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Abstract. In the paper the author deals with the following problem: what can we say
about the behaviour of the conjugate function at a �xed point, if the global smoothness
as well as the behaviour at this point of the original function are known? Sharp results
on this and related problems are obtained.

1 Introduction

Let T = [−π, π] and f ∈ L(T ) be a 2π-periodic function. The conjugate function is
de�ned by

f̃(x) = − 1

π

π∫
0

f(x+ t)− f(x− t)

2tg t
2

dt (1)

for x ∈ T if the integral exists (at 0 this integral is understood in the improper sense).
N.N. Luzin [9] (for f ∈ L2(T )) and I.I. Privalov [12] (for f ∈ L(T )) proved the existence
of integral (1) almost everywhere on T (see also [1]). In the sequel the function f will
be assumed to satisfy conditions which ensure that integral (1) exists as the usual
Lebesgue integral.

Works of well-known mathematicians were devoted to the following very important
problem: If a function f has certain smoothness in some space, then what can be said
about the smoothness of the conjugate function in the same space?

We start with recalling the following well-known Riesz's theorem [13].

Theorem A. For any 1 < p < ∞ the conjugation operator is a continuous linear
operator on the Lp(T ) space.

In L(T ) and C(T ) spaces the situation is more complicated.
The study of the problem stated above in C(T ) was started in the work of I.I. Pri-

valov [12], who obtained the following result.

Theorem B. If α ∈ (0, 1), and a 2π-periodic function f ∈ Lipα, then the conjugate
function f̃ ∈ Lipα.
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Later on this theorem has been repeatedly generalized by various mathematicians,
until N.K. Bari and S.B. Stechkin [2] obtained a criterion for the Nikol'skii space

Hω(T ) = {f ∈ C(T ) : ω(f, t)C(T ) ≤ ω(t), 0 ≤ t ≤ π},

where ω is a given modulus of continuity and

ω(f, t)C(T ) = max
|h|≤t

max
x∈T

|f(x+ t)− f(x)|.

Theorem C. Let ω be a modulus of continuity. Then the conjugate function f̃ of any
function f ∈ Hω(T ) is also belongs to Hω(T ) if and only if the modulus of continuity
satis�es the conditions

t∫
0

ω(u)

u
du = O(ω(t)) (2)

as t→ 0+ and

t

1∫
t

ω(u)

u2
du = O(ω(t)) (3)

as t→ 0+.

Note that conditions (2) and (3), as well as the ones equivalent to them (see [2])
play an important role in research on the theory of functions. They are special cases
of more general Ul'yanov's conditions [15], [16]. In the sequel, we shall also use the
following generalization of (3): for natural k > 1

tk
1∫
t

ω(u)

uk+1
du = O(ω(t)) (3k)

as t→ 0+.
Moreover, from the paper by N.K. Bari and S.B. Stechkin [2] we can conclude

how the conjugation operator can deteriorate smoothness properties of functions in
the space Hω(T ) in the case when conditions (2) and (3) are not satis�ed. Thus the
problem of preserving smoothness in the space C(T ) in its original formulation can
be considered to be solved. However another question arose: is it possible to say
something about the smoothness of the conjugate function at a certain point, if it is
known that the original function, in addition to certain global smoothness on T , has
better smoothness at this point? The �rst result in this direction was obtained by the
Hungarian mathematician M. Salay [14], who established the following theorem.

Theorem D. Let 0 < β < α ≤ 1. If a 2π-periodic function f ∈ Lipβ and for some
x0 ∈ T : |f(x0 + t)− f(x0)| ≤ |t|α for t ∈ T , then

|f̃(x0 + t)− f̃(x0)| ≤ C(α, β)|t|β+α−β
1+β

β (4)

for t ∈ T , where C(α, β) > 0 depends only on α and β.
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P.L. Ul'yanov posed the problem of �nding the best possible result in this direction
and some related problems, solutions of which are given in this paper. These results
were obtained by the author in his thesis [5] and have been deposited at VINITI [6].
However, the full text has not been published yet, although the results were later
extended by other authors to the multi-dimensional case. One of the main aims of this
article is the publication of these results with complete proofs.

2 Main results

First we introduce some notation.

De�nition. If k is a natural number, then we say that a function α de�ned on [0, π]
belongs to Bk, if the following conditions hold:

1) the function α is continuous and nonnegative on [0, π];
2) α(0) = 0 and α(t) 6≡ 0;
3) the function α is strictly increasing on [0, π], brie�y α ↑ on [0, π];
4) for any n ∈ N we have α(nt) ≤ nkα(t) when t ∈ [0, π

n
].

If ω is a strictly increasing on [0, π] modulus of continuity which satis�es

π∫
0

ω(u)

u
du <∞, (5)

a function α ∈ Bk for some k ≥ 1, α(t) = o(ω(t)) as t → 0+, and ω(π) > α(π), then
we can de�ne the function

ϕ(ω, α, t) = ω−1(α(t))

for t ∈ [0, π], where ω−1 is the inverse function of ω, and the function

η(ω, α, t) =

ϕ(ω,α,|t|)∫
0

ω(u)

u
du+ α(|t|)

∣∣∣∣ln ϕ(ω, α, |t|)
|t|

∣∣∣∣
for t ∈ T . As will be shown in Section 3, depending on the functions α and ω either of
two terms in the de�nition of η(ω, α, t) can be main as t→ 0+. Below, in the cases in
which this cannot cause ambiguity, we write ϕ(t) instead of ϕ(ω, α, t) and η(t) instead
of η(ω, α, t).

Let for any function g ∈ C(T ), for any x, t ∈ T and for any natural k

∆k(g, x, t) =
k∑

n=0

(−1)n
(
k
n

)
g(x+ nt).

Everywhere below, C denotes a positive constant (not necessarily the same in di�erent
cases), C(k) denotes a positive quantity depending only on k, etc.

For functions f and g positive in some right half-neighbourhood of zero the relation
f(t) ∼ g(t) as t → 0+ means that there exist δ > 0 and constants 0 < C1 < C2 such
that for t ∈ (0, δ) we have C1g(t) ≤ f(t) ≤ C2g(t).

The following statements hold.
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Theorem 1. Let k be a natural number, ω be a strictly increasing on [0, π] modulus
of continuity satisfying (5), α ∈ Bk, α satisfy (3k), α(t) = o(ω0(t)) as t → 0+, and
ω(π) > α(π).

If f ∈ Hω(T ), a point x0 ∈ T and

|f(x0 + t)− f(x0)| ≤ α(|t|)

for t ∈ T , then
|∆k(f̃ , x0, t)| ≤ C(k, ω, α)η(ω, α, t)

for t ∈ T .

In Theorem 1 condition (3k) on the function α is imposed in order to separate the
local deterioration of smoothness from the global deterioration under the action of the
conjugation operator.

Theorem 2. Let k be a natural number, ω be a strictly increasing on [0, π] modulus
of continuity satisfying (5), α ∈ Bk, α satisfy (3k), α(t) = o(ω(t)) as t → 0+, and
ω(π) > α(π).

Then, for any numerical sequence {tn}∞n=1 such that tn ↓ 0 as n→∞, there exists
a function f ∈ Hω(T ), a point x0 ∈ T and an increasing sequence of natural numbers
{np}∞p=1, for which

|f(x0 + t)− f(x0)| ≤ α(|t|)

for t ∈ T and

|∆k(f̃ , x0, tnp)| ≥
1

2π
η(ω, α, tnp)

for all p.

Under the conditions of Theorem D function η(ω, α, t) ∼ tα ln 1
t
as t → 0+. Hence

Theorem 1, in particular, signi�cantly improves Theorem D.
In the cases when the a priori known behaviour at the point of the di�erence of the

second order is known, the situation is more complicated. The following result is true.

Theorem 3. Let ω be a strictly increasing on [0, π] modulus of continuity satisfying

(5), α ∈ B2, α satisfy condition (32), α(t) = o(ω(t)) as t → 0+, α(t)
t
↑ on (0, π], and

ω(π) > α(π).
If a function f ∈ Hω(T ), x0 ∈ T ,

|f(x0)− 2f(x0 + t) + f(x0 + 2t)| ≤ α(|t|) (6)

and

|f(x0 − t)− 2f(x0) + f(x0 + t)| ≤ α(|t|) (7)

for t ∈ T , then
|∆2(f̃ , x0, t)| ≤ C(ω, α)η(ω, α, t) (8)

for t ∈ T .
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Note that Theorem 3 cannot be strengthened. This follows immediately by Theo-
rem 2. In the case when only condition (6) holds the assertion of Theorem 3 is incorrect.
This is a consequence of the following statements.

Theorem 4. Let 0 < β ≤ 1 < a < 2, a function f ∈ Lip β and

|f(0)− 2f(t) + f(2t)| ≤ |t|a

for t ∈ T .
Then the function γ de�ned by

γ(t) = lim
n→∞

2n(f(t · 2−n)− f(0))

exists for all t ∈ T and∣∣∣∣∣∣∣∆2(f̃ , 0, t)−
2

π
t

π∫
π
2

γ(u) + γ(−u)
u2

du

∣∣∣∣∣∣∣ ≤ C(a, β)|t|a ln
1

|t|

for t ∈ (−1
2
, 1

2
).

Corollary 1. Let 0 < β ≤ 1 < a < 2, a function f ∈ Lip β, f(t)− 2f(0) + f(−t) ≥ 0
for t ∈ (0, π] and

|f(0)− 2f(t) + f(2t)| ≤ |t|a

for t ∈ T .
Then inequality (8) (here η(t) ∼ ta ln 1

t
as t → 0+) implies condition (7) with

α(t) = ta for t ∈ [0, π] (possibly with a constant multiple in right-hand side).

Without loss of generality we will assume that x0 = 0 and f(x0) = 0 in the proofs
of Theorems 1-4.

The developed methods allow us to give an answer to another question. Let a 2π-
periodic function f ∈ Hω(T ), where the modulus of continuity ω satis�es conditions
(2) and (3). Then, by Theorem C the conjugate function f̃ ∈ Hω(T ). Let us denote

M(f) = {x ∈ T : f(x+ t)− f(x) = o(ω(|t|)) as t→ 0}.

G. Freud [8] established the following result.

Theorem E. Let 0 < a < 1 and f ∈ Lip a. Then the Lebesgue measure

µ(M(f)∆M(f̃)) = 0,

where M(f)∆M(f̃) is the symmetric di�erence of M(f) and M(f̃).

It turns out that a much stronger result holds.

Theorem 5. Let a modulus of continuity ω satisfy conditions (2) and (3). Then for
any function f ∈ Hω(T ) we have M(f̃) = M(f).
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Another question to be discussed in the article is the problem of di�erentiability at
a point of the conjugate function.

Let x0 ∈ T , r ↑ on [0, 1] and r(t) = o(t) as t → 0+. We say that a continuous on
T 2π-periodic function f ∈ P (x0, r(t)), if there exists f

′(x0) and |f(x0 + h)− f(x0)−
f ′(x0)h| ≤ r(|h|) for |h| ≤ 1.

Theorem 6. Let ω be a strictly increasing on [0, π] modulus of continuity satisfying
(5), x0 ∈ T , r ↑ on [0, 1], r(t) = o(t) as t→ 0+, and ω(π) > r(π).

Then the derivative f̃ ′(x0) exists for any function f ∈ Hω(T ) ∩ P (x0, r(t)) if and
only if the following conditions hold:

1∫
0

t−2r(t)dt <∞ and η(ω, r, t) = o(t) as t→ 0+.

The settings of all problems mentioned above belong to the author's supervisor
academician of the Russian Academy of Sciences P.L. Ul'yanov.

In connection with the results of this paper it would be interesting to investigate
dependence on the global and the local smoothness of the original function of the
smoothness at a point for other special integrals. For example, for Hilbert transform
of non-periodic functions or for convolution operators, which were considered in the
paper [11] by E.D. Nursultanov, S.Yu. Tikhonov and N.T. Tleukhanova. We note that
similar problems can be solved in other spaces. For example, the author [7] studied
them in the spaces Lp(T ), 1 < p < ∞ (in contrast to global smoothness, where ev-
erything is determined by Riesz's theorem, for local smoothness these problems are
not trivial). It would be interesting to investigate similar problems for isotropic or
anisotropic Besov spaces, which were studied, in particular, by K.A. Bekmaganbetov
and E.D. Nursultanov [3], or for spaces of Morrey type, which were studied by V.I. Bu-
renkov and E.D. Nursultanov [4] or for Lorentz spaces (see, for example, the paper by
E.D. Nursultanov [10]).

3 Auxiliary statements

Lemma 1. Let δ ∈ (0, π), a modulus of continuity ω satisfy condition (5), f ∈ Hω(T ),
and f(x) = 0 for x ∈ [π − δ, π + δ]. If

ˆ̃f(x) = − 1

π
lim
ε→0+

π∫
ε

f(x+ t)− f(x− t)

t
dt,

then the function R(x) = f̃(x)− ˆ̃f(x) is in�nitely di�erentiable for x ∈ (−δ, δ).

Proof. Since the function ψ(t) = 1
t
− 1

2tg t
2

is continuous at the point t = 0, and f(x) = 0

for x ∈ [π − δ, π + δ], then for x ∈ (−δ, δ) we have

R(x) =
1

π
lim
ε→+0

π∫
ε

(f(x+ t)− f(x− t))ψ(t)dt =



Local smoothness of the conjugate functions 37

=
1

π

π∫
−π

f(x+ t)ψ(t)dt =
1

π

π+x∫
−π+x

f(u)ψ(u− x)du =

=
1

π

π∫
−π

f(u)ψ(u− x)du. (9)

But for τ ∈ [−π − δ, π + δ] the function ψ(τ) is in�nitely di�erentiable. Hence the
function R(x) is also in�nitely di�erentiable for x ∈ (−δ, δ).

Corollary 2. If the assumptions of Lemma 1 hold, then for any natural number k and
for any |t| ≤ δ

2k

|∆k(R, 0, t)| ≤ |t|k max
u∈[− δ

2
, δ
2
]
|R(k)(u)| ≤ C(k, δ)|t|k max

x∈T
|f(x)|.

This result immediately follows from (9).

Lemma 2. Let γ ∈ (0, π), f ∈ C([−π, π]) and f(x) = 0 for x ∈ [−γ, γ]. Then for
x ∈ (−γ

2
, γ

2
) the function f̃(x) is in�nitely di�erentiable.

Proof. Let x ∈ (−γ
2
, γ

2
). Then

f̃(x) = − 1

π

π∫
−π

f(x+ t)

2tg t
2

dt =

= − 1

π

π∫
−π

f(u)

2tg u−x
2

du = − 1

π

∫
[−π,π]\[−γ,γ]

f(u)

2tg u−x
2

du,

which implies the statement of Lemma 2.

Corollary 3. If the assumptions of Lemma 2 hold, then for any natural number k and
for any |t| ≤ γ

2k

|∆k(f̃ , 0, t)| ≤ |t|k max
u∈[− γ

2
, γ
2
]
|f̃ (k)(u)| ≤

≤ |t|k max
x∈T

|f(x)| 1
π
·

π∫
γ
2

∣∣∣∣(ctgu2)(k)
∣∣∣∣ du.

Lemma 3. For any natural number k and for any t and x such that t 6= mx, m =
0, 1, ..., k the following equality holds

∆k

(
1

u
, t,−x

)
=

k∑
l=0

(−1)l
(
k
l

)
1

t− lx
=

(−1)kk!xk

t(t− x)...(t− kx)
.
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Proof. Let us use the method of mathematical induction. For k = 1 we have

1

t
− 1

t− x
=

−x
t(t− x)

.

Let for k = n Lemma holds. Then

∆n+1

(
1

u
, t,−x

)
= ∆n

(
1

u
, t,−x

)
−∆n

(
1

u
, t− x,−x

)
=

= (−1)nn!xn ·
(

1

t(t− x)...(t− nx)
− 1

(t− x)(t− 2x)...(t− (n+ 1)x)

)
=

=
(−1)n+1(n+ 1)!xn+1

t(t− x)...(t− (n+ 1)x)
.

Lemma 4. Let a 2π-periodic function f be such that |f(x)| ≤ M <∞ for x ∈ T and
|f(0)− 2f(t) + f(2t)| ≤ γ(|t|) for t ∈ T , where γ ↑ on [0, π]. Then

|f(t)− f(0)| ≤ 2|t|
2∫

|t|

γ(u)

u2
du+ 2M |t|

for t ∈ [−1, 1].

Proof. Let t ∈ (0, 1] and n be the natural number such that 2−n < t ≤ 21−n. Then we
obtain

|f(t)− f(0)| ≤
∣∣∣∣12f(0)− f(t) +

1

2
f(2t)

∣∣∣∣+ 1

2
|f(0)− f(2t)| ≤

≤ 1

2
γ(t) +

1

2
|f(0)− f(2t)|.

Applying this inequality, we obtain

|f(t)− f(0)| ≤ 1

2
γ(t) +

1

22
γ(2t) +

1

22
|f(0)− f(22t)| ≤ ... ≤

≤
n−1∑
k=0

2−k−1γ(2kt) +
1

2n
|f(0)− f(2nt)| ≤ 2Mt+

+2−n
n−1∑
k=0

2n−k−1γ(2−n+k+1) ≤ 2Mt+ t
n−1∑
m=0

2mγ(2−m) ≤

≤ 2Mt+ 2t
n−1∑
k=0

2−m+1∫
2−m

γ(u)

u2
du ≤ 2Mt+ 2t

2∫
t

γ(u)

u2
du.

The case t ∈ [−1, 0) is similar, and thus, Lemma 4 is proved.
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The following statement will not be used in the sequel, but is of particular interest
in connection with Lemma 4.

Lemma 5. Let a 2π-periodic function f be such that |f(0) − 2f(t) + f(2t)| ≤ λ(|t|)
for t ∈ T , where λ ↑ on [0, π] and

1∫
0

λ(t)

t2
dt <∞.

Moreover, let
|f(t)− f(0)| = o(|t|) (10)

as t→ 0. Then

|f(t)− f(0)| ≤ 2|t|
2|t|∫
0

λ(u)

u2
du

for t ∈ T .
Proof. Let t ∈ (0, π]. Note that

|f(t)− f(0)| ≤
∣∣∣∣f(t)− 2f

(
t

2

)
+ f(0)

∣∣∣∣+ 2

∣∣∣∣f ( t2
)
− f(0)

∣∣∣∣ ≤
≤ λ(t) + 2

∣∣∣∣f ( t2
)
− f(0)

∣∣∣∣ .
Applying this inequality, we obtain that

|f(t)− f(0)| ≤ λ(t) + 2λ(2−1t) + 22|f(2−2t)− f(0)| ≤ ... ≤

≤
m∑
k=0

2kλ(2−kt) + 2m+1|f(2−m−1t)− f(0)|

for any integer m ≥ 1.
Passing to the limit as m→∞ and using (10), we get

|f(t)− f(0)| ≤
∞∑
k=0

2kλ(2−kt) ≤ 2t
∞∑
k=0

2−k+1∫
2−k

λ(u)

u2
du ≤ 2t

2t∫
0

λ(u)

u2
du.

For t ∈ [−1, 0), the situation is similar, and Lemma 5 is proved.

Note that the example f(x) = |x| on T shows that condition (10) does not follow
even from the condition f(0)− 2f(t) + f(2t) = 0 for t ∈ [−1, 1].

Lemma 6. Let ω be a strictly increasing on [0, π] modulus of continuity satisfying (5),

α ∈ B2, α satisfy condition (32), α(t) = o(ω(t)) as t → 0+, α(t)
t
↑ on (0, π], and

ω(π) > α(π).
If δ ∈ (0, π

4
), an odd function f ∈ Hω(T ), f(x) = 0 for x ∈ [π − δ, π + δ], and

|f(2t)− 2f(t)| ≤ α(|t|) for t ∈ T , then for t ∈ T

| ˆ̃f(0)− 2 ˆ̃f(t) + ˆ̃f(2t)| ≤ C(ω, α, δ)η(ω, α, t).
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Proof. Let us denote ψ(t) = f(t)
t

for t ∈ T \ {0}. Then

|ψ(2t)− ψ(t)| =
∣∣∣∣f(2t)− 2f(t)

2t

∣∣∣∣ ≤ α(|t|)
|2t|

for t ∈ T \ {0}. Since maxx∈T |f(x)| ≤ ω(π), then by Lemma 4

|f(t)| = |f(t)− f(0)| ≤ 2|t|
2∫

|t|

α(u)

u2
du+ 2ω(π)|t| ≤ C(ω, α)|t| ln 1

|t|

for |t| ≤ 1
2
, consequently |ψ(t)| ≤ C(ω, α) ln 1

|t| . Thus ψ ∈ L(T ).

Let us consider for t ∈ (0, δ
2
) the following expression (integrals around the points

u = t and u = 2t are understood in the sense of principal value)

−π( ˆ̃f(0)− 2 ˆ̃f(t) + ˆ̃f(2t)) =

=

∫
T

f(u)

(
1

u
− 2

u− t
+

1

u− 2t

)
du =

=

∫
T

f(u)
2t2

u(u− t)(u− 2t)
du = 2t

∫
T

ψ(u)
t

(u− t)(u− 2t)
du =

= 2t

∫
T

ψ(u)
du

u− 2t
−
∫
T

ψ(u)
du

u− t

 =

= 2t


π
2∫

−π
2

ψ(2v)
dv

v − t
−

π∫
−π

ψ(v)
dv

v − t

 =

= 2t


π
2∫

−π
2

(ψ(2v)− ψ(v))
dv

v − t
−

∫
[−π,π]\[−π

2
,π
2
]

ψ(v)
dv

v − t

 ≡

≡ 2t(I1 + I2). (11)

Since ψ is an odd function,

|I2| ≤

∣∣∣∣∣∣∣
π∫

π
2

ψ(v)

(
1

v − t
+

1

−v − t

)
dv

∣∣∣∣∣∣∣ ≤

≤ 2t

π∫
π
2

|ψ(v)|
v2 − t2

dv ≤ 2tπω(π) = C(ω)t. (12)
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Furthermore we consider t ∈ (0, t0)∩(0, δ
2
) , where t0 is such that ϕ(t) < t

2
for t ∈ (0, t0).

Then

I1 =

−2t∫
−π

2

(ψ(2v)− ψ(v))
dv

v − t
+

t−ϕ(t)∫
−2t

(ψ(2v)− ψ(v))
dv

v − t
+

+

t+ϕ(t)∫
t−ϕ(t)

(ψ(2v)− ψ(v))
dv

v − t
+

2t∫
t+ϕ(t)

(ψ(2v)− ψ(v))
dv

v − t
+

+

π
2∫

2t

(ψ(2v)− ψ(v))
dv

v − t
≡ I1,1 + I1,2 + I1,3 + I1,4 + I1,5, (13)

where the integral I1,3 ais understood in the sense of principal value around the point
v = t. Since ψ is an even function, using condition (32), we �nd that

|I1,1 + I1,5| =

∣∣∣∣∣∣∣
π
2∫

2t

(ψ(2v)− ψ(v))

(
1

v − t
− 1

v + t

)
dv

∣∣∣∣∣∣∣ ≤

≤

π
2∫

2t

α(v)

2v

2t

v2 − t2
dv ≤ 4t

π
2∫

2t

α(v)

v3
dv ≤ C(α)

α(t)

t
. (14)

Moreover, using the condition α(u)
u
↑ on (0, π], we get that

|I1,2| ≤
α(2t)

4t

t−ϕ(t)∫
−2t

dv

|v − t|
≤ α(t)

t
(| ln ϕ(t)

t
|+ ln 3) (15)

and analogously

|I1,4| ≤
α(t)

t

∣∣∣∣ln ϕ(t)

t

∣∣∣∣ . (16)

Consequently

|I1,3| =

∣∣∣∣∣∣
ϕ(t)∫
0

(
f(2t+ 2u)

2t+ 2u
− f(t+ u)

t+ u
− f(2t− 2u)

2t− 2u
+
f(t− u)

t− u

)
d u

u

∣∣∣∣∣∣ =

=
1

2
·

∣∣∣∣∣∣
ϕ(t)∫
0

(f(2t+ 2u)− f(2t− 2u))− 2(f(t+ u)− f(t− u))

t− u

du

u
+

+

ϕ(t)∫
0

(f(2t+ 2u)− 2f(t+ u))

(
1

t+ u
− 1

t− u

)
du

u

∣∣∣∣∣∣ ≤
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≤ 1

2
· 2

t

ϕ(t)∫
0

8ω(u)

u
du+

8α(2t)

t2

ϕ(t)∫
0

du ≤

≤ 16

t

 ϕ(t)∫
0

ω(u)

u
du+ α(t)

 . (17)

By formulas (11) - (17) we obtain that for t ∈ (0, t0) ∩ (0, δ
2
) the following estimate

holds

|( ˆ̃f(0)− 2 ˆ̃f(t) + ˆ̃f(2t))| ≤

≤ C(ω, α)

 ϕ(t)∫
0

ω(u)

u
du+ α(t)| ln ϕ(t)

t
|+ α(t) + t2

 ≤

≤ C(ω, α, δ)η(ω, α, t). (18)

If we increase appropriately C(ω, α, δ), then inequality (18) holds for all t ∈ (0, π]. For
t ∈ [−1, 0], the situation is similar, and so Lemma 6 is proved.

Lemma 7. Let 0 < β ≤ 1 < a < 2, f ∈ Lip β and for t ∈ T |f(2t) − 2f(t)| ≤ |t|a.
Then the function γ, which is de�ned in Theorem 4 exists and satis�es the inequality

|γ(x)− γ(y)| ≤ C(a, β)|x− y|
a−1
a−β

β

for x, y ∈ T .

Proof. Note that since f ∈ C(T ) and |f(2t) − 2f(t)| ≤ |t|a for t ∈ T , we get that
f(0) = 0. By the assumptions of the lemma we have∣∣∣∣f(2u)

2u
− f(u)

u

∣∣∣∣ ≤ |u|a−1

2
(19)

for u ∈ T \ {0}. By (19) it follows that, if m > n ≥ n0, then

|2nf(2−nt)− 2mf(2−mt)| ≤
m−1∑
k=n

|2kf(2−kt)− 2k+1f(2−k−1t)| =

= |t|
m−1∑
k=n

∣∣∣∣f(2−kt)

2−kt
− f(2−k−1t)

2−k−1t

∣∣∣∣ ≤
≤ |t|a

m−1∑
k=n

(
1

2k+1

)a−1

≤ C(a)|t|a2−n0(a−1). (20)

Thus for the sequence {2nf(2−nt)}∞n=0 the Cauchy criterion holds, and the existence of
the function γ is established.
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Note that for any t ∈ T \ {0} and for any m ≥ 1 we have that

γ(2mt)

2m
= 2−m lim

n→∞
2nf(2−n2mt) =

= lim
n→∞

2n−mf(2m−nt) = lim
n→∞

2nf(2nt) = γ(t).

Hence from inequality (20) it follows that

|γ(t)− 2nf(2−nt)| ≤ C(a)|t|a2−n(a−1) (21)

for t ∈ T . Moreover, by the assumptions of the lemma we get that

|2nf(2−nx)− 2nf(2−ny)| ≤ 2n|x− y|β2−nβ. (22)

Without loss of generality, we can assume that x < y. Given 0 < x < y ≤ π. Then we
choose the integer m ≥ 0 such that 21−m < y−x ≤ 22−m. Let us assume in inequalities
(21) and (22) n = [ β

a−βm], where [b] is the integer part of the number b. Then we get
that

|γ(x)− γ(y)| ≤ |γ(x)− 2nγ(x2−n)|+ |2nγ(x2−n)− 2nγ(y2−n)|+

+|2nγ(y2−n)− γ(y)| ≤ 2C(a)πa2−[ β
a−β

m](a−1)+

+4 · 2−[ β
a−β

m](1−β)−mβ ≤ 4(C(a)πa + 1)2−m
a−1
a−β

β ≤ C(a, β)|x− y|
a−1
a−β

β. (23)

The continuity of γ(t) at t = 0 follows directly by its de�nition. So, in inequality (23)
we may assume that 0 ≤ x < y ≤ π. It is clear, that for −π ≤ x < y ≤ 0, the situation
is similar. If −π ≤ x < 0 < y ≤ π, then

|γ(x)− γ(y)| ≤ |γ(x)|+ |γ(y)| = |γ(x)− γ(0)|+ |γ(y)− γ(0)| ≤

≤ C(a, β)
(
|x|

a−1
a−β

β + y
a−1
a−β

β
)
≤ C(a, β)|x− y|

a−1
a−β

β.

The proof is complete.

4 Local smoothness of the conjugate functions: the case of the
�rst di�erence

Proof of Theorem 1. First, we prove Theorem 1 for the function ˆ̃f . Since α(t) = o(ω(t))
as t→ 0+, then ϕ(t) < t for su�ciently small positive t. We establish the estimate of
the theorem for t such that 0 < (k+ 1)t < π

3
and ϕ(t) < t. For small in absolute value

negative t, the situation is similar. Also by the appropriate increasing of the constant
the estimate of the theorem can be extended to all t ∈ [−π, π]. Let us consider the
case f(x) = 0 for x ∈ [2π

3
, 4π

3
]. Note that since condition (5) holds for 0 ≤ m ≤ k, we

have

ˆ̃f(mt) = − 1

π

π∫
−π

f(mt+ u)− f(mt)

u
du =
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= − 1

π

(k−m+1)t∫
−(k+m+1)t

f(mt+ u)− f(mt)

u
du− 1

π

−(k+m+1)t∫
−π

f(mt+ u)

u
du−

− 1

π

π∫
(k−m+1)t

f(mt+ u)

u
du+

f(mt)

π

 −(k+m+1)t∫
−π

du

u
+

π∫
(k−m+1)t

du

u

 =

= − 1

π

(k−m+1)t∫
−(k+m+1)t

f(mt+ u)− f(mt)

u
du− 1

π

−(k+1)t∫
−π+mt

f(v)

v −mt
dv−

− 1

π

π+mt∫
(k+1)t

f(v)

v −mt
dv +

f(mt)

π
ln
k +m+ 1

k −m+ 1
=

= − 1

π

(k−m+1)t∫
−(k+m+1)t

f(mt+ u)− f(mt)

u
du− 1

π

∫
[−π,π]\[−(k+1)t,(k+1)t]

f(v)

v −mt
dv+

+
f(mt)

π
ln
k +m+ 1

k −m+ 1
. (24)

Next the following estimate is true∣∣∣∣∣∣∣
(k−m+1)t∫

−(k+m+1)t

f(mt+ u)− f(mt)

u
du

∣∣∣∣∣∣∣ ≤
∣∣∣∣∣∣∣

−ϕ(t)∫
−(k+m+1)t

f(mt+ u)− f(mt)

u
du

∣∣∣∣∣∣∣+

+

∣∣∣∣∣∣∣
ϕ(t)∫

−ϕ(t)

f(mt+ u)− f(mt)

u
du

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣

(k−m+1)t∫
ϕ(t)

f(mt+ u)− f(mt)

u
du

∣∣∣∣∣∣∣ ≤

≤ 4α(3kt)

∣∣∣∣ln ϕ(t)

3kt

∣∣∣∣+ 2

ϕ(t)∫
0

ω(u)

u
du. (25)

Now (see (24), (25), Lemma 3, (2) and (3k)), we get

|∆k(
ˆ̃f, 0, t)| =

∣∣∣∣∣
k∑

m=0

(−1)m
(

k
m

)
ˆ̃f(mt)

∣∣∣∣∣ ≤

≤ 1

π

k∑
m=0

(
k
m

) ∣∣∣∣∣∣∣
(k−m+1)t∫

−(k+m+1)t

f(mt+ u)− f(mt)

u
du

∣∣∣∣∣∣∣+
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+
1

π

∫
[−π,π]\[−(k+1)t,(k+1)t]

|f(v)|

∣∣∣∣∣
k∑

m=0

(−1)m
(

k
m

)
1

v −mt

∣∣∣∣∣ dv+
+

1

π

k∑
m=0

(
k
m

)
|f(mt)| ln k +m+ 1

k −m+ 1
≤ 2k

π

(
4α(3kt)

∣∣∣∣ln ϕ(t)

3kt

∣∣∣∣+
+2

ϕ(t)∫
0

ω(u)

u
du

+
2(k + 1)kk!

π
tk ·

π∫
t

α(u)

uk+1
du+

+
2k

π
α(kt) ln(3k) ≤

≤ C(k, ω, α)

α(t)

∣∣∣∣ln ϕ(t)

t

∣∣∣∣+
ϕ(t)∫
0

ω(u)

u
du

 . (26)

Next step is to get rid of restrictions on the function f(x). Let µ be in�nitely
di�erentiable 2π-periodic even function, satisfying 0 ≤ µ(x) ≤ 1 and

µ(x) =

{
0 for 2π

3
≤ x ≤ π;

1 for 0 ≤ x ≤ π
2
.

Then
f(x) = f(x)µ(x) + f(x)(1− µ(x)) ≡ f1(x) + f2(x).

Note that |f1(t)| ≤ |f(t)| ≤ α(|t|) for t ∈ T and f1(x) ∈ HC(ω)ω(T ). Then we have
that (see (26), Corollary 2 and 3)

|∆k(f̃ , 0, t)| ≤ |∆k(
ˆ̃f1, 0, t)|+

+|∆k(f̃1 − ˆ̃f1, 0, t)|+ |∆k(f̃2, 0, t)| ≤

≤ C(k, ω, α)

α(|t|)
∣∣∣∣ln ϕ(|t|)

|t|

∣∣∣∣+
ϕ(|t|)∫
0

ω(u)

u
du

+

+C(k, ω, α)|t|k ≤ C(k, ω, α)η(|t|)
for t ∈ T . So Theorem 1 proved. �

Proof of Theorem 2. Let a sequence tn ↓ 0 as n → ∞. Let us choose an increasing
sequence {mi}∞i=1 such that:

1. m1 is such that tm1 <
π
2k

and ϕ(t) < t for t < ktm1 ,

2. mi+1 is such that tmi+1
<

tmi

6k
for i = 1, 2, ....

Let τmi
= tmi

k for i = 1, 2, .... Let us de�ne the function f(x) for x ∈ [τmi+1
, τmi

],
where i = 1, 2, ...:

f(x) =


ω(x− τmi+1

) for x ∈ [τmi+1
, τmi+1

+ ϕ(tmi+1
)];

ω(ϕ(tmi+1
)) = α(tmi+1

) for x ∈ [τmi+1
+ ϕ(tmi+1

), 3τmi+1
];

f(6τmi+1
− x) for x ∈ [3τmi+1

, 5τmi+1
];

0 in other cases [τmi+1
, τmi

].
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Let for x ∈ [τm1 , π] f(x) = 0 and f(0) = 0. Extending f as an even function to [−π, 0),
then 2π-periodically to the whole line, we obtain the desired function. Let us prove
this.

Let x ∈ [0, π]. Then either f(x) = 0, or there exists a number i ≥ 1 such that
x ∈ [τmi+1

, τmi
]. Hence |f(x)| ≤ α(tmi+1

) ≤ α(x). Let us show that f ∈ Hω(T ). Let
x, y ∈ T and

f(x) ≥ f(y). (27)

We assume that f(x) > 0, otherwise there is nothing to prove. Since f is an even
function it is enough to consider the case x > 0. Then there exists a number i ≥ 2
such that x ∈ [τmi

, 5τmi
]. Three cases are possible.

1) The number x ∈ [τmi
, τmi

+ ϕ(τmi
)]. Suppose that y ∈ [τmi

, x]. Then taking
into account (27), the properties of a modulus of continuity and the de�nition of the
numbers τmi

, we have

0 ≤ f(x)− f(y) = ω(x− τmi
)− ω(y − τmi

) ≤ ω(x− y)+

+ω(y − τmi
)− ω(y − τmi

) = ω(x− y). (28)

Let now y < τmi
. Then (see (27))

0 ≤ f(x)− f(y) ≤ f(x) = ω(x− τmi
) ≤ ω(x− y). (29)

If y > x, then taking into account (27), we get that y > 3τmi
. At the same time

x < τmi
+ ϕ(τmi

) ≤ 2τmi
.

Hence
0 ≤ f(x)− f(y) ≤ f(x) = ω(x− τmi

) ≤ ω(τmi
) ≤ ω(y − x). (30)

Combining estimations (28) � (30), we see that in case 1)

|f(x)− f(y)| ≤ ω(|x− y|). (31)

2) The number x ∈ [5τmi
−ϕ(τmi

), 5τmi
]. This case is almost not di�erent from case

1) and again estimate (31) holds.
3) The number x ∈ [τmi

+ϕ(τmi
), 5τmi

−ϕ(τmi
)]. If y belongs to the same segment,

then f(x)−f(y) = 0. If y < τmi
+ϕ(τmi

), then (see (27), the de�nition of the numbers
τmi

and (31))
0 ≤ f(x)− f(y) = f(τmi

+ ϕ(τmi
))− f(y) ≤

≤ ω(τmi
+ ϕ(τmi

)− y) ≤ ω(x− y).

If y > 5τmi
− ϕ(τmi

), then again by the same reasons

0 ≤ f(x)− f(y) = f(5τmi
− ϕ(τmi

))− f(y) ≤

≤ ω(y − 5τmi
+ ϕ(τmi

)) ≤ ω(y − x). (32)

Since f(x) = 0 for x ∈ [π
2
, 3π

2
], from estimates (31) and (32) it follows that the function

f ∈ Hω(T ).
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Let us consider now ˆ̃f(ntmi
), where i > 1 and 1 ≤ n ≤ k. Then we have that (see

the de�nition of the numbers tmi
and of the function f)

ˆ̃f(ntmi
) = − 1

π

∫
T

f(ntmi
+ u)

u
du = − 1

π

∫
T

f(v)

v − ntmi

dv =

= − 1

π

3τmi∫
−3τmi

f(v)

v − ntmi

dv − 1

π

−3τmi∫
−π

f(v)

v − ntmi

dv−

− 1

π

π∫
3τmi

f(v)

v − ntmi

dv. (33)

For 1 ≤ n < k by the de�nitions of the numbers tmi
and of the function f(x), we get

that f(v) = 0 for v ∈ [ntmi
− 1

6
tmi

, ntmi
+ 1

6
tmi

]. Hence∣∣∣∣∣∣∣
3τmi∫

−3τmi

f(v)

v − ntmi

dv

∣∣∣∣∣∣∣ ≤ 2α(3τmi
)

6τmi∫
tmi
6

dv

v
≤

≤ C(k)α(tmi
). (34)

Moreover,
3τmi∫

−3τmi

f(v)

v − ktmi

dv =

τmi∫
−3τmi

f(v)

v − τmi

dv+

+

3τmi∫
τmi

f(v)

v − τmi

dv ≡ J1 + J2. (35)

It is clear that

|J1| ≤ α(3τmi
)

∣∣∣∣∣∣∣
5
6
τmi∫

−3τmi

1

v − τmi

dv

∣∣∣∣∣∣∣ ≤ (3k)k ln 18 · α(tmi
). (36)

And by the de�nition of the function f it follows that

J2 =

τmi+ϕ(tmi )∫
τmi

ω(v − τmi
)

v − τmi

dv +

3τmi∫
τmi+ϕ(tmi )

f(v)

v − τmi

dv =

=

ϕ(tmi )∫
0

ω(v)

v
+ α(tmi

)

2τmi∫
ϕ(tmi )

dv

v
=



48 M.I. Dyachenko

= η(ω, α, tmi
) + α(tmi

) ln(2k). (37)

Finally, using the parity of the function f , Lemma 3, (33) - (37) and the condition
(3k), we obtain

|∆k(
ˆ̃f, 0, tmi

)| =

∣∣∣∣∣
k∑

n=0

(−1)nCn
k

ˆ̃f(ntmi
)

∣∣∣∣∣ ≥
≥ − 1

π

k−1∑
n=0

Cn
k ·

∣∣∣∣∣∣∣
3τmi∫

−3τmi

f(v)

v − ntmi

dv

∣∣∣∣∣∣∣−
1

π
|J1|+

1

π
|J2|−

− 1

π

−3τmi∫
−π

|f(v)|k!tkmi

|v(v − tmi
)...(v − ktmi

)|
dv−

− 1

π

π∫
3τmi

|f(v)|k!tkmi

v(v − tmi
)...(v − ktmi

)
dv ≥

≥ −C(k)α(tmi
)−−C(k)α(tmi

) +
1

π
η(ω, α, tmi

)− 2k!tkmi

π∫
tmi

α(v)

vk+1
dv ≥

≥ 2

3π
η(ω, α, tmi

) (38)

for su�ciently large i. Using Corollary 2 and inequality (38) we �nd that for i ≥ i0
the following inequality holds

|∆k(f̃ , 0, tmi
)| ≥ |∆k(

ˆ̃f, 0, tmi
)| − |∆k(f̃ − ˆ̃f, 0, tmi

)| ≥

≥ 2

3π
η(ω, α, tmi

)−max
t∈T

|f(t)| · C(k) · tkmi
≥ 1

2π
η(ω, α, tmi

).

Assuming that for all i ≥ 1 the number ni = mi0+i, we see that Theorem 2 is proved.
�

To conclude this section let us examine some examples of the behaviour of the two
terms in the de�nition of the function η(ω, α, t).

Case 1. Let ω(t) = tβ, and α(t) = tγ, where 0 < β < γ < 1. Then ϕ(t) = t
γ
β .

Consequently

η(t) =

t
γ
β∫

0

uβ−1du+ tγ| ln t
γ
β
−1| =

=
1

β
tγ + (

γ

β
− 1)tγ ln

1

t
∼ tγ ln

1

t

as t→ 0+.
Note that in this case the main is the second term.
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Case 2. Let ω(t) = ln−p 1
t
for t ∈ (0, 1

2
), where p > 1, and α(t) = tγ, for 0 < γ < 1.

Then ϕ(t) = e−t
− γ

p
. Hence

η(t) =

ϕ(t)∫
0

du

ulnp 1
u

+ tγ

∣∣∣∣∣ln e−t
− γ

p

t

∣∣∣∣∣ ≤
≤ 1

p− 1
ln1−pet

− γ
p

+ tγ−
γ
p + tγ ln

1

t
=

p

p− 1
tγ

p−1
p + tγ ln

1

t
∼

∼ p

p− 1
tγ

p−1
p

as t→ 0+. In that case both of terms in η(t) have the same order as t→ 0+.

Case 3. Let ω(t) = ln−1 1
t
(ln ln 1

t
)
−p

for t ∈ (0, 1
10

), where p > 1, and α(t) = tγ, for
0 < γ < 1. Then by the de�nition of the function ϕ

ln−1 1

ϕ(t)

(
ln ln

1

ϕ(t)

)−p
= tγ,

consequently it is clear that

ln ln
1

ϕ(t)
+ p ln ln ln

1

ϕ(t)
= γ ln

1

t
,

i.e.

ln ln
1

ϕ(t)
∼ γ ln

1

t
(39)

as t→ 0+, and

tγ ln
1

ϕ(t)
=

(
ln ln

1

ϕ(t)

)−p
∼ γ−pln−p

1

t
(40)

as t→ 0+. By formulas (39) and (40) it follows that

η(t) =

ϕ(t)∫
0

du

u ln 1
u
(ln ln 1

u
)
p + tγ| ln ϕ(t)

t
| =

= (p− 1)

(
ln ln

1

ϕ(t)

)1−p

+ tγ ln
t

ϕ(t)
∼

∼ γ1−pln1−p1

t
+ γ−pln−p

1

t
∼ γ1−pln1−p1

t

as t→ 0+. Here the main contribution is of the term containing integral.
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5 Generalization of G. Freud's theorem

Proof of Theorem 5. By Theorem C it su�ces to prove that M(f) ⊆ M(f̃). Let
x ∈M(f). As noted above, without loss of generality, we may assume that x = 0 and
f(x) = 0. If t ∈ (0, π

4
], the following estimate holds (see the proof of Theorem 1)

π|f̃(t)− f̃(0)| =

∣∣∣∣∣∣
∫
T

f(t+ u)

2tg u
2

du−
∫
T

f(u)

2tg u
2

du

∣∣∣∣∣∣ =

=

∣∣∣∣∣∣
∫
T

f(u)

2tg u−t
2

du−
∫
T

f(u)

2tg u
2

du

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
−2t∫
−π

f(u)

(
1

2tg u−t
2

− 1

2tg u
2

)
du

∣∣∣∣∣∣+
+

∣∣∣∣∣∣
2t∫

−2t

f(u)

2tg u
2

du

∣∣∣∣∣∣+
∣∣∣∣∣∣

2t∫
−2t

f(u)− f(t)

2tg u−t
2

du

∣∣∣∣∣∣+
+

∣∣∣∣∣∣ f(t)

2t∫
−2t

1

2tg u−t
2

du

∣∣∣∣∣∣+
∣∣∣∣∣∣

π∫
2t

f(u)

(
1

2tg u−t
2

− 1

2tg u
2

)
du

∣∣∣∣∣∣ ≤
≤ C

t −t∫
−π

|f(u)|
u2

du+

2t∫
−2t

|f(u)|
u

du+

+

2t∫
−2t

|f(u)− f(t)|
|u− t|

du+ |f(t)|+ t

π∫
t

|f(u)|
u2

du

 ≡

≡ C(J1 + J2 + J3 + |f(t)|+ J4). (41)

Since by the assumptions of Theorem 5 |f(t)| = o(ω(t)) as t → 0+ and for ω the
condition (3) holds, then by the well-known theorem (see [3, ñ. 38]) we get that

J4 = t

π∫
t

o(ω(u))

u2
du = o

 π∫
t

ω(u)

u2
du

 = o(ω(t)) (42)

as t→ 0+, and analogously
J1 = o(ω(t)) (43)

as t→ 0+. Hence, since for ω condition (2) holds,

J2 =

2t∫
−2t

o(ω(|u|))
|u|

du = o

 2t∫
−2t

ω(|u|)
|u|

du

 = o(ω(t)) (44)

as t→ 0+. Let us consider a function ψ(t) ↓ 0 when t ↓ 0 for t ∈ (0, π] such that

| lnψ(t)|max
|u|≤2t

|f(u)| = o(ω(t))
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as t→ 0+. In [5] it was established that the condition (2) is equivalent to

lim inf
u→+0

ω(Au)

ω(u)
> 1

for any A > 1. But then ω(tψ(t)) = o(ω(t)) as t→ 0+. Therefore for su�ciently small
positive t we have

J3 ≤
∫

[−2t,2t]\[t−tψ(t),t+tψ(t)]

|f(u)− f(t)|
|u− t|

du+

t+tψ(t)∫
t−tψ(t)

|f(u)− f(t)|
|u− t|

du ≤

≤ 4| lnψ(t)|max
|u|≤2t

|f(u)|+ 2

tψ(t)∫
0

ω(u)

u
du = o(ω(t)) (45)

as t →)+. Since for negative t everything is similar, from (41) - (45) it follows that
0 ∈M(f̃), i.e. M(f) ⊆M(f̃). �

6 Local smoothness of the conjugate functions: the case of the
second di�erence

Proof of Theorem 3. From condition (7) (taking into account the fact that f(0) = 0) it
follows that if we de�ne the odd function f1(x) = f(x) for x ∈ [0, π], then the function
f2(x) = f(x) − f1(x) satis�es |f2(x)| ≤ α(x) for x ∈ T . Moreover, it is obvious that
f1, f2 ∈ H4ω(T ). By Theorem 1 we have

|∆2(f̃2, 0, t)| ≤ C(ω, α)η(ω, α, |t|) (46)

for t ∈ T . Now if µ is a function de�ned in the proof of Theorem 1, we can de�ne the
decomposition

f1(x) = f1(x)µ(x) + f1(x)(1− µ(x)) ≡ f3(x) + f4(x) (47)

for x ∈ T . Let us note that function f3 satis�es the assumptions of Lemma 6. Hence

|∆2(
ˆ̃f3, 0, t)| ≤ C(ω, α)η(ω, α, |t|) (48)

for x ∈ T . Finally, by applying Corollary 2 and 3, we conclude that

|∆2(f̃3 − ˆ̃f3, 0, t)| ≤ C(ω)|t|2 (49)

and
|∆2(f̃4, 0, t)| ≤ C(ω)|t|2 (50)

for x ∈ T . From (46) � (50) it follows that

|∆2(f̃ , 0, t)| ≤ C(ω, α)η(ω, α, |t|)

for x ∈ T . Theorem 3 is proved. �
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Proof of Theorem 4. Let µ be a function de�ned in the proof of Theorem 1 and γ1(x) =

γ(x)µ(x) for x ∈ T . By Lemma 7 the function γ1 ∈ Hω(T ), where ω(t) = C(a, β)t
a−1
a−β

β.
If 0 < |t| < π

4
, then there exists an integer k ≥ 2 such that |t| ∈ ( π

2k+1 ,
π
2k ]. But then

γ1(2t)− 2γ1(t) = γ(2t)− 2γ(t) =
γ(2kt)

2k−1
− 2

γ(2kt)

2k
= 0. (51)

Let f1(t) = f(t)− γ1(t). Then

|f1(x)− f1(y)| ≤ C(a, β)|x− y|
a−1
a−β

β

for x, y ∈ T and
|f1(2t)− 2f1(t)| ≤ C(a)|t|a

for t ∈ T . Moreover, assuming that in inequality (21) n = 0, we get that |t| ≤ π
4
, such

that |f1(t)| = |f(t)− γ(t)| ≤ C(a)|t|a for t ∈ T . Using Theorem 1, we have that

|∆2(f̃1, 0, t)| ≤ C(a, β)|t|a ln
1

|t|
(52)

for |t| ≤ 1
2
. Let us note that if |t| ≤ π

8
, then equality (11) for function γ1 will have the

form (see (51))
−π∆2( ˆ̃γ1, 0, t) =

= 2t

 ∫
[−π

2
,π
2
]\[−π

4
,π
4
]

γ1(2v)− 2γ1(v)

2v(v − t)
dv −

∫
[−π,π]\[−π

2
,π
2
]

γ1(v)

v(v − t)
dv

 . (53)

Carrying out simple transformation we get that

π
2∫

π
4

γ1(2v)− 2γ1(v)

2v(v − t)
dv −

π∫
π
2

γ1(v)

v(v − t)
dv =

= −

π
2∫

π
4

γ(v)

v(v − t)
dv +

π∫
π
2

γ(u)µ(u)

u(u− 2t)
du−

−
π∫

π
2

γ(u)µ(u)

u(u− t)
du =

= −

π
2∫

π
4

γ(v)

v(v − t)
dv + t

π∫
π
2

γ(u)µ(u)

u(u− t)(u− 2t)
du (54)

and analogously
−π

4∫
−π

2

γ1(2v)− 2γ1(v)

2v(v − t)
dv −

−π
2∫

−π

γ1(v)

v(v − t)
dv =
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= −

−π
4∫

−π
2

γ(v)

v(v − t)
dv + t

π
2∫

π

γ(u)µ(u)

u(u− t)(u− 2t)
du. (55)

Note that ∣∣∣∣∣∣∣
π
2∫

π
4

γ(v)

v(v − t)
dv −

π
2∫

π
4

γ(v)

v2
dv

∣∣∣∣∣∣∣ ≤ 2|t|

π
2∫

π
4

|γ(v)|
v3

dv (56)

and ∣∣∣∣∣∣∣
−π

4∫
−π

2

γ(v)

v(v − t)
dv −

−π
4∫

−π
2

γ(v)

v2
dv

∣∣∣∣∣∣∣ ≤ 2|t|

−π
4∫

−π
2

|γ(v)|
v3

dv. (57)

And by Corollary 2, we get that

|∆2(γ̃1 − ˆ̃γ1, 0, t)| ≤ t2C(a, β) max
x∈T

|γ(x)|. (58)

Taking into account formulas (52) � (58) and

π
2∫

π
4

γ(v) + γ(−v)
v2

dv =

π∫
π
2

γ(v) + γ(−v)
v2

dv,

we obtain ∣∣∣∣∣∣∣∆2(f̃ , 0, t)−
2

π
t

π∫
π
2

γ(u) + γ(−u)
u2

du

∣∣∣∣∣∣∣ ≤
≤ |∆2(f̃1, 0, t)|+ |∆2(γ̃1 − ˆ̃γ1, 0, t)|+

+

∣∣∣∣∣∣∣∆2(γ̃1, 0, t)−
2

π
t

π∫
π
2

γ(u) + γ(−u)
u2

du

∣∣∣∣∣∣∣ ≤ C(a, β)|t|a ln
1

|t|
+

+C(a, β)t2 ≤ C(a, β)|t|a ln
1

|t|

for t ∈ (−1
2
, 1

2
). The proof of Theorem 4 is complete. �

Proof of Corollary 1. By the assumptions of Corollary 1 it follows that γ(v)+γ(−v) ≥ 0
for v ∈ [0, π] and by Theorem 4 we have

π∫
π
2

γ(v) + γ(−v)
v2

dv = 0.
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Hence γ(v) + γ(−v) = 0 for v ∈ [π
2
, π], and according to the de�nition of the function

γ, for every v ∈ [0, π]. In the proof of Theorem 4 it was noted that

|f1(t)| = |f(t)− γ(t)| ≤ C(a)|t|a

for |t| < π
4
. So

|f(v) + f(−v)| = |f(v) + f(−v)− (γ(v) + γ(−v))| ≤

≤ |f1(v)|+ |f1(−v)| ≤ C(a)va

for v ∈ [0, π
4
], which is equivalent to the statement. �

7 Di�erentiation of the conjugate functions

Proof of Theorem 6. We assume that x0 = 0. Let us de�ne the function f1(x) =
f(x)µ(x), where µ was de�ned in the proof of Theorem 1. Applying Lemma 2, we see

that the existence of f̃ ′(0) is equivalent to the existence of f̃1
′
(0), which is equivalent

to the existence of ˆ̃f1

′
(0) by Lemma 1. Let us note that for f ∈ P (0, r(t)) we have

|f1(t)− At| ≤ C(f)r(|t|)

for t ∈ T . Let ν(t) = f1(t)− Atµ(t) for t ∈ T . Then

|ν(t)| = |f(t)− At| · |µ(t)| ≤ r(|t|)

for t ∈ T . Moreover, ν ∈ HC(f)ω(T ). Moreover, it is clear that for some t0 > 0 for all
t ∈ (0, t0) the estimate ϕ(t) ≡ ϕ(ω, r, t) < t holds.

Let us establish the su�ciency in Theorem 6. Let ε > 0. Let us consider for
0 < t < min(π

6
, t0) the expression

1

t
(ˆ̃ν(t)− ˆ̃ν(0)) = − 1

tπ

 ∫
T\[−2t,2t]

ν(u)

(
1

u− t
− 1

u

)
du −

2t∫
−2t

ν(u)

u
du+

+

t−ϕ(2t)∫
−2t

ν(u)

u− t
du+

ϕ(2t)∫
0

ν(t+ u)− ν(t− u)

u
du+

2t∫
t+ϕ(2t)

ν(u)

u− t
du

 ≡

≡ − 1

tπ
(J1 + J2 + J3 + J4 + J5). (59)

Let us choose a number δ0 such that (see the �rst condition of Theorem 6)

δ0∫
−δ0

|ν(u)|
u2

du <
ε

16
.
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Then for 0 < t < min(π
6
, t0, δ0) we get that∣∣∣∣∣∣− 1

tπ
J1 +

1

π

∫
T

ν(u)

u2
du

∣∣∣∣∣∣ ≤

≤ 1

π

∣∣∣∣∣∣∣
∫

T\[−δ0,δ0]

ν(u)

(
1

u(u− t)
− 1

u2

)
du

∣∣∣∣∣∣∣+
+

1

π

δ0∫
−δ0

|ν(u)|
u2

du+
2

π

∫
[−δ0,δ0]\[−2t,2t]

|ν(u)|
u2

du ≤

≤ t

π

∫
[−π,π]\[−δ0,δ0]

|ν(u)|
u2|u− t|

du+
3

π

δ0∫
−δ0

|ν(u)|
u2

du <
ε

4
, (60)

if t is su�ciency small. Let δ1 > 0 be such that for 0 < t < δ1 the following inequality
is true: ν(t) < ε

16
t. Then for the some t, we get

∣∣∣∣− 1

tπ
J2

∣∣∣∣ ≤ ε

16πt

2t∫
−2t

du <
ε

4
. (61)

And by the assumptions of Theorem 6∣∣∣∣− 1

tπ
(J3 + J4 + J5)

∣∣∣∣ ≤ 1

tπ

(
r(2t)

∣∣∣∣ln ϕ(2t)

3t

∣∣∣∣+ r(2t)

∣∣∣∣ln ϕ(2t)

t

∣∣∣∣ +
+C

ϕ(2t)∫
0

ω(u)

u
du

 <
ε

2
, (62)

if t is su�ciency small. By formulas (59) � (62) it follows that there exists

lim
t→+0

ˆ̃ν(t)− ˆ̃ν(0)

t
= − 1

π

π∫
−π

ν(u)

u2
du.

Since for negative t everything is analogous, and the existence of (
ˆ̃

tµ(t))
′
(0) is obvious,

then the su�ciency in Theorem 6 is proved.
Now let us assume that

1∫
0

r(t)

t2
dt = ∞. (63)

Let ti = 6−i for i = 1, 2, .... Let us consider the function f , which we have constructed in
the proof of Theorem 2, for k = 1 and with the function r replacing α (function r does



56 M.I. Dyachenko

not satisfy the requirements imposed on α, but for the construction of an appropriate
function f it is only necessary that r ↑ at t ∈ [0, π]). From the proof of Theorem 2
it is clear that we can take the sequence {tmp}

∞
p=1

instead of {ti}∞i=i0 . Note that the

function f ∈ P (0, r(t)) (here f ′(0) = 0). Let us denote θi = 11
2
ti when i ≥ i0 + 2. Let

us consider the sequence { 1
θi

ˆ̃f(θi)}
∞

i=i0+2
. Since the function f is even, we have (see the

proof of Theorem 2) that ˆ̃f(0) = 0 and

−π 1

θi

ˆ̃f(θi) =
1

θi

π∫
−π

f(u)

u− θi
du =

1

θi

2θi∫
−2θi

f(u)

u− θi
du+

+
1

θi

π∫
2θi

f(u)

(
1

u− θi
− 1

u+ θi

)
du ≡ I1 + I2. (64)

Next, since f(u) = 0 for u ∈ [10
11
θi,

12
11
θi], we have that

|I1| =
1

θi

∣∣∣∣∣∣∣
10
11
θi∫

−2θi

f(u)

u− θi
du+

2θi∫
12
11
θi

f(u)

u− θi
du

∣∣∣∣∣∣∣ ≤
≤ r(2θi)

θi
· (ln 33 + ln 11) < 1, (65)

if i is su�ciency small. At the same time since r is a monotone function on [0, π], we
obtain that (see the de�nition of the function f)

I2 =
1

θi

π∫
2θi

f(u)
2θi

(u− θi)(u+ θi)
du ≥ 2

π∫
2θi

f(u)

u2
du ≥

≥ 2
i−1∑

n=i0+1

4tn∫
2tn

f(u)

u2
du = 2

i−1∑
n=i0+1

r(tn)

4·6−n∫
2·6−n

du

u2
≥

≥ C

i−1∑
n=i0+1

r(tn)

6−n+1∫
6−n

du

u2
= C

i−1∑
n=i0+1

r(tn)

tn−1∫
tn

du

u2
=

= C

ti0∫
ti−1

r(u)du

u2
. (66)

Taking into account formulas (63) � (66), we get that∣∣∣∣∣ ˆ̃f(θi)− ˆ̃f(0)

θi

∣∣∣∣∣ =

∣∣∣∣∣ ˆ̃f(θi)

θi

∣∣∣∣∣→∞
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for i→∞. Thus, the necessity of the �rst condition of Theorem 6 is proved.
Now, assume that the �rst condition holds, then we prove the necessity of the second

condition. Suppose that there exists a sequence of numbers {dn}∞n=1 and a constant
R > 0 such that dn ↓ 0 for n→∞ and

η(ω, r, dn) ≥ Rdn (67)

for n = 1, 2, .... As in the proof of Theorem 2, selecting from the sequence {dn}∞n=1 a
subsequence {ei = dni

}∞i=1, let us construct the function f(x) for k = 1 and with the
functions r(t) replacing α. Note that the function f ∈ P (0, r(t)) (here f ′(0) = 0) and
ˆ̃f(0) = 0. Let us denote si = 11

2
ei for i ≥ 1. Let us consider for i ≥ 2 the following

expression

1

ei

π∫
−π

f(u)du

u− ei
− 1

si

π∫
−π

f(u)du

u− si
=

=
1

ei

2si∫
−2si

f(u)du

u− ei
− 1

si

2si∫
−2si

f(u)du

u− si
+

+2

π∫
2si

f(u)

(
1

(u− ei)(u+ ei)
− 1

(u− si)(u+ si)

)
du ≡ P1 − P2 + 2P3. (68)

As in the derivation of (65), we have

|P2| =
1

si

∣∣∣∣∣∣∣
10
11
si∫

−2si

f(u)

u− si
du+

2si∫
12
11
si

f(u)

u− si
du

∣∣∣∣∣∣∣ ≤
≤ r(2si)

si
· (ln 33 + ln 11) <

R

4
, (69)

if i is su�ciently large. Let us �x δ0 > 0 such that

δ0∫
0

r(u)

u2
du <

R

64
. (70)

We assume that i is so large that 2si < δ0. Then we get that (see (70))

|P3| ≤ 4

δ0∫
2si

|f(u)|
u2

du+

π∫
δ0

f(u)
s2
i − e2i

(u2 − e2i )(u
2 − s2

i )
du ≤

≤ 4

δ0∫
0

r(u)

u2
du+ 4s2

i

π∫
δ0

r(u)

u4
du <

R

8
, (71)
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if i is su�ciently large. And (see the de�nition of the function f)

P1 ≥
1

ei

2ei∫
ei

f(u)du

u− ei
− 1

ei

∣∣∣∣∣∣∣
5
6
ei∫

−2si

f(u)du

u− ei

∣∣∣∣∣∣∣ ≥

≥ 1

ei

 ϕ(ei)∫
0

ω(u)du

u
+ r(ei)

ei∫
ϕ(ei)

du

u

−
−r(11ei)

ei
ln(66) ≥ 3

4
R, (72)

if i is su�ciently large. Thus we proved that (see (68), (69), (71) and (72))∣∣∣∣∣ ˆ̃f(ei)− ˆ̃f(0)

ei
−

ˆ̃f(si)− ˆ̃f(0)

si

∣∣∣∣∣ =

=

∣∣∣∣∣ ˆ̃f(ei)

ei
−

ˆ̃f(si)

si

∣∣∣∣∣ ≥ R

4π

for su�ciently large i. So, the derivative ˆ̃f
′
(0) does not exist, hence the necessity of

the second condition of Theorem 6 proved. �
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