex or dim X < oo, and if M is closed, then M N
Dg(x,y) is path-connected.

Further, [7] contains the following results (Theorems 2.7 and 2.9, respectively).

Theorem B (Balashov—Ivanov). Let X be a Banach space that is uniformly convex
or finite-dimensional. Also let M C X be closed and R-weakly convex for some R > 0.
Then:
a) M N B(z,r) connected for any r € (0,R] and z € X
b) any connected component A of M is path-connected, any two points of A can
be joined by a rectifiable curve lying in A.
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The main results of the present paper are Theorems 4.1 and 4.2, in which we
partially refine Theorems A and B for spaces (BEL), thereby obtaining results on
m-connectedness and monotone path-connectedness of R-weakly convex sets. Similar
results for C(Q)) were obtained by the author in [4].

Theorem 4.1. Let X € (BEL) and let @ # M C X be an R-weakly convex set for
some R > 0. Then:

a) MnN é(:v,r) is m-connected for all r € (0, R| and x € X
b) M N B(xz,r") is m-connected for all v’ € (0, R) and x € X.

Suppose in addition that M is closed and dim X < co. Then:
1. Any connected component of M is monotone path-connected, the Hausdorff dis-
tance between any connected components being at least 2R;
2. Fach of the following sets is monotone path-connected:
¢) M N B(x,r) for allr € (0,R] and x € X;
d) M NB(z,r") for all v € (0,R) and z € X;
e) M NA, where AC X, diam A < 2R, is such that A = m(A) (in particular,
the set M Nm(z,y) is monotone path-connected for any x,y, ||x — y|| < 2R).

Recall that a subset M of X is called a sun (see, for example, [24]) if, for any point
x € X \ M, there exists a point y € Pya such that y € Py[(1 — ANy + Ax] forall A > 0
(here Pysx is the set of all nearest points to x in M). A set M is called a strict sun if
Pyx # @ forall z € X and y € Py[(1 — Ny + Az for all z € X and y € Pyx.

Theorem 4.2 (characterization of R-weakly convex sets). Let X, € (BEL).
Then a closed subset M of X,, is R-weakly convex for some R > 0 if and only if M is
a disjoint union of monotone path-connected suns in X, with the Hausdorff distance
between any pair of connected components of M at least 2R.

Since a monotone path-connected subset C(Q) is R-weakly convex for any R > 0
and since a boundedly compact strict sun in C'(Q) is monotone path-connected [2],
it follows that a boundedly compact strict sun (in particular, a boundedly compact
Chebyshev set) in C(Q) is R-weakly convezr for any R > 0. It is worth noting that
this is not so in ¢!(3). The space ¢'(3) is known [13| to contain a non-monotone
path-connected sun; nevertheless, it is unknown whether any Chebyshev set in ¢1(3) is
monotone path-connected (see also remarks in [3]).

Proof of Theorem 4.1. Assertion a). Let u,v € M N B(z,r). Using Lemma 2.1 and
Proposition 2.1,

D, (u,v) = Dg(u,v) = m(u,v). (4.1)

Since, by the hypotheses, M is R-weakly convex, it follows from (2.2) that M N B(x, T)
is m-connected. Assertion b) is proved similarly.

1. Let M be closed and let M’, M" be two arbitrary distinct connected components
of M. Assume that there were x € M’ y € M", such that ||z — y|| < 2R. As before,
we have Dg(z,y) = m(z,y). By the assumption M is R-weakly convex, and hence,
by (2.2), the intersection M Nm(z,y) is m-connected, and hence, by Lemma 2 of 2],
is monotone path-connected. This contradicts the fact that x and y lie in different
connected components of the set M.
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Now consider an arbitrary connected component M’ of the set M. By the above,
the distance between any two connected components is at least 2R. By the hypotheses,
M is R-weakly convex, and hence the component M’ is also R-weakly convex, and in
view of (4.1), is m-connected. Now the monotone path-connectedness of M’ is secured
by the lemma [2, Lemma 2].

2. By what has been proved above it follows that if M N B(z,r) # @ (for some
r € (0,R]), then M N B(z,r) = M' N B(z,r) for some connected component M’
of M. By the above, the component M’ is monotone path-connected (and hence is m-
connected). To complete the proof we invoke the following fact [16, Proposition 5.1]:
Let a set @ # A C X be such that A = m(A) and let M be m-connected, M N A #
&. Then M N A is m-connected and, since it is closed, is monotone path-connected.
Theorem 4.1 is proved. (l

Proof of Theorem 4.2. By Theorem 4.1, each connected component of M is mono-
tone path-connected, the Hausdorff distance between any connected components being
at least 2R. For any connected component we apply the following arguments: by
Brown’s theorem [12, Theorem 3.6], a closed m-connected subset of X, is P-acyclic,
and further, by Vlasov’s theorem [24, Theorem 4.4|, any P-acyclic boundedly compact
subset of a Banach space is a sun.

Conversely. By (4.1), any monotone path-connected set is R-weakly convex.
Clearly, a disjoint union of such sets is again an R-weakly convex set, provided that
connected components of the union have distance at least 2R from each other. Theo-
rem 4.2 is proved. O
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